2
|
1 |
/*
|
|
2 |
** 2001 September 15
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** Memory allocation functions used throughout sqlite.
|
|
13 |
**
|
|
14 |
**
|
|
15 |
** $Id: malloc.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
16 |
*/
|
|
17 |
#include "sqliteInt.h"
|
|
18 |
#include <stdarg.h>
|
|
19 |
#include <ctype.h>
|
|
20 |
|
|
21 |
/*
|
|
22 |
** This routine runs when the memory allocator sees that the
|
|
23 |
** total memory allocation is about to exceed the soft heap
|
|
24 |
** limit.
|
|
25 |
*/
|
|
26 |
static void softHeapLimitEnforcer(
|
|
27 |
void *NotUsed,
|
|
28 |
sqlite3_int64 inUse,
|
|
29 |
int allocSize
|
|
30 |
){
|
|
31 |
sqlite3_release_memory(allocSize);
|
|
32 |
}
|
|
33 |
|
|
34 |
/*
|
|
35 |
** Set the soft heap-size limit for the current thread. Passing a
|
|
36 |
** zero or negative value indicates no limit.
|
|
37 |
*/
|
|
38 |
EXPORT_C void sqlite3_soft_heap_limit(int n){
|
|
39 |
sqlite3_uint64 iLimit;
|
|
40 |
int overage;
|
|
41 |
if( n<0 ){
|
|
42 |
iLimit = 0;
|
|
43 |
}else{
|
|
44 |
iLimit = n;
|
|
45 |
}
|
|
46 |
if( iLimit>0 ){
|
|
47 |
sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
|
|
48 |
}else{
|
|
49 |
sqlite3_memory_alarm(0, 0, 0);
|
|
50 |
}
|
|
51 |
overage = sqlite3_memory_used() - n;
|
|
52 |
if( overage>0 ){
|
|
53 |
sqlite3_release_memory(overage);
|
|
54 |
}
|
|
55 |
}
|
|
56 |
|
|
57 |
/*
|
|
58 |
** Release memory held by SQLite instances created by the current thread.
|
|
59 |
*/
|
|
60 |
EXPORT_C int sqlite3_release_memory(int n){
|
|
61 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
62 |
return sqlite3PagerReleaseMemory(n);
|
|
63 |
#else
|
|
64 |
return SQLITE_OK;
|
|
65 |
#endif
|
|
66 |
}
|
|
67 |
|
|
68 |
|
|
69 |
/*
|
|
70 |
** Allocate and zero memory.
|
|
71 |
*/
|
|
72 |
void *sqlite3MallocZero(unsigned n){
|
|
73 |
|
|
74 |
void *p = sqlite3_malloc(n);
|
|
75 |
if( p ){
|
|
76 |
memset(p, 0, n);
|
|
77 |
}
|
|
78 |
|
|
79 |
return p;
|
|
80 |
}
|
|
81 |
|
|
82 |
/*
|
|
83 |
** Allocate and zero memory. If the allocation fails, make
|
|
84 |
** the mallocFailed flag in the connection pointer.
|
|
85 |
*/
|
|
86 |
void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
|
|
87 |
void *p = sqlite3DbMallocRaw(db, n);
|
|
88 |
if( p ){
|
|
89 |
memset(p, 0, n);
|
|
90 |
}
|
|
91 |
return p;
|
|
92 |
}
|
|
93 |
|
|
94 |
/*
|
|
95 |
** Allocate and zero memory. If the allocation fails, make
|
|
96 |
** the mallocFailed flag in the connection pointer.
|
|
97 |
*/
|
|
98 |
void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){
|
|
99 |
void *p = 0;
|
|
100 |
if( !db || db->mallocFailed==0 ){
|
|
101 |
p = sqlite3_malloc(n);
|
|
102 |
if( !p && db ){
|
|
103 |
db->mallocFailed = 1;
|
|
104 |
}
|
|
105 |
}
|
|
106 |
return p;
|
|
107 |
}
|
|
108 |
|
|
109 |
/*
|
|
110 |
** Resize the block of memory pointed to by p to n bytes. If the
|
|
111 |
** resize fails, set the mallocFailed flag inthe connection object.
|
|
112 |
*/
|
|
113 |
void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
|
|
114 |
void *pNew = 0;
|
|
115 |
if( db->mallocFailed==0 ){
|
|
116 |
pNew = sqlite3_realloc(p, n);
|
|
117 |
if( !pNew ){
|
|
118 |
db->mallocFailed = 1;
|
|
119 |
}
|
|
120 |
}
|
|
121 |
return pNew;
|
|
122 |
}
|
|
123 |
|
|
124 |
/*
|
|
125 |
** Attempt to reallocate p. If the reallocation fails, then free p
|
|
126 |
** and set the mallocFailed flag in the database connection.
|
|
127 |
*/
|
|
128 |
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
|
|
129 |
void *pNew;
|
|
130 |
pNew = sqlite3DbRealloc(db, p, n);
|
|
131 |
if( !pNew ){
|
|
132 |
sqlite3_free(p);
|
|
133 |
}
|
|
134 |
return pNew;
|
|
135 |
}
|
|
136 |
|
|
137 |
/*
|
|
138 |
** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
|
139 |
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
|
140 |
** is because when memory debugging is turned on, these two functions are
|
|
141 |
** called via macros that record the current file and line number in the
|
|
142 |
** ThreadData structure.
|
|
143 |
*/
|
|
144 |
char *sqlite3StrDup(const char *z){
|
|
145 |
char *zNew;
|
|
146 |
int n;
|
|
147 |
if( z==0 ) return 0;
|
|
148 |
n = strlen(z)+1;
|
|
149 |
zNew = (char*)sqlite3_malloc(n);
|
|
150 |
if( zNew ) memcpy(zNew, z, n);
|
|
151 |
return zNew;
|
|
152 |
}
|
|
153 |
char *sqlite3StrNDup(const char *z, int n){
|
|
154 |
char *zNew;
|
|
155 |
if( z==0 ) return 0;
|
|
156 |
zNew = (char*)sqlite3_malloc(n+1);
|
|
157 |
if( zNew ){
|
|
158 |
memcpy(zNew, z, n);
|
|
159 |
zNew[n] = 0;
|
|
160 |
}
|
|
161 |
return zNew;
|
|
162 |
}
|
|
163 |
|
|
164 |
char *sqlite3DbStrDup(sqlite3 *db, const char *z){
|
|
165 |
char *zNew = sqlite3StrDup(z);
|
|
166 |
if( z && !zNew ){
|
|
167 |
db->mallocFailed = 1;
|
|
168 |
}
|
|
169 |
return zNew;
|
|
170 |
}
|
|
171 |
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
|
|
172 |
char *zNew = sqlite3StrNDup(z, n);
|
|
173 |
if( z && !zNew ){
|
|
174 |
db->mallocFailed = 1;
|
|
175 |
}
|
|
176 |
return zNew;
|
|
177 |
}
|
|
178 |
|
|
179 |
/*
|
|
180 |
** Create a string from the 2nd and subsequent arguments (up to the
|
|
181 |
** first NULL argument), store the string in memory obtained from
|
|
182 |
** sqliteMalloc() and make the pointer indicated by the 1st argument
|
|
183 |
** point to that string. The 1st argument must either be NULL or
|
|
184 |
** point to memory obtained from sqliteMalloc().
|
|
185 |
*/
|
|
186 |
void sqlite3SetString(char **pz, ...){
|
|
187 |
va_list ap;
|
|
188 |
int nByte;
|
|
189 |
const char *z;
|
|
190 |
char *zResult;
|
|
191 |
|
|
192 |
assert( pz!=0 );
|
|
193 |
nByte = 1;
|
|
194 |
va_start(ap, pz);
|
|
195 |
while( (z = va_arg(ap, const char*))!=0 ){
|
|
196 |
nByte += strlen(z);
|
|
197 |
}
|
|
198 |
va_end(ap);
|
|
199 |
sqlite3_free(*pz);
|
|
200 |
*pz = zResult = (char*)sqlite3_malloc(nByte);
|
|
201 |
if( zResult==0 ){
|
|
202 |
return;
|
|
203 |
}
|
|
204 |
*zResult = 0;
|
|
205 |
va_start(ap, pz);
|
|
206 |
while( (z = va_arg(ap, const char*))!=0 ){
|
|
207 |
int n = strlen(z);
|
|
208 |
memcpy(zResult, z, n);
|
|
209 |
zResult += n;
|
|
210 |
}
|
|
211 |
zResult[0] = 0;
|
|
212 |
va_end(ap);
|
|
213 |
}
|
|
214 |
|
|
215 |
|
|
216 |
/*
|
|
217 |
** This function must be called before exiting any API function (i.e.
|
|
218 |
** returning control to the user) that has called sqlite3_malloc or
|
|
219 |
** sqlite3_realloc.
|
|
220 |
**
|
|
221 |
** The returned value is normally a copy of the second argument to this
|
|
222 |
** function. However, if a malloc() failure has occured since the previous
|
|
223 |
** invocation SQLITE_NOMEM is returned instead.
|
|
224 |
**
|
|
225 |
** If the first argument, db, is not NULL and a malloc() error has occured,
|
|
226 |
** then the connection error-code (the value returned by sqlite3_errcode())
|
|
227 |
** is set to SQLITE_NOMEM.
|
|
228 |
*/
|
|
229 |
int sqlite3ApiExit(sqlite3* db, int rc){
|
|
230 |
/* If the db handle is not NULL, then we must hold the connection handle
|
|
231 |
** mutex here. Otherwise the read (and possible write) of db->mallocFailed
|
|
232 |
** is unsafe, as is the call to sqlite3Error().
|
|
233 |
*/
|
|
234 |
assert( !db || sqlite3_mutex_held(db->mutex) );
|
|
235 |
if( db && db->mallocFailed ){
|
|
236 |
sqlite3Error(db, SQLITE_NOMEM, 0);
|
|
237 |
db->mallocFailed = 0;
|
|
238 |
rc = SQLITE_NOMEM;
|
|
239 |
}
|
|
240 |
return rc & (db ? db->errMask : 0xff);
|
|
241 |
}
|