2
|
1 |
/*
|
|
2 |
** 2001 September 15
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** The code in this file implements execution method of the
|
|
13 |
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
|
|
14 |
** handles housekeeping details such as creating and deleting
|
|
15 |
** VDBE instances. This file is solely interested in executing
|
|
16 |
** the VDBE program.
|
|
17 |
**
|
|
18 |
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
|
|
19 |
** to a VDBE.
|
|
20 |
**
|
|
21 |
** The SQL parser generates a program which is then executed by
|
|
22 |
** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
23 |
** similar in form to assembly language. The program consists of
|
|
24 |
** a linear sequence of operations. Each operation has an opcode
|
|
25 |
** and 3 operands. Operands P1 and P2 are integers. Operand P3
|
|
26 |
** is a null-terminated string. The P2 operand must be non-negative.
|
|
27 |
** Opcodes will typically ignore one or more operands. Many opcodes
|
|
28 |
** ignore all three operands.
|
|
29 |
**
|
|
30 |
** Computation results are stored on a stack. Each entry on the
|
|
31 |
** stack is either an integer, a null-terminated string, a floating point
|
|
32 |
** number, or the SQL "NULL" value. An inplicit conversion from one
|
|
33 |
** type to the other occurs as necessary.
|
|
34 |
**
|
|
35 |
** Most of the code in this file is taken up by the sqlite3VdbeExec()
|
|
36 |
** function which does the work of interpreting a VDBE program.
|
|
37 |
** But other routines are also provided to help in building up
|
|
38 |
** a program instruction by instruction.
|
|
39 |
**
|
|
40 |
** Various scripts scan this source file in order to generate HTML
|
|
41 |
** documentation, headers files, or other derived files. The formatting
|
|
42 |
** of the code in this file is, therefore, important. See other comments
|
|
43 |
** in this file for details. If in doubt, do not deviate from existing
|
|
44 |
** commenting and indentation practices when changing or adding code.
|
|
45 |
**
|
|
46 |
** $Id: vdbe.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
47 |
*/
|
|
48 |
#include "sqliteInt.h"
|
|
49 |
#include <ctype.h>
|
|
50 |
#include "vdbeInt.h"
|
|
51 |
|
|
52 |
/*
|
|
53 |
** The following global variable is incremented every time a cursor
|
|
54 |
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
|
|
55 |
** procedures use this information to make sure that indices are
|
|
56 |
** working correctly. This variable has no function other than to
|
|
57 |
** help verify the correct operation of the library.
|
|
58 |
*/
|
|
59 |
#ifdef SQLITE_TEST
|
|
60 |
int sqlite3_search_count = 0;
|
|
61 |
#endif
|
|
62 |
|
|
63 |
/*
|
|
64 |
** When this global variable is positive, it gets decremented once before
|
|
65 |
** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
|
|
66 |
** field of the sqlite3 structure is set in order to simulate and interrupt.
|
|
67 |
**
|
|
68 |
** This facility is used for testing purposes only. It does not function
|
|
69 |
** in an ordinary build.
|
|
70 |
*/
|
|
71 |
#ifdef SQLITE_TEST
|
|
72 |
int sqlite3_interrupt_count = 0;
|
|
73 |
#endif
|
|
74 |
|
|
75 |
/*
|
|
76 |
** The next global variable is incremented each type the OP_Sort opcode
|
|
77 |
** is executed. The test procedures use this information to make sure that
|
|
78 |
** sorting is occurring or not occuring at appropriate times. This variable
|
|
79 |
** has no function other than to help verify the correct operation of the
|
|
80 |
** library.
|
|
81 |
*/
|
|
82 |
#ifdef SQLITE_TEST
|
|
83 |
int sqlite3_sort_count = 0;
|
|
84 |
#endif
|
|
85 |
|
|
86 |
/*
|
|
87 |
** The next global variable records the size of the largest MEM_Blob
|
|
88 |
** or MEM_Str that has appeared on the VDBE stack. The test procedures
|
|
89 |
** use this information to make sure that the zero-blob functionality
|
|
90 |
** is working correctly. This variable has no function other than to
|
|
91 |
** help verify the correct operation of the library.
|
|
92 |
*/
|
|
93 |
#ifdef SQLITE_TEST
|
|
94 |
int sqlite3_max_blobsize = 0;
|
|
95 |
#endif
|
|
96 |
|
|
97 |
/*
|
|
98 |
** Release the memory associated with the given stack level. This
|
|
99 |
** leaves the Mem.flags field in an inconsistent state.
|
|
100 |
*/
|
|
101 |
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
|
|
102 |
|
|
103 |
/*
|
|
104 |
** Convert the given stack entity into a string if it isn't one
|
|
105 |
** already. Return non-zero if a malloc() fails.
|
|
106 |
*/
|
|
107 |
#define Stringify(P, enc) \
|
|
108 |
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
|
|
109 |
{ goto no_mem; }
|
|
110 |
|
|
111 |
/*
|
|
112 |
** The header of a record consists of a sequence variable-length integers.
|
|
113 |
** These integers are almost always small and are encoded as a single byte.
|
|
114 |
** The following macro takes advantage this fact to provide a fast decode
|
|
115 |
** of the integers in a record header. It is faster for the common case
|
|
116 |
** where the integer is a single byte. It is a little slower when the
|
|
117 |
** integer is two or more bytes. But overall it is faster.
|
|
118 |
**
|
|
119 |
** The following expressions are equivalent:
|
|
120 |
**
|
|
121 |
** x = sqlite3GetVarint32( A, &B );
|
|
122 |
**
|
|
123 |
** x = GetVarint( A, B );
|
|
124 |
**
|
|
125 |
*/
|
|
126 |
#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
|
|
127 |
|
|
128 |
/*
|
|
129 |
** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
130 |
** a pointer to a dynamically allocated string where some other entity
|
|
131 |
** is responsible for deallocating that string. Because the stack entry
|
|
132 |
** does not control the string, it might be deleted without the stack
|
|
133 |
** entry knowing it.
|
|
134 |
**
|
|
135 |
** This routine converts an ephemeral string into a dynamically allocated
|
|
136 |
** string that the stack entry itself controls. In other words, it
|
|
137 |
** converts an MEM_Ephem string into an MEM_Dyn string.
|
|
138 |
*/
|
|
139 |
#define Deephemeralize(P) \
|
|
140 |
if( ((P)->flags&MEM_Ephem)!=0 \
|
|
141 |
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
|
142 |
|
|
143 |
/*
|
|
144 |
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
|
|
145 |
** P if required.
|
|
146 |
*/
|
|
147 |
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
|
|
148 |
|
|
149 |
/*
|
|
150 |
** Argument pMem points at a memory cell that will be passed to a
|
|
151 |
** user-defined function or returned to the user as the result of a query.
|
|
152 |
** The second argument, 'db_enc' is the text encoding used by the vdbe for
|
|
153 |
** stack variables. This routine sets the pMem->enc and pMem->type
|
|
154 |
** variables used by the sqlite3_value_*() routines.
|
|
155 |
*/
|
|
156 |
#define storeTypeInfo(A,B) _storeTypeInfo(A)
|
|
157 |
static void _storeTypeInfo(Mem *pMem){
|
|
158 |
int flags = pMem->flags;
|
|
159 |
if( flags & MEM_Null ){
|
|
160 |
pMem->type = SQLITE_NULL;
|
|
161 |
}
|
|
162 |
else if( flags & MEM_Int ){
|
|
163 |
pMem->type = SQLITE_INTEGER;
|
|
164 |
}
|
|
165 |
else if( flags & MEM_Real ){
|
|
166 |
pMem->type = SQLITE_FLOAT;
|
|
167 |
}
|
|
168 |
else if( flags & MEM_Str ){
|
|
169 |
pMem->type = SQLITE_TEXT;
|
|
170 |
}else{
|
|
171 |
pMem->type = SQLITE_BLOB;
|
|
172 |
}
|
|
173 |
}
|
|
174 |
|
|
175 |
/*
|
|
176 |
** Pop the stack N times.
|
|
177 |
*/
|
|
178 |
static void popStack(Mem **ppTos, int N){
|
|
179 |
Mem *pTos = *ppTos;
|
|
180 |
while( N>0 ){
|
|
181 |
N--;
|
|
182 |
Release(pTos);
|
|
183 |
pTos--;
|
|
184 |
}
|
|
185 |
*ppTos = pTos;
|
|
186 |
}
|
|
187 |
|
|
188 |
/*
|
|
189 |
** Allocate cursor number iCur. Return a pointer to it. Return NULL
|
|
190 |
** if we run out of memory.
|
|
191 |
*/
|
|
192 |
static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
|
|
193 |
Cursor *pCx;
|
|
194 |
assert( iCur<p->nCursor );
|
|
195 |
if( p->apCsr[iCur] ){
|
|
196 |
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
|
|
197 |
}
|
|
198 |
p->apCsr[iCur] = pCx = (Cursor*)sqlite3MallocZero( sizeof(Cursor) );
|
|
199 |
if( pCx ){
|
|
200 |
pCx->iDb = iDb;
|
|
201 |
}
|
|
202 |
return pCx;
|
|
203 |
}
|
|
204 |
|
|
205 |
/*
|
|
206 |
** Try to convert a value into a numeric representation if we can
|
|
207 |
** do so without loss of information. In other words, if the string
|
|
208 |
** looks like a number, convert it into a number. If it does not
|
|
209 |
** look like a number, leave it alone.
|
|
210 |
*/
|
|
211 |
static void applyNumericAffinity(Mem *pRec){
|
|
212 |
if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
|
|
213 |
int realnum;
|
|
214 |
sqlite3VdbeMemNulTerminate(pRec);
|
|
215 |
if( (pRec->flags&MEM_Str)
|
|
216 |
&& sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
|
|
217 |
i64 value;
|
|
218 |
sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
|
|
219 |
if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
|
|
220 |
sqlite3VdbeMemRelease(pRec);
|
|
221 |
pRec->u.i = value;
|
|
222 |
pRec->flags = MEM_Int;
|
|
223 |
}else{
|
|
224 |
sqlite3VdbeMemRealify(pRec);
|
|
225 |
}
|
|
226 |
}
|
|
227 |
}
|
|
228 |
}
|
|
229 |
|
|
230 |
/*
|
|
231 |
** Processing is determine by the affinity parameter:
|
|
232 |
**
|
|
233 |
** SQLITE_AFF_INTEGER:
|
|
234 |
** SQLITE_AFF_REAL:
|
|
235 |
** SQLITE_AFF_NUMERIC:
|
|
236 |
** Try to convert pRec to an integer representation or a
|
|
237 |
** floating-point representation if an integer representation
|
|
238 |
** is not possible. Note that the integer representation is
|
|
239 |
** always preferred, even if the affinity is REAL, because
|
|
240 |
** an integer representation is more space efficient on disk.
|
|
241 |
**
|
|
242 |
** SQLITE_AFF_TEXT:
|
|
243 |
** Convert pRec to a text representation.
|
|
244 |
**
|
|
245 |
** SQLITE_AFF_NONE:
|
|
246 |
** No-op. pRec is unchanged.
|
|
247 |
*/
|
|
248 |
static void applyAffinity(
|
|
249 |
Mem *pRec, /* The value to apply affinity to */
|
|
250 |
char affinity, /* The affinity to be applied */
|
|
251 |
u8 enc /* Use this text encoding */
|
|
252 |
){
|
|
253 |
if( affinity==SQLITE_AFF_TEXT ){
|
|
254 |
/* Only attempt the conversion to TEXT if there is an integer or real
|
|
255 |
** representation (blob and NULL do not get converted) but no string
|
|
256 |
** representation.
|
|
257 |
*/
|
|
258 |
if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
|
|
259 |
sqlite3VdbeMemStringify(pRec, enc);
|
|
260 |
}
|
|
261 |
pRec->flags &= ~(MEM_Real|MEM_Int);
|
|
262 |
}else if( affinity!=SQLITE_AFF_NONE ){
|
|
263 |
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|
|
264 |
|| affinity==SQLITE_AFF_NUMERIC );
|
|
265 |
applyNumericAffinity(pRec);
|
|
266 |
if( pRec->flags & MEM_Real ){
|
|
267 |
sqlite3VdbeIntegerAffinity(pRec);
|
|
268 |
}
|
|
269 |
}
|
|
270 |
}
|
|
271 |
|
|
272 |
/*
|
|
273 |
** Try to convert the type of a function argument or a result column
|
|
274 |
** into a numeric representation. Use either INTEGER or REAL whichever
|
|
275 |
** is appropriate. But only do the conversion if it is possible without
|
|
276 |
** loss of information and return the revised type of the argument.
|
|
277 |
**
|
|
278 |
** This is an EXPERIMENTAL api and is subject to change or removal.
|
|
279 |
*/
|
|
280 |
EXPORT_C int sqlite3_value_numeric_type(sqlite3_value *pVal){
|
|
281 |
Mem *pMem = (Mem*)pVal;
|
|
282 |
applyNumericAffinity(pMem);
|
|
283 |
storeTypeInfo(pMem, 0);
|
|
284 |
return pMem->type;
|
|
285 |
}
|
|
286 |
|
|
287 |
/*
|
|
288 |
** Exported version of applyAffinity(). This one works on sqlite3_value*,
|
|
289 |
** not the internal Mem* type.
|
|
290 |
*/
|
|
291 |
void sqlite3ValueApplyAffinity(
|
|
292 |
sqlite3_value *pVal,
|
|
293 |
u8 affinity,
|
|
294 |
u8 enc
|
|
295 |
){
|
|
296 |
applyAffinity((Mem *)pVal, affinity, enc);
|
|
297 |
}
|
|
298 |
|
|
299 |
#ifdef SQLITE_DEBUG
|
|
300 |
/*
|
|
301 |
** Write a nice string representation of the contents of cell pMem
|
|
302 |
** into buffer zBuf, length nBuf.
|
|
303 |
*/
|
|
304 |
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
|
|
305 |
char *zCsr = zBuf;
|
|
306 |
int f = pMem->flags;
|
|
307 |
|
|
308 |
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
|
309 |
|
|
310 |
if( f&MEM_Blob ){
|
|
311 |
int i;
|
|
312 |
char c;
|
|
313 |
if( f & MEM_Dyn ){
|
|
314 |
c = 'z';
|
|
315 |
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
316 |
}else if( f & MEM_Static ){
|
|
317 |
c = 't';
|
|
318 |
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
319 |
}else if( f & MEM_Ephem ){
|
|
320 |
c = 'e';
|
|
321 |
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
322 |
}else{
|
|
323 |
c = 's';
|
|
324 |
}
|
|
325 |
|
|
326 |
sqlite3_snprintf(100, zCsr, "%c", c);
|
|
327 |
zCsr += strlen(zCsr);
|
|
328 |
sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
|
|
329 |
zCsr += strlen(zCsr);
|
|
330 |
for(i=0; i<16 && i<pMem->n; i++){
|
|
331 |
sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
|
|
332 |
zCsr += strlen(zCsr);
|
|
333 |
}
|
|
334 |
for(i=0; i<16 && i<pMem->n; i++){
|
|
335 |
char z = pMem->z[i];
|
|
336 |
if( z<32 || z>126 ) *zCsr++ = '.';
|
|
337 |
else *zCsr++ = z;
|
|
338 |
}
|
|
339 |
|
|
340 |
sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
|
|
341 |
zCsr += strlen(zCsr);
|
|
342 |
if( f & MEM_Zero ){
|
|
343 |
sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
|
|
344 |
zCsr += strlen(zCsr);
|
|
345 |
}
|
|
346 |
*zCsr = '\0';
|
|
347 |
}else if( f & MEM_Str ){
|
|
348 |
int j, k;
|
|
349 |
zBuf[0] = ' ';
|
|
350 |
if( f & MEM_Dyn ){
|
|
351 |
zBuf[1] = 'z';
|
|
352 |
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
353 |
}else if( f & MEM_Static ){
|
|
354 |
zBuf[1] = 't';
|
|
355 |
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
356 |
}else if( f & MEM_Ephem ){
|
|
357 |
zBuf[1] = 'e';
|
|
358 |
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
359 |
}else{
|
|
360 |
zBuf[1] = 's';
|
|
361 |
}
|
|
362 |
k = 2;
|
|
363 |
sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
|
|
364 |
k += strlen(&zBuf[k]);
|
|
365 |
zBuf[k++] = '[';
|
|
366 |
for(j=0; j<15 && j<pMem->n; j++){
|
|
367 |
u8 c = pMem->z[j];
|
|
368 |
if( c>=0x20 && c<0x7f ){
|
|
369 |
zBuf[k++] = c;
|
|
370 |
}else{
|
|
371 |
zBuf[k++] = '.';
|
|
372 |
}
|
|
373 |
}
|
|
374 |
zBuf[k++] = ']';
|
|
375 |
sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
|
|
376 |
k += strlen(&zBuf[k]);
|
|
377 |
zBuf[k++] = 0;
|
|
378 |
}
|
|
379 |
}
|
|
380 |
#endif
|
|
381 |
|
|
382 |
|
|
383 |
#ifdef VDBE_PROFILE
|
|
384 |
/*
|
|
385 |
** The following routine only works on pentium-class processors.
|
|
386 |
** It uses the RDTSC opcode to read the cycle count value out of the
|
|
387 |
** processor and returns that value. This can be used for high-res
|
|
388 |
** profiling.
|
|
389 |
*/
|
|
390 |
__inline__ unsigned long long int hwtime(void){
|
|
391 |
unsigned long long int x;
|
|
392 |
__asm__("rdtsc\n\t"
|
|
393 |
"mov %%edx, %%ecx\n\t"
|
|
394 |
:"=A" (x));
|
|
395 |
return x;
|
|
396 |
}
|
|
397 |
#endif
|
|
398 |
|
|
399 |
/*
|
|
400 |
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
|
|
401 |
** sqlite3_interrupt() routine has been called. If it has been, then
|
|
402 |
** processing of the VDBE program is interrupted.
|
|
403 |
**
|
|
404 |
** This macro added to every instruction that does a jump in order to
|
|
405 |
** implement a loop. This test used to be on every single instruction,
|
|
406 |
** but that meant we more testing that we needed. By only testing the
|
|
407 |
** flag on jump instructions, we get a (small) speed improvement.
|
|
408 |
*/
|
|
409 |
#define CHECK_FOR_INTERRUPT \
|
|
410 |
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
|
|
411 |
|
|
412 |
|
|
413 |
/*
|
|
414 |
** Execute as much of a VDBE program as we can then return.
|
|
415 |
**
|
|
416 |
** sqlite3VdbeMakeReady() must be called before this routine in order to
|
|
417 |
** close the program with a final OP_Halt and to set up the callbacks
|
|
418 |
** and the error message pointer.
|
|
419 |
**
|
|
420 |
** Whenever a row or result data is available, this routine will either
|
|
421 |
** invoke the result callback (if there is one) or return with
|
|
422 |
** SQLITE_ROW.
|
|
423 |
**
|
|
424 |
** If an attempt is made to open a locked database, then this routine
|
|
425 |
** will either invoke the busy callback (if there is one) or it will
|
|
426 |
** return SQLITE_BUSY.
|
|
427 |
**
|
|
428 |
** If an error occurs, an error message is written to memory obtained
|
|
429 |
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
|
|
430 |
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
|
|
431 |
**
|
|
432 |
** If the callback ever returns non-zero, then the program exits
|
|
433 |
** immediately. There will be no error message but the p->rc field is
|
|
434 |
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
|
|
435 |
**
|
|
436 |
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
|
|
437 |
** routine to return SQLITE_ERROR.
|
|
438 |
**
|
|
439 |
** Other fatal errors return SQLITE_ERROR.
|
|
440 |
**
|
|
441 |
** After this routine has finished, sqlite3VdbeFinalize() should be
|
|
442 |
** used to clean up the mess that was left behind.
|
|
443 |
*/
|
|
444 |
int sqlite3VdbeExec(
|
|
445 |
Vdbe *p /* The VDBE */
|
|
446 |
){
|
|
447 |
int pc; /* The program counter */
|
|
448 |
Op *pOp; /* Current operation */
|
|
449 |
int rc = SQLITE_OK; /* Value to return */
|
|
450 |
sqlite3 *db = p->db; /* The database */
|
|
451 |
u8 encoding = ENC(db); /* The database encoding */
|
|
452 |
Mem *pTos; /* Top entry in the operand stack */
|
|
453 |
#ifdef VDBE_PROFILE
|
|
454 |
unsigned long long start; /* CPU clock count at start of opcode */
|
|
455 |
int origPc; /* Program counter at start of opcode */
|
|
456 |
#endif
|
|
457 |
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
458 |
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
|
459 |
#endif
|
|
460 |
#ifndef NDEBUG
|
|
461 |
Mem *pStackLimit;
|
|
462 |
#endif
|
|
463 |
|
|
464 |
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
|
|
465 |
assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
466 |
pTos = p->pTos;
|
|
467 |
sqlite3BtreeMutexArrayEnter(&p->aMutex);
|
|
468 |
if( p->rc==SQLITE_NOMEM ){
|
|
469 |
/* This happens if a malloc() inside a call to sqlite3_column_text() or
|
|
470 |
** sqlite3_column_text16() failed. */
|
|
471 |
goto no_mem;
|
|
472 |
}
|
|
473 |
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
474 |
p->rc = SQLITE_OK;
|
|
475 |
assert( p->explain==0 );
|
|
476 |
if( p->popStack ){
|
|
477 |
popStack(&pTos, p->popStack);
|
|
478 |
p->popStack = 0;
|
|
479 |
}
|
|
480 |
p->resOnStack = 0;
|
|
481 |
db->busyHandler.nBusy = 0;
|
|
482 |
CHECK_FOR_INTERRUPT;
|
|
483 |
sqlite3VdbeIOTraceSql(p);
|
|
484 |
#ifdef SQLITE_DEBUG
|
|
485 |
if( (p->db->flags & SQLITE_VdbeListing)!=0
|
|
486 |
|| sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)
|
|
487 |
){
|
|
488 |
int i;
|
|
489 |
printf("VDBE Program Listing:\n");
|
|
490 |
sqlite3VdbePrintSql(p);
|
|
491 |
for(i=0; i<p->nOp; i++){
|
|
492 |
sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
|
|
493 |
}
|
|
494 |
}
|
|
495 |
if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){
|
|
496 |
p->trace = stdout;
|
|
497 |
}
|
|
498 |
#endif
|
|
499 |
for(pc=p->pc; rc==SQLITE_OK; pc++){
|
|
500 |
assert( pc>=0 && pc<p->nOp );
|
|
501 |
assert( pTos<=&p->aStack[pc] );
|
|
502 |
if( db->mallocFailed ) goto no_mem;
|
|
503 |
#ifdef VDBE_PROFILE
|
|
504 |
origPc = pc;
|
|
505 |
start = hwtime();
|
|
506 |
#endif
|
|
507 |
pOp = &p->aOp[pc];
|
|
508 |
|
|
509 |
/* Only allow tracing if SQLITE_DEBUG is defined.
|
|
510 |
*/
|
|
511 |
#ifdef SQLITE_DEBUG
|
|
512 |
if( p->trace ){
|
|
513 |
if( pc==0 ){
|
|
514 |
printf("VDBE Execution Trace:\n");
|
|
515 |
sqlite3VdbePrintSql(p);
|
|
516 |
}
|
|
517 |
sqlite3VdbePrintOp(p->trace, pc, pOp);
|
|
518 |
}
|
|
519 |
if( p->trace==0 && pc==0
|
|
520 |
&& sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){
|
|
521 |
sqlite3VdbePrintSql(p);
|
|
522 |
}
|
|
523 |
#endif
|
|
524 |
|
|
525 |
|
|
526 |
/* Check to see if we need to simulate an interrupt. This only happens
|
|
527 |
** if we have a special test build.
|
|
528 |
*/
|
|
529 |
#ifdef SQLITE_TEST
|
|
530 |
if( sqlite3_interrupt_count>0 ){
|
|
531 |
sqlite3_interrupt_count--;
|
|
532 |
if( sqlite3_interrupt_count==0 ){
|
|
533 |
sqlite3_interrupt(db);
|
|
534 |
}
|
|
535 |
}
|
|
536 |
#endif
|
|
537 |
|
|
538 |
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
539 |
/* Call the progress callback if it is configured and the required number
|
|
540 |
** of VDBE ops have been executed (either since this invocation of
|
|
541 |
** sqlite3VdbeExec() or since last time the progress callback was called).
|
|
542 |
** If the progress callback returns non-zero, exit the virtual machine with
|
|
543 |
** a return code SQLITE_ABORT.
|
|
544 |
*/
|
|
545 |
if( db->xProgress ){
|
|
546 |
if( db->nProgressOps==nProgressOps ){
|
|
547 |
int prc;
|
|
548 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
549 |
prc =db->xProgress(db->pProgressArg);
|
|
550 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
551 |
if( prc!=0 ){
|
|
552 |
rc = SQLITE_INTERRUPT;
|
|
553 |
goto vdbe_halt;
|
|
554 |
}
|
|
555 |
nProgressOps = 0;
|
|
556 |
}
|
|
557 |
nProgressOps++;
|
|
558 |
}
|
|
559 |
#endif
|
|
560 |
|
|
561 |
#ifndef NDEBUG
|
|
562 |
/* This is to check that the return value of static function
|
|
563 |
** opcodeNoPush() (see vdbeaux.c) returns values that match the
|
|
564 |
** implementation of the virtual machine in this file. If
|
|
565 |
** opcodeNoPush() returns non-zero, then the stack is guarenteed
|
|
566 |
** not to grow when the opcode is executed. If it returns zero, then
|
|
567 |
** the stack may grow by at most 1.
|
|
568 |
**
|
|
569 |
** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not
|
|
570 |
** available if NDEBUG is defined at build time.
|
|
571 |
*/
|
|
572 |
pStackLimit = pTos;
|
|
573 |
if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
|
|
574 |
pStackLimit++;
|
|
575 |
}
|
|
576 |
#endif
|
|
577 |
|
|
578 |
switch( pOp->opcode ){
|
|
579 |
|
|
580 |
/*****************************************************************************
|
|
581 |
** What follows is a massive switch statement where each case implements a
|
|
582 |
** separate instruction in the virtual machine. If we follow the usual
|
|
583 |
** indentation conventions, each case should be indented by 6 spaces. But
|
|
584 |
** that is a lot of wasted space on the left margin. So the code within
|
|
585 |
** the switch statement will break with convention and be flush-left. Another
|
|
586 |
** big comment (similar to this one) will mark the point in the code where
|
|
587 |
** we transition back to normal indentation.
|
|
588 |
**
|
|
589 |
** The formatting of each case is important. The makefile for SQLite
|
|
590 |
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
591 |
** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
592 |
** will be filled with #defines that give unique integer values to each
|
|
593 |
** opcode and the opcodes.c file is filled with an array of strings where
|
|
594 |
** each string is the symbolic name for the corresponding opcode. If the
|
|
595 |
** case statement is followed by a comment of the form "/# same as ... #/"
|
|
596 |
** that comment is used to determine the particular value of the opcode.
|
|
597 |
**
|
|
598 |
** If a comment on the same line as the "case OP_" construction contains
|
|
599 |
** the word "no-push", then the opcode is guarenteed not to grow the
|
|
600 |
** vdbe stack when it is executed. See function opcode() in
|
|
601 |
** vdbeaux.c for details.
|
|
602 |
**
|
|
603 |
** Documentation about VDBE opcodes is generated by scanning this file
|
|
604 |
** for lines of that contain "Opcode:". That line and all subsequent
|
|
605 |
** comment lines are used in the generation of the opcode.html documentation
|
|
606 |
** file.
|
|
607 |
**
|
|
608 |
** SUMMARY:
|
|
609 |
**
|
|
610 |
** Formatting is important to scripts that scan this file.
|
|
611 |
** Do not deviate from the formatting style currently in use.
|
|
612 |
**
|
|
613 |
*****************************************************************************/
|
|
614 |
|
|
615 |
/* Opcode: Goto * P2 *
|
|
616 |
**
|
|
617 |
** An unconditional jump to address P2.
|
|
618 |
** The next instruction executed will be
|
|
619 |
** the one at index P2 from the beginning of
|
|
620 |
** the program.
|
|
621 |
*/
|
|
622 |
case OP_Goto: { /* no-push */
|
|
623 |
CHECK_FOR_INTERRUPT;
|
|
624 |
pc = pOp->p2 - 1;
|
|
625 |
break;
|
|
626 |
}
|
|
627 |
|
|
628 |
/* Opcode: Gosub * P2 *
|
|
629 |
**
|
|
630 |
** Push the current address plus 1 onto the return address stack
|
|
631 |
** and then jump to address P2.
|
|
632 |
**
|
|
633 |
** The return address stack is of limited depth. If too many
|
|
634 |
** OP_Gosub operations occur without intervening OP_Returns, then
|
|
635 |
** the return address stack will fill up and processing will abort
|
|
636 |
** with a fatal error.
|
|
637 |
*/
|
|
638 |
case OP_Gosub: { /* no-push */
|
|
639 |
assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
|
|
640 |
p->returnStack[p->returnDepth++] = pc+1;
|
|
641 |
pc = pOp->p2 - 1;
|
|
642 |
break;
|
|
643 |
}
|
|
644 |
|
|
645 |
/* Opcode: Return * * *
|
|
646 |
**
|
|
647 |
** Jump immediately to the next instruction after the last unreturned
|
|
648 |
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
|
|
649 |
** processing aborts with a fatal error.
|
|
650 |
*/
|
|
651 |
case OP_Return: { /* no-push */
|
|
652 |
assert( p->returnDepth>0 );
|
|
653 |
p->returnDepth--;
|
|
654 |
pc = p->returnStack[p->returnDepth] - 1;
|
|
655 |
break;
|
|
656 |
}
|
|
657 |
|
|
658 |
/* Opcode: Halt P1 P2 P3
|
|
659 |
**
|
|
660 |
** Exit immediately. All open cursors, Fifos, etc are closed
|
|
661 |
** automatically.
|
|
662 |
**
|
|
663 |
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
|
664 |
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
|
665 |
** For errors, it can be some other value. If P1!=0 then P2 will determine
|
|
666 |
** whether or not to rollback the current transaction. Do not rollback
|
|
667 |
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
|
668 |
** then back out all changes that have occurred during this execution of the
|
|
669 |
** VDBE, but do not rollback the transaction.
|
|
670 |
**
|
|
671 |
** If P3 is not null then it is an error message string.
|
|
672 |
**
|
|
673 |
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
674 |
** every program. So a jump past the last instruction of the program
|
|
675 |
** is the same as executing Halt.
|
|
676 |
*/
|
|
677 |
case OP_Halt: { /* no-push */
|
|
678 |
p->pTos = pTos;
|
|
679 |
p->rc = pOp->p1;
|
|
680 |
p->pc = pc;
|
|
681 |
p->errorAction = pOp->p2;
|
|
682 |
if( pOp->p3 ){
|
|
683 |
sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
|
|
684 |
}
|
|
685 |
rc = sqlite3VdbeHalt(p);
|
|
686 |
assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
|
|
687 |
if( rc==SQLITE_BUSY ){
|
|
688 |
p->rc = rc = SQLITE_BUSY;
|
|
689 |
}else{
|
|
690 |
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
|
691 |
}
|
|
692 |
goto vdbe_return;
|
|
693 |
}
|
|
694 |
|
|
695 |
/* Opcode: StackDepth P1 * *
|
|
696 |
**
|
|
697 |
** If P1 is less than zero, then store the current stack depth
|
|
698 |
** in P1. If P1 is zero or greater, verify that the current stack
|
|
699 |
** depth is equal to P1 and throw an exception if it is not.
|
|
700 |
**
|
|
701 |
** This opcode is used for internal consistency checking.
|
|
702 |
*/
|
|
703 |
case OP_StackDepth: { /* no-push */
|
|
704 |
int n = pTos - p->aStack + 1;
|
|
705 |
if( pOp->p1<0 ){
|
|
706 |
pOp->p1 = n;
|
|
707 |
}else if( pOp->p1!=n ){
|
|
708 |
p->pTos = pTos;
|
|
709 |
p->rc = rc = SQLITE_INTERNAL;
|
|
710 |
p->pc = pc;
|
|
711 |
p->errorAction = OE_Rollback;
|
|
712 |
sqlite3SetString(&p->zErrMsg, "internal error: VDBE stack leak", (char*)0);
|
|
713 |
goto vdbe_return;
|
|
714 |
}
|
|
715 |
break;
|
|
716 |
}
|
|
717 |
|
|
718 |
/* Opcode: Integer P1 * *
|
|
719 |
**
|
|
720 |
** The 32-bit integer value P1 is pushed onto the stack.
|
|
721 |
*/
|
|
722 |
case OP_Integer: {
|
|
723 |
pTos++;
|
|
724 |
pTos->flags = MEM_Int;
|
|
725 |
pTos->u.i = pOp->p1;
|
|
726 |
break;
|
|
727 |
}
|
|
728 |
|
|
729 |
/* Opcode: Int64 * * P3
|
|
730 |
**
|
|
731 |
** P3 is a pointer to a 64-bit integer value.
|
|
732 |
** Push that value onto the stack.
|
|
733 |
*/
|
|
734 |
case OP_Int64: {
|
|
735 |
pTos++;
|
|
736 |
assert( pOp->p3!=0 );
|
|
737 |
pTos->flags = MEM_Int;
|
|
738 |
memcpy(&pTos->u.i, pOp->p3, 8);
|
|
739 |
break;
|
|
740 |
}
|
|
741 |
|
|
742 |
/* Opcode: Real * * P3
|
|
743 |
**
|
|
744 |
** P3 is a pointer to a 64-bit floating point value. Push that value
|
|
745 |
** onto the stack.
|
|
746 |
*/
|
|
747 |
case OP_Real: { /* same as TK_FLOAT, */
|
|
748 |
pTos++;
|
|
749 |
pTos->flags = MEM_Real;
|
|
750 |
memcpy(&pTos->r, pOp->p3, 8);
|
|
751 |
break;
|
|
752 |
}
|
|
753 |
|
|
754 |
/* Opcode: String8 * * P3
|
|
755 |
**
|
|
756 |
** P3 points to a nul terminated UTF-8 string. This opcode is transformed
|
|
757 |
** into an OP_String before it is executed for the first time.
|
|
758 |
*/
|
|
759 |
case OP_String8: { /* same as TK_STRING */
|
|
760 |
assert( pOp->p3!=0 );
|
|
761 |
pOp->opcode = OP_String;
|
|
762 |
pOp->p1 = strlen(pOp->p3);
|
|
763 |
assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
|
|
764 |
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
|
765 |
|
|
766 |
#ifndef SQLITE_OMIT_UTF16
|
|
767 |
if( encoding!=SQLITE_UTF8 ){
|
|
768 |
pTos++;
|
|
769 |
sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
770 |
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
|
|
771 |
if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
|
|
772 |
pTos->flags &= ~(MEM_Dyn);
|
|
773 |
pTos->flags |= MEM_Static;
|
|
774 |
if( pOp->p3type==P3_DYNAMIC ){
|
|
775 |
sqlite3_free(pOp->p3);
|
|
776 |
}
|
|
777 |
pOp->p3type = P3_DYNAMIC;
|
|
778 |
pOp->p3 = pTos->z;
|
|
779 |
pOp->p1 = pTos->n;
|
|
780 |
assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
|
|
781 |
break;
|
|
782 |
}
|
|
783 |
#endif
|
|
784 |
/* Otherwise fall through to the next case, OP_String */
|
|
785 |
}
|
|
786 |
|
|
787 |
/* Opcode: String P1 * P3
|
|
788 |
**
|
|
789 |
** The string value P3 of length P1 (bytes) is pushed onto the stack.
|
|
790 |
*/
|
|
791 |
case OP_String: {
|
|
792 |
assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
|
|
793 |
pTos++;
|
|
794 |
assert( pOp->p3!=0 );
|
|
795 |
pTos->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
796 |
pTos->z = pOp->p3;
|
|
797 |
pTos->n = pOp->p1;
|
|
798 |
pTos->enc = encoding;
|
|
799 |
break;
|
|
800 |
}
|
|
801 |
|
|
802 |
/* Opcode: Null * * *
|
|
803 |
**
|
|
804 |
** Push a NULL onto the stack.
|
|
805 |
*/
|
|
806 |
case OP_Null: {
|
|
807 |
pTos++;
|
|
808 |
pTos->flags = MEM_Null;
|
|
809 |
pTos->n = 0;
|
|
810 |
break;
|
|
811 |
}
|
|
812 |
|
|
813 |
|
|
814 |
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
815 |
/* Opcode: HexBlob * * P3
|
|
816 |
**
|
|
817 |
** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
|
|
818 |
** vdbe stack.
|
|
819 |
**
|
|
820 |
** The first time this instruction executes, in transforms itself into a
|
|
821 |
** 'Blob' opcode with a binary blob as P3.
|
|
822 |
*/
|
|
823 |
case OP_HexBlob: { /* same as TK_BLOB */
|
|
824 |
pOp->opcode = OP_Blob;
|
|
825 |
pOp->p1 = strlen(pOp->p3)/2;
|
|
826 |
assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
|
|
827 |
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
|
828 |
if( pOp->p1 ){
|
|
829 |
char *zBlob = (char*)sqlite3HexToBlob(db, pOp->p3);
|
|
830 |
if( !zBlob ) goto no_mem;
|
|
831 |
if( pOp->p3type==P3_DYNAMIC ){
|
|
832 |
sqlite3_free(pOp->p3);
|
|
833 |
}
|
|
834 |
pOp->p3 = zBlob;
|
|
835 |
pOp->p3type = P3_DYNAMIC;
|
|
836 |
}else{
|
|
837 |
if( pOp->p3type==P3_DYNAMIC ){
|
|
838 |
sqlite3_free(pOp->p3);
|
|
839 |
}
|
|
840 |
pOp->p3type = P3_STATIC;
|
|
841 |
pOp->p3 = "";
|
|
842 |
}
|
|
843 |
|
|
844 |
/* Fall through to the next case, OP_Blob. */
|
|
845 |
}
|
|
846 |
|
|
847 |
/* Opcode: Blob P1 * P3
|
|
848 |
**
|
|
849 |
** P3 points to a blob of data P1 bytes long. Push this
|
|
850 |
** value onto the stack. This instruction is not coded directly
|
|
851 |
** by the compiler. Instead, the compiler layer specifies
|
|
852 |
** an OP_HexBlob opcode, with the hex string representation of
|
|
853 |
** the blob as P3. This opcode is transformed to an OP_Blob
|
|
854 |
** the first time it is executed.
|
|
855 |
*/
|
|
856 |
case OP_Blob: {
|
|
857 |
pTos++;
|
|
858 |
assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
|
|
859 |
sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
|
|
860 |
pTos->enc = encoding;
|
|
861 |
break;
|
|
862 |
}
|
|
863 |
#endif /* SQLITE_OMIT_BLOB_LITERAL */
|
|
864 |
|
|
865 |
/* Opcode: Variable P1 * *
|
|
866 |
**
|
|
867 |
** Push the value of variable P1 onto the stack. A variable is
|
|
868 |
** an unknown in the original SQL string as handed to sqlite3_compile().
|
|
869 |
** Any occurance of the '?' character in the original SQL is considered
|
|
870 |
** a variable. Variables in the SQL string are number from left to
|
|
871 |
** right beginning with 1. The values of variables are set using the
|
|
872 |
** sqlite3_bind() API.
|
|
873 |
*/
|
|
874 |
case OP_Variable: {
|
|
875 |
int j = pOp->p1 - 1;
|
|
876 |
Mem *pVar;
|
|
877 |
assert( j>=0 && j<p->nVar );
|
|
878 |
|
|
879 |
pVar = &p->aVar[j];
|
|
880 |
if( sqlite3VdbeMemTooBig(pVar) ){
|
|
881 |
goto too_big;
|
|
882 |
}
|
|
883 |
pTos++;
|
|
884 |
sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
|
|
885 |
break;
|
|
886 |
}
|
|
887 |
|
|
888 |
/* Opcode: Pop P1 * *
|
|
889 |
**
|
|
890 |
** P1 elements are popped off of the top of stack and discarded.
|
|
891 |
*/
|
|
892 |
case OP_Pop: { /* no-push */
|
|
893 |
assert( pOp->p1>=0 );
|
|
894 |
popStack(&pTos, pOp->p1);
|
|
895 |
assert( pTos>=&p->aStack[-1] );
|
|
896 |
break;
|
|
897 |
}
|
|
898 |
|
|
899 |
/* Opcode: Dup P1 P2 *
|
|
900 |
**
|
|
901 |
** A copy of the P1-th element of the stack
|
|
902 |
** is made and pushed onto the top of the stack.
|
|
903 |
** The top of the stack is element 0. So the
|
|
904 |
** instruction "Dup 0 0 0" will make a copy of the
|
|
905 |
** top of the stack.
|
|
906 |
**
|
|
907 |
** If the content of the P1-th element is a dynamically
|
|
908 |
** allocated string, then a new copy of that string
|
|
909 |
** is made if P2==0. If P2!=0, then just a pointer
|
|
910 |
** to the string is copied.
|
|
911 |
**
|
|
912 |
** Also see the Pull instruction.
|
|
913 |
*/
|
|
914 |
case OP_Dup: {
|
|
915 |
Mem *pFrom = &pTos[-pOp->p1];
|
|
916 |
assert( pFrom<=pTos && pFrom>=p->aStack );
|
|
917 |
pTos++;
|
|
918 |
sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
|
|
919 |
if( pOp->p2 ){
|
|
920 |
Deephemeralize(pTos);
|
|
921 |
}
|
|
922 |
break;
|
|
923 |
}
|
|
924 |
|
|
925 |
/* Opcode: Pull P1 * *
|
|
926 |
**
|
|
927 |
** The P1-th element is removed from its current location on
|
|
928 |
** the stack and pushed back on top of the stack. The
|
|
929 |
** top of the stack is element 0, so "Pull 0 0 0" is
|
|
930 |
** a no-op. "Pull 1 0 0" swaps the top two elements of
|
|
931 |
** the stack.
|
|
932 |
**
|
|
933 |
** See also the Dup instruction.
|
|
934 |
*/
|
|
935 |
case OP_Pull: { /* no-push */
|
|
936 |
Mem *pFrom = &pTos[-pOp->p1];
|
|
937 |
int i;
|
|
938 |
Mem ts;
|
|
939 |
|
|
940 |
ts = *pFrom;
|
|
941 |
Deephemeralize(pTos);
|
|
942 |
for(i=0; i<pOp->p1; i++, pFrom++){
|
|
943 |
Deephemeralize(&pFrom[1]);
|
|
944 |
assert( (pFrom[1].flags & MEM_Ephem)==0 );
|
|
945 |
*pFrom = pFrom[1];
|
|
946 |
if( pFrom->flags & MEM_Short ){
|
|
947 |
assert( pFrom->flags & (MEM_Str|MEM_Blob) );
|
|
948 |
assert( pFrom->z==pFrom[1].zShort );
|
|
949 |
pFrom->z = pFrom->zShort;
|
|
950 |
}
|
|
951 |
}
|
|
952 |
*pTos = ts;
|
|
953 |
if( pTos->flags & MEM_Short ){
|
|
954 |
assert( pTos->flags & (MEM_Str|MEM_Blob) );
|
|
955 |
assert( pTos->z==pTos[-pOp->p1].zShort );
|
|
956 |
pTos->z = pTos->zShort;
|
|
957 |
}
|
|
958 |
break;
|
|
959 |
}
|
|
960 |
|
|
961 |
/* Opcode: Push P1 * *
|
|
962 |
**
|
|
963 |
** Overwrite the value of the P1-th element down on the
|
|
964 |
** stack (P1==0 is the top of the stack) with the value
|
|
965 |
** of the top of the stack. Then pop the top of the stack.
|
|
966 |
*/
|
|
967 |
case OP_Push: { /* no-push */
|
|
968 |
Mem *pTo = &pTos[-pOp->p1];
|
|
969 |
|
|
970 |
assert( pTo>=p->aStack );
|
|
971 |
sqlite3VdbeMemMove(pTo, pTos);
|
|
972 |
pTos--;
|
|
973 |
break;
|
|
974 |
}
|
|
975 |
|
|
976 |
/* Opcode: Callback P1 * *
|
|
977 |
**
|
|
978 |
** The top P1 values on the stack represent a single result row from
|
|
979 |
** a query. This opcode causes the sqlite3_step() call to terminate
|
|
980 |
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
|
|
981 |
** structure to provide access to the top P1 values as the result
|
|
982 |
** row. When the sqlite3_step() function is run again, the top P1
|
|
983 |
** values will be automatically popped from the stack before the next
|
|
984 |
** instruction executes.
|
|
985 |
*/
|
|
986 |
case OP_Callback: { /* no-push */
|
|
987 |
Mem *pMem;
|
|
988 |
Mem *pFirstColumn;
|
|
989 |
assert( p->nResColumn==pOp->p1 );
|
|
990 |
|
|
991 |
/* Data in the pager might be moved or changed out from under us
|
|
992 |
** in between the return from this sqlite3_step() call and the
|
|
993 |
** next call to sqlite3_step(). So deephermeralize everything on
|
|
994 |
** the stack. Note that ephemeral data is never stored in memory
|
|
995 |
** cells so we do not have to worry about them.
|
|
996 |
*/
|
|
997 |
pFirstColumn = &pTos[0-pOp->p1];
|
|
998 |
for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
|
|
999 |
Deephemeralize(pMem);
|
|
1000 |
}
|
|
1001 |
|
|
1002 |
/* Invalidate all ephemeral cursor row caches */
|
|
1003 |
p->cacheCtr = (p->cacheCtr + 2)|1;
|
|
1004 |
|
|
1005 |
/* Make sure the results of the current row are \000 terminated
|
|
1006 |
** and have an assigned type. The results are deephemeralized as
|
|
1007 |
** as side effect.
|
|
1008 |
*/
|
|
1009 |
for(; pMem<=pTos; pMem++ ){
|
|
1010 |
sqlite3VdbeMemNulTerminate(pMem);
|
|
1011 |
storeTypeInfo(pMem, encoding);
|
|
1012 |
}
|
|
1013 |
|
|
1014 |
/* Set up the statement structure so that it will pop the current
|
|
1015 |
** results from the stack when the statement returns.
|
|
1016 |
*/
|
|
1017 |
p->resOnStack = 1;
|
|
1018 |
p->nCallback++;
|
|
1019 |
p->popStack = pOp->p1;
|
|
1020 |
p->pc = pc + 1;
|
|
1021 |
p->pTos = pTos;
|
|
1022 |
rc = SQLITE_ROW;
|
|
1023 |
goto vdbe_return;
|
|
1024 |
}
|
|
1025 |
|
|
1026 |
/* Opcode: Concat P1 P2 *
|
|
1027 |
**
|
|
1028 |
** Look at the first P1+2 elements of the stack. Append them all
|
|
1029 |
** together with the lowest element first. The original P1+2 elements
|
|
1030 |
** are popped from the stack if P2==0 and retained if P2==1. If
|
|
1031 |
** any element of the stack is NULL, then the result is NULL.
|
|
1032 |
**
|
|
1033 |
** When P1==1, this routine makes a copy of the top stack element
|
|
1034 |
** into memory obtained from sqlite3_malloc().
|
|
1035 |
*/
|
|
1036 |
case OP_Concat: { /* same as TK_CONCAT */
|
|
1037 |
char *zNew;
|
|
1038 |
i64 nByte;
|
|
1039 |
int nField;
|
|
1040 |
int i, j;
|
|
1041 |
Mem *pTerm;
|
|
1042 |
|
|
1043 |
/* Loop through the stack elements to see how long the result will be. */
|
|
1044 |
nField = pOp->p1 + 2;
|
|
1045 |
pTerm = &pTos[1-nField];
|
|
1046 |
nByte = 0;
|
|
1047 |
for(i=0; i<nField; i++, pTerm++){
|
|
1048 |
assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
|
|
1049 |
if( pTerm->flags&MEM_Null ){
|
|
1050 |
nByte = -1;
|
|
1051 |
break;
|
|
1052 |
}
|
|
1053 |
ExpandBlob(pTerm);
|
|
1054 |
Stringify(pTerm, encoding);
|
|
1055 |
nByte += pTerm->n;
|
|
1056 |
}
|
|
1057 |
|
|
1058 |
if( nByte<0 ){
|
|
1059 |
/* If nByte is less than zero, then there is a NULL value on the stack.
|
|
1060 |
** In this case just pop the values off the stack (if required) and
|
|
1061 |
** push on a NULL.
|
|
1062 |
*/
|
|
1063 |
if( pOp->p2==0 ){
|
|
1064 |
popStack(&pTos, nField);
|
|
1065 |
}
|
|
1066 |
pTos++;
|
|
1067 |
pTos->flags = MEM_Null;
|
|
1068 |
}else{
|
|
1069 |
/* Otherwise malloc() space for the result and concatenate all the
|
|
1070 |
** stack values.
|
|
1071 |
*/
|
|
1072 |
if( nByte+2>SQLITE_MAX_LENGTH ){
|
|
1073 |
goto too_big;
|
|
1074 |
}
|
|
1075 |
zNew = (char*)sqlite3DbMallocRaw(db, nByte+2 );
|
|
1076 |
if( zNew==0 ) goto no_mem;
|
|
1077 |
j = 0;
|
|
1078 |
pTerm = &pTos[1-nField];
|
|
1079 |
for(i=j=0; i<nField; i++, pTerm++){
|
|
1080 |
int n = pTerm->n;
|
|
1081 |
assert( pTerm->flags & (MEM_Str|MEM_Blob) );
|
|
1082 |
memcpy(&zNew[j], pTerm->z, n);
|
|
1083 |
j += n;
|
|
1084 |
}
|
|
1085 |
zNew[j] = 0;
|
|
1086 |
zNew[j+1] = 0;
|
|
1087 |
assert( j==nByte );
|
|
1088 |
|
|
1089 |
if( pOp->p2==0 ){
|
|
1090 |
popStack(&pTos, nField);
|
|
1091 |
}
|
|
1092 |
pTos++;
|
|
1093 |
pTos->n = j;
|
|
1094 |
pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
|
|
1095 |
pTos->xDel = 0;
|
|
1096 |
pTos->enc = encoding;
|
|
1097 |
pTos->z = zNew;
|
|
1098 |
}
|
|
1099 |
break;
|
|
1100 |
}
|
|
1101 |
|
|
1102 |
/* Opcode: Add * * *
|
|
1103 |
**
|
|
1104 |
** Pop the top two elements from the stack, add them together,
|
|
1105 |
** and push the result back onto the stack. If either element
|
|
1106 |
** is a string then it is converted to a double using the atof()
|
|
1107 |
** function before the addition.
|
|
1108 |
** If either operand is NULL, the result is NULL.
|
|
1109 |
*/
|
|
1110 |
/* Opcode: Multiply * * *
|
|
1111 |
**
|
|
1112 |
** Pop the top two elements from the stack, multiply them together,
|
|
1113 |
** and push the result back onto the stack. If either element
|
|
1114 |
** is a string then it is converted to a double using the atof()
|
|
1115 |
** function before the multiplication.
|
|
1116 |
** If either operand is NULL, the result is NULL.
|
|
1117 |
*/
|
|
1118 |
/* Opcode: Subtract * * *
|
|
1119 |
**
|
|
1120 |
** Pop the top two elements from the stack, subtract the
|
|
1121 |
** first (what was on top of the stack) from the second (the
|
|
1122 |
** next on stack)
|
|
1123 |
** and push the result back onto the stack. If either element
|
|
1124 |
** is a string then it is converted to a double using the atof()
|
|
1125 |
** function before the subtraction.
|
|
1126 |
** If either operand is NULL, the result is NULL.
|
|
1127 |
*/
|
|
1128 |
/* Opcode: Divide * * *
|
|
1129 |
**
|
|
1130 |
** Pop the top two elements from the stack, divide the
|
|
1131 |
** first (what was on top of the stack) from the second (the
|
|
1132 |
** next on stack)
|
|
1133 |
** and push the result back onto the stack. If either element
|
|
1134 |
** is a string then it is converted to a double using the atof()
|
|
1135 |
** function before the division. Division by zero returns NULL.
|
|
1136 |
** If either operand is NULL, the result is NULL.
|
|
1137 |
*/
|
|
1138 |
/* Opcode: Remainder * * *
|
|
1139 |
**
|
|
1140 |
** Pop the top two elements from the stack, divide the
|
|
1141 |
** first (what was on top of the stack) from the second (the
|
|
1142 |
** next on stack)
|
|
1143 |
** and push the remainder after division onto the stack. If either element
|
|
1144 |
** is a string then it is converted to a double using the atof()
|
|
1145 |
** function before the division. Division by zero returns NULL.
|
|
1146 |
** If either operand is NULL, the result is NULL.
|
|
1147 |
*/
|
|
1148 |
case OP_Add: /* same as TK_PLUS, no-push */
|
|
1149 |
case OP_Subtract: /* same as TK_MINUS, no-push */
|
|
1150 |
case OP_Multiply: /* same as TK_STAR, no-push */
|
|
1151 |
case OP_Divide: /* same as TK_SLASH, no-push */
|
|
1152 |
case OP_Remainder: { /* same as TK_REM, no-push */
|
|
1153 |
Mem *pNos = &pTos[-1];
|
|
1154 |
int flags;
|
|
1155 |
assert( pNos>=p->aStack );
|
|
1156 |
flags = pTos->flags | pNos->flags;
|
|
1157 |
if( (flags & MEM_Null)!=0 ){
|
|
1158 |
Release(pTos);
|
|
1159 |
pTos--;
|
|
1160 |
Release(pTos);
|
|
1161 |
pTos->flags = MEM_Null;
|
|
1162 |
}else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
|
|
1163 |
i64 a, b;
|
|
1164 |
a = pTos->u.i;
|
|
1165 |
b = pNos->u.i;
|
|
1166 |
switch( pOp->opcode ){
|
|
1167 |
case OP_Add: b += a; break;
|
|
1168 |
case OP_Subtract: b -= a; break;
|
|
1169 |
case OP_Multiply: b *= a; break;
|
|
1170 |
case OP_Divide: {
|
|
1171 |
if( a==0 ) goto divide_by_zero;
|
|
1172 |
/* Dividing the largest possible negative 64-bit integer (1<<63) by
|
|
1173 |
** -1 returns an integer to large to store in a 64-bit data-type. On
|
|
1174 |
** some architectures, the value overflows to (1<<63). On others,
|
|
1175 |
** a SIGFPE is issued. The following statement normalizes this
|
|
1176 |
** behaviour so that all architectures behave as if integer
|
|
1177 |
** overflow occured.
|
|
1178 |
*/
|
|
1179 |
if( a==-1 && b==(((i64)1)<<63) ) a = 1;
|
|
1180 |
b /= a;
|
|
1181 |
break;
|
|
1182 |
}
|
|
1183 |
default: {
|
|
1184 |
if( a==0 ) goto divide_by_zero;
|
|
1185 |
if( a==-1 ) a = 1;
|
|
1186 |
b %= a;
|
|
1187 |
break;
|
|
1188 |
}
|
|
1189 |
}
|
|
1190 |
Release(pTos);
|
|
1191 |
pTos--;
|
|
1192 |
Release(pTos);
|
|
1193 |
pTos->u.i = b;
|
|
1194 |
pTos->flags = MEM_Int;
|
|
1195 |
}else{
|
|
1196 |
double a, b;
|
|
1197 |
a = sqlite3VdbeRealValue(pTos);
|
|
1198 |
b = sqlite3VdbeRealValue(pNos);
|
|
1199 |
switch( pOp->opcode ){
|
|
1200 |
case OP_Add: b += a; break;
|
|
1201 |
case OP_Subtract: b -= a; break;
|
|
1202 |
case OP_Multiply: b *= a; break;
|
|
1203 |
case OP_Divide: {
|
|
1204 |
if( a==0.0 ) goto divide_by_zero;
|
|
1205 |
b /= a;
|
|
1206 |
break;
|
|
1207 |
}
|
|
1208 |
default: {
|
|
1209 |
i64 ia = (i64)a;
|
|
1210 |
i64 ib = (i64)b;
|
|
1211 |
if( ia==0 ) goto divide_by_zero;
|
|
1212 |
if( ia==-1 ) ia = 1;
|
|
1213 |
b = ib % ia;
|
|
1214 |
break;
|
|
1215 |
}
|
|
1216 |
}
|
|
1217 |
if( sqlite3_isnan(b) ){
|
|
1218 |
goto divide_by_zero;
|
|
1219 |
}
|
|
1220 |
Release(pTos);
|
|
1221 |
pTos--;
|
|
1222 |
Release(pTos);
|
|
1223 |
pTos->r = b;
|
|
1224 |
pTos->flags = MEM_Real;
|
|
1225 |
if( (flags & MEM_Real)==0 ){
|
|
1226 |
sqlite3VdbeIntegerAffinity(pTos);
|
|
1227 |
}
|
|
1228 |
}
|
|
1229 |
break;
|
|
1230 |
|
|
1231 |
divide_by_zero:
|
|
1232 |
Release(pTos);
|
|
1233 |
pTos--;
|
|
1234 |
Release(pTos);
|
|
1235 |
pTos->flags = MEM_Null;
|
|
1236 |
break;
|
|
1237 |
}
|
|
1238 |
|
|
1239 |
/* Opcode: CollSeq * * P3
|
|
1240 |
**
|
|
1241 |
** P3 is a pointer to a CollSeq struct. If the next call to a user function
|
|
1242 |
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
|
1243 |
** be returned. This is used by the built-in min(), max() and nullif()
|
|
1244 |
** functions.
|
|
1245 |
**
|
|
1246 |
** The interface used by the implementation of the aforementioned functions
|
|
1247 |
** to retrieve the collation sequence set by this opcode is not available
|
|
1248 |
** publicly, only to user functions defined in func.c.
|
|
1249 |
*/
|
|
1250 |
case OP_CollSeq: { /* no-push */
|
|
1251 |
assert( pOp->p3type==P3_COLLSEQ );
|
|
1252 |
break;
|
|
1253 |
}
|
|
1254 |
|
|
1255 |
/* Opcode: Function P1 P2 P3
|
|
1256 |
**
|
|
1257 |
** Invoke a user function (P3 is a pointer to a Function structure that
|
|
1258 |
** defines the function) with P2 arguments taken from the stack. Pop all
|
|
1259 |
** arguments from the stack and push back the result.
|
|
1260 |
**
|
|
1261 |
** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
|
1262 |
** function was determined to be constant at compile time. If the first
|
|
1263 |
** argument was constant then bit 0 of P1 is set. This is used to determine
|
|
1264 |
** whether meta data associated with a user function argument using the
|
|
1265 |
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
1266 |
** invocation of this opcode.
|
|
1267 |
**
|
|
1268 |
** See also: AggStep and AggFinal
|
|
1269 |
*/
|
|
1270 |
case OP_Function: {
|
|
1271 |
int i;
|
|
1272 |
Mem *pArg;
|
|
1273 |
sqlite3_context ctx;
|
|
1274 |
sqlite3_value **apVal;
|
|
1275 |
int n = pOp->p2;
|
|
1276 |
|
|
1277 |
apVal = p->apArg;
|
|
1278 |
assert( apVal || n==0 );
|
|
1279 |
|
|
1280 |
pArg = &pTos[1-n];
|
|
1281 |
for(i=0; i<n; i++, pArg++){
|
|
1282 |
apVal[i] = pArg;
|
|
1283 |
storeTypeInfo(pArg, encoding);
|
|
1284 |
}
|
|
1285 |
|
|
1286 |
assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
|
|
1287 |
if( pOp->p3type==P3_FUNCDEF ){
|
|
1288 |
ctx.pFunc = (FuncDef*)pOp->p3;
|
|
1289 |
ctx.pVdbeFunc = 0;
|
|
1290 |
}else{
|
|
1291 |
ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
|
|
1292 |
ctx.pFunc = ctx.pVdbeFunc->pFunc;
|
|
1293 |
}
|
|
1294 |
|
|
1295 |
ctx.s.flags = MEM_Null;
|
|
1296 |
ctx.s.z = 0;
|
|
1297 |
ctx.s.xDel = 0;
|
|
1298 |
ctx.s.db = db;
|
|
1299 |
ctx.isError = 0;
|
|
1300 |
if( ctx.pFunc->needCollSeq ){
|
|
1301 |
assert( pOp>p->aOp );
|
|
1302 |
assert( pOp[-1].p3type==P3_COLLSEQ );
|
|
1303 |
assert( pOp[-1].opcode==OP_CollSeq );
|
|
1304 |
ctx.pColl = (CollSeq *)pOp[-1].p3;
|
|
1305 |
}
|
|
1306 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
1307 |
(*ctx.pFunc->xFunc)(&ctx, n, apVal);
|
|
1308 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
1309 |
if( db->mallocFailed ){
|
|
1310 |
/* Even though a malloc() has failed, the implementation of the
|
|
1311 |
** user function may have called an sqlite3_result_XXX() function
|
|
1312 |
** to return a value. The following call releases any resources
|
|
1313 |
** associated with such a value.
|
|
1314 |
**
|
|
1315 |
** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
|
|
1316 |
** fails also (the if(...) statement above). But if people are
|
|
1317 |
** misusing sqlite, they have bigger problems than a leaked value.
|
|
1318 |
*/
|
|
1319 |
sqlite3VdbeMemRelease(&ctx.s);
|
|
1320 |
goto no_mem;
|
|
1321 |
}
|
|
1322 |
popStack(&pTos, n);
|
|
1323 |
|
|
1324 |
/* If any auxilary data functions have been called by this user function,
|
|
1325 |
** immediately call the destructor for any non-static values.
|
|
1326 |
*/
|
|
1327 |
if( ctx.pVdbeFunc ){
|
|
1328 |
sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
|
|
1329 |
pOp->p3 = (char *)ctx.pVdbeFunc;
|
|
1330 |
pOp->p3type = P3_VDBEFUNC;
|
|
1331 |
}
|
|
1332 |
|
|
1333 |
/* If the function returned an error, throw an exception */
|
|
1334 |
if( ctx.isError ){
|
|
1335 |
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
|
|
1336 |
rc = SQLITE_ERROR;
|
|
1337 |
}
|
|
1338 |
|
|
1339 |
/* Copy the result of the function to the top of the stack */
|
|
1340 |
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
|
|
1341 |
pTos++;
|
|
1342 |
pTos->flags = 0;
|
|
1343 |
sqlite3VdbeMemMove(pTos, &ctx.s);
|
|
1344 |
if( sqlite3VdbeMemTooBig(pTos) ){
|
|
1345 |
goto too_big;
|
|
1346 |
}
|
|
1347 |
break;
|
|
1348 |
}
|
|
1349 |
|
|
1350 |
/* Opcode: BitAnd * * *
|
|
1351 |
**
|
|
1352 |
** Pop the top two elements from the stack. Convert both elements
|
|
1353 |
** to integers. Push back onto the stack the bit-wise AND of the
|
|
1354 |
** two elements.
|
|
1355 |
** If either operand is NULL, the result is NULL.
|
|
1356 |
*/
|
|
1357 |
/* Opcode: BitOr * * *
|
|
1358 |
**
|
|
1359 |
** Pop the top two elements from the stack. Convert both elements
|
|
1360 |
** to integers. Push back onto the stack the bit-wise OR of the
|
|
1361 |
** two elements.
|
|
1362 |
** If either operand is NULL, the result is NULL.
|
|
1363 |
*/
|
|
1364 |
/* Opcode: ShiftLeft * * *
|
|
1365 |
**
|
|
1366 |
** Pop the top two elements from the stack. Convert both elements
|
|
1367 |
** to integers. Push back onto the stack the second element shifted
|
|
1368 |
** left by N bits where N is the top element on the stack.
|
|
1369 |
** If either operand is NULL, the result is NULL.
|
|
1370 |
*/
|
|
1371 |
/* Opcode: ShiftRight * * *
|
|
1372 |
**
|
|
1373 |
** Pop the top two elements from the stack. Convert both elements
|
|
1374 |
** to integers. Push back onto the stack the second element shifted
|
|
1375 |
** right by N bits where N is the top element on the stack.
|
|
1376 |
** If either operand is NULL, the result is NULL.
|
|
1377 |
*/
|
|
1378 |
case OP_BitAnd: /* same as TK_BITAND, no-push */
|
|
1379 |
case OP_BitOr: /* same as TK_BITOR, no-push */
|
|
1380 |
case OP_ShiftLeft: /* same as TK_LSHIFT, no-push */
|
|
1381 |
case OP_ShiftRight: { /* same as TK_RSHIFT, no-push */
|
|
1382 |
Mem *pNos = &pTos[-1];
|
|
1383 |
i64 a, b;
|
|
1384 |
|
|
1385 |
assert( pNos>=p->aStack );
|
|
1386 |
if( (pTos->flags | pNos->flags) & MEM_Null ){
|
|
1387 |
popStack(&pTos, 2);
|
|
1388 |
pTos++;
|
|
1389 |
pTos->flags = MEM_Null;
|
|
1390 |
break;
|
|
1391 |
}
|
|
1392 |
a = sqlite3VdbeIntValue(pNos);
|
|
1393 |
b = sqlite3VdbeIntValue(pTos);
|
|
1394 |
switch( pOp->opcode ){
|
|
1395 |
case OP_BitAnd: a &= b; break;
|
|
1396 |
case OP_BitOr: a |= b; break;
|
|
1397 |
case OP_ShiftLeft: a <<= b; break;
|
|
1398 |
case OP_ShiftRight: a >>= b; break;
|
|
1399 |
default: /* CANT HAPPEN */ break;
|
|
1400 |
}
|
|
1401 |
Release(pTos);
|
|
1402 |
pTos--;
|
|
1403 |
Release(pTos);
|
|
1404 |
pTos->u.i = a;
|
|
1405 |
pTos->flags = MEM_Int;
|
|
1406 |
break;
|
|
1407 |
}
|
|
1408 |
|
|
1409 |
/* Opcode: AddImm P1 * *
|
|
1410 |
**
|
|
1411 |
** Add the value P1 to whatever is on top of the stack. The result
|
|
1412 |
** is always an integer.
|
|
1413 |
**
|
|
1414 |
** To force the top of the stack to be an integer, just add 0.
|
|
1415 |
*/
|
|
1416 |
case OP_AddImm: { /* no-push */
|
|
1417 |
assert( pTos>=p->aStack );
|
|
1418 |
sqlite3VdbeMemIntegerify(pTos);
|
|
1419 |
pTos->u.i += pOp->p1;
|
|
1420 |
break;
|
|
1421 |
}
|
|
1422 |
|
|
1423 |
/* Opcode: ForceInt P1 P2 *
|
|
1424 |
**
|
|
1425 |
** Convert the top of the stack into an integer. If the current top of
|
|
1426 |
** the stack is not numeric (meaning that is is a NULL or a string that
|
|
1427 |
** does not look like an integer or floating point number) then pop the
|
|
1428 |
** stack and jump to P2. If the top of the stack is numeric then
|
|
1429 |
** convert it into the least integer that is greater than or equal to its
|
|
1430 |
** current value if P1==0, or to the least integer that is strictly
|
|
1431 |
** greater than its current value if P1==1.
|
|
1432 |
*/
|
|
1433 |
case OP_ForceInt: { /* no-push */
|
|
1434 |
i64 v;
|
|
1435 |
assert( pTos>=p->aStack );
|
|
1436 |
applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
|
|
1437 |
if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
|
|
1438 |
Release(pTos);
|
|
1439 |
pTos--;
|
|
1440 |
pc = pOp->p2 - 1;
|
|
1441 |
break;
|
|
1442 |
}
|
|
1443 |
if( pTos->flags & MEM_Int ){
|
|
1444 |
v = pTos->u.i + (pOp->p1!=0);
|
|
1445 |
}else{
|
|
1446 |
/* FIX ME: should this not be assert( pTos->flags & MEM_Real ) ??? */
|
|
1447 |
sqlite3VdbeMemRealify(pTos);
|
|
1448 |
v = (int)pTos->r;
|
|
1449 |
if( pTos->r>(double)v ) v++;
|
|
1450 |
if( pOp->p1 && pTos->r==(double)v ) v++;
|
|
1451 |
}
|
|
1452 |
Release(pTos);
|
|
1453 |
pTos->u.i = v;
|
|
1454 |
pTos->flags = MEM_Int;
|
|
1455 |
break;
|
|
1456 |
}
|
|
1457 |
|
|
1458 |
/* Opcode: MustBeInt P1 P2 *
|
|
1459 |
**
|
|
1460 |
** Force the top of the stack to be an integer. If the top of the
|
|
1461 |
** stack is not an integer and cannot be converted into an integer
|
|
1462 |
** without data loss, then jump immediately to P2, or if P2==0
|
|
1463 |
** raise an SQLITE_MISMATCH exception.
|
|
1464 |
**
|
|
1465 |
** If the top of the stack is not an integer and P2 is not zero and
|
|
1466 |
** P1 is 1, then the stack is popped. In all other cases, the depth
|
|
1467 |
** of the stack is unchanged.
|
|
1468 |
*/
|
|
1469 |
case OP_MustBeInt: { /* no-push */
|
|
1470 |
assert( pTos>=p->aStack );
|
|
1471 |
applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
|
|
1472 |
if( (pTos->flags & MEM_Int)==0 ){
|
|
1473 |
if( pOp->p2==0 ){
|
|
1474 |
rc = SQLITE_MISMATCH;
|
|
1475 |
goto abort_due_to_error;
|
|
1476 |
}else{
|
|
1477 |
if( pOp->p1 ) popStack(&pTos, 1);
|
|
1478 |
pc = pOp->p2 - 1;
|
|
1479 |
}
|
|
1480 |
}else{
|
|
1481 |
Release(pTos);
|
|
1482 |
pTos->flags = MEM_Int;
|
|
1483 |
}
|
|
1484 |
break;
|
|
1485 |
}
|
|
1486 |
|
|
1487 |
/* Opcode: RealAffinity * * *
|
|
1488 |
**
|
|
1489 |
** If the top of the stack is an integer, convert it to a real value.
|
|
1490 |
**
|
|
1491 |
** This opcode is used when extracting information from a column that
|
|
1492 |
** has REAL affinity. Such column values may still be stored as
|
|
1493 |
** integers, for space efficiency, but after extraction we want them
|
|
1494 |
** to have only a real value.
|
|
1495 |
*/
|
|
1496 |
case OP_RealAffinity: { /* no-push */
|
|
1497 |
assert( pTos>=p->aStack );
|
|
1498 |
if( pTos->flags & MEM_Int ){
|
|
1499 |
sqlite3VdbeMemRealify(pTos);
|
|
1500 |
}
|
|
1501 |
break;
|
|
1502 |
}
|
|
1503 |
|
|
1504 |
#ifndef SQLITE_OMIT_CAST
|
|
1505 |
/* Opcode: ToText * * *
|
|
1506 |
**
|
|
1507 |
** Force the value on the top of the stack to be text.
|
|
1508 |
** If the value is numeric, convert it to a string using the
|
|
1509 |
** equivalent of printf(). Blob values are unchanged and
|
|
1510 |
** are afterwards simply interpreted as text.
|
|
1511 |
**
|
|
1512 |
** A NULL value is not changed by this routine. It remains NULL.
|
|
1513 |
*/
|
|
1514 |
case OP_ToText: { /* same as TK_TO_TEXT, no-push */
|
|
1515 |
assert( pTos>=p->aStack );
|
|
1516 |
if( pTos->flags & MEM_Null ) break;
|
|
1517 |
assert( MEM_Str==(MEM_Blob>>3) );
|
|
1518 |
pTos->flags |= (pTos->flags&MEM_Blob)>>3;
|
|
1519 |
applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
|
|
1520 |
rc = ExpandBlob(pTos);
|
|
1521 |
assert( pTos->flags & MEM_Str );
|
|
1522 |
pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
|
|
1523 |
break;
|
|
1524 |
}
|
|
1525 |
|
|
1526 |
/* Opcode: ToBlob * * *
|
|
1527 |
**
|
|
1528 |
** Force the value on the top of the stack to be a BLOB.
|
|
1529 |
** If the value is numeric, convert it to a string first.
|
|
1530 |
** Strings are simply reinterpreted as blobs with no change
|
|
1531 |
** to the underlying data.
|
|
1532 |
**
|
|
1533 |
** A NULL value is not changed by this routine. It remains NULL.
|
|
1534 |
*/
|
|
1535 |
case OP_ToBlob: { /* same as TK_TO_BLOB, no-push */
|
|
1536 |
assert( pTos>=p->aStack );
|
|
1537 |
if( pTos->flags & MEM_Null ) break;
|
|
1538 |
if( (pTos->flags & MEM_Blob)==0 ){
|
|
1539 |
applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
|
|
1540 |
assert( pTos->flags & MEM_Str );
|
|
1541 |
pTos->flags |= MEM_Blob;
|
|
1542 |
}
|
|
1543 |
pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
|
|
1544 |
break;
|
|
1545 |
}
|
|
1546 |
|
|
1547 |
/* Opcode: ToNumeric * * *
|
|
1548 |
**
|
|
1549 |
** Force the value on the top of the stack to be numeric (either an
|
|
1550 |
** integer or a floating-point number.)
|
|
1551 |
** If the value is text or blob, try to convert it to an using the
|
|
1552 |
** equivalent of atoi() or atof() and store 0 if no such conversion
|
|
1553 |
** is possible.
|
|
1554 |
**
|
|
1555 |
** A NULL value is not changed by this routine. It remains NULL.
|
|
1556 |
*/
|
|
1557 |
case OP_ToNumeric: { /* same as TK_TO_NUMERIC, no-push */
|
|
1558 |
assert( pTos>=p->aStack );
|
|
1559 |
if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
|
|
1560 |
sqlite3VdbeMemNumerify(pTos);
|
|
1561 |
}
|
|
1562 |
break;
|
|
1563 |
}
|
|
1564 |
#endif /* SQLITE_OMIT_CAST */
|
|
1565 |
|
|
1566 |
/* Opcode: ToInt * * *
|
|
1567 |
**
|
|
1568 |
** Force the value on the top of the stack to be an integer. If
|
|
1569 |
** The value is currently a real number, drop its fractional part.
|
|
1570 |
** If the value is text or blob, try to convert it to an integer using the
|
|
1571 |
** equivalent of atoi() and store 0 if no such conversion is possible.
|
|
1572 |
**
|
|
1573 |
** A NULL value is not changed by this routine. It remains NULL.
|
|
1574 |
*/
|
|
1575 |
case OP_ToInt: { /* same as TK_TO_INT, no-push */
|
|
1576 |
assert( pTos>=p->aStack );
|
|
1577 |
if( (pTos->flags & MEM_Null)==0 ){
|
|
1578 |
sqlite3VdbeMemIntegerify(pTos);
|
|
1579 |
}
|
|
1580 |
break;
|
|
1581 |
}
|
|
1582 |
|
|
1583 |
#ifndef SQLITE_OMIT_CAST
|
|
1584 |
/* Opcode: ToReal * * *
|
|
1585 |
**
|
|
1586 |
** Force the value on the top of the stack to be a floating point number.
|
|
1587 |
** If The value is currently an integer, convert it.
|
|
1588 |
** If the value is text or blob, try to convert it to an integer using the
|
|
1589 |
** equivalent of atoi() and store 0 if no such conversion is possible.
|
|
1590 |
**
|
|
1591 |
** A NULL value is not changed by this routine. It remains NULL.
|
|
1592 |
*/
|
|
1593 |
case OP_ToReal: { /* same as TK_TO_REAL, no-push */
|
|
1594 |
assert( pTos>=p->aStack );
|
|
1595 |
if( (pTos->flags & MEM_Null)==0 ){
|
|
1596 |
sqlite3VdbeMemRealify(pTos);
|
|
1597 |
}
|
|
1598 |
break;
|
|
1599 |
}
|
|
1600 |
#endif /* SQLITE_OMIT_CAST */
|
|
1601 |
|
|
1602 |
/* Opcode: Eq P1 P2 P3
|
|
1603 |
**
|
|
1604 |
** Pop the top two elements from the stack. If they are equal, then
|
|
1605 |
** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
1606 |
**
|
|
1607 |
** If the 0x100 bit of P1 is true and either operand is NULL then take the
|
|
1608 |
** jump. If the 0x100 bit of P1 is clear then fall thru if either operand
|
|
1609 |
** is NULL.
|
|
1610 |
**
|
|
1611 |
** If the 0x200 bit of P1 is set and either operand is NULL then
|
|
1612 |
** both operands are converted to integers prior to comparison.
|
|
1613 |
** NULL operands are converted to zero and non-NULL operands are
|
|
1614 |
** converted to 1. Thus, for example, with 0x200 set, NULL==NULL is true
|
|
1615 |
** whereas it would normally be NULL. Similarly, NULL==123 is false when
|
|
1616 |
** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
|
|
1617 |
**
|
|
1618 |
** The least significant byte of P1 (mask 0xff) must be an affinity character -
|
|
1619 |
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
|
1620 |
** to coerce both values
|
|
1621 |
** according to the affinity before the comparison is made. If the byte is
|
|
1622 |
** 0x00, then numeric affinity is used.
|
|
1623 |
**
|
|
1624 |
** Once any conversions have taken place, and neither value is NULL,
|
|
1625 |
** the values are compared. If both values are blobs, or both are text,
|
|
1626 |
** then memcmp() is used to determine the results of the comparison. If
|
|
1627 |
** both values are numeric, then a numeric comparison is used. If the
|
|
1628 |
** two values are of different types, then they are inequal.
|
|
1629 |
**
|
|
1630 |
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
1631 |
** stack if the jump would have been taken, or a 0 if not. Push a
|
|
1632 |
** NULL if either operand was NULL.
|
|
1633 |
**
|
|
1634 |
** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
|
|
1635 |
** structure) that defines how to compare text.
|
|
1636 |
*/
|
|
1637 |
/* Opcode: Ne P1 P2 P3
|
|
1638 |
**
|
|
1639 |
** This works just like the Eq opcode except that the jump is taken if
|
|
1640 |
** the operands from the stack are not equal. See the Eq opcode for
|
|
1641 |
** additional information.
|
|
1642 |
*/
|
|
1643 |
/* Opcode: Lt P1 P2 P3
|
|
1644 |
**
|
|
1645 |
** This works just like the Eq opcode except that the jump is taken if
|
|
1646 |
** the 2nd element down on the stack is less than the top of the stack.
|
|
1647 |
** See the Eq opcode for additional information.
|
|
1648 |
*/
|
|
1649 |
/* Opcode: Le P1 P2 P3
|
|
1650 |
**
|
|
1651 |
** This works just like the Eq opcode except that the jump is taken if
|
|
1652 |
** the 2nd element down on the stack is less than or equal to the
|
|
1653 |
** top of the stack. See the Eq opcode for additional information.
|
|
1654 |
*/
|
|
1655 |
/* Opcode: Gt P1 P2 P3
|
|
1656 |
**
|
|
1657 |
** This works just like the Eq opcode except that the jump is taken if
|
|
1658 |
** the 2nd element down on the stack is greater than the top of the stack.
|
|
1659 |
** See the Eq opcode for additional information.
|
|
1660 |
*/
|
|
1661 |
/* Opcode: Ge P1 P2 P3
|
|
1662 |
**
|
|
1663 |
** This works just like the Eq opcode except that the jump is taken if
|
|
1664 |
** the 2nd element down on the stack is greater than or equal to the
|
|
1665 |
** top of the stack. See the Eq opcode for additional information.
|
|
1666 |
*/
|
|
1667 |
case OP_Eq: /* same as TK_EQ, no-push */
|
|
1668 |
case OP_Ne: /* same as TK_NE, no-push */
|
|
1669 |
case OP_Lt: /* same as TK_LT, no-push */
|
|
1670 |
case OP_Le: /* same as TK_LE, no-push */
|
|
1671 |
case OP_Gt: /* same as TK_GT, no-push */
|
|
1672 |
case OP_Ge: { /* same as TK_GE, no-push */
|
|
1673 |
Mem *pNos;
|
|
1674 |
int flags;
|
|
1675 |
int res;
|
|
1676 |
char affinity;
|
|
1677 |
|
|
1678 |
pNos = &pTos[-1];
|
|
1679 |
flags = pTos->flags|pNos->flags;
|
|
1680 |
|
|
1681 |
/* If either value is a NULL P2 is not zero, take the jump if the least
|
|
1682 |
** significant byte of P1 is true. If P2 is zero, then push a NULL onto
|
|
1683 |
** the stack.
|
|
1684 |
*/
|
|
1685 |
if( flags&MEM_Null ){
|
|
1686 |
if( (pOp->p1 & 0x200)!=0 ){
|
|
1687 |
/* The 0x200 bit of P1 means, roughly "do not treat NULL as the
|
|
1688 |
** magic SQL value it normally is - treat it as if it were another
|
|
1689 |
** integer".
|
|
1690 |
**
|
|
1691 |
** With 0x200 set, if either operand is NULL then both operands
|
|
1692 |
** are converted to integers prior to being passed down into the
|
|
1693 |
** normal comparison logic below. NULL operands are converted to
|
|
1694 |
** zero and non-NULL operands are converted to 1. Thus, for example,
|
|
1695 |
** with 0x200 set, NULL==NULL is true whereas it would normally
|
|
1696 |
** be NULL. Similarly, NULL!=123 is true.
|
|
1697 |
*/
|
|
1698 |
sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
|
|
1699 |
sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
|
|
1700 |
}else{
|
|
1701 |
/* If the 0x200 bit of P1 is clear and either operand is NULL then
|
|
1702 |
** the result is always NULL. The jump is taken if the 0x100 bit
|
|
1703 |
** of P1 is set.
|
|
1704 |
*/
|
|
1705 |
popStack(&pTos, 2);
|
|
1706 |
if( pOp->p2 ){
|
|
1707 |
if( pOp->p1 & 0x100 ){
|
|
1708 |
pc = pOp->p2-1;
|
|
1709 |
}
|
|
1710 |
}else{
|
|
1711 |
pTos++;
|
|
1712 |
pTos->flags = MEM_Null;
|
|
1713 |
}
|
|
1714 |
break;
|
|
1715 |
}
|
|
1716 |
}
|
|
1717 |
|
|
1718 |
affinity = pOp->p1 & 0xFF;
|
|
1719 |
if( affinity ){
|
|
1720 |
applyAffinity(pNos, affinity, encoding);
|
|
1721 |
applyAffinity(pTos, affinity, encoding);
|
|
1722 |
}
|
|
1723 |
|
|
1724 |
assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
|
|
1725 |
ExpandBlob(pNos);
|
|
1726 |
ExpandBlob(pTos);
|
|
1727 |
res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
|
|
1728 |
switch( pOp->opcode ){
|
|
1729 |
case OP_Eq: res = res==0; break;
|
|
1730 |
case OP_Ne: res = res!=0; break;
|
|
1731 |
case OP_Lt: res = res<0; break;
|
|
1732 |
case OP_Le: res = res<=0; break;
|
|
1733 |
case OP_Gt: res = res>0; break;
|
|
1734 |
default: res = res>=0; break;
|
|
1735 |
}
|
|
1736 |
|
|
1737 |
popStack(&pTos, 2);
|
|
1738 |
if( pOp->p2 ){
|
|
1739 |
if( res ){
|
|
1740 |
pc = pOp->p2-1;
|
|
1741 |
}
|
|
1742 |
}else{
|
|
1743 |
pTos++;
|
|
1744 |
pTos->flags = MEM_Int;
|
|
1745 |
pTos->u.i = res;
|
|
1746 |
}
|
|
1747 |
break;
|
|
1748 |
}
|
|
1749 |
|
|
1750 |
/* Opcode: And * * *
|
|
1751 |
**
|
|
1752 |
** Pop two values off the stack. Take the logical AND of the
|
|
1753 |
** two values and push the resulting boolean value back onto the
|
|
1754 |
** stack.
|
|
1755 |
*/
|
|
1756 |
/* Opcode: Or * * *
|
|
1757 |
**
|
|
1758 |
** Pop two values off the stack. Take the logical OR of the
|
|
1759 |
** two values and push the resulting boolean value back onto the
|
|
1760 |
** stack.
|
|
1761 |
*/
|
|
1762 |
case OP_And: /* same as TK_AND, no-push */
|
|
1763 |
case OP_Or: { /* same as TK_OR, no-push */
|
|
1764 |
Mem *pNos = &pTos[-1];
|
|
1765 |
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
|
|
1766 |
|
|
1767 |
assert( pNos>=p->aStack );
|
|
1768 |
if( pTos->flags & MEM_Null ){
|
|
1769 |
v1 = 2;
|
|
1770 |
}else{
|
|
1771 |
sqlite3VdbeMemIntegerify(pTos);
|
|
1772 |
v1 = pTos->u.i==0;
|
|
1773 |
}
|
|
1774 |
if( pNos->flags & MEM_Null ){
|
|
1775 |
v2 = 2;
|
|
1776 |
}else{
|
|
1777 |
sqlite3VdbeMemIntegerify(pNos);
|
|
1778 |
v2 = pNos->u.i==0;
|
|
1779 |
}
|
|
1780 |
if( pOp->opcode==OP_And ){
|
|
1781 |
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
1782 |
v1 = and_logic[v1*3+v2];
|
|
1783 |
}else{
|
|
1784 |
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
1785 |
v1 = or_logic[v1*3+v2];
|
|
1786 |
}
|
|
1787 |
popStack(&pTos, 2);
|
|
1788 |
pTos++;
|
|
1789 |
if( v1==2 ){
|
|
1790 |
pTos->flags = MEM_Null;
|
|
1791 |
}else{
|
|
1792 |
pTos->u.i = v1==0;
|
|
1793 |
pTos->flags = MEM_Int;
|
|
1794 |
}
|
|
1795 |
break;
|
|
1796 |
}
|
|
1797 |
|
|
1798 |
/* Opcode: Negative * * *
|
|
1799 |
**
|
|
1800 |
** Treat the top of the stack as a numeric quantity. Replace it
|
|
1801 |
** with its additive inverse. If the top of the stack is NULL
|
|
1802 |
** its value is unchanged.
|
|
1803 |
*/
|
|
1804 |
/* Opcode: AbsValue * * *
|
|
1805 |
**
|
|
1806 |
** Treat the top of the stack as a numeric quantity. Replace it
|
|
1807 |
** with its absolute value. If the top of the stack is NULL
|
|
1808 |
** its value is unchanged.
|
|
1809 |
*/
|
|
1810 |
case OP_Negative: /* same as TK_UMINUS, no-push */
|
|
1811 |
case OP_AbsValue: {
|
|
1812 |
assert( pTos>=p->aStack );
|
|
1813 |
if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){
|
|
1814 |
sqlite3VdbeMemNumerify(pTos);
|
|
1815 |
}
|
|
1816 |
if( pTos->flags & MEM_Real ){
|
|
1817 |
Release(pTos);
|
|
1818 |
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
|
|
1819 |
pTos->r = -pTos->r;
|
|
1820 |
}
|
|
1821 |
pTos->flags = MEM_Real;
|
|
1822 |
}else if( pTos->flags & MEM_Int ){
|
|
1823 |
Release(pTos);
|
|
1824 |
if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
|
|
1825 |
pTos->u.i = -pTos->u.i;
|
|
1826 |
}
|
|
1827 |
pTos->flags = MEM_Int;
|
|
1828 |
}
|
|
1829 |
break;
|
|
1830 |
}
|
|
1831 |
|
|
1832 |
/* Opcode: Not * * *
|
|
1833 |
**
|
|
1834 |
** Interpret the top of the stack as a boolean value. Replace it
|
|
1835 |
** with its complement. If the top of the stack is NULL its value
|
|
1836 |
** is unchanged.
|
|
1837 |
*/
|
|
1838 |
case OP_Not: { /* same as TK_NOT, no-push */
|
|
1839 |
assert( pTos>=p->aStack );
|
|
1840 |
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
1841 |
sqlite3VdbeMemIntegerify(pTos);
|
|
1842 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
1843 |
pTos->u.i = !pTos->u.i;
|
|
1844 |
pTos->flags = MEM_Int;
|
|
1845 |
break;
|
|
1846 |
}
|
|
1847 |
|
|
1848 |
/* Opcode: BitNot * * *
|
|
1849 |
**
|
|
1850 |
** Interpret the top of the stack as an value. Replace it
|
|
1851 |
** with its ones-complement. If the top of the stack is NULL its
|
|
1852 |
** value is unchanged.
|
|
1853 |
*/
|
|
1854 |
case OP_BitNot: { /* same as TK_BITNOT, no-push */
|
|
1855 |
assert( pTos>=p->aStack );
|
|
1856 |
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
1857 |
sqlite3VdbeMemIntegerify(pTos);
|
|
1858 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
1859 |
pTos->u.i = ~pTos->u.i;
|
|
1860 |
pTos->flags = MEM_Int;
|
|
1861 |
break;
|
|
1862 |
}
|
|
1863 |
|
|
1864 |
/* Opcode: Noop * * *
|
|
1865 |
**
|
|
1866 |
** Do nothing. This instruction is often useful as a jump
|
|
1867 |
** destination.
|
|
1868 |
*/
|
|
1869 |
/*
|
|
1870 |
** The magic Explain opcode are only inserted when explain==2 (which
|
|
1871 |
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
|
|
1872 |
** This opcode records information from the optimizer. It is the
|
|
1873 |
** the same as a no-op. This opcodesnever appears in a real VM program.
|
|
1874 |
*/
|
|
1875 |
case OP_Explain:
|
|
1876 |
case OP_Noop: { /* no-push */
|
|
1877 |
break;
|
|
1878 |
}
|
|
1879 |
|
|
1880 |
/* Opcode: If P1 P2 *
|
|
1881 |
**
|
|
1882 |
** Pop a single boolean from the stack. If the boolean popped is
|
|
1883 |
** true, then jump to p2. Otherwise continue to the next instruction.
|
|
1884 |
** An integer is false if zero and true otherwise. A string is
|
|
1885 |
** false if it has zero length and true otherwise.
|
|
1886 |
**
|
|
1887 |
** If the value popped of the stack is NULL, then take the jump if P1
|
|
1888 |
** is true and fall through if P1 is false.
|
|
1889 |
*/
|
|
1890 |
/* Opcode: IfNot P1 P2 *
|
|
1891 |
**
|
|
1892 |
** Pop a single boolean from the stack. If the boolean popped is
|
|
1893 |
** false, then jump to p2. Otherwise continue to the next instruction.
|
|
1894 |
** An integer is false if zero and true otherwise. A string is
|
|
1895 |
** false if it has zero length and true otherwise.
|
|
1896 |
**
|
|
1897 |
** If the value popped of the stack is NULL, then take the jump if P1
|
|
1898 |
** is true and fall through if P1 is false.
|
|
1899 |
*/
|
|
1900 |
case OP_If: /* no-push */
|
|
1901 |
case OP_IfNot: { /* no-push */
|
|
1902 |
int c;
|
|
1903 |
assert( pTos>=p->aStack );
|
|
1904 |
if( pTos->flags & MEM_Null ){
|
|
1905 |
c = pOp->p1;
|
|
1906 |
}else{
|
|
1907 |
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
1908 |
c = sqlite3VdbeIntValue(pTos);
|
|
1909 |
#else
|
|
1910 |
c = sqlite3VdbeRealValue(pTos)!=0.0;
|
|
1911 |
#endif
|
|
1912 |
if( pOp->opcode==OP_IfNot ) c = !c;
|
|
1913 |
}
|
|
1914 |
Release(pTos);
|
|
1915 |
pTos--;
|
|
1916 |
if( c ) pc = pOp->p2-1;
|
|
1917 |
break;
|
|
1918 |
}
|
|
1919 |
|
|
1920 |
/* Opcode: IsNull P1 P2 *
|
|
1921 |
**
|
|
1922 |
** Check the top of the stack and jump to P2 if the top of the stack
|
|
1923 |
** is NULL. If P1 is positive, then pop P1 elements from the stack
|
|
1924 |
** regardless of whether or not the jump is taken. If P1 is negative,
|
|
1925 |
** pop -P1 elements from the stack only if the jump is taken and leave
|
|
1926 |
** the stack unchanged if the jump is not taken.
|
|
1927 |
*/
|
|
1928 |
case OP_IsNull: { /* same as TK_ISNULL, no-push */
|
|
1929 |
if( pTos->flags & MEM_Null ){
|
|
1930 |
pc = pOp->p2-1;
|
|
1931 |
if( pOp->p1<0 ){
|
|
1932 |
popStack(&pTos, -pOp->p1);
|
|
1933 |
}
|
|
1934 |
}
|
|
1935 |
if( pOp->p1>0 ){
|
|
1936 |
popStack(&pTos, pOp->p1);
|
|
1937 |
}
|
|
1938 |
break;
|
|
1939 |
}
|
|
1940 |
|
|
1941 |
/* Opcode: NotNull P1 P2 *
|
|
1942 |
**
|
|
1943 |
** Jump to P2 if the top abs(P1) values on the stack are all not NULL.
|
|
1944 |
** Regardless of whether or not the jump is taken, pop the stack
|
|
1945 |
** P1 times if P1 is greater than zero. But if P1 is negative,
|
|
1946 |
** leave the stack unchanged.
|
|
1947 |
*/
|
|
1948 |
case OP_NotNull: { /* same as TK_NOTNULL, no-push */
|
|
1949 |
int i, cnt;
|
|
1950 |
cnt = pOp->p1;
|
|
1951 |
if( cnt<0 ) cnt = -cnt;
|
|
1952 |
assert( &pTos[1-cnt] >= p->aStack );
|
|
1953 |
for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
|
|
1954 |
if( i>=cnt ) pc = pOp->p2-1;
|
|
1955 |
if( pOp->p1>0 ) popStack(&pTos, cnt);
|
|
1956 |
break;
|
|
1957 |
}
|
|
1958 |
|
|
1959 |
/* Opcode: SetNumColumns P1 P2 *
|
|
1960 |
**
|
|
1961 |
** Before the OP_Column opcode can be executed on a cursor, this
|
|
1962 |
** opcode must be called to set the number of fields in the table.
|
|
1963 |
**
|
|
1964 |
** This opcode sets the number of columns for cursor P1 to P2.
|
|
1965 |
**
|
|
1966 |
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
|
|
1967 |
** before this op-code.
|
|
1968 |
*/
|
|
1969 |
case OP_SetNumColumns: { /* no-push */
|
|
1970 |
Cursor *pC;
|
|
1971 |
assert( (pOp->p1)<p->nCursor );
|
|
1972 |
assert( p->apCsr[pOp->p1]!=0 );
|
|
1973 |
pC = p->apCsr[pOp->p1];
|
|
1974 |
pC->nField = pOp->p2;
|
|
1975 |
break;
|
|
1976 |
}
|
|
1977 |
|
|
1978 |
/* Opcode: Column P1 P2 P3
|
|
1979 |
**
|
|
1980 |
** Interpret the data that cursor P1 points to as a structure built using
|
|
1981 |
** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
|
1982 |
** information about the format of the data.) Push onto the stack the value
|
|
1983 |
** of the P2-th column contained in the data. If there are less that (P2+1)
|
|
1984 |
** values in the record, push a NULL onto the stack.
|
|
1985 |
**
|
|
1986 |
** If the KeyAsData opcode has previously executed on this cursor, then the
|
|
1987 |
** field might be extracted from the key rather than the data.
|
|
1988 |
**
|
|
1989 |
** If the column contains fewer than P2 fields, then push a NULL. Or
|
|
1990 |
** if P3 is of type P3_MEM, then push the P3 value. The P3 value will
|
|
1991 |
** be default value for a column that has been added using the ALTER TABLE
|
|
1992 |
** ADD COLUMN command. If P3 is an ordinary string, just push a NULL.
|
|
1993 |
** When P3 is a string it is really just a comment describing the value
|
|
1994 |
** to be pushed, not a default value.
|
|
1995 |
*/
|
|
1996 |
case OP_Column: {
|
|
1997 |
u32 payloadSize; /* Number of bytes in the record */
|
|
1998 |
int p1 = pOp->p1; /* P1 value of the opcode */
|
|
1999 |
int p2 = pOp->p2; /* column number to retrieve */
|
|
2000 |
Cursor *pC = 0; /* The VDBE cursor */
|
|
2001 |
char *zRec; /* Pointer to complete record-data */
|
|
2002 |
BtCursor *pCrsr; /* The BTree cursor */
|
|
2003 |
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
|
|
2004 |
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
|
2005 |
u32 nField; /* number of fields in the record */
|
|
2006 |
int len; /* The length of the serialized data for the column */
|
|
2007 |
int i; /* Loop counter */
|
|
2008 |
char *zData; /* Part of the record being decoded */
|
|
2009 |
Mem sMem; /* For storing the record being decoded */
|
|
2010 |
|
|
2011 |
sMem.flags = 0;
|
|
2012 |
assert( p1<p->nCursor );
|
|
2013 |
pTos++;
|
|
2014 |
pTos->flags = MEM_Null;
|
|
2015 |
|
|
2016 |
/* This block sets the variable payloadSize to be the total number of
|
|
2017 |
** bytes in the record.
|
|
2018 |
**
|
|
2019 |
** zRec is set to be the complete text of the record if it is available.
|
|
2020 |
** The complete record text is always available for pseudo-tables
|
|
2021 |
** If the record is stored in a cursor, the complete record text
|
|
2022 |
** might be available in the pC->aRow cache. Or it might not be.
|
|
2023 |
** If the data is unavailable, zRec is set to NULL.
|
|
2024 |
**
|
|
2025 |
** We also compute the number of columns in the record. For cursors,
|
|
2026 |
** the number of columns is stored in the Cursor.nField element. For
|
|
2027 |
** records on the stack, the next entry down on the stack is an integer
|
|
2028 |
** which is the number of records.
|
|
2029 |
*/
|
|
2030 |
pC = p->apCsr[p1];
|
|
2031 |
assert( pC!=0 );
|
|
2032 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2033 |
assert( pC->pVtabCursor==0 );
|
|
2034 |
#endif
|
|
2035 |
if( pC->pCursor!=0 ){
|
|
2036 |
/* The record is stored in a B-Tree */
|
|
2037 |
rc = sqlite3VdbeCursorMoveto(pC);
|
|
2038 |
if( rc ) goto abort_due_to_error;
|
|
2039 |
zRec = 0;
|
|
2040 |
pCrsr = pC->pCursor;
|
|
2041 |
if( pC->nullRow ){
|
|
2042 |
payloadSize = 0;
|
|
2043 |
}else if( pC->cacheStatus==p->cacheCtr ){
|
|
2044 |
payloadSize = pC->payloadSize;
|
|
2045 |
zRec = (char*)pC->aRow;
|
|
2046 |
}else if( pC->isIndex ){
|
|
2047 |
i64 payloadSize64;
|
|
2048 |
sqlite3BtreeKeySize(pCrsr, &payloadSize64);
|
|
2049 |
payloadSize = payloadSize64;
|
|
2050 |
}else{
|
|
2051 |
sqlite3BtreeDataSize(pCrsr, &payloadSize);
|
|
2052 |
}
|
|
2053 |
nField = pC->nField;
|
|
2054 |
}else if( pC->pseudoTable ){
|
|
2055 |
/* The record is the sole entry of a pseudo-table */
|
|
2056 |
payloadSize = pC->nData;
|
|
2057 |
zRec = pC->pData;
|
|
2058 |
pC->cacheStatus = CACHE_STALE;
|
|
2059 |
assert( payloadSize==0 || zRec!=0 );
|
|
2060 |
nField = pC->nField;
|
|
2061 |
pCrsr = 0;
|
|
2062 |
}else{
|
|
2063 |
zRec = 0;
|
|
2064 |
payloadSize = 0;
|
|
2065 |
pCrsr = 0;
|
|
2066 |
nField = 0;
|
|
2067 |
}
|
|
2068 |
|
|
2069 |
/* If payloadSize is 0, then just push a NULL onto the stack. */
|
|
2070 |
if( payloadSize==0 ){
|
|
2071 |
assert( pTos->flags==MEM_Null );
|
|
2072 |
break;
|
|
2073 |
}
|
|
2074 |
if( payloadSize>SQLITE_MAX_LENGTH ){
|
|
2075 |
goto too_big;
|
|
2076 |
}
|
|
2077 |
|
|
2078 |
assert( p2<nField );
|
|
2079 |
|
|
2080 |
/* Read and parse the table header. Store the results of the parse
|
|
2081 |
** into the record header cache fields of the cursor.
|
|
2082 |
*/
|
|
2083 |
if( pC && pC->cacheStatus==p->cacheCtr ){
|
|
2084 |
aType = pC->aType;
|
|
2085 |
aOffset = pC->aOffset;
|
|
2086 |
}else{
|
|
2087 |
u8 *zIdx; /* Index into header */
|
|
2088 |
u8 *zEndHdr; /* Pointer to first byte after the header */
|
|
2089 |
u32 offset; /* Offset into the data */
|
|
2090 |
int szHdrSz; /* Size of the header size field at start of record */
|
|
2091 |
int avail; /* Number of bytes of available data */
|
|
2092 |
|
|
2093 |
aType = pC->aType;
|
|
2094 |
if( aType==0 ){
|
|
2095 |
pC->aType = aType = (u32*)sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) );
|
|
2096 |
}
|
|
2097 |
if( aType==0 ){
|
|
2098 |
goto no_mem;
|
|
2099 |
}
|
|
2100 |
pC->aOffset = aOffset = &aType[nField];
|
|
2101 |
pC->payloadSize = payloadSize;
|
|
2102 |
pC->cacheStatus = p->cacheCtr;
|
|
2103 |
|
|
2104 |
/* Figure out how many bytes are in the header */
|
|
2105 |
if( zRec ){
|
|
2106 |
zData = zRec;
|
|
2107 |
}else{
|
|
2108 |
if( pC->isIndex ){
|
|
2109 |
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
|
|
2110 |
}else{
|
|
2111 |
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
|
|
2112 |
}
|
|
2113 |
/* If KeyFetch()/DataFetch() managed to get the entire payload,
|
|
2114 |
** save the payload in the pC->aRow cache. That will save us from
|
|
2115 |
** having to make additional calls to fetch the content portion of
|
|
2116 |
** the record.
|
|
2117 |
*/
|
|
2118 |
if( avail>=payloadSize ){
|
|
2119 |
zRec = zData;
|
|
2120 |
pC->aRow = (u8*)zData;
|
|
2121 |
}else{
|
|
2122 |
pC->aRow = 0;
|
|
2123 |
}
|
|
2124 |
}
|
|
2125 |
/* The following assert is true in all cases accept when
|
|
2126 |
** the database file has been corrupted externally.
|
|
2127 |
** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
|
|
2128 |
szHdrSz = GetVarint((u8*)zData, offset);
|
|
2129 |
|
|
2130 |
/* The KeyFetch() or DataFetch() above are fast and will get the entire
|
|
2131 |
** record header in most cases. But they will fail to get the complete
|
|
2132 |
** record header if the record header does not fit on a single page
|
|
2133 |
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
|
|
2134 |
** acquire the complete header text.
|
|
2135 |
*/
|
|
2136 |
if( !zRec && avail<offset ){
|
|
2137 |
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
|
|
2138 |
if( rc!=SQLITE_OK ){
|
|
2139 |
goto op_column_out;
|
|
2140 |
}
|
|
2141 |
zData = sMem.z;
|
|
2142 |
}
|
|
2143 |
zEndHdr = (u8 *)&zData[offset];
|
|
2144 |
zIdx = (u8 *)&zData[szHdrSz];
|
|
2145 |
|
|
2146 |
/* Scan the header and use it to fill in the aType[] and aOffset[]
|
|
2147 |
** arrays. aType[i] will contain the type integer for the i-th
|
|
2148 |
** column and aOffset[i] will contain the offset from the beginning
|
|
2149 |
** of the record to the start of the data for the i-th column
|
|
2150 |
*/
|
|
2151 |
for(i=0; i<nField; i++){
|
|
2152 |
if( zIdx<zEndHdr ){
|
|
2153 |
aOffset[i] = offset;
|
|
2154 |
zIdx += GetVarint(zIdx, aType[i]);
|
|
2155 |
offset += sqlite3VdbeSerialTypeLen(aType[i]);
|
|
2156 |
}else{
|
|
2157 |
/* If i is less that nField, then there are less fields in this
|
|
2158 |
** record than SetNumColumns indicated there are columns in the
|
|
2159 |
** table. Set the offset for any extra columns not present in
|
|
2160 |
** the record to 0. This tells code below to push a NULL onto the
|
|
2161 |
** stack instead of deserializing a value from the record.
|
|
2162 |
*/
|
|
2163 |
aOffset[i] = 0;
|
|
2164 |
}
|
|
2165 |
}
|
|
2166 |
Release(&sMem);
|
|
2167 |
sMem.flags = MEM_Null;
|
|
2168 |
|
|
2169 |
/* If we have read more header data than was contained in the header,
|
|
2170 |
** or if the end of the last field appears to be past the end of the
|
|
2171 |
** record, then we must be dealing with a corrupt database.
|
|
2172 |
*/
|
|
2173 |
if( zIdx>zEndHdr || offset>payloadSize ){
|
|
2174 |
rc = SQLITE_CORRUPT_BKPT;
|
|
2175 |
goto op_column_out;
|
|
2176 |
}
|
|
2177 |
}
|
|
2178 |
|
|
2179 |
/* Get the column information. If aOffset[p2] is non-zero, then
|
|
2180 |
** deserialize the value from the record. If aOffset[p2] is zero,
|
|
2181 |
** then there are not enough fields in the record to satisfy the
|
|
2182 |
** request. In this case, set the value NULL or to P3 if P3 is
|
|
2183 |
** a pointer to a Mem object.
|
|
2184 |
*/
|
|
2185 |
if( aOffset[p2] ){
|
|
2186 |
assert( rc==SQLITE_OK );
|
|
2187 |
if( zRec ){
|
|
2188 |
zData = &zRec[aOffset[p2]];
|
|
2189 |
}else{
|
|
2190 |
len = sqlite3VdbeSerialTypeLen(aType[p2]);
|
|
2191 |
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
|
|
2192 |
if( rc!=SQLITE_OK ){
|
|
2193 |
goto op_column_out;
|
|
2194 |
}
|
|
2195 |
zData = sMem.z;
|
|
2196 |
}
|
|
2197 |
sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
|
|
2198 |
pTos->enc = encoding;
|
|
2199 |
}else{
|
|
2200 |
if( pOp->p3type==P3_MEM ){
|
|
2201 |
sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
|
|
2202 |
}else{
|
|
2203 |
pTos->flags = MEM_Null;
|
|
2204 |
}
|
|
2205 |
}
|
|
2206 |
|
|
2207 |
/* If we dynamically allocated space to hold the data (in the
|
|
2208 |
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
|
|
2209 |
** dynamically allocated space over to the pTos structure.
|
|
2210 |
** This prevents a memory copy.
|
|
2211 |
*/
|
|
2212 |
if( (sMem.flags & MEM_Dyn)!=0 ){
|
|
2213 |
assert( pTos->flags & MEM_Ephem );
|
|
2214 |
assert( pTos->flags & (MEM_Str|MEM_Blob) );
|
|
2215 |
assert( pTos->z==sMem.z );
|
|
2216 |
assert( sMem.flags & MEM_Term );
|
|
2217 |
pTos->flags &= ~MEM_Ephem;
|
|
2218 |
pTos->flags |= MEM_Dyn|MEM_Term;
|
|
2219 |
}
|
|
2220 |
|
|
2221 |
/* pTos->z might be pointing to sMem.zShort[]. Fix that so that we
|
|
2222 |
** can abandon sMem */
|
|
2223 |
rc = sqlite3VdbeMemMakeWriteable(pTos);
|
|
2224 |
|
|
2225 |
op_column_out:
|
|
2226 |
break;
|
|
2227 |
}
|
|
2228 |
|
|
2229 |
/* Opcode: MakeRecord P1 P2 P3
|
|
2230 |
**
|
|
2231 |
** Convert the top abs(P1) entries of the stack into a single entry
|
|
2232 |
** suitable for use as a data record in a database table or as a key
|
|
2233 |
** in an index. The details of the format are irrelavant as long as
|
|
2234 |
** the OP_Column opcode can decode the record later and as long as the
|
|
2235 |
** sqlite3VdbeRecordCompare function will correctly compare two encoded
|
|
2236 |
** records. Refer to source code comments for the details of the record
|
|
2237 |
** format.
|
|
2238 |
**
|
|
2239 |
** The original stack entries are popped from the stack if P1>0 but
|
|
2240 |
** remain on the stack if P1<0.
|
|
2241 |
**
|
|
2242 |
** If P2 is not zero and one or more of the entries are NULL, then jump
|
|
2243 |
** to the address given by P2. This feature can be used to skip a
|
|
2244 |
** uniqueness test on indices.
|
|
2245 |
**
|
|
2246 |
** P3 may be a string that is P1 characters long. The nth character of the
|
|
2247 |
** string indicates the column affinity that should be used for the nth
|
|
2248 |
** field of the index key (i.e. the first character of P3 corresponds to the
|
|
2249 |
** lowest element on the stack).
|
|
2250 |
**
|
|
2251 |
** The mapping from character to affinity is given by the SQLITE_AFF_
|
|
2252 |
** macros defined in sqliteInt.h.
|
|
2253 |
**
|
|
2254 |
** If P3 is NULL then all index fields have the affinity NONE.
|
|
2255 |
**
|
|
2256 |
** See also OP_MakeIdxRec
|
|
2257 |
*/
|
|
2258 |
/* Opcode: MakeIdxRec P1 P2 P3
|
|
2259 |
**
|
|
2260 |
** This opcode works just OP_MakeRecord except that it reads an extra
|
|
2261 |
** integer from the stack (thus reading a total of abs(P1+1) entries)
|
|
2262 |
** and appends that extra integer to the end of the record as a varint.
|
|
2263 |
** This results in an index key.
|
|
2264 |
*/
|
|
2265 |
case OP_MakeIdxRec:
|
|
2266 |
case OP_MakeRecord: {
|
|
2267 |
/* Assuming the record contains N fields, the record format looks
|
|
2268 |
** like this:
|
|
2269 |
**
|
|
2270 |
** ------------------------------------------------------------------------
|
|
2271 |
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
|
2272 |
** ------------------------------------------------------------------------
|
|
2273 |
**
|
|
2274 |
** Data(0) is taken from the lowest element of the stack and data(N-1) is
|
|
2275 |
** the top of the stack.
|
|
2276 |
**
|
|
2277 |
** Each type field is a varint representing the serial type of the
|
|
2278 |
** corresponding data element (see sqlite3VdbeSerialType()). The
|
|
2279 |
** hdr-size field is also a varint which is the offset from the beginning
|
|
2280 |
** of the record to data0.
|
|
2281 |
*/
|
|
2282 |
u8 *zNewRecord; /* A buffer to hold the data for the new record */
|
|
2283 |
Mem *pRec; /* The new record */
|
|
2284 |
Mem *pRowid = 0; /* Rowid appended to the new record */
|
|
2285 |
u64 nData = 0; /* Number of bytes of data space */
|
|
2286 |
int nHdr = 0; /* Number of bytes of header space */
|
|
2287 |
u64 nByte = 0; /* Data space required for this record */
|
|
2288 |
int nZero = 0; /* Number of zero bytes at the end of the record */
|
|
2289 |
int nVarint; /* Number of bytes in a varint */
|
|
2290 |
u32 serial_type; /* Type field */
|
|
2291 |
int containsNull = 0; /* True if any of the data fields are NULL */
|
|
2292 |
Mem *pData0; /* Bottom of the stack */
|
|
2293 |
int leaveOnStack; /* If true, leave the entries on the stack */
|
|
2294 |
int nField; /* Number of fields in the record */
|
|
2295 |
int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */
|
|
2296 |
int addRowid; /* True to append a rowid column at the end */
|
|
2297 |
char *zAffinity; /* The affinity string for the record */
|
|
2298 |
int file_format; /* File format to use for encoding */
|
|
2299 |
int i; /* Space used in zNewRecord[] */
|
|
2300 |
char zTemp[NBFS]; /* Space to hold small records */
|
|
2301 |
|
|
2302 |
leaveOnStack = ((pOp->p1<0)?1:0);
|
|
2303 |
nField = pOp->p1 * (leaveOnStack?-1:1);
|
|
2304 |
jumpIfNull = pOp->p2;
|
|
2305 |
addRowid = pOp->opcode==OP_MakeIdxRec;
|
|
2306 |
zAffinity = pOp->p3;
|
|
2307 |
|
|
2308 |
pData0 = &pTos[1-nField];
|
|
2309 |
assert( pData0>=p->aStack );
|
|
2310 |
containsNull = 0;
|
|
2311 |
file_format = p->minWriteFileFormat;
|
|
2312 |
|
|
2313 |
/* Loop through the elements that will make up the record to figure
|
|
2314 |
** out how much space is required for the new record.
|
|
2315 |
*/
|
|
2316 |
for(pRec=pData0; pRec<=pTos; pRec++){
|
|
2317 |
int len;
|
|
2318 |
if( zAffinity ){
|
|
2319 |
applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
|
|
2320 |
}
|
|
2321 |
if( pRec->flags&MEM_Null ){
|
|
2322 |
containsNull = 1;
|
|
2323 |
}
|
|
2324 |
if( pRec->flags&MEM_Zero && pRec->n>0 ){
|
|
2325 |
ExpandBlob(pRec);
|
|
2326 |
}
|
|
2327 |
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
2328 |
len = sqlite3VdbeSerialTypeLen(serial_type);
|
|
2329 |
nData += len;
|
|
2330 |
nHdr += sqlite3VarintLen(serial_type);
|
|
2331 |
if( pRec->flags & MEM_Zero ){
|
|
2332 |
/* Only pure zero-filled BLOBs can be input to this Opcode.
|
|
2333 |
** We do not allow blobs with a prefix and a zero-filled tail. */
|
|
2334 |
nZero += pRec->u.i;
|
|
2335 |
}else if( len ){
|
|
2336 |
nZero = 0;
|
|
2337 |
}
|
|
2338 |
}
|
|
2339 |
|
|
2340 |
/* If we have to append a varint rowid to this record, set pRowid
|
|
2341 |
** to the value of the rowid and increase nByte by the amount of space
|
|
2342 |
** required to store it.
|
|
2343 |
*/
|
|
2344 |
if( addRowid ){
|
|
2345 |
pRowid = &pTos[0-nField];
|
|
2346 |
assert( pRowid>=p->aStack );
|
|
2347 |
sqlite3VdbeMemIntegerify(pRowid);
|
|
2348 |
serial_type = sqlite3VdbeSerialType(pRowid, 0);
|
|
2349 |
nData += sqlite3VdbeSerialTypeLen(serial_type);
|
|
2350 |
nHdr += sqlite3VarintLen(serial_type);
|
|
2351 |
nZero = 0;
|
|
2352 |
}
|
|
2353 |
|
|
2354 |
/* Add the initial header varint and total the size */
|
|
2355 |
nHdr += nVarint = sqlite3VarintLen(nHdr);
|
|
2356 |
if( nVarint<sqlite3VarintLen(nHdr) ){
|
|
2357 |
nHdr++;
|
|
2358 |
}
|
|
2359 |
nByte = nHdr+nData-nZero;
|
|
2360 |
if( nByte>SQLITE_MAX_LENGTH ){
|
|
2361 |
goto too_big;
|
|
2362 |
}
|
|
2363 |
|
|
2364 |
/* Allocate space for the new record. */
|
|
2365 |
if( nByte>sizeof(zTemp) ){
|
|
2366 |
zNewRecord = (u8*)sqlite3DbMallocRaw(db, nByte);
|
|
2367 |
if( !zNewRecord ){
|
|
2368 |
goto no_mem;
|
|
2369 |
}
|
|
2370 |
}else{
|
|
2371 |
zNewRecord = (u8*)zTemp;
|
|
2372 |
}
|
|
2373 |
|
|
2374 |
/* Write the record */
|
|
2375 |
i = sqlite3PutVarint(zNewRecord, nHdr);
|
|
2376 |
for(pRec=pData0; pRec<=pTos; pRec++){
|
|
2377 |
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
2378 |
i += sqlite3PutVarint(&zNewRecord[i], serial_type); /* serial type */
|
|
2379 |
}
|
|
2380 |
if( addRowid ){
|
|
2381 |
i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0));
|
|
2382 |
}
|
|
2383 |
for(pRec=pData0; pRec<=pTos; pRec++){ /* serial data */
|
|
2384 |
i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
|
|
2385 |
}
|
|
2386 |
if( addRowid ){
|
|
2387 |
i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0);
|
|
2388 |
}
|
|
2389 |
assert( i==nByte );
|
|
2390 |
|
|
2391 |
/* Pop entries off the stack if required. Push the new record on. */
|
|
2392 |
if( !leaveOnStack ){
|
|
2393 |
popStack(&pTos, nField+addRowid);
|
|
2394 |
}
|
|
2395 |
pTos++;
|
|
2396 |
pTos->n = nByte;
|
|
2397 |
if( nByte<=sizeof(zTemp) ){
|
|
2398 |
assert( zNewRecord==(unsigned char *)zTemp );
|
|
2399 |
pTos->z = pTos->zShort;
|
|
2400 |
memcpy(pTos->zShort, zTemp, nByte);
|
|
2401 |
pTos->flags = MEM_Blob | MEM_Short;
|
|
2402 |
}else{
|
|
2403 |
assert( zNewRecord!=(unsigned char *)zTemp );
|
|
2404 |
pTos->z = (char*)zNewRecord;
|
|
2405 |
pTos->flags = MEM_Blob | MEM_Dyn;
|
|
2406 |
pTos->xDel = 0;
|
|
2407 |
}
|
|
2408 |
if( nZero ){
|
|
2409 |
pTos->u.i = nZero;
|
|
2410 |
pTos->flags |= MEM_Zero;
|
|
2411 |
}
|
|
2412 |
pTos->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
|
|
2413 |
|
|
2414 |
/* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
|
|
2415 |
if( jumpIfNull && containsNull ){
|
|
2416 |
pc = jumpIfNull - 1;
|
|
2417 |
}
|
|
2418 |
break;
|
|
2419 |
}
|
|
2420 |
|
|
2421 |
/* Opcode: Statement P1 * *
|
|
2422 |
**
|
|
2423 |
** Begin an individual statement transaction which is part of a larger
|
|
2424 |
** BEGIN..COMMIT transaction. This is needed so that the statement
|
|
2425 |
** can be rolled back after an error without having to roll back the
|
|
2426 |
** entire transaction. The statement transaction will automatically
|
|
2427 |
** commit when the VDBE halts.
|
|
2428 |
**
|
|
2429 |
** The statement is begun on the database file with index P1. The main
|
|
2430 |
** database file has an index of 0 and the file used for temporary tables
|
|
2431 |
** has an index of 1.
|
|
2432 |
*/
|
|
2433 |
case OP_Statement: { /* no-push */
|
|
2434 |
int i = pOp->p1;
|
|
2435 |
Btree *pBt;
|
|
2436 |
if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0
|
|
2437 |
&& (db->autoCommit==0 || db->activeVdbeCnt>1) ){
|
|
2438 |
assert( sqlite3BtreeIsInTrans(pBt) );
|
|
2439 |
assert( (p->btreeMask & (1<<i))!=0 );
|
|
2440 |
if( !sqlite3BtreeIsInStmt(pBt) ){
|
|
2441 |
rc = sqlite3BtreeBeginStmt(pBt);
|
|
2442 |
p->openedStatement = 1;
|
|
2443 |
}
|
|
2444 |
}
|
|
2445 |
break;
|
|
2446 |
}
|
|
2447 |
|
|
2448 |
/* Opcode: AutoCommit P1 P2 *
|
|
2449 |
**
|
|
2450 |
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
|
2451 |
** back any currently active btree transactions. If there are any active
|
|
2452 |
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
|
|
2453 |
**
|
|
2454 |
** This instruction causes the VM to halt.
|
|
2455 |
*/
|
|
2456 |
case OP_AutoCommit: { /* no-push */
|
|
2457 |
u8 i = pOp->p1;
|
|
2458 |
u8 rollback = pOp->p2;
|
|
2459 |
|
|
2460 |
assert( i==1 || i==0 );
|
|
2461 |
assert( i==1 || rollback==0 );
|
|
2462 |
|
|
2463 |
assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
|
|
2464 |
|
|
2465 |
if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
|
|
2466 |
/* If this instruction implements a COMMIT or ROLLBACK, other VMs are
|
|
2467 |
** still running, and a transaction is active, return an error indicating
|
|
2468 |
** that the other VMs must complete first.
|
|
2469 |
*/
|
|
2470 |
sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
|
|
2471 |
" transaction - SQL statements in progress", (char*)0);
|
|
2472 |
rc = SQLITE_ERROR;
|
|
2473 |
}else if( i!=db->autoCommit ){
|
|
2474 |
if( pOp->p2 ){
|
|
2475 |
assert( i==1 );
|
|
2476 |
sqlite3RollbackAll(db);
|
|
2477 |
db->autoCommit = 1;
|
|
2478 |
}else{
|
|
2479 |
db->autoCommit = i;
|
|
2480 |
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
2481 |
p->pTos = pTos;
|
|
2482 |
p->pc = pc;
|
|
2483 |
db->autoCommit = 1-i;
|
|
2484 |
p->rc = rc = SQLITE_BUSY;
|
|
2485 |
goto vdbe_return;
|
|
2486 |
}
|
|
2487 |
}
|
|
2488 |
if( p->rc==SQLITE_OK ){
|
|
2489 |
rc = SQLITE_DONE;
|
|
2490 |
}else{
|
|
2491 |
rc = SQLITE_ERROR;
|
|
2492 |
}
|
|
2493 |
goto vdbe_return;
|
|
2494 |
}else{
|
|
2495 |
sqlite3SetString(&p->zErrMsg,
|
|
2496 |
(!i)?"cannot start a transaction within a transaction":(
|
|
2497 |
(rollback)?"cannot rollback - no transaction is active":
|
|
2498 |
"cannot commit - no transaction is active"), (char*)0);
|
|
2499 |
|
|
2500 |
rc = SQLITE_ERROR;
|
|
2501 |
}
|
|
2502 |
break;
|
|
2503 |
}
|
|
2504 |
|
|
2505 |
/* Opcode: Transaction P1 P2 *
|
|
2506 |
**
|
|
2507 |
** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
2508 |
** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
2509 |
** transaction might also be rolled back if an error is encountered.
|
|
2510 |
**
|
|
2511 |
** P1 is the index of the database file on which the transaction is
|
|
2512 |
** started. Index 0 is the main database file and index 1 is the
|
|
2513 |
** file used for temporary tables.
|
|
2514 |
**
|
|
2515 |
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
|
|
2516 |
** obtained on the database file when a write-transaction is started. No
|
|
2517 |
** other process can start another write transaction while this transaction is
|
|
2518 |
** underway. Starting a write transaction also creates a rollback journal. A
|
|
2519 |
** write transaction must be started before any changes can be made to the
|
|
2520 |
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
|
|
2521 |
** on the file.
|
|
2522 |
**
|
|
2523 |
** If P2 is zero, then a read-lock is obtained on the database file.
|
|
2524 |
*/
|
|
2525 |
case OP_Transaction: { /* no-push */
|
|
2526 |
int i = pOp->p1;
|
|
2527 |
Btree *pBt;
|
|
2528 |
|
|
2529 |
assert( i>=0 && i<db->nDb );
|
|
2530 |
assert( (p->btreeMask & (1<<i))!=0 );
|
|
2531 |
pBt = db->aDb[i].pBt;
|
|
2532 |
|
|
2533 |
if( pBt ){
|
|
2534 |
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
|
|
2535 |
if( rc==SQLITE_BUSY ){
|
|
2536 |
p->pc = pc;
|
|
2537 |
p->rc = rc = SQLITE_BUSY;
|
|
2538 |
p->pTos = pTos;
|
|
2539 |
goto vdbe_return;
|
|
2540 |
}
|
|
2541 |
if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
|
|
2542 |
goto abort_due_to_error;
|
|
2543 |
}
|
|
2544 |
}
|
|
2545 |
break;
|
|
2546 |
}
|
|
2547 |
|
|
2548 |
/* Opcode: ReadCookie P1 P2 *
|
|
2549 |
**
|
|
2550 |
** Read cookie number P2 from database P1 and push it onto the stack.
|
|
2551 |
** P2==0 is the schema version. P2==1 is the database format.
|
|
2552 |
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
2553 |
** the main database file and P1==1 is the database file used to store
|
|
2554 |
** temporary tables.
|
|
2555 |
**
|
|
2556 |
** If P1 is negative, then this is a request to read the size of a
|
|
2557 |
** databases free-list. P2 must be set to 1 in this case. The actual
|
|
2558 |
** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
|
|
2559 |
** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
|
|
2560 |
**
|
|
2561 |
** There must be a read-lock on the database (either a transaction
|
|
2562 |
** must be started or there must be an open cursor) before
|
|
2563 |
** executing this instruction.
|
|
2564 |
*/
|
|
2565 |
case OP_ReadCookie: {
|
|
2566 |
int iMeta;
|
|
2567 |
int iDb = pOp->p1;
|
|
2568 |
int iCookie = pOp->p2;
|
|
2569 |
|
|
2570 |
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
2571 |
if( iDb<0 ){
|
|
2572 |
iDb = (-1*(iDb+1));
|
|
2573 |
iCookie *= -1;
|
|
2574 |
}
|
|
2575 |
assert( iDb>=0 && iDb<db->nDb );
|
|
2576 |
assert( db->aDb[iDb].pBt!=0 );
|
|
2577 |
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
2578 |
/* The indexing of meta values at the schema layer is off by one from
|
|
2579 |
** the indexing in the btree layer. The btree considers meta[0] to
|
|
2580 |
** be the number of free pages in the database (a read-only value)
|
|
2581 |
** and meta[1] to be the schema cookie. The schema layer considers
|
|
2582 |
** meta[1] to be the schema cookie. So we have to shift the index
|
|
2583 |
** by one in the following statement.
|
|
2584 |
*/
|
|
2585 |
rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
|
|
2586 |
pTos++;
|
|
2587 |
pTos->u.i = iMeta;
|
|
2588 |
pTos->flags = MEM_Int;
|
|
2589 |
break;
|
|
2590 |
}
|
|
2591 |
|
|
2592 |
/* Opcode: SetCookie P1 P2 *
|
|
2593 |
**
|
|
2594 |
** Write the top of the stack into cookie number P2 of database P1.
|
|
2595 |
** P2==0 is the schema version. P2==1 is the database format.
|
|
2596 |
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
2597 |
** the main database file and P1==1 is the database file used to store
|
|
2598 |
** temporary tables.
|
|
2599 |
**
|
|
2600 |
** A transaction must be started before executing this opcode.
|
|
2601 |
*/
|
|
2602 |
case OP_SetCookie: { /* no-push */
|
|
2603 |
Db *pDb;
|
|
2604 |
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
2605 |
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
2606 |
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
2607 |
pDb = &db->aDb[pOp->p1];
|
|
2608 |
assert( pDb->pBt!=0 );
|
|
2609 |
assert( pTos>=p->aStack );
|
|
2610 |
sqlite3VdbeMemIntegerify(pTos);
|
|
2611 |
/* See note about index shifting on OP_ReadCookie */
|
|
2612 |
rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
|
|
2613 |
if( pOp->p2==0 ){
|
|
2614 |
/* When the schema cookie changes, record the new cookie internally */
|
|
2615 |
pDb->pSchema->schema_cookie = pTos->u.i;
|
|
2616 |
db->flags |= SQLITE_InternChanges;
|
|
2617 |
}else if( pOp->p2==1 ){
|
|
2618 |
/* Record changes in the file format */
|
|
2619 |
pDb->pSchema->file_format = pTos->u.i;
|
|
2620 |
}
|
|
2621 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
2622 |
pTos--;
|
|
2623 |
if( pOp->p1==1 ){
|
|
2624 |
/* Invalidate all prepared statements whenever the TEMP database
|
|
2625 |
** schema is changed. Ticket #1644 */
|
|
2626 |
sqlite3ExpirePreparedStatements(db);
|
|
2627 |
}
|
|
2628 |
break;
|
|
2629 |
}
|
|
2630 |
|
|
2631 |
/* Opcode: VerifyCookie P1 P2 *
|
|
2632 |
**
|
|
2633 |
** Check the value of global database parameter number 0 (the
|
|
2634 |
** schema version) and make sure it is equal to P2.
|
|
2635 |
** P1 is the database number which is 0 for the main database file
|
|
2636 |
** and 1 for the file holding temporary tables and some higher number
|
|
2637 |
** for auxiliary databases.
|
|
2638 |
**
|
|
2639 |
** The cookie changes its value whenever the database schema changes.
|
|
2640 |
** This operation is used to detect when that the cookie has changed
|
|
2641 |
** and that the current process needs to reread the schema.
|
|
2642 |
**
|
|
2643 |
** Either a transaction needs to have been started or an OP_Open needs
|
|
2644 |
** to be executed (to establish a read lock) before this opcode is
|
|
2645 |
** invoked.
|
|
2646 |
*/
|
|
2647 |
case OP_VerifyCookie: { /* no-push */
|
|
2648 |
int iMeta;
|
|
2649 |
Btree *pBt;
|
|
2650 |
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
2651 |
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
2652 |
pBt = db->aDb[pOp->p1].pBt;
|
|
2653 |
if( pBt ){
|
|
2654 |
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
|
|
2655 |
}else{
|
|
2656 |
rc = SQLITE_OK;
|
|
2657 |
iMeta = 0;
|
|
2658 |
}
|
|
2659 |
if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
|
|
2660 |
sqlite3_free(p->zErrMsg);
|
|
2661 |
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
|
|
2662 |
/* If the schema-cookie from the database file matches the cookie
|
|
2663 |
** stored with the in-memory representation of the schema, do
|
|
2664 |
** not reload the schema from the database file.
|
|
2665 |
**
|
|
2666 |
** If virtual-tables are in use, this is not just an optimisation.
|
|
2667 |
** Often, v-tables store their data in other SQLite tables, which
|
|
2668 |
** are queried from within xNext() and other v-table methods using
|
|
2669 |
** prepared queries. If such a query is out-of-date, we do not want to
|
|
2670 |
** discard the database schema, as the user code implementing the
|
|
2671 |
** v-table would have to be ready for the sqlite3_vtab structure itself
|
|
2672 |
** to be invalidated whenever sqlite3_step() is called from within
|
|
2673 |
** a v-table method.
|
|
2674 |
*/
|
|
2675 |
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
|
|
2676 |
sqlite3ResetInternalSchema(db, pOp->p1);
|
|
2677 |
}
|
|
2678 |
|
|
2679 |
sqlite3ExpirePreparedStatements(db);
|
|
2680 |
rc = SQLITE_SCHEMA;
|
|
2681 |
}
|
|
2682 |
break;
|
|
2683 |
}
|
|
2684 |
|
|
2685 |
/* Opcode: OpenRead P1 P2 P3
|
|
2686 |
**
|
|
2687 |
** Open a read-only cursor for the database table whose root page is
|
|
2688 |
** P2 in a database file. The database file is determined by an
|
|
2689 |
** integer from the top of the stack. 0 means the main database and
|
|
2690 |
** 1 means the database used for temporary tables. Give the new
|
|
2691 |
** cursor an identifier of P1. The P1 values need not be contiguous
|
|
2692 |
** but all P1 values should be small integers. It is an error for
|
|
2693 |
** P1 to be negative.
|
|
2694 |
**
|
|
2695 |
** If P2==0 then take the root page number from the next of the stack.
|
|
2696 |
**
|
|
2697 |
** There will be a read lock on the database whenever there is an
|
|
2698 |
** open cursor. If the database was unlocked prior to this instruction
|
|
2699 |
** then a read lock is acquired as part of this instruction. A read
|
|
2700 |
** lock allows other processes to read the database but prohibits
|
|
2701 |
** any other process from modifying the database. The read lock is
|
|
2702 |
** released when all cursors are closed. If this instruction attempts
|
|
2703 |
** to get a read lock but fails, the script terminates with an
|
|
2704 |
** SQLITE_BUSY error code.
|
|
2705 |
**
|
|
2706 |
** The P3 value is a pointer to a KeyInfo structure that defines the
|
|
2707 |
** content and collating sequence of indices. P3 is NULL for cursors
|
|
2708 |
** that are not pointing to indices.
|
|
2709 |
**
|
|
2710 |
** See also OpenWrite.
|
|
2711 |
*/
|
|
2712 |
/* Opcode: OpenWrite P1 P2 P3
|
|
2713 |
**
|
|
2714 |
** Open a read/write cursor named P1 on the table or index whose root
|
|
2715 |
** page is P2. If P2==0 then take the root page number from the stack.
|
|
2716 |
**
|
|
2717 |
** The P3 value is a pointer to a KeyInfo structure that defines the
|
|
2718 |
** content and collating sequence of indices. P3 is NULL for cursors
|
|
2719 |
** that are not pointing to indices.
|
|
2720 |
**
|
|
2721 |
** This instruction works just like OpenRead except that it opens the cursor
|
|
2722 |
** in read/write mode. For a given table, there can be one or more read-only
|
|
2723 |
** cursors or a single read/write cursor but not both.
|
|
2724 |
**
|
|
2725 |
** See also OpenRead.
|
|
2726 |
*/
|
|
2727 |
case OP_OpenRead: /* no-push */
|
|
2728 |
case OP_OpenWrite: { /* no-push */
|
|
2729 |
int i = pOp->p1;
|
|
2730 |
int p2 = pOp->p2;
|
|
2731 |
int wrFlag;
|
|
2732 |
Btree *pX;
|
|
2733 |
int iDb;
|
|
2734 |
Cursor *pCur;
|
|
2735 |
Db *pDb;
|
|
2736 |
|
|
2737 |
assert( pTos>=p->aStack );
|
|
2738 |
sqlite3VdbeMemIntegerify(pTos);
|
|
2739 |
iDb = pTos->u.i;
|
|
2740 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
2741 |
pTos--;
|
|
2742 |
assert( iDb>=0 && iDb<db->nDb );
|
|
2743 |
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
2744 |
pDb = &db->aDb[iDb];
|
|
2745 |
pX = pDb->pBt;
|
|
2746 |
assert( pX!=0 );
|
|
2747 |
if( pOp->opcode==OP_OpenWrite ){
|
|
2748 |
wrFlag = 1;
|
|
2749 |
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
|
|
2750 |
p->minWriteFileFormat = pDb->pSchema->file_format;
|
|
2751 |
}
|
|
2752 |
}else{
|
|
2753 |
wrFlag = 0;
|
|
2754 |
}
|
|
2755 |
if( p2<=0 ){
|
|
2756 |
assert( pTos>=p->aStack );
|
|
2757 |
sqlite3VdbeMemIntegerify(pTos);
|
|
2758 |
p2 = pTos->u.i;
|
|
2759 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
2760 |
pTos--;
|
|
2761 |
assert( p2>=2 );
|
|
2762 |
}
|
|
2763 |
assert( i>=0 );
|
|
2764 |
pCur = allocateCursor(p, i, iDb);
|
|
2765 |
if( pCur==0 ) goto no_mem;
|
|
2766 |
pCur->nullRow = 1;
|
|
2767 |
if( pX==0 ) break;
|
|
2768 |
/* We always provide a key comparison function. If the table being
|
|
2769 |
** opened is of type INTKEY, the comparision function will be ignored. */
|
|
2770 |
rc = sqlite3BtreeCursor(pX, p2, wrFlag,
|
|
2771 |
sqlite3VdbeRecordCompare, pOp->p3,
|
|
2772 |
&pCur->pCursor);
|
|
2773 |
if( pOp->p3type==P3_KEYINFO ){
|
|
2774 |
pCur->pKeyInfo = (KeyInfo*)pOp->p3;
|
|
2775 |
pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
|
|
2776 |
pCur->pKeyInfo->enc = ENC(p->db);
|
|
2777 |
}else{
|
|
2778 |
pCur->pKeyInfo = 0;
|
|
2779 |
pCur->pIncrKey = &pCur->bogusIncrKey;
|
|
2780 |
}
|
|
2781 |
switch( rc ){
|
|
2782 |
case SQLITE_BUSY: {
|
|
2783 |
p->pc = pc;
|
|
2784 |
p->rc = rc = SQLITE_BUSY;
|
|
2785 |
p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
|
|
2786 |
goto vdbe_return;
|
|
2787 |
}
|
|
2788 |
case SQLITE_OK: {
|
|
2789 |
int flags = sqlite3BtreeFlags(pCur->pCursor);
|
|
2790 |
/* Sanity checking. Only the lower four bits of the flags byte should
|
|
2791 |
** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
|
|
2792 |
** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
|
|
2793 |
** 2 (zerodata for indices). If these conditions are not met it can
|
|
2794 |
** only mean that we are dealing with a corrupt database file
|
|
2795 |
*/
|
|
2796 |
if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
|
|
2797 |
rc = SQLITE_CORRUPT_BKPT;
|
|
2798 |
goto abort_due_to_error;
|
|
2799 |
}
|
|
2800 |
pCur->isTable = (flags & BTREE_INTKEY)!=0;
|
|
2801 |
pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
|
|
2802 |
/* If P3==0 it means we are expected to open a table. If P3!=0 then
|
|
2803 |
** we expect to be opening an index. If this is not what happened,
|
|
2804 |
** then the database is corrupt
|
|
2805 |
*/
|
|
2806 |
if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
|
|
2807 |
|| (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
|
|
2808 |
rc = SQLITE_CORRUPT_BKPT;
|
|
2809 |
goto abort_due_to_error;
|
|
2810 |
}
|
|
2811 |
break;
|
|
2812 |
}
|
|
2813 |
case SQLITE_EMPTY: {
|
|
2814 |
pCur->isTable = pOp->p3type!=P3_KEYINFO;
|
|
2815 |
pCur->isIndex = !pCur->isTable;
|
|
2816 |
rc = SQLITE_OK;
|
|
2817 |
break;
|
|
2818 |
}
|
|
2819 |
default: {
|
|
2820 |
goto abort_due_to_error;
|
|
2821 |
}
|
|
2822 |
}
|
|
2823 |
break;
|
|
2824 |
}
|
|
2825 |
|
|
2826 |
/* Opcode: OpenEphemeral P1 P2 P3
|
|
2827 |
**
|
|
2828 |
** Open a new cursor P1 to a transient table.
|
|
2829 |
** The cursor is always opened read/write even if
|
|
2830 |
** the main database is read-only. The transient or virtual
|
|
2831 |
** table is deleted automatically when the cursor is closed.
|
|
2832 |
**
|
|
2833 |
** P2 is the number of columns in the virtual table.
|
|
2834 |
** The cursor points to a BTree table if P3==0 and to a BTree index
|
|
2835 |
** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure
|
|
2836 |
** that defines the format of keys in the index.
|
|
2837 |
**
|
|
2838 |
** This opcode was once called OpenTemp. But that created
|
|
2839 |
** confusion because the term "temp table", might refer either
|
|
2840 |
** to a TEMP table at the SQL level, or to a table opened by
|
|
2841 |
** this opcode. Then this opcode was call OpenVirtual. But
|
|
2842 |
** that created confusion with the whole virtual-table idea.
|
|
2843 |
*/
|
|
2844 |
case OP_OpenEphemeral: { /* no-push */
|
|
2845 |
int i = pOp->p1;
|
|
2846 |
Cursor *pCx;
|
|
2847 |
static const int openFlags =
|
|
2848 |
SQLITE_OPEN_READWRITE |
|
|
2849 |
SQLITE_OPEN_CREATE |
|
|
2850 |
SQLITE_OPEN_EXCLUSIVE |
|
|
2851 |
SQLITE_OPEN_DELETEONCLOSE |
|
|
2852 |
SQLITE_OPEN_TRANSIENT_DB;
|
|
2853 |
|
|
2854 |
assert( i>=0 );
|
|
2855 |
pCx = allocateCursor(p, i, -1);
|
|
2856 |
if( pCx==0 ) goto no_mem;
|
|
2857 |
pCx->nullRow = 1;
|
|
2858 |
rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
|
|
2859 |
&pCx->pBt);
|
|
2860 |
if( rc==SQLITE_OK ){
|
|
2861 |
rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
|
|
2862 |
}
|
|
2863 |
if( rc==SQLITE_OK ){
|
|
2864 |
/* If a transient index is required, create it by calling
|
|
2865 |
** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
|
|
2866 |
** opening it. If a transient table is required, just use the
|
|
2867 |
** automatically created table with root-page 1 (an INTKEY table).
|
|
2868 |
*/
|
|
2869 |
if( pOp->p3 ){
|
|
2870 |
int pgno;
|
|
2871 |
assert( pOp->p3type==P3_KEYINFO );
|
|
2872 |
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
|
|
2873 |
if( rc==SQLITE_OK ){
|
|
2874 |
assert( pgno==MASTER_ROOT+1 );
|
|
2875 |
rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
|
|
2876 |
pOp->p3, &pCx->pCursor);
|
|
2877 |
pCx->pKeyInfo = (KeyInfo*)pOp->p3;
|
|
2878 |
pCx->pKeyInfo->enc = ENC(p->db);
|
|
2879 |
pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
|
|
2880 |
}
|
|
2881 |
pCx->isTable = 0;
|
|
2882 |
}else{
|
|
2883 |
rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
|
|
2884 |
pCx->isTable = 1;
|
|
2885 |
pCx->pIncrKey = &pCx->bogusIncrKey;
|
|
2886 |
}
|
|
2887 |
}
|
|
2888 |
pCx->nField = pOp->p2;
|
|
2889 |
pCx->isIndex = !pCx->isTable;
|
|
2890 |
break;
|
|
2891 |
}
|
|
2892 |
|
|
2893 |
/* Opcode: OpenPseudo P1 * *
|
|
2894 |
**
|
|
2895 |
** Open a new cursor that points to a fake table that contains a single
|
|
2896 |
** row of data. Any attempt to write a second row of data causes the
|
|
2897 |
** first row to be deleted. All data is deleted when the cursor is
|
|
2898 |
** closed.
|
|
2899 |
**
|
|
2900 |
** A pseudo-table created by this opcode is useful for holding the
|
|
2901 |
** NEW or OLD tables in a trigger. Also used to hold the a single
|
|
2902 |
** row output from the sorter so that the row can be decomposed into
|
|
2903 |
** individual columns using the OP_Column opcode.
|
|
2904 |
*/
|
|
2905 |
case OP_OpenPseudo: { /* no-push */
|
|
2906 |
int i = pOp->p1;
|
|
2907 |
Cursor *pCx;
|
|
2908 |
assert( i>=0 );
|
|
2909 |
pCx = allocateCursor(p, i, -1);
|
|
2910 |
if( pCx==0 ) goto no_mem;
|
|
2911 |
pCx->nullRow = 1;
|
|
2912 |
pCx->pseudoTable = 1;
|
|
2913 |
pCx->pIncrKey = &pCx->bogusIncrKey;
|
|
2914 |
pCx->isTable = 1;
|
|
2915 |
pCx->isIndex = 0;
|
|
2916 |
break;
|
|
2917 |
}
|
|
2918 |
|
|
2919 |
/* Opcode: Close P1 * *
|
|
2920 |
**
|
|
2921 |
** Close a cursor previously opened as P1. If P1 is not
|
|
2922 |
** currently open, this instruction is a no-op.
|
|
2923 |
*/
|
|
2924 |
case OP_Close: { /* no-push */
|
|
2925 |
int i = pOp->p1;
|
|
2926 |
if( i>=0 && i<p->nCursor ){
|
|
2927 |
sqlite3VdbeFreeCursor(p, p->apCsr[i]);
|
|
2928 |
p->apCsr[i] = 0;
|
|
2929 |
}
|
|
2930 |
break;
|
|
2931 |
}
|
|
2932 |
|
|
2933 |
/* Opcode: MoveGe P1 P2 *
|
|
2934 |
**
|
|
2935 |
** Pop the top of the stack and use its value as a key. Reposition
|
|
2936 |
** cursor P1 so that it points to the smallest entry that is greater
|
|
2937 |
** than or equal to the key that was popped ffrom the stack.
|
|
2938 |
** If there are no records greater than or equal to the key and P2
|
|
2939 |
** is not zero, then jump to P2.
|
|
2940 |
**
|
|
2941 |
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
|
|
2942 |
*/
|
|
2943 |
/* Opcode: MoveGt P1 P2 *
|
|
2944 |
**
|
|
2945 |
** Pop the top of the stack and use its value as a key. Reposition
|
|
2946 |
** cursor P1 so that it points to the smallest entry that is greater
|
|
2947 |
** than the key from the stack.
|
|
2948 |
** If there are no records greater than the key and P2 is not zero,
|
|
2949 |
** then jump to P2.
|
|
2950 |
**
|
|
2951 |
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
|
|
2952 |
*/
|
|
2953 |
/* Opcode: MoveLt P1 P2 *
|
|
2954 |
**
|
|
2955 |
** Pop the top of the stack and use its value as a key. Reposition
|
|
2956 |
** cursor P1 so that it points to the largest entry that is less
|
|
2957 |
** than the key from the stack.
|
|
2958 |
** If there are no records less than the key and P2 is not zero,
|
|
2959 |
** then jump to P2.
|
|
2960 |
**
|
|
2961 |
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
|
|
2962 |
*/
|
|
2963 |
/* Opcode: MoveLe P1 P2 *
|
|
2964 |
**
|
|
2965 |
** Pop the top of the stack and use its value as a key. Reposition
|
|
2966 |
** cursor P1 so that it points to the largest entry that is less than
|
|
2967 |
** or equal to the key that was popped from the stack.
|
|
2968 |
** If there are no records less than or eqal to the key and P2 is not zero,
|
|
2969 |
** then jump to P2.
|
|
2970 |
**
|
|
2971 |
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
|
|
2972 |
*/
|
|
2973 |
case OP_MoveLt: /* no-push */
|
|
2974 |
case OP_MoveLe: /* no-push */
|
|
2975 |
case OP_MoveGe: /* no-push */
|
|
2976 |
case OP_MoveGt: { /* no-push */
|
|
2977 |
int i = pOp->p1;
|
|
2978 |
Cursor *pC;
|
|
2979 |
|
|
2980 |
assert( pTos>=p->aStack );
|
|
2981 |
assert( i>=0 && i<p->nCursor );
|
|
2982 |
pC = p->apCsr[i];
|
|
2983 |
assert( pC!=0 );
|
|
2984 |
if( pC->pCursor!=0 ){
|
|
2985 |
int res, oc;
|
|
2986 |
oc = pOp->opcode;
|
|
2987 |
pC->nullRow = 0;
|
|
2988 |
*pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
|
|
2989 |
if( pC->isTable ){
|
|
2990 |
i64 iKey;
|
|
2991 |
sqlite3VdbeMemIntegerify(pTos);
|
|
2992 |
iKey = intToKey(pTos->u.i);
|
|
2993 |
if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
|
|
2994 |
pC->movetoTarget = iKey;
|
|
2995 |
pC->deferredMoveto = 1;
|
|
2996 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
2997 |
pTos--;
|
|
2998 |
break;
|
|
2999 |
}
|
|
3000 |
rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
|
|
3001 |
if( rc!=SQLITE_OK ){
|
|
3002 |
goto abort_due_to_error;
|
|
3003 |
}
|
|
3004 |
pC->lastRowid = pTos->u.i;
|
|
3005 |
pC->rowidIsValid = res==0;
|
|
3006 |
}else{
|
|
3007 |
assert( pTos->flags & MEM_Blob );
|
|
3008 |
ExpandBlob(pTos);
|
|
3009 |
rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
|
|
3010 |
if( rc!=SQLITE_OK ){
|
|
3011 |
goto abort_due_to_error;
|
|
3012 |
}
|
|
3013 |
pC->rowidIsValid = 0;
|
|
3014 |
}
|
|
3015 |
pC->deferredMoveto = 0;
|
|
3016 |
pC->cacheStatus = CACHE_STALE;
|
|
3017 |
*pC->pIncrKey = 0;
|
|
3018 |
#ifdef SQLITE_TEST
|
|
3019 |
sqlite3_search_count++;
|
|
3020 |
#endif
|
|
3021 |
if( oc==OP_MoveGe || oc==OP_MoveGt ){
|
|
3022 |
if( res<0 ){
|
|
3023 |
rc = sqlite3BtreeNext(pC->pCursor, &res);
|
|
3024 |
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
3025 |
pC->rowidIsValid = 0;
|
|
3026 |
}else{
|
|
3027 |
res = 0;
|
|
3028 |
}
|
|
3029 |
}else{
|
|
3030 |
assert( oc==OP_MoveLt || oc==OP_MoveLe );
|
|
3031 |
if( res>=0 ){
|
|
3032 |
rc = sqlite3BtreePrevious(pC->pCursor, &res);
|
|
3033 |
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
3034 |
pC->rowidIsValid = 0;
|
|
3035 |
}else{
|
|
3036 |
/* res might be negative because the table is empty. Check to
|
|
3037 |
** see if this is the case.
|
|
3038 |
*/
|
|
3039 |
res = sqlite3BtreeEof(pC->pCursor);
|
|
3040 |
}
|
|
3041 |
}
|
|
3042 |
if( res ){
|
|
3043 |
if( pOp->p2>0 ){
|
|
3044 |
pc = pOp->p2 - 1;
|
|
3045 |
}else{
|
|
3046 |
pC->nullRow = 1;
|
|
3047 |
}
|
|
3048 |
}
|
|
3049 |
}
|
|
3050 |
Release(pTos);
|
|
3051 |
pTos--;
|
|
3052 |
break;
|
|
3053 |
}
|
|
3054 |
|
|
3055 |
/* Opcode: Distinct P1 P2 *
|
|
3056 |
**
|
|
3057 |
** Use the top of the stack as a record created using MakeRecord. P1 is a
|
|
3058 |
** cursor on a table that declared as an index. If that table contains an
|
|
3059 |
** entry that matches the top of the stack fall thru. If the top of the stack
|
|
3060 |
** matches no entry in P1 then jump to P2.
|
|
3061 |
**
|
|
3062 |
** The cursor is left pointing at the matching entry if it exists. The
|
|
3063 |
** record on the top of the stack is not popped.
|
|
3064 |
**
|
|
3065 |
** This instruction is similar to NotFound except that this operation
|
|
3066 |
** does not pop the key from the stack.
|
|
3067 |
**
|
|
3068 |
** The instruction is used to implement the DISTINCT operator on SELECT
|
|
3069 |
** statements. The P1 table is not a true index but rather a record of
|
|
3070 |
** all results that have produced so far.
|
|
3071 |
**
|
|
3072 |
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
|
|
3073 |
*/
|
|
3074 |
/* Opcode: Found P1 P2 *
|
|
3075 |
**
|
|
3076 |
** Top of the stack holds a blob constructed by MakeRecord. P1 is an index.
|
|
3077 |
** If an entry that matches the top of the stack exists in P1 then
|
|
3078 |
** jump to P2. If the top of the stack does not match any entry in P1
|
|
3079 |
** then fall thru. The P1 cursor is left pointing at the matching entry
|
|
3080 |
** if it exists. The blob is popped off the top of the stack.
|
|
3081 |
**
|
|
3082 |
** This instruction is used to implement the IN operator where the
|
|
3083 |
** left-hand side is a SELECT statement. P1 may be a true index, or it
|
|
3084 |
** may be a temporary index that holds the results of the SELECT
|
|
3085 |
** statement.
|
|
3086 |
**
|
|
3087 |
** This instruction checks if index P1 contains a record for which
|
|
3088 |
** the first N serialised values exactly match the N serialised values
|
|
3089 |
** in the record on the stack, where N is the total number of values in
|
|
3090 |
** the stack record (stack record is a prefix of the P1 record).
|
|
3091 |
**
|
|
3092 |
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
|
|
3093 |
*/
|
|
3094 |
/* Opcode: NotFound P1 P2 *
|
|
3095 |
**
|
|
3096 |
** The top of the stack holds a blob constructed by MakeRecord. P1 is
|
|
3097 |
** an index. If no entry exists in P1 that matches the blob then jump
|
|
3098 |
** to P2. If an entry does existing, fall through. The cursor is left
|
|
3099 |
** pointing to the entry that matches. The blob is popped from the stack.
|
|
3100 |
**
|
|
3101 |
** The difference between this operation and Distinct is that
|
|
3102 |
** Distinct does not pop the key from the stack.
|
|
3103 |
**
|
|
3104 |
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
|
|
3105 |
*/
|
|
3106 |
case OP_Distinct: /* no-push */
|
|
3107 |
case OP_NotFound: /* no-push */
|
|
3108 |
case OP_Found: { /* no-push */
|
|
3109 |
int i = pOp->p1;
|
|
3110 |
int alreadyExists = 0;
|
|
3111 |
Cursor *pC;
|
|
3112 |
assert( pTos>=p->aStack );
|
|
3113 |
assert( i>=0 && i<p->nCursor );
|
|
3114 |
assert( p->apCsr[i]!=0 );
|
|
3115 |
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
3116 |
int res;
|
|
3117 |
assert( pC->isTable==0 );
|
|
3118 |
assert( pTos->flags & MEM_Blob );
|
|
3119 |
Stringify(pTos, encoding);
|
|
3120 |
if( pOp->opcode==OP_Found ){
|
|
3121 |
pC->pKeyInfo->prefixIsEqual = 1;
|
|
3122 |
}
|
|
3123 |
rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
|
|
3124 |
pC->pKeyInfo->prefixIsEqual = 0;
|
|
3125 |
if( rc!=SQLITE_OK ){
|
|
3126 |
break;
|
|
3127 |
}
|
|
3128 |
alreadyExists = (res==0);
|
|
3129 |
pC->deferredMoveto = 0;
|
|
3130 |
pC->cacheStatus = CACHE_STALE;
|
|
3131 |
}
|
|
3132 |
if( pOp->opcode==OP_Found ){
|
|
3133 |
if( alreadyExists ) pc = pOp->p2 - 1;
|
|
3134 |
}else{
|
|
3135 |
if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
3136 |
}
|
|
3137 |
if( pOp->opcode!=OP_Distinct ){
|
|
3138 |
Release(pTos);
|
|
3139 |
pTos--;
|
|
3140 |
}
|
|
3141 |
break;
|
|
3142 |
}
|
|
3143 |
|
|
3144 |
/* Opcode: IsUnique P1 P2 *
|
|
3145 |
**
|
|
3146 |
** The top of the stack is an integer record number. Call this
|
|
3147 |
** record number R. The next on the stack is an index key created
|
|
3148 |
** using MakeIdxRec. Call it K. This instruction pops R from the
|
|
3149 |
** stack but it leaves K unchanged.
|
|
3150 |
**
|
|
3151 |
** P1 is an index. So it has no data and its key consists of a
|
|
3152 |
** record generated by OP_MakeRecord where the last field is the
|
|
3153 |
** rowid of the entry that the index refers to.
|
|
3154 |
**
|
|
3155 |
** This instruction asks if there is an entry in P1 where the
|
|
3156 |
** fields matches K but the rowid is different from R.
|
|
3157 |
** If there is no such entry, then there is an immediate
|
|
3158 |
** jump to P2. If any entry does exist where the index string
|
|
3159 |
** matches K but the record number is not R, then the record
|
|
3160 |
** number for that entry is pushed onto the stack and control
|
|
3161 |
** falls through to the next instruction.
|
|
3162 |
**
|
|
3163 |
** See also: Distinct, NotFound, NotExists, Found
|
|
3164 |
*/
|
|
3165 |
case OP_IsUnique: { /* no-push */
|
|
3166 |
int i = pOp->p1;
|
|
3167 |
Mem *pNos = &pTos[-1];
|
|
3168 |
Cursor *pCx;
|
|
3169 |
BtCursor *pCrsr;
|
|
3170 |
i64 R;
|
|
3171 |
|
|
3172 |
/* Pop the value R off the top of the stack
|
|
3173 |
*/
|
|
3174 |
assert( pNos>=p->aStack );
|
|
3175 |
sqlite3VdbeMemIntegerify(pTos);
|
|
3176 |
R = pTos->u.i;
|
|
3177 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
3178 |
pTos--;
|
|
3179 |
assert( i>=0 && i<p->nCursor );
|
|
3180 |
pCx = p->apCsr[i];
|
|
3181 |
assert( pCx!=0 );
|
|
3182 |
pCrsr = pCx->pCursor;
|
|
3183 |
if( pCrsr!=0 ){
|
|
3184 |
int res;
|
|
3185 |
i64 v; /* The record number on the P1 entry that matches K */
|
|
3186 |
char *zKey; /* The value of K */
|
|
3187 |
int nKey; /* Number of bytes in K */
|
|
3188 |
int len; /* Number of bytes in K without the rowid at the end */
|
|
3189 |
int szRowid; /* Size of the rowid column at the end of zKey */
|
|
3190 |
|
|
3191 |
/* Make sure K is a string and make zKey point to K
|
|
3192 |
*/
|
|
3193 |
assert( pNos->flags & MEM_Blob );
|
|
3194 |
Stringify(pNos, encoding);
|
|
3195 |
zKey = pNos->z;
|
|
3196 |
nKey = pNos->n;
|
|
3197 |
|
|
3198 |
szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
|
|
3199 |
len = nKey-szRowid;
|
|
3200 |
|
|
3201 |
/* Search for an entry in P1 where all but the last four bytes match K.
|
|
3202 |
** If there is no such entry, jump immediately to P2.
|
|
3203 |
*/
|
|
3204 |
assert( pCx->deferredMoveto==0 );
|
|
3205 |
pCx->cacheStatus = CACHE_STALE;
|
|
3206 |
rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
|
|
3207 |
if( rc!=SQLITE_OK ){
|
|
3208 |
goto abort_due_to_error;
|
|
3209 |
}
|
|
3210 |
if( res<0 ){
|
|
3211 |
rc = sqlite3BtreeNext(pCrsr, &res);
|
|
3212 |
if( res ){
|
|
3213 |
pc = pOp->p2 - 1;
|
|
3214 |
break;
|
|
3215 |
}
|
|
3216 |
}
|
|
3217 |
rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res);
|
|
3218 |
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
3219 |
if( res>0 ){
|
|
3220 |
pc = pOp->p2 - 1;
|
|
3221 |
break;
|
|
3222 |
}
|
|
3223 |
|
|
3224 |
/* At this point, pCrsr is pointing to an entry in P1 where all but
|
|
3225 |
** the final entry (the rowid) matches K. Check to see if the
|
|
3226 |
** final rowid column is different from R. If it equals R then jump
|
|
3227 |
** immediately to P2.
|
|
3228 |
*/
|
|
3229 |
rc = sqlite3VdbeIdxRowid(pCrsr, &v);
|
|
3230 |
if( rc!=SQLITE_OK ){
|
|
3231 |
goto abort_due_to_error;
|
|
3232 |
}
|
|
3233 |
if( v==R ){
|
|
3234 |
pc = pOp->p2 - 1;
|
|
3235 |
break;
|
|
3236 |
}
|
|
3237 |
|
|
3238 |
/* The final varint of the key is different from R. Push it onto
|
|
3239 |
** the stack. (The record number of an entry that violates a UNIQUE
|
|
3240 |
** constraint.)
|
|
3241 |
*/
|
|
3242 |
pTos++;
|
|
3243 |
pTos->u.i = v;
|
|
3244 |
pTos->flags = MEM_Int;
|
|
3245 |
}
|
|
3246 |
break;
|
|
3247 |
}
|
|
3248 |
|
|
3249 |
/* Opcode: NotExists P1 P2 *
|
|
3250 |
**
|
|
3251 |
** Use the top of the stack as a integer key. If a record with that key
|
|
3252 |
** does not exist in table of P1, then jump to P2. If the record
|
|
3253 |
** does exist, then fall thru. The cursor is left pointing to the
|
|
3254 |
** record if it exists. The integer key is popped from the stack.
|
|
3255 |
**
|
|
3256 |
** The difference between this operation and NotFound is that this
|
|
3257 |
** operation assumes the key is an integer and that P1 is a table whereas
|
|
3258 |
** NotFound assumes key is a blob constructed from MakeRecord and
|
|
3259 |
** P1 is an index.
|
|
3260 |
**
|
|
3261 |
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
|
|
3262 |
*/
|
|
3263 |
case OP_NotExists: { /* no-push */
|
|
3264 |
int i = pOp->p1;
|
|
3265 |
Cursor *pC;
|
|
3266 |
BtCursor *pCrsr;
|
|
3267 |
assert( pTos>=p->aStack );
|
|
3268 |
assert( i>=0 && i<p->nCursor );
|
|
3269 |
assert( p->apCsr[i]!=0 );
|
|
3270 |
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
3271 |
int res;
|
|
3272 |
u64 iKey;
|
|
3273 |
assert( pTos->flags & MEM_Int );
|
|
3274 |
assert( p->apCsr[i]->isTable );
|
|
3275 |
iKey = intToKey(pTos->u.i);
|
|
3276 |
rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
|
|
3277 |
pC->lastRowid = pTos->u.i;
|
|
3278 |
pC->rowidIsValid = res==0;
|
|
3279 |
pC->nullRow = 0;
|
|
3280 |
pC->cacheStatus = CACHE_STALE;
|
|
3281 |
/* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
|
|
3282 |
** processing is about to abort so we really do not care whether or not
|
|
3283 |
** the following jump is taken. (In other words, do not stress over
|
|
3284 |
** the error that valgrind sometimes shows on the next statement when
|
|
3285 |
** running ioerr.test and similar failure-recovery test scripts.) */
|
|
3286 |
if( res!=0 ){
|
|
3287 |
pc = pOp->p2 - 1;
|
|
3288 |
pC->rowidIsValid = 0;
|
|
3289 |
}
|
|
3290 |
}
|
|
3291 |
Release(pTos);
|
|
3292 |
pTos--;
|
|
3293 |
break;
|
|
3294 |
}
|
|
3295 |
|
|
3296 |
/* Opcode: Sequence P1 * *
|
|
3297 |
**
|
|
3298 |
** Push an integer onto the stack which is the next available
|
|
3299 |
** sequence number for cursor P1. The sequence number on the
|
|
3300 |
** cursor is incremented after the push.
|
|
3301 |
*/
|
|
3302 |
case OP_Sequence: {
|
|
3303 |
int i = pOp->p1;
|
|
3304 |
assert( pTos>=p->aStack );
|
|
3305 |
assert( i>=0 && i<p->nCursor );
|
|
3306 |
assert( p->apCsr[i]!=0 );
|
|
3307 |
pTos++;
|
|
3308 |
pTos->u.i = p->apCsr[i]->seqCount++;
|
|
3309 |
pTos->flags = MEM_Int;
|
|
3310 |
break;
|
|
3311 |
}
|
|
3312 |
|
|
3313 |
|
|
3314 |
/* Opcode: NewRowid P1 P2 *
|
|
3315 |
**
|
|
3316 |
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
|
|
3317 |
** The record number is not previously used as a key in the database
|
|
3318 |
** table that cursor P1 points to. The new record number is pushed
|
|
3319 |
** onto the stack.
|
|
3320 |
**
|
|
3321 |
** If P2>0 then P2 is a memory cell that holds the largest previously
|
|
3322 |
** generated record number. No new record numbers are allowed to be less
|
|
3323 |
** than this value. When this value reaches its maximum, a SQLITE_FULL
|
|
3324 |
** error is generated. The P2 memory cell is updated with the generated
|
|
3325 |
** record number. This P2 mechanism is used to help implement the
|
|
3326 |
** AUTOINCREMENT feature.
|
|
3327 |
*/
|
|
3328 |
case OP_NewRowid: {
|
|
3329 |
int i = pOp->p1;
|
|
3330 |
i64 v = 0;
|
|
3331 |
Cursor *pC;
|
|
3332 |
assert( i>=0 && i<p->nCursor );
|
|
3333 |
assert( p->apCsr[i]!=0 );
|
|
3334 |
if( (pC = p->apCsr[i])->pCursor==0 ){
|
|
3335 |
/* The zero initialization above is all that is needed */
|
|
3336 |
}else{
|
|
3337 |
/* The next rowid or record number (different terms for the same
|
|
3338 |
** thing) is obtained in a two-step algorithm.
|
|
3339 |
**
|
|
3340 |
** First we attempt to find the largest existing rowid and add one
|
|
3341 |
** to that. But if the largest existing rowid is already the maximum
|
|
3342 |
** positive integer, we have to fall through to the second
|
|
3343 |
** probabilistic algorithm
|
|
3344 |
**
|
|
3345 |
** The second algorithm is to select a rowid at random and see if
|
|
3346 |
** it already exists in the table. If it does not exist, we have
|
|
3347 |
** succeeded. If the random rowid does exist, we select a new one
|
|
3348 |
** and try again, up to 1000 times.
|
|
3349 |
**
|
|
3350 |
** For a table with less than 2 billion entries, the probability
|
|
3351 |
** of not finding a unused rowid is about 1.0e-300. This is a
|
|
3352 |
** non-zero probability, but it is still vanishingly small and should
|
|
3353 |
** never cause a problem. You are much, much more likely to have a
|
|
3354 |
** hardware failure than for this algorithm to fail.
|
|
3355 |
**
|
|
3356 |
** The analysis in the previous paragraph assumes that you have a good
|
|
3357 |
** source of random numbers. Is a library function like lrand48()
|
|
3358 |
** good enough? Maybe. Maybe not. It's hard to know whether there
|
|
3359 |
** might be subtle bugs is some implementations of lrand48() that
|
|
3360 |
** could cause problems. To avoid uncertainty, SQLite uses its own
|
|
3361 |
** random number generator based on the RC4 algorithm.
|
|
3362 |
**
|
|
3363 |
** To promote locality of reference for repetitive inserts, the
|
|
3364 |
** first few attempts at chosing a random rowid pick values just a little
|
|
3365 |
** larger than the previous rowid. This has been shown experimentally
|
|
3366 |
** to double the speed of the COPY operation.
|
|
3367 |
*/
|
|
3368 |
int res, rx=SQLITE_OK, cnt;
|
|
3369 |
i64 x;
|
|
3370 |
cnt = 0;
|
|
3371 |
if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
|
|
3372 |
BTREE_INTKEY ){
|
|
3373 |
rc = SQLITE_CORRUPT_BKPT;
|
|
3374 |
goto abort_due_to_error;
|
|
3375 |
}
|
|
3376 |
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
|
|
3377 |
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
|
|
3378 |
|
|
3379 |
#ifdef SQLITE_32BIT_ROWID
|
|
3380 |
# define MAX_ROWID 0x7fffffff
|
|
3381 |
#else
|
|
3382 |
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
|
|
3383 |
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
|
|
3384 |
** to provide the constant while making all compilers happy.
|
|
3385 |
*/
|
|
3386 |
# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
|
|
3387 |
#endif
|
|
3388 |
|
|
3389 |
if( !pC->useRandomRowid ){
|
|
3390 |
if( pC->nextRowidValid ){
|
|
3391 |
v = pC->nextRowid;
|
|
3392 |
}else{
|
|
3393 |
rc = sqlite3BtreeLast(pC->pCursor, &res);
|
|
3394 |
if( rc!=SQLITE_OK ){
|
|
3395 |
goto abort_due_to_error;
|
|
3396 |
}
|
|
3397 |
if( res ){
|
|
3398 |
v = 1;
|
|
3399 |
}else{
|
|
3400 |
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
3401 |
v = keyToInt(v);
|
|
3402 |
if( v==MAX_ROWID ){
|
|
3403 |
pC->useRandomRowid = 1;
|
|
3404 |
}else{
|
|
3405 |
v++;
|
|
3406 |
}
|
|
3407 |
}
|
|
3408 |
}
|
|
3409 |
|
|
3410 |
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
3411 |
if( pOp->p2 ){
|
|
3412 |
Mem *pMem;
|
|
3413 |
assert( pOp->p2>0 && pOp->p2<p->nMem ); /* P2 is a valid memory cell */
|
|
3414 |
pMem = &p->aMem[pOp->p2];
|
|
3415 |
sqlite3VdbeMemIntegerify(pMem);
|
|
3416 |
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P2) holds an integer */
|
|
3417 |
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
|
|
3418 |
rc = SQLITE_FULL;
|
|
3419 |
goto abort_due_to_error;
|
|
3420 |
}
|
|
3421 |
if( v<pMem->u.i+1 ){
|
|
3422 |
v = pMem->u.i + 1;
|
|
3423 |
}
|
|
3424 |
pMem->u.i = v;
|
|
3425 |
}
|
|
3426 |
#endif
|
|
3427 |
|
|
3428 |
if( v<MAX_ROWID ){
|
|
3429 |
pC->nextRowidValid = 1;
|
|
3430 |
pC->nextRowid = v+1;
|
|
3431 |
}else{
|
|
3432 |
pC->nextRowidValid = 0;
|
|
3433 |
}
|
|
3434 |
}
|
|
3435 |
if( pC->useRandomRowid ){
|
|
3436 |
assert( pOp->p2==0 ); /* SQLITE_FULL must have occurred prior to this */
|
|
3437 |
v = db->priorNewRowid;
|
|
3438 |
cnt = 0;
|
|
3439 |
do{
|
|
3440 |
if( v==0 || cnt>2 ){
|
|
3441 |
sqlite3Randomness(sizeof(v), &v);
|
|
3442 |
if( cnt<5 ) v &= 0xffffff;
|
|
3443 |
}else{
|
|
3444 |
unsigned char r;
|
|
3445 |
sqlite3Randomness(1, &r);
|
|
3446 |
v += r + 1;
|
|
3447 |
}
|
|
3448 |
if( v==0 ) continue;
|
|
3449 |
x = intToKey(v);
|
|
3450 |
rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
|
|
3451 |
cnt++;
|
|
3452 |
}while( cnt<1000 && rx==SQLITE_OK && res==0 );
|
|
3453 |
db->priorNewRowid = v;
|
|
3454 |
if( rx==SQLITE_OK && res==0 ){
|
|
3455 |
rc = SQLITE_FULL;
|
|
3456 |
goto abort_due_to_error;
|
|
3457 |
}
|
|
3458 |
}
|
|
3459 |
pC->rowidIsValid = 0;
|
|
3460 |
pC->deferredMoveto = 0;
|
|
3461 |
pC->cacheStatus = CACHE_STALE;
|
|
3462 |
}
|
|
3463 |
pTos++;
|
|
3464 |
pTos->u.i = v;
|
|
3465 |
pTos->flags = MEM_Int;
|
|
3466 |
break;
|
|
3467 |
}
|
|
3468 |
|
|
3469 |
/* Opcode: Insert P1 P2 P3
|
|
3470 |
**
|
|
3471 |
** Write an entry into the table of cursor P1. A new entry is
|
|
3472 |
** created if it doesn't already exist or the data for an existing
|
|
3473 |
** entry is overwritten. The data is the value on the top of the
|
|
3474 |
** stack. The key is the next value down on the stack. The key must
|
|
3475 |
** be an integer. The stack is popped twice by this instruction.
|
|
3476 |
**
|
|
3477 |
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
3478 |
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set,
|
|
3479 |
** then rowid is stored for subsequent return by the
|
|
3480 |
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
|
|
3481 |
**
|
|
3482 |
** Parameter P3 may point to a string containing the table-name, or
|
|
3483 |
** may be NULL. If it is not NULL, then the update-hook
|
|
3484 |
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
|
|
3485 |
**
|
|
3486 |
** This instruction only works on tables. The equivalent instruction
|
|
3487 |
** for indices is OP_IdxInsert.
|
|
3488 |
*/
|
|
3489 |
case OP_Insert: { /* no-push */
|
|
3490 |
Mem *pNos = &pTos[-1];
|
|
3491 |
int i = pOp->p1;
|
|
3492 |
Cursor *pC;
|
|
3493 |
assert( pNos>=p->aStack );
|
|
3494 |
assert( i>=0 && i<p->nCursor );
|
|
3495 |
assert( p->apCsr[i]!=0 );
|
|
3496 |
if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
|
|
3497 |
i64 iKey; /* The integer ROWID or key for the record to be inserted */
|
|
3498 |
|
|
3499 |
assert( pNos->flags & MEM_Int );
|
|
3500 |
assert( pC->isTable );
|
|
3501 |
iKey = intToKey(pNos->u.i);
|
|
3502 |
|
|
3503 |
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
3504 |
if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
|
|
3505 |
if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
|
|
3506 |
pC->nextRowidValid = 0;
|
|
3507 |
}
|
|
3508 |
if( pTos->flags & MEM_Null ){
|
|
3509 |
pTos->z = 0;
|
|
3510 |
pTos->n = 0;
|
|
3511 |
}else{
|
|
3512 |
assert( pTos->flags & (MEM_Blob|MEM_Str) );
|
|
3513 |
}
|
|
3514 |
if( pC->pseudoTable ){
|
|
3515 |
sqlite3_free(pC->pData);
|
|
3516 |
pC->iKey = iKey;
|
|
3517 |
pC->nData = pTos->n;
|
|
3518 |
if( pTos->flags & MEM_Dyn ){
|
|
3519 |
pC->pData = pTos->z;
|
|
3520 |
pTos->flags = MEM_Null;
|
|
3521 |
}else{
|
|
3522 |
pC->pData = (char*)sqlite3_malloc( pC->nData+2 );
|
|
3523 |
if( !pC->pData ) goto no_mem;
|
|
3524 |
memcpy(pC->pData, pTos->z, pC->nData);
|
|
3525 |
pC->pData[pC->nData] = 0;
|
|
3526 |
pC->pData[pC->nData+1] = 0;
|
|
3527 |
}
|
|
3528 |
pC->nullRow = 0;
|
|
3529 |
}else{
|
|
3530 |
int nZero;
|
|
3531 |
if( pTos->flags & MEM_Zero ){
|
|
3532 |
nZero = pTos->u.i;
|
|
3533 |
}else{
|
|
3534 |
nZero = 0;
|
|
3535 |
}
|
|
3536 |
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
|
|
3537 |
pTos->z, pTos->n, nZero,
|
|
3538 |
pOp->p2 & OPFLAG_APPEND);
|
|
3539 |
}
|
|
3540 |
|
|
3541 |
pC->rowidIsValid = 0;
|
|
3542 |
pC->deferredMoveto = 0;
|
|
3543 |
pC->cacheStatus = CACHE_STALE;
|
|
3544 |
|
|
3545 |
/* Invoke the update-hook if required. */
|
|
3546 |
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
|
|
3547 |
const char *zDb = db->aDb[pC->iDb].zName;
|
|
3548 |
const char *zTbl = pOp->p3;
|
|
3549 |
int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
|
|
3550 |
assert( pC->isTable );
|
|
3551 |
db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
|
|
3552 |
assert( pC->iDb>=0 );
|
|
3553 |
}
|
|
3554 |
}
|
|
3555 |
popStack(&pTos, 2);
|
|
3556 |
|
|
3557 |
break;
|
|
3558 |
}
|
|
3559 |
|
|
3560 |
/* Opcode: Delete P1 P2 P3
|
|
3561 |
**
|
|
3562 |
** Delete the record at which the P1 cursor is currently pointing.
|
|
3563 |
**
|
|
3564 |
** The cursor will be left pointing at either the next or the previous
|
|
3565 |
** record in the table. If it is left pointing at the next record, then
|
|
3566 |
** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
3567 |
** a record from within an Next loop.
|
|
3568 |
**
|
|
3569 |
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
3570 |
** incremented (otherwise not).
|
|
3571 |
**
|
|
3572 |
** If P1 is a pseudo-table, then this instruction is a no-op.
|
|
3573 |
*/
|
|
3574 |
case OP_Delete: { /* no-push */
|
|
3575 |
int i = pOp->p1;
|
|
3576 |
Cursor *pC;
|
|
3577 |
assert( i>=0 && i<p->nCursor );
|
|
3578 |
pC = p->apCsr[i];
|
|
3579 |
assert( pC!=0 );
|
|
3580 |
if( pC->pCursor!=0 ){
|
|
3581 |
i64 iKey;
|
|
3582 |
|
|
3583 |
/* If the update-hook will be invoked, set iKey to the rowid of the
|
|
3584 |
** row being deleted.
|
|
3585 |
*/
|
|
3586 |
if( db->xUpdateCallback && pOp->p3 ){
|
|
3587 |
assert( pC->isTable );
|
|
3588 |
if( pC->rowidIsValid ){
|
|
3589 |
iKey = pC->lastRowid;
|
|
3590 |
}else{
|
|
3591 |
rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
|
|
3592 |
if( rc ){
|
|
3593 |
goto abort_due_to_error;
|
|
3594 |
}
|
|
3595 |
iKey = keyToInt(iKey);
|
|
3596 |
}
|
|
3597 |
}
|
|
3598 |
|
|
3599 |
rc = sqlite3VdbeCursorMoveto(pC);
|
|
3600 |
if( rc ) goto abort_due_to_error;
|
|
3601 |
rc = sqlite3BtreeDelete(pC->pCursor);
|
|
3602 |
pC->nextRowidValid = 0;
|
|
3603 |
pC->cacheStatus = CACHE_STALE;
|
|
3604 |
|
|
3605 |
/* Invoke the update-hook if required. */
|
|
3606 |
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
|
|
3607 |
const char *zDb = db->aDb[pC->iDb].zName;
|
|
3608 |
const char *zTbl = pOp->p3;
|
|
3609 |
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
|
|
3610 |
assert( pC->iDb>=0 );
|
|
3611 |
}
|
|
3612 |
}
|
|
3613 |
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
3614 |
break;
|
|
3615 |
}
|
|
3616 |
|
|
3617 |
/* Opcode: ResetCount P1 * *
|
|
3618 |
**
|
|
3619 |
** This opcode resets the VMs internal change counter to 0. If P1 is true,
|
|
3620 |
** then the value of the change counter is copied to the database handle
|
|
3621 |
** change counter (returned by subsequent calls to sqlite3_changes())
|
|
3622 |
** before it is reset. This is used by trigger programs.
|
|
3623 |
*/
|
|
3624 |
case OP_ResetCount: { /* no-push */
|
|
3625 |
if( pOp->p1 ){
|
|
3626 |
sqlite3VdbeSetChanges(db, p->nChange);
|
|
3627 |
}
|
|
3628 |
p->nChange = 0;
|
|
3629 |
break;
|
|
3630 |
}
|
|
3631 |
|
|
3632 |
/* Opcode: RowData P1 * *
|
|
3633 |
**
|
|
3634 |
** Push onto the stack the complete row data for cursor P1.
|
|
3635 |
** There is no interpretation of the data. It is just copied
|
|
3636 |
** onto the stack exactly as it is found in the database file.
|
|
3637 |
**
|
|
3638 |
** If the cursor is not pointing to a valid row, a NULL is pushed
|
|
3639 |
** onto the stack.
|
|
3640 |
*/
|
|
3641 |
/* Opcode: RowKey P1 * *
|
|
3642 |
**
|
|
3643 |
** Push onto the stack the complete row key for cursor P1.
|
|
3644 |
** There is no interpretation of the key. It is just copied
|
|
3645 |
** onto the stack exactly as it is found in the database file.
|
|
3646 |
**
|
|
3647 |
** If the cursor is not pointing to a valid row, a NULL is pushed
|
|
3648 |
** onto the stack.
|
|
3649 |
*/
|
|
3650 |
case OP_RowKey:
|
|
3651 |
case OP_RowData: {
|
|
3652 |
int i = pOp->p1;
|
|
3653 |
Cursor *pC;
|
|
3654 |
u32 n;
|
|
3655 |
|
|
3656 |
/* Note that RowKey and RowData are really exactly the same instruction */
|
|
3657 |
pTos++;
|
|
3658 |
assert( i>=0 && i<p->nCursor );
|
|
3659 |
pC = p->apCsr[i];
|
|
3660 |
assert( pC->isTable || pOp->opcode==OP_RowKey );
|
|
3661 |
assert( pC->isIndex || pOp->opcode==OP_RowData );
|
|
3662 |
assert( pC!=0 );
|
|
3663 |
if( pC->nullRow ){
|
|
3664 |
pTos->flags = MEM_Null;
|
|
3665 |
}else if( pC->pCursor!=0 ){
|
|
3666 |
BtCursor *pCrsr = pC->pCursor;
|
|
3667 |
rc = sqlite3VdbeCursorMoveto(pC);
|
|
3668 |
if( rc ) goto abort_due_to_error;
|
|
3669 |
if( pC->nullRow ){
|
|
3670 |
pTos->flags = MEM_Null;
|
|
3671 |
break;
|
|
3672 |
}else if( pC->isIndex ){
|
|
3673 |
i64 n64;
|
|
3674 |
assert( !pC->isTable );
|
|
3675 |
sqlite3BtreeKeySize(pCrsr, &n64);
|
|
3676 |
if( n64>SQLITE_MAX_LENGTH ){
|
|
3677 |
goto too_big;
|
|
3678 |
}
|
|
3679 |
n = n64;
|
|
3680 |
}else{
|
|
3681 |
sqlite3BtreeDataSize(pCrsr, &n);
|
|
3682 |
}
|
|
3683 |
if( n>SQLITE_MAX_LENGTH ){
|
|
3684 |
goto too_big;
|
|
3685 |
}
|
|
3686 |
pTos->n = n;
|
|
3687 |
if( n<=NBFS ){
|
|
3688 |
pTos->flags = MEM_Blob | MEM_Short;
|
|
3689 |
pTos->z = pTos->zShort;
|
|
3690 |
}else{
|
|
3691 |
char *z = (char*)sqlite3_malloc( n );
|
|
3692 |
if( z==0 ) goto no_mem;
|
|
3693 |
pTos->flags = MEM_Blob | MEM_Dyn;
|
|
3694 |
pTos->xDel = 0;
|
|
3695 |
pTos->z = z;
|
|
3696 |
}
|
|
3697 |
if( pC->isIndex ){
|
|
3698 |
rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
|
|
3699 |
}else{
|
|
3700 |
rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
|
|
3701 |
}
|
|
3702 |
}else if( pC->pseudoTable ){
|
|
3703 |
pTos->n = pC->nData;
|
|
3704 |
assert( pC->nData<=SQLITE_MAX_LENGTH );
|
|
3705 |
pTos->z = pC->pData;
|
|
3706 |
pTos->flags = MEM_Blob|MEM_Ephem;
|
|
3707 |
}else{
|
|
3708 |
pTos->flags = MEM_Null;
|
|
3709 |
}
|
|
3710 |
pTos->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
|
|
3711 |
break;
|
|
3712 |
}
|
|
3713 |
|
|
3714 |
/* Opcode: Rowid P1 * *
|
|
3715 |
**
|
|
3716 |
** Push onto the stack an integer which is the key of the table entry that
|
|
3717 |
** P1 is currently point to.
|
|
3718 |
*/
|
|
3719 |
case OP_Rowid: {
|
|
3720 |
int i = pOp->p1;
|
|
3721 |
Cursor *pC;
|
|
3722 |
i64 v;
|
|
3723 |
|
|
3724 |
assert( i>=0 && i<p->nCursor );
|
|
3725 |
pC = p->apCsr[i];
|
|
3726 |
assert( pC!=0 );
|
|
3727 |
rc = sqlite3VdbeCursorMoveto(pC);
|
|
3728 |
if( rc ) goto abort_due_to_error;
|
|
3729 |
pTos++;
|
|
3730 |
if( pC->rowidIsValid ){
|
|
3731 |
v = pC->lastRowid;
|
|
3732 |
}else if( pC->pseudoTable ){
|
|
3733 |
v = keyToInt(pC->iKey);
|
|
3734 |
}else if( pC->nullRow || pC->pCursor==0 ){
|
|
3735 |
pTos->flags = MEM_Null;
|
|
3736 |
break;
|
|
3737 |
}else{
|
|
3738 |
assert( pC->pCursor!=0 );
|
|
3739 |
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
3740 |
v = keyToInt(v);
|
|
3741 |
}
|
|
3742 |
pTos->u.i = v;
|
|
3743 |
pTos->flags = MEM_Int;
|
|
3744 |
break;
|
|
3745 |
}
|
|
3746 |
|
|
3747 |
/* Opcode: NullRow P1 * *
|
|
3748 |
**
|
|
3749 |
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
3750 |
** that occur while the cursor is on the null row will always push
|
|
3751 |
** a NULL onto the stack.
|
|
3752 |
*/
|
|
3753 |
case OP_NullRow: { /* no-push */
|
|
3754 |
int i = pOp->p1;
|
|
3755 |
Cursor *pC;
|
|
3756 |
|
|
3757 |
assert( i>=0 && i<p->nCursor );
|
|
3758 |
pC = p->apCsr[i];
|
|
3759 |
assert( pC!=0 );
|
|
3760 |
pC->nullRow = 1;
|
|
3761 |
pC->rowidIsValid = 0;
|
|
3762 |
break;
|
|
3763 |
}
|
|
3764 |
|
|
3765 |
/* Opcode: Last P1 P2 *
|
|
3766 |
**
|
|
3767 |
** The next use of the Rowid or Column or Next instruction for P1
|
|
3768 |
** will refer to the last entry in the database table or index.
|
|
3769 |
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
3770 |
** If P2 is 0 or if the table or index is not empty, fall through
|
|
3771 |
** to the following instruction.
|
|
3772 |
*/
|
|
3773 |
case OP_Last: { /* no-push */
|
|
3774 |
int i = pOp->p1;
|
|
3775 |
Cursor *pC;
|
|
3776 |
BtCursor *pCrsr;
|
|
3777 |
|
|
3778 |
assert( i>=0 && i<p->nCursor );
|
|
3779 |
pC = p->apCsr[i];
|
|
3780 |
assert( pC!=0 );
|
|
3781 |
if( (pCrsr = pC->pCursor)!=0 ){
|
|
3782 |
int res;
|
|
3783 |
rc = sqlite3BtreeLast(pCrsr, &res);
|
|
3784 |
pC->nullRow = res;
|
|
3785 |
pC->deferredMoveto = 0;
|
|
3786 |
pC->cacheStatus = CACHE_STALE;
|
|
3787 |
if( res && pOp->p2>0 ){
|
|
3788 |
pc = pOp->p2 - 1;
|
|
3789 |
}
|
|
3790 |
}else{
|
|
3791 |
pC->nullRow = 0;
|
|
3792 |
}
|
|
3793 |
break;
|
|
3794 |
}
|
|
3795 |
|
|
3796 |
|
|
3797 |
/* Opcode: Sort P1 P2 *
|
|
3798 |
**
|
|
3799 |
** This opcode does exactly the same thing as OP_Rewind except that
|
|
3800 |
** it increments an undocumented global variable used for testing.
|
|
3801 |
**
|
|
3802 |
** Sorting is accomplished by writing records into a sorting index,
|
|
3803 |
** then rewinding that index and playing it back from beginning to
|
|
3804 |
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
|
|
3805 |
** rewinding so that the global variable will be incremented and
|
|
3806 |
** regression tests can determine whether or not the optimizer is
|
|
3807 |
** correctly optimizing out sorts.
|
|
3808 |
*/
|
|
3809 |
case OP_Sort: { /* no-push */
|
|
3810 |
#ifdef SQLITE_TEST
|
|
3811 |
sqlite3_sort_count++;
|
|
3812 |
sqlite3_search_count--;
|
|
3813 |
#endif
|
|
3814 |
/* Fall through into OP_Rewind */
|
|
3815 |
}
|
|
3816 |
/* Opcode: Rewind P1 P2 *
|
|
3817 |
**
|
|
3818 |
** The next use of the Rowid or Column or Next instruction for P1
|
|
3819 |
** will refer to the first entry in the database table or index.
|
|
3820 |
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
3821 |
** If P2 is 0 or if the table or index is not empty, fall through
|
|
3822 |
** to the following instruction.
|
|
3823 |
*/
|
|
3824 |
case OP_Rewind: { /* no-push */
|
|
3825 |
int i = pOp->p1;
|
|
3826 |
Cursor *pC;
|
|
3827 |
BtCursor *pCrsr;
|
|
3828 |
int res;
|
|
3829 |
|
|
3830 |
assert( i>=0 && i<p->nCursor );
|
|
3831 |
pC = p->apCsr[i];
|
|
3832 |
assert( pC!=0 );
|
|
3833 |
if( (pCrsr = pC->pCursor)!=0 ){
|
|
3834 |
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
3835 |
pC->atFirst = res==0;
|
|
3836 |
pC->deferredMoveto = 0;
|
|
3837 |
pC->cacheStatus = CACHE_STALE;
|
|
3838 |
}else{
|
|
3839 |
res = 1;
|
|
3840 |
}
|
|
3841 |
pC->nullRow = res;
|
|
3842 |
if( res && pOp->p2>0 ){
|
|
3843 |
pc = pOp->p2 - 1;
|
|
3844 |
}
|
|
3845 |
break;
|
|
3846 |
}
|
|
3847 |
|
|
3848 |
/* Opcode: Next P1 P2 *
|
|
3849 |
**
|
|
3850 |
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
3851 |
** table or index. If there are no more key/value pairs then fall through
|
|
3852 |
** to the following instruction. But if the cursor advance was successful,
|
|
3853 |
** jump immediately to P2.
|
|
3854 |
**
|
|
3855 |
** See also: Prev
|
|
3856 |
*/
|
|
3857 |
/* Opcode: Prev P1 P2 *
|
|
3858 |
**
|
|
3859 |
** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
3860 |
** table or index. If there is no previous key/value pairs then fall through
|
|
3861 |
** to the following instruction. But if the cursor backup was successful,
|
|
3862 |
** jump immediately to P2.
|
|
3863 |
*/
|
|
3864 |
case OP_Prev: /* no-push */
|
|
3865 |
case OP_Next: { /* no-push */
|
|
3866 |
Cursor *pC;
|
|
3867 |
BtCursor *pCrsr;
|
|
3868 |
|
|
3869 |
CHECK_FOR_INTERRUPT;
|
|
3870 |
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
3871 |
pC = p->apCsr[pOp->p1];
|
|
3872 |
if( pC==0 ){
|
|
3873 |
break; /* See ticket #2273 */
|
|
3874 |
}
|
|
3875 |
if( (pCrsr = pC->pCursor)!=0 ){
|
|
3876 |
int res;
|
|
3877 |
if( pC->nullRow ){
|
|
3878 |
res = 1;
|
|
3879 |
}else{
|
|
3880 |
assert( pC->deferredMoveto==0 );
|
|
3881 |
rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
|
|
3882 |
sqlite3BtreePrevious(pCrsr, &res);
|
|
3883 |
pC->nullRow = res;
|
|
3884 |
pC->cacheStatus = CACHE_STALE;
|
|
3885 |
}
|
|
3886 |
if( res==0 ){
|
|
3887 |
pc = pOp->p2 - 1;
|
|
3888 |
#ifdef SQLITE_TEST
|
|
3889 |
sqlite3_search_count++;
|
|
3890 |
#endif
|
|
3891 |
}
|
|
3892 |
}else{
|
|
3893 |
pC->nullRow = 1;
|
|
3894 |
}
|
|
3895 |
pC->rowidIsValid = 0;
|
|
3896 |
break;
|
|
3897 |
}
|
|
3898 |
|
|
3899 |
/* Opcode: IdxInsert P1 P2 *
|
|
3900 |
**
|
|
3901 |
** The top of the stack holds a SQL index key made using either the
|
|
3902 |
** MakeIdxRec or MakeRecord instructions. This opcode writes that key
|
|
3903 |
** into the index P1. Data for the entry is nil.
|
|
3904 |
**
|
|
3905 |
** P2 is a flag that provides a hint to the b-tree layer that this
|
|
3906 |
** insert is likely to be an append.
|
|
3907 |
**
|
|
3908 |
** This instruction only works for indices. The equivalent instruction
|
|
3909 |
** for tables is OP_Insert.
|
|
3910 |
*/
|
|
3911 |
case OP_IdxInsert: { /* no-push */
|
|
3912 |
int i = pOp->p1;
|
|
3913 |
Cursor *pC;
|
|
3914 |
BtCursor *pCrsr;
|
|
3915 |
assert( pTos>=p->aStack );
|
|
3916 |
assert( i>=0 && i<p->nCursor );
|
|
3917 |
assert( p->apCsr[i]!=0 );
|
|
3918 |
assert( pTos->flags & MEM_Blob );
|
|
3919 |
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
3920 |
assert( pC->isTable==0 );
|
|
3921 |
rc = ExpandBlob(pTos);
|
|
3922 |
if( rc==SQLITE_OK ){
|
|
3923 |
int nKey = pTos->n;
|
|
3924 |
const char *zKey = pTos->z;
|
|
3925 |
rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
|
|
3926 |
assert( pC->deferredMoveto==0 );
|
|
3927 |
pC->cacheStatus = CACHE_STALE;
|
|
3928 |
}
|
|
3929 |
}
|
|
3930 |
Release(pTos);
|
|
3931 |
pTos--;
|
|
3932 |
break;
|
|
3933 |
}
|
|
3934 |
|
|
3935 |
/* Opcode: IdxDelete P1 * *
|
|
3936 |
**
|
|
3937 |
** The top of the stack is an index key built using the either the
|
|
3938 |
** MakeIdxRec or MakeRecord opcodes.
|
|
3939 |
** This opcode removes that entry from the index.
|
|
3940 |
*/
|
|
3941 |
case OP_IdxDelete: { /* no-push */
|
|
3942 |
int i = pOp->p1;
|
|
3943 |
Cursor *pC;
|
|
3944 |
BtCursor *pCrsr;
|
|
3945 |
assert( pTos>=p->aStack );
|
|
3946 |
assert( pTos->flags & MEM_Blob );
|
|
3947 |
assert( i>=0 && i<p->nCursor );
|
|
3948 |
assert( p->apCsr[i]!=0 );
|
|
3949 |
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
3950 |
int res;
|
|
3951 |
rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
|
|
3952 |
if( rc==SQLITE_OK && res==0 ){
|
|
3953 |
rc = sqlite3BtreeDelete(pCrsr);
|
|
3954 |
}
|
|
3955 |
assert( pC->deferredMoveto==0 );
|
|
3956 |
pC->cacheStatus = CACHE_STALE;
|
|
3957 |
}
|
|
3958 |
Release(pTos);
|
|
3959 |
pTos--;
|
|
3960 |
break;
|
|
3961 |
}
|
|
3962 |
|
|
3963 |
/* Opcode: IdxRowid P1 * *
|
|
3964 |
**
|
|
3965 |
** Push onto the stack an integer which is the last entry in the record at
|
|
3966 |
** the end of the index key pointed to by cursor P1. This integer should be
|
|
3967 |
** the rowid of the table entry to which this index entry points.
|
|
3968 |
**
|
|
3969 |
** See also: Rowid, MakeIdxRec.
|
|
3970 |
*/
|
|
3971 |
case OP_IdxRowid: {
|
|
3972 |
int i = pOp->p1;
|
|
3973 |
BtCursor *pCrsr;
|
|
3974 |
Cursor *pC;
|
|
3975 |
|
|
3976 |
assert( i>=0 && i<p->nCursor );
|
|
3977 |
assert( p->apCsr[i]!=0 );
|
|
3978 |
pTos++;
|
|
3979 |
pTos->flags = MEM_Null;
|
|
3980 |
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
3981 |
i64 rowid;
|
|
3982 |
|
|
3983 |
assert( pC->deferredMoveto==0 );
|
|
3984 |
assert( pC->isTable==0 );
|
|
3985 |
if( pC->nullRow ){
|
|
3986 |
pTos->flags = MEM_Null;
|
|
3987 |
}else{
|
|
3988 |
rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
|
|
3989 |
if( rc!=SQLITE_OK ){
|
|
3990 |
goto abort_due_to_error;
|
|
3991 |
}
|
|
3992 |
pTos->flags = MEM_Int;
|
|
3993 |
pTos->u.i = rowid;
|
|
3994 |
}
|
|
3995 |
}
|
|
3996 |
break;
|
|
3997 |
}
|
|
3998 |
|
|
3999 |
/* Opcode: IdxGT P1 P2 *
|
|
4000 |
**
|
|
4001 |
** The top of the stack is an index entry that omits the ROWID. Compare
|
|
4002 |
** the top of stack against the index that P1 is currently pointing to.
|
|
4003 |
** Ignore the ROWID on the P1 index.
|
|
4004 |
**
|
|
4005 |
** The top of the stack might have fewer columns that P1.
|
|
4006 |
**
|
|
4007 |
** If the P1 index entry is greater than the top of the stack
|
|
4008 |
** then jump to P2. Otherwise fall through to the next instruction.
|
|
4009 |
** In either case, the stack is popped once.
|
|
4010 |
*/
|
|
4011 |
/* Opcode: IdxGE P1 P2 P3
|
|
4012 |
**
|
|
4013 |
** The top of the stack is an index entry that omits the ROWID. Compare
|
|
4014 |
** the top of stack against the index that P1 is currently pointing to.
|
|
4015 |
** Ignore the ROWID on the P1 index.
|
|
4016 |
**
|
|
4017 |
** If the P1 index entry is greater than or equal to the top of the stack
|
|
4018 |
** then jump to P2. Otherwise fall through to the next instruction.
|
|
4019 |
** In either case, the stack is popped once.
|
|
4020 |
**
|
|
4021 |
** If P3 is the "+" string (or any other non-NULL string) then the
|
|
4022 |
** index taken from the top of the stack is temporarily increased by
|
|
4023 |
** an epsilon prior to the comparison. This make the opcode work
|
|
4024 |
** like IdxGT except that if the key from the stack is a prefix of
|
|
4025 |
** the key in the cursor, the result is false whereas it would be
|
|
4026 |
** true with IdxGT.
|
|
4027 |
*/
|
|
4028 |
/* Opcode: IdxLT P1 P2 P3
|
|
4029 |
**
|
|
4030 |
** The top of the stack is an index entry that omits the ROWID. Compare
|
|
4031 |
** the top of stack against the index that P1 is currently pointing to.
|
|
4032 |
** Ignore the ROWID on the P1 index.
|
|
4033 |
**
|
|
4034 |
** If the P1 index entry is less than the top of the stack
|
|
4035 |
** then jump to P2. Otherwise fall through to the next instruction.
|
|
4036 |
** In either case, the stack is popped once.
|
|
4037 |
**
|
|
4038 |
** If P3 is the "+" string (or any other non-NULL string) then the
|
|
4039 |
** index taken from the top of the stack is temporarily increased by
|
|
4040 |
** an epsilon prior to the comparison. This makes the opcode work
|
|
4041 |
** like IdxLE.
|
|
4042 |
*/
|
|
4043 |
case OP_IdxLT: /* no-push */
|
|
4044 |
case OP_IdxGT: /* no-push */
|
|
4045 |
case OP_IdxGE: { /* no-push */
|
|
4046 |
int i= pOp->p1;
|
|
4047 |
Cursor *pC;
|
|
4048 |
|
|
4049 |
assert( i>=0 && i<p->nCursor );
|
|
4050 |
assert( p->apCsr[i]!=0 );
|
|
4051 |
assert( pTos>=p->aStack );
|
|
4052 |
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
4053 |
int res;
|
|
4054 |
|
|
4055 |
assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */
|
|
4056 |
assert( pC->deferredMoveto==0 );
|
|
4057 |
ExpandBlob(pTos);
|
|
4058 |
*pC->pIncrKey = pOp->p3!=0;
|
|
4059 |
assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
|
|
4060 |
rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
|
|
4061 |
*pC->pIncrKey = 0;
|
|
4062 |
if( rc!=SQLITE_OK ){
|
|
4063 |
break;
|
|
4064 |
}
|
|
4065 |
if( pOp->opcode==OP_IdxLT ){
|
|
4066 |
res = -res;
|
|
4067 |
}else if( pOp->opcode==OP_IdxGE ){
|
|
4068 |
res++;
|
|
4069 |
}
|
|
4070 |
if( res>0 ){
|
|
4071 |
pc = pOp->p2 - 1 ;
|
|
4072 |
}
|
|
4073 |
}
|
|
4074 |
Release(pTos);
|
|
4075 |
pTos--;
|
|
4076 |
break;
|
|
4077 |
}
|
|
4078 |
|
|
4079 |
/* Opcode: Destroy P1 P2 *
|
|
4080 |
**
|
|
4081 |
** Delete an entire database table or index whose root page in the database
|
|
4082 |
** file is given by P1.
|
|
4083 |
**
|
|
4084 |
** The table being destroyed is in the main database file if P2==0. If
|
|
4085 |
** P2==1 then the table to be clear is in the auxiliary database file
|
|
4086 |
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
4087 |
**
|
|
4088 |
** If AUTOVACUUM is enabled then it is possible that another root page
|
|
4089 |
** might be moved into the newly deleted root page in order to keep all
|
|
4090 |
** root pages contiguous at the beginning of the database. The former
|
|
4091 |
** value of the root page that moved - its value before the move occurred -
|
|
4092 |
** is pushed onto the stack. If no page movement was required (because
|
|
4093 |
** the table being dropped was already the last one in the database) then
|
|
4094 |
** a zero is pushed onto the stack. If AUTOVACUUM is disabled
|
|
4095 |
** then a zero is pushed onto the stack.
|
|
4096 |
**
|
|
4097 |
** See also: Clear
|
|
4098 |
*/
|
|
4099 |
case OP_Destroy: {
|
|
4100 |
int iMoved;
|
|
4101 |
int iCnt;
|
|
4102 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4103 |
Vdbe *pVdbe;
|
|
4104 |
iCnt = 0;
|
|
4105 |
for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
|
|
4106 |
if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
|
|
4107 |
iCnt++;
|
|
4108 |
}
|
|
4109 |
}
|
|
4110 |
#else
|
|
4111 |
iCnt = db->activeVdbeCnt;
|
|
4112 |
#endif
|
|
4113 |
if( iCnt>1 ){
|
|
4114 |
rc = SQLITE_LOCKED;
|
|
4115 |
p->errorAction = OE_Abort;
|
|
4116 |
}else{
|
|
4117 |
assert( iCnt==1 );
|
|
4118 |
assert( (p->btreeMask & (1<<pOp->p2))!=0 );
|
|
4119 |
rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
|
|
4120 |
pTos++;
|
|
4121 |
pTos->flags = MEM_Int;
|
|
4122 |
pTos->u.i = iMoved;
|
|
4123 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4124 |
if( rc==SQLITE_OK && iMoved!=0 ){
|
|
4125 |
sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
|
|
4126 |
}
|
|
4127 |
#endif
|
|
4128 |
}
|
|
4129 |
break;
|
|
4130 |
}
|
|
4131 |
|
|
4132 |
/* Opcode: Clear P1 P2 *
|
|
4133 |
**
|
|
4134 |
** Delete all contents of the database table or index whose root page
|
|
4135 |
** in the database file is given by P1. But, unlike Destroy, do not
|
|
4136 |
** remove the table or index from the database file.
|
|
4137 |
**
|
|
4138 |
** The table being clear is in the main database file if P2==0. If
|
|
4139 |
** P2==1 then the table to be clear is in the auxiliary database file
|
|
4140 |
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
4141 |
**
|
|
4142 |
** See also: Destroy
|
|
4143 |
*/
|
|
4144 |
case OP_Clear: { /* no-push */
|
|
4145 |
|
|
4146 |
/* For consistency with the way other features of SQLite operate
|
|
4147 |
** with a truncate, we will also skip the update callback.
|
|
4148 |
*/
|
|
4149 |
#if 0
|
|
4150 |
Btree *pBt = db->aDb[pOp->p2].pBt;
|
|
4151 |
if( db->xUpdateCallback && pOp->p3 ){
|
|
4152 |
const char *zDb = db->aDb[pOp->p2].zName;
|
|
4153 |
const char *zTbl = pOp->p3;
|
|
4154 |
BtCursor *pCur = 0;
|
|
4155 |
int fin = 0;
|
|
4156 |
|
|
4157 |
rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
|
|
4158 |
if( rc!=SQLITE_OK ){
|
|
4159 |
goto abort_due_to_error;
|
|
4160 |
}
|
|
4161 |
for(
|
|
4162 |
rc=sqlite3BtreeFirst(pCur, &fin);
|
|
4163 |
rc==SQLITE_OK && !fin;
|
|
4164 |
rc=sqlite3BtreeNext(pCur, &fin)
|
|
4165 |
){
|
|
4166 |
i64 iKey;
|
|
4167 |
rc = sqlite3BtreeKeySize(pCur, &iKey);
|
|
4168 |
if( rc ){
|
|
4169 |
break;
|
|
4170 |
}
|
|
4171 |
iKey = keyToInt(iKey);
|
|
4172 |
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
|
|
4173 |
}
|
|
4174 |
sqlite3BtreeCloseCursor(pCur);
|
|
4175 |
if( rc!=SQLITE_OK ){
|
|
4176 |
goto abort_due_to_error;
|
|
4177 |
}
|
|
4178 |
}
|
|
4179 |
#endif
|
|
4180 |
assert( (p->btreeMask & (1<<pOp->p2))!=0 );
|
|
4181 |
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
4182 |
break;
|
|
4183 |
}
|
|
4184 |
|
|
4185 |
/* Opcode: CreateTable P1 * *
|
|
4186 |
**
|
|
4187 |
** Allocate a new table in the main database file if P2==0 or in the
|
|
4188 |
** auxiliary database file if P2==1. Push the page number
|
|
4189 |
** for the root page of the new table onto the stack.
|
|
4190 |
**
|
|
4191 |
** The difference between a table and an index is this: A table must
|
|
4192 |
** have a 4-byte integer key and can have arbitrary data. An index
|
|
4193 |
** has an arbitrary key but no data.
|
|
4194 |
**
|
|
4195 |
** See also: CreateIndex
|
|
4196 |
*/
|
|
4197 |
/* Opcode: CreateIndex P1 * *
|
|
4198 |
**
|
|
4199 |
** Allocate a new index in the main database file if P2==0 or in the
|
|
4200 |
** auxiliary database file if P2==1. Push the page number of the
|
|
4201 |
** root page of the new index onto the stack.
|
|
4202 |
**
|
|
4203 |
** See documentation on OP_CreateTable for additional information.
|
|
4204 |
*/
|
|
4205 |
case OP_CreateIndex:
|
|
4206 |
case OP_CreateTable: {
|
|
4207 |
int pgno;
|
|
4208 |
int flags;
|
|
4209 |
Db *pDb;
|
|
4210 |
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
4211 |
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
4212 |
pDb = &db->aDb[pOp->p1];
|
|
4213 |
assert( pDb->pBt!=0 );
|
|
4214 |
if( pOp->opcode==OP_CreateTable ){
|
|
4215 |
/* flags = BTREE_INTKEY; */
|
|
4216 |
flags = BTREE_LEAFDATA|BTREE_INTKEY;
|
|
4217 |
}else{
|
|
4218 |
flags = BTREE_ZERODATA;
|
|
4219 |
}
|
|
4220 |
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
|
|
4221 |
pTos++;
|
|
4222 |
if( rc==SQLITE_OK ){
|
|
4223 |
pTos->u.i = pgno;
|
|
4224 |
pTos->flags = MEM_Int;
|
|
4225 |
}else{
|
|
4226 |
pTos->flags = MEM_Null;
|
|
4227 |
}
|
|
4228 |
break;
|
|
4229 |
}
|
|
4230 |
|
|
4231 |
/* Opcode: ParseSchema P1 P2 P3
|
|
4232 |
**
|
|
4233 |
** Read and parse all entries from the SQLITE_MASTER table of database P1
|
|
4234 |
** that match the WHERE clause P3. P2 is the "force" flag. Always do
|
|
4235 |
** the parsing if P2 is true. If P2 is false, then this routine is a
|
|
4236 |
** no-op if the schema is not currently loaded. In other words, if P2
|
|
4237 |
** is false, the SQLITE_MASTER table is only parsed if the rest of the
|
|
4238 |
** schema is already loaded into the symbol table.
|
|
4239 |
**
|
|
4240 |
** This opcode invokes the parser to create a new virtual machine,
|
|
4241 |
** then runs the new virtual machine. It is thus a reentrant opcode.
|
|
4242 |
*/
|
|
4243 |
case OP_ParseSchema: { /* no-push */
|
|
4244 |
char *zSql;
|
|
4245 |
int iDb = pOp->p1;
|
|
4246 |
const char *zMaster;
|
|
4247 |
InitData initData;
|
|
4248 |
|
|
4249 |
assert( iDb>=0 && iDb<db->nDb );
|
|
4250 |
if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
|
|
4251 |
break;
|
|
4252 |
}
|
|
4253 |
zMaster = SCHEMA_TABLE(iDb);
|
|
4254 |
initData.db = db;
|
|
4255 |
initData.iDb = pOp->p1;
|
|
4256 |
initData.pzErrMsg = &p->zErrMsg;
|
|
4257 |
zSql = sqlite3MPrintf(db,
|
|
4258 |
"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
|
|
4259 |
db->aDb[iDb].zName, zMaster, pOp->p3);
|
|
4260 |
if( zSql==0 ) goto no_mem;
|
|
4261 |
sqlite3SafetyOff(db);
|
|
4262 |
assert( db->init.busy==0 );
|
|
4263 |
db->init.busy = 1;
|
|
4264 |
assert( !db->mallocFailed );
|
|
4265 |
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
4266 |
if( rc==SQLITE_ABORT ) rc = initData.rc;
|
|
4267 |
sqlite3_free(zSql);
|
|
4268 |
db->init.busy = 0;
|
|
4269 |
sqlite3SafetyOn(db);
|
|
4270 |
if( rc==SQLITE_NOMEM ){
|
|
4271 |
goto no_mem;
|
|
4272 |
}
|
|
4273 |
break;
|
|
4274 |
}
|
|
4275 |
|
|
4276 |
#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
|
|
4277 |
/* Opcode: LoadAnalysis P1 * *
|
|
4278 |
**
|
|
4279 |
** Read the sqlite_stat1 table for database P1 and load the content
|
|
4280 |
** of that table into the internal index hash table. This will cause
|
|
4281 |
** the analysis to be used when preparing all subsequent queries.
|
|
4282 |
*/
|
|
4283 |
case OP_LoadAnalysis: { /* no-push */
|
|
4284 |
int iDb = pOp->p1;
|
|
4285 |
assert( iDb>=0 && iDb<db->nDb );
|
|
4286 |
rc = sqlite3AnalysisLoad(db, iDb);
|
|
4287 |
break;
|
|
4288 |
}
|
|
4289 |
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
|
|
4290 |
|
|
4291 |
/* Opcode: DropTable P1 * P3
|
|
4292 |
**
|
|
4293 |
** Remove the internal (in-memory) data structures that describe
|
|
4294 |
** the table named P3 in database P1. This is called after a table
|
|
4295 |
** is dropped in order to keep the internal representation of the
|
|
4296 |
** schema consistent with what is on disk.
|
|
4297 |
*/
|
|
4298 |
case OP_DropTable: { /* no-push */
|
|
4299 |
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
|
|
4300 |
break;
|
|
4301 |
}
|
|
4302 |
|
|
4303 |
/* Opcode: DropIndex P1 * P3
|
|
4304 |
**
|
|
4305 |
** Remove the internal (in-memory) data structures that describe
|
|
4306 |
** the index named P3 in database P1. This is called after an index
|
|
4307 |
** is dropped in order to keep the internal representation of the
|
|
4308 |
** schema consistent with what is on disk.
|
|
4309 |
*/
|
|
4310 |
case OP_DropIndex: { /* no-push */
|
|
4311 |
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
|
|
4312 |
break;
|
|
4313 |
}
|
|
4314 |
|
|
4315 |
/* Opcode: DropTrigger P1 * P3
|
|
4316 |
**
|
|
4317 |
** Remove the internal (in-memory) data structures that describe
|
|
4318 |
** the trigger named P3 in database P1. This is called after a trigger
|
|
4319 |
** is dropped in order to keep the internal representation of the
|
|
4320 |
** schema consistent with what is on disk.
|
|
4321 |
*/
|
|
4322 |
case OP_DropTrigger: { /* no-push */
|
|
4323 |
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
|
|
4324 |
break;
|
|
4325 |
}
|
|
4326 |
|
|
4327 |
|
|
4328 |
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
4329 |
/* Opcode: IntegrityCk P1 P2 *
|
|
4330 |
**
|
|
4331 |
** Do an analysis of the currently open database. Push onto the
|
|
4332 |
** stack the text of an error message describing any problems.
|
|
4333 |
** If no problems are found, push a NULL onto the stack.
|
|
4334 |
**
|
|
4335 |
** P1 is the address of a memory cell that contains the maximum
|
|
4336 |
** number of allowed errors. At most mem[P1] errors will be reported.
|
|
4337 |
** In other words, the analysis stops as soon as mem[P1] errors are
|
|
4338 |
** seen. Mem[P1] is updated with the number of errors remaining.
|
|
4339 |
**
|
|
4340 |
** The root page numbers of all tables in the database are integer
|
|
4341 |
** values on the stack. This opcode pulls as many integers as it
|
|
4342 |
** can off of the stack and uses those numbers as the root pages.
|
|
4343 |
**
|
|
4344 |
** If P2 is not zero, the check is done on the auxiliary database
|
|
4345 |
** file, not the main database file.
|
|
4346 |
**
|
|
4347 |
** This opcode is used to implement the integrity_check pragma.
|
|
4348 |
*/
|
|
4349 |
case OP_IntegrityCk: {
|
|
4350 |
int nRoot;
|
|
4351 |
int *aRoot;
|
|
4352 |
int j;
|
|
4353 |
int nErr;
|
|
4354 |
char *z;
|
|
4355 |
Mem *pnErr;
|
|
4356 |
|
|
4357 |
for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
|
|
4358 |
if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
|
|
4359 |
}
|
|
4360 |
assert( nRoot>0 );
|
|
4361 |
aRoot = (int*)sqlite3_malloc( sizeof(int)*(nRoot+1) );
|
|
4362 |
if( aRoot==0 ) goto no_mem;
|
|
4363 |
j = pOp->p1;
|
|
4364 |
assert( j>=0 && j<p->nMem );
|
|
4365 |
pnErr = &p->aMem[j];
|
|
4366 |
assert( (pnErr->flags & MEM_Int)!=0 );
|
|
4367 |
for(j=0; j<nRoot; j++){
|
|
4368 |
aRoot[j] = (pTos-j)->u.i;
|
|
4369 |
}
|
|
4370 |
aRoot[j] = 0;
|
|
4371 |
popStack(&pTos, nRoot);
|
|
4372 |
pTos++;
|
|
4373 |
assert( pOp->p2>=0 && pOp->p2<db->nDb );
|
|
4374 |
assert( (p->btreeMask & (1<<pOp->p2))!=0 );
|
|
4375 |
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
|
|
4376 |
pnErr->u.i, &nErr);
|
|
4377 |
pnErr->u.i -= nErr;
|
|
4378 |
if( nErr==0 ){
|
|
4379 |
assert( z==0 );
|
|
4380 |
pTos->flags = MEM_Null;
|
|
4381 |
}else{
|
|
4382 |
pTos->z = z;
|
|
4383 |
pTos->n = strlen(z);
|
|
4384 |
pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
|
|
4385 |
pTos->xDel = 0;
|
|
4386 |
}
|
|
4387 |
pTos->enc = SQLITE_UTF8;
|
|
4388 |
sqlite3VdbeChangeEncoding(pTos, encoding);
|
|
4389 |
sqlite3_free(aRoot);
|
|
4390 |
break;
|
|
4391 |
}
|
|
4392 |
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
4393 |
|
|
4394 |
/* Opcode: FifoWrite * * *
|
|
4395 |
**
|
|
4396 |
** Write the integer on the top of the stack
|
|
4397 |
** into the Fifo.
|
|
4398 |
*/
|
|
4399 |
case OP_FifoWrite: { /* no-push */
|
|
4400 |
assert( pTos>=p->aStack );
|
|
4401 |
sqlite3VdbeMemIntegerify(pTos);
|
|
4402 |
if( sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i)==SQLITE_NOMEM ){
|
|
4403 |
goto no_mem;
|
|
4404 |
}
|
|
4405 |
assert( (pTos->flags & MEM_Dyn)==0 );
|
|
4406 |
pTos--;
|
|
4407 |
break;
|
|
4408 |
}
|
|
4409 |
|
|
4410 |
/* Opcode: FifoRead * P2 *
|
|
4411 |
**
|
|
4412 |
** Attempt to read a single integer from the Fifo
|
|
4413 |
** and push it onto the stack. If the Fifo is empty
|
|
4414 |
** push nothing but instead jump to P2.
|
|
4415 |
*/
|
|
4416 |
case OP_FifoRead: {
|
|
4417 |
i64 v;
|
|
4418 |
CHECK_FOR_INTERRUPT;
|
|
4419 |
if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
|
|
4420 |
pc = pOp->p2 - 1;
|
|
4421 |
}else{
|
|
4422 |
pTos++;
|
|
4423 |
pTos->u.i = v;
|
|
4424 |
pTos->flags = MEM_Int;
|
|
4425 |
}
|
|
4426 |
break;
|
|
4427 |
}
|
|
4428 |
|
|
4429 |
#ifndef SQLITE_OMIT_TRIGGER
|
|
4430 |
/* Opcode: ContextPush * * *
|
|
4431 |
**
|
|
4432 |
** Save the current Vdbe context such that it can be restored by a ContextPop
|
|
4433 |
** opcode. The context stores the last insert row id, the last statement change
|
|
4434 |
** count, and the current statement change count.
|
|
4435 |
*/
|
|
4436 |
case OP_ContextPush: { /* no-push */
|
|
4437 |
int i = p->contextStackTop++;
|
|
4438 |
Context *pContext;
|
|
4439 |
|
|
4440 |
assert( i>=0 );
|
|
4441 |
/* FIX ME: This should be allocated as part of the vdbe at compile-time */
|
|
4442 |
if( i>=p->contextStackDepth ){
|
|
4443 |
p->contextStackDepth = i+1;
|
|
4444 |
p->contextStack = (Context*)sqlite3DbReallocOrFree(db, p->contextStack,
|
|
4445 |
sizeof(Context)*(i+1));
|
|
4446 |
if( p->contextStack==0 ) goto no_mem;
|
|
4447 |
}
|
|
4448 |
pContext = &p->contextStack[i];
|
|
4449 |
pContext->lastRowid = db->lastRowid;
|
|
4450 |
pContext->nChange = p->nChange;
|
|
4451 |
pContext->sFifo = p->sFifo;
|
|
4452 |
sqlite3VdbeFifoInit(&p->sFifo);
|
|
4453 |
break;
|
|
4454 |
}
|
|
4455 |
|
|
4456 |
/* Opcode: ContextPop * * *
|
|
4457 |
**
|
|
4458 |
** Restore the Vdbe context to the state it was in when contextPush was last
|
|
4459 |
** executed. The context stores the last insert row id, the last statement
|
|
4460 |
** change count, and the current statement change count.
|
|
4461 |
*/
|
|
4462 |
case OP_ContextPop: { /* no-push */
|
|
4463 |
Context *pContext = &p->contextStack[--p->contextStackTop];
|
|
4464 |
assert( p->contextStackTop>=0 );
|
|
4465 |
db->lastRowid = pContext->lastRowid;
|
|
4466 |
p->nChange = pContext->nChange;
|
|
4467 |
sqlite3VdbeFifoClear(&p->sFifo);
|
|
4468 |
p->sFifo = pContext->sFifo;
|
|
4469 |
break;
|
|
4470 |
}
|
|
4471 |
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
|
|
4472 |
|
|
4473 |
/* Opcode: MemStore P1 P2 *
|
|
4474 |
**
|
|
4475 |
** Write the top of the stack into memory location P1.
|
|
4476 |
** P1 should be a small integer since space is allocated
|
|
4477 |
** for all memory locations between 0 and P1 inclusive.
|
|
4478 |
**
|
|
4479 |
** After the data is stored in the memory location, the
|
|
4480 |
** stack is popped once if P2 is 1. If P2 is zero, then
|
|
4481 |
** the original data remains on the stack.
|
|
4482 |
*/
|
|
4483 |
case OP_MemStore: { /* no-push */
|
|
4484 |
assert( pTos>=p->aStack );
|
|
4485 |
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
|
4486 |
rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
|
|
4487 |
pTos--;
|
|
4488 |
|
|
4489 |
/* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
|
|
4490 |
** restore the top of the stack to its original value.
|
|
4491 |
*/
|
|
4492 |
if( pOp->p2 ){
|
|
4493 |
break;
|
|
4494 |
}
|
|
4495 |
}
|
|
4496 |
/* Opcode: MemLoad P1 * *
|
|
4497 |
**
|
|
4498 |
** Push a copy of the value in memory location P1 onto the stack.
|
|
4499 |
**
|
|
4500 |
** If the value is a string, then the value pushed is a pointer to
|
|
4501 |
** the string that is stored in the memory location. If the memory
|
|
4502 |
** location is subsequently changed (using OP_MemStore) then the
|
|
4503 |
** value pushed onto the stack will change too.
|
|
4504 |
*/
|
|
4505 |
case OP_MemLoad: {
|
|
4506 |
int i = pOp->p1;
|
|
4507 |
assert( i>=0 && i<p->nMem );
|
|
4508 |
pTos++;
|
|
4509 |
sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
|
|
4510 |
break;
|
|
4511 |
}
|
|
4512 |
|
|
4513 |
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
4514 |
/* Opcode: MemMax P1 * *
|
|
4515 |
**
|
|
4516 |
** Set the value of memory cell P1 to the maximum of its current value
|
|
4517 |
** and the value on the top of the stack. The stack is unchanged.
|
|
4518 |
**
|
|
4519 |
** This instruction throws an error if the memory cell is not initially
|
|
4520 |
** an integer.
|
|
4521 |
*/
|
|
4522 |
case OP_MemMax: { /* no-push */
|
|
4523 |
int i = pOp->p1;
|
|
4524 |
Mem *pMem;
|
|
4525 |
assert( pTos>=p->aStack );
|
|
4526 |
assert( i>=0 && i<p->nMem );
|
|
4527 |
pMem = &p->aMem[i];
|
|
4528 |
sqlite3VdbeMemIntegerify(pMem);
|
|
4529 |
sqlite3VdbeMemIntegerify(pTos);
|
|
4530 |
if( pMem->u.i<pTos->u.i){
|
|
4531 |
pMem->u.i = pTos->u.i;
|
|
4532 |
}
|
|
4533 |
break;
|
|
4534 |
}
|
|
4535 |
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
4536 |
|
|
4537 |
/* Opcode: MemIncr P1 P2 *
|
|
4538 |
**
|
|
4539 |
** Increment the integer valued memory cell P2 by the value in P1.
|
|
4540 |
**
|
|
4541 |
** It is illegal to use this instruction on a memory cell that does
|
|
4542 |
** not contain an integer. An assertion fault will result if you try.
|
|
4543 |
*/
|
|
4544 |
case OP_MemIncr: { /* no-push */
|
|
4545 |
int i = pOp->p2;
|
|
4546 |
Mem *pMem;
|
|
4547 |
assert( i>=0 && i<p->nMem );
|
|
4548 |
pMem = &p->aMem[i];
|
|
4549 |
assert( pMem->flags==MEM_Int );
|
|
4550 |
pMem->u.i += pOp->p1;
|
|
4551 |
break;
|
|
4552 |
}
|
|
4553 |
|
|
4554 |
/* Opcode: IfMemPos P1 P2 *
|
|
4555 |
**
|
|
4556 |
** If the value of memory cell P1 is 1 or greater, jump to P2.
|
|
4557 |
**
|
|
4558 |
** It is illegal to use this instruction on a memory cell that does
|
|
4559 |
** not contain an integer. An assertion fault will result if you try.
|
|
4560 |
*/
|
|
4561 |
case OP_IfMemPos: { /* no-push */
|
|
4562 |
int i = pOp->p1;
|
|
4563 |
Mem *pMem;
|
|
4564 |
assert( i>=0 && i<p->nMem );
|
|
4565 |
pMem = &p->aMem[i];
|
|
4566 |
assert( pMem->flags==MEM_Int );
|
|
4567 |
if( pMem->u.i>0 ){
|
|
4568 |
pc = pOp->p2 - 1;
|
|
4569 |
}
|
|
4570 |
break;
|
|
4571 |
}
|
|
4572 |
|
|
4573 |
/* Opcode: IfMemNeg P1 P2 *
|
|
4574 |
**
|
|
4575 |
** If the value of memory cell P1 is less than zero, jump to P2.
|
|
4576 |
**
|
|
4577 |
** It is illegal to use this instruction on a memory cell that does
|
|
4578 |
** not contain an integer. An assertion fault will result if you try.
|
|
4579 |
*/
|
|
4580 |
case OP_IfMemNeg: { /* no-push */
|
|
4581 |
int i = pOp->p1;
|
|
4582 |
Mem *pMem;
|
|
4583 |
assert( i>=0 && i<p->nMem );
|
|
4584 |
pMem = &p->aMem[i];
|
|
4585 |
assert( pMem->flags==MEM_Int );
|
|
4586 |
if( pMem->u.i<0 ){
|
|
4587 |
pc = pOp->p2 - 1;
|
|
4588 |
}
|
|
4589 |
break;
|
|
4590 |
}
|
|
4591 |
|
|
4592 |
/* Opcode: IfMemZero P1 P2 *
|
|
4593 |
**
|
|
4594 |
** If the value of memory cell P1 is exactly 0, jump to P2.
|
|
4595 |
**
|
|
4596 |
** It is illegal to use this instruction on a memory cell that does
|
|
4597 |
** not contain an integer. An assertion fault will result if you try.
|
|
4598 |
*/
|
|
4599 |
case OP_IfMemZero: { /* no-push */
|
|
4600 |
int i = pOp->p1;
|
|
4601 |
Mem *pMem;
|
|
4602 |
assert( i>=0 && i<p->nMem );
|
|
4603 |
pMem = &p->aMem[i];
|
|
4604 |
assert( pMem->flags==MEM_Int );
|
|
4605 |
if( pMem->u.i==0 ){
|
|
4606 |
pc = pOp->p2 - 1;
|
|
4607 |
}
|
|
4608 |
break;
|
|
4609 |
}
|
|
4610 |
|
|
4611 |
/* Opcode: MemNull P1 * *
|
|
4612 |
**
|
|
4613 |
** Store a NULL in memory cell P1
|
|
4614 |
*/
|
|
4615 |
case OP_MemNull: {
|
|
4616 |
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
|
4617 |
sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
|
|
4618 |
break;
|
|
4619 |
}
|
|
4620 |
|
|
4621 |
/* Opcode: MemInt P1 P2 *
|
|
4622 |
**
|
|
4623 |
** Store the integer value P1 in memory cell P2.
|
|
4624 |
*/
|
|
4625 |
case OP_MemInt: {
|
|
4626 |
assert( pOp->p2>=0 && pOp->p2<p->nMem );
|
|
4627 |
sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
|
|
4628 |
break;
|
|
4629 |
}
|
|
4630 |
|
|
4631 |
/* Opcode: MemMove P1 P2 *
|
|
4632 |
**
|
|
4633 |
** Move the content of memory cell P2 over to memory cell P1.
|
|
4634 |
** Any prior content of P1 is erased. Memory cell P2 is left
|
|
4635 |
** containing a NULL.
|
|
4636 |
*/
|
|
4637 |
case OP_MemMove: {
|
|
4638 |
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
|
4639 |
assert( pOp->p2>=0 && pOp->p2<p->nMem );
|
|
4640 |
rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
|
|
4641 |
break;
|
|
4642 |
}
|
|
4643 |
|
|
4644 |
/* Opcode: AggStep P1 P2 P3
|
|
4645 |
**
|
|
4646 |
** Execute the step function for an aggregate. The
|
|
4647 |
** function has P2 arguments. P3 is a pointer to the FuncDef
|
|
4648 |
** structure that specifies the function. Use memory location
|
|
4649 |
** P1 as the accumulator.
|
|
4650 |
**
|
|
4651 |
** The P2 arguments are popped from the stack.
|
|
4652 |
*/
|
|
4653 |
case OP_AggStep: { /* no-push */
|
|
4654 |
int n = pOp->p2;
|
|
4655 |
int i;
|
|
4656 |
Mem *pMem, *pRec;
|
|
4657 |
sqlite3_context ctx;
|
|
4658 |
sqlite3_value **apVal;
|
|
4659 |
|
|
4660 |
assert( n>=0 );
|
|
4661 |
pRec = &pTos[1-n];
|
|
4662 |
assert( pRec>=p->aStack );
|
|
4663 |
apVal = p->apArg;
|
|
4664 |
assert( apVal || n==0 );
|
|
4665 |
for(i=0; i<n; i++, pRec++){
|
|
4666 |
apVal[i] = pRec;
|
|
4667 |
storeTypeInfo(pRec, encoding);
|
|
4668 |
}
|
|
4669 |
ctx.pFunc = (FuncDef*)pOp->p3;
|
|
4670 |
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
|
4671 |
ctx.pMem = pMem = &p->aMem[pOp->p1];
|
|
4672 |
pMem->n++;
|
|
4673 |
ctx.s.flags = MEM_Null;
|
|
4674 |
ctx.s.z = 0;
|
|
4675 |
ctx.s.xDel = 0;
|
|
4676 |
ctx.s.db = db;
|
|
4677 |
ctx.isError = 0;
|
|
4678 |
ctx.pColl = 0;
|
|
4679 |
if( ctx.pFunc->needCollSeq ){
|
|
4680 |
assert( pOp>p->aOp );
|
|
4681 |
assert( pOp[-1].p3type==P3_COLLSEQ );
|
|
4682 |
assert( pOp[-1].opcode==OP_CollSeq );
|
|
4683 |
ctx.pColl = (CollSeq *)pOp[-1].p3;
|
|
4684 |
}
|
|
4685 |
(ctx.pFunc->xStep)(&ctx, n, apVal);
|
|
4686 |
popStack(&pTos, n);
|
|
4687 |
if( ctx.isError ){
|
|
4688 |
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
|
|
4689 |
rc = SQLITE_ERROR;
|
|
4690 |
}
|
|
4691 |
sqlite3VdbeMemRelease(&ctx.s);
|
|
4692 |
break;
|
|
4693 |
}
|
|
4694 |
|
|
4695 |
/* Opcode: AggFinal P1 P2 P3
|
|
4696 |
**
|
|
4697 |
** Execute the finalizer function for an aggregate. P1 is
|
|
4698 |
** the memory location that is the accumulator for the aggregate.
|
|
4699 |
**
|
|
4700 |
** P2 is the number of arguments that the step function takes and
|
|
4701 |
** P3 is a pointer to the FuncDef for this function. The P2
|
|
4702 |
** argument is not used by this opcode. It is only there to disambiguate
|
|
4703 |
** functions that can take varying numbers of arguments. The
|
|
4704 |
** P3 argument is only needed for the degenerate case where
|
|
4705 |
** the step function was not previously called.
|
|
4706 |
*/
|
|
4707 |
case OP_AggFinal: { /* no-push */
|
|
4708 |
Mem *pMem;
|
|
4709 |
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
|
4710 |
pMem = &p->aMem[pOp->p1];
|
|
4711 |
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
|
|
4712 |
rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
|
|
4713 |
if( rc==SQLITE_ERROR ){
|
|
4714 |
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
|
|
4715 |
}
|
|
4716 |
if( sqlite3VdbeMemTooBig(pMem) ){
|
|
4717 |
goto too_big;
|
|
4718 |
}
|
|
4719 |
break;
|
|
4720 |
}
|
|
4721 |
|
|
4722 |
|
|
4723 |
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
|
4724 |
/* Opcode: Vacuum * * *
|
|
4725 |
**
|
|
4726 |
** Vacuum the entire database. This opcode will cause other virtual
|
|
4727 |
** machines to be created and run. It may not be called from within
|
|
4728 |
** a transaction.
|
|
4729 |
*/
|
|
4730 |
case OP_Vacuum: { /* no-push */
|
|
4731 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
4732 |
rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
|
4733 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
4734 |
break;
|
|
4735 |
}
|
|
4736 |
#endif
|
|
4737 |
|
|
4738 |
#if !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
4739 |
/* Opcode: IncrVacuum P1 P2 *
|
|
4740 |
**
|
|
4741 |
** Perform a single step of the incremental vacuum procedure on
|
|
4742 |
** the P1 database. If the vacuum has finished, jump to instruction
|
|
4743 |
** P2. Otherwise, fall through to the next instruction.
|
|
4744 |
*/
|
|
4745 |
case OP_IncrVacuum: { /* no-push */
|
|
4746 |
Btree *pBt;
|
|
4747 |
|
|
4748 |
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
4749 |
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
4750 |
pBt = db->aDb[pOp->p1].pBt;
|
|
4751 |
rc = sqlite3BtreeIncrVacuum(pBt);
|
|
4752 |
if( rc==SQLITE_DONE ){
|
|
4753 |
pc = pOp->p2 - 1;
|
|
4754 |
rc = SQLITE_OK;
|
|
4755 |
}
|
|
4756 |
break;
|
|
4757 |
}
|
|
4758 |
#endif
|
|
4759 |
|
|
4760 |
/* Opcode: Expire P1 * *
|
|
4761 |
**
|
|
4762 |
** Cause precompiled statements to become expired. An expired statement
|
|
4763 |
** fails with an error code of SQLITE_SCHEMA if it is ever executed
|
|
4764 |
** (via sqlite3_step()).
|
|
4765 |
**
|
|
4766 |
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
|
4767 |
** then only the currently executing statement is affected.
|
|
4768 |
*/
|
|
4769 |
case OP_Expire: { /* no-push */
|
|
4770 |
if( !pOp->p1 ){
|
|
4771 |
sqlite3ExpirePreparedStatements(db);
|
|
4772 |
}else{
|
|
4773 |
p->expired = 1;
|
|
4774 |
}
|
|
4775 |
break;
|
|
4776 |
}
|
|
4777 |
|
|
4778 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
4779 |
/* Opcode: TableLock P1 P2 P3
|
|
4780 |
**
|
|
4781 |
** Obtain a lock on a particular table. This instruction is only used when
|
|
4782 |
** the shared-cache feature is enabled.
|
|
4783 |
**
|
|
4784 |
** If P1 is not negative, then it is the index of the database
|
|
4785 |
** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a
|
|
4786 |
** write-lock is required. In this case the index of the database is the
|
|
4787 |
** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
|
|
4788 |
** required.
|
|
4789 |
**
|
|
4790 |
** P2 contains the root-page of the table to lock.
|
|
4791 |
**
|
|
4792 |
** P3 contains a pointer to the name of the table being locked. This is only
|
|
4793 |
** used to generate an error message if the lock cannot be obtained.
|
|
4794 |
*/
|
|
4795 |
case OP_TableLock: { /* no-push */
|
|
4796 |
int p1 = pOp->p1;
|
|
4797 |
u8 isWriteLock = (p1<0);
|
|
4798 |
if( isWriteLock ){
|
|
4799 |
p1 = (-1*p1)-1;
|
|
4800 |
}
|
|
4801 |
assert( p1>=0 && p1<db->nDb );
|
|
4802 |
assert( (p->btreeMask & (1<<p1))!=0 );
|
|
4803 |
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
|
|
4804 |
if( rc==SQLITE_LOCKED ){
|
|
4805 |
const char *z = (const char *)pOp->p3;
|
|
4806 |
sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
|
|
4807 |
}
|
|
4808 |
break;
|
|
4809 |
}
|
|
4810 |
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
4811 |
|
|
4812 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4813 |
/* Opcode: VBegin * * P3
|
|
4814 |
**
|
|
4815 |
** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method
|
|
4816 |
** for that table.
|
|
4817 |
*/
|
|
4818 |
case OP_VBegin: { /* no-push */
|
|
4819 |
rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
|
|
4820 |
break;
|
|
4821 |
}
|
|
4822 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
4823 |
|
|
4824 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4825 |
/* Opcode: VCreate P1 * P3
|
|
4826 |
**
|
|
4827 |
** P3 is the name of a virtual table in database P1. Call the xCreate method
|
|
4828 |
** for that table.
|
|
4829 |
*/
|
|
4830 |
case OP_VCreate: { /* no-push */
|
|
4831 |
rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
|
|
4832 |
break;
|
|
4833 |
}
|
|
4834 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
4835 |
|
|
4836 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4837 |
/* Opcode: VDestroy P1 * P3
|
|
4838 |
**
|
|
4839 |
** P3 is the name of a virtual table in database P1. Call the xDestroy method
|
|
4840 |
** of that table.
|
|
4841 |
*/
|
|
4842 |
case OP_VDestroy: { /* no-push */
|
|
4843 |
p->inVtabMethod = 2;
|
|
4844 |
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
|
|
4845 |
p->inVtabMethod = 0;
|
|
4846 |
break;
|
|
4847 |
}
|
|
4848 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
4849 |
|
|
4850 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4851 |
/* Opcode: VOpen P1 * P3
|
|
4852 |
**
|
|
4853 |
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
4854 |
** P1 is a cursor number. This opcode opens a cursor to the virtual
|
|
4855 |
** table and stores that cursor in P1.
|
|
4856 |
*/
|
|
4857 |
case OP_VOpen: { /* no-push */
|
|
4858 |
Cursor *pCur = 0;
|
|
4859 |
sqlite3_vtab_cursor *pVtabCursor = 0;
|
|
4860 |
|
|
4861 |
sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
|
|
4862 |
sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
|
|
4863 |
|
|
4864 |
assert(pVtab && pModule);
|
|
4865 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
4866 |
rc = pModule->xOpen(pVtab, &pVtabCursor);
|
|
4867 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
4868 |
if( SQLITE_OK==rc ){
|
|
4869 |
/* Initialise sqlite3_vtab_cursor base class */
|
|
4870 |
pVtabCursor->pVtab = pVtab;
|
|
4871 |
|
|
4872 |
/* Initialise vdbe cursor object */
|
|
4873 |
pCur = allocateCursor(p, pOp->p1, -1);
|
|
4874 |
if( pCur ){
|
|
4875 |
pCur->pVtabCursor = pVtabCursor;
|
|
4876 |
pCur->pModule = pVtabCursor->pVtab->pModule;
|
|
4877 |
}else{
|
|
4878 |
db->mallocFailed = 1;
|
|
4879 |
pModule->xClose(pVtabCursor);
|
|
4880 |
}
|
|
4881 |
}
|
|
4882 |
break;
|
|
4883 |
}
|
|
4884 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
4885 |
|
|
4886 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4887 |
/* Opcode: VFilter P1 P2 P3
|
|
4888 |
**
|
|
4889 |
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
|
|
4890 |
** the filtered result set is empty.
|
|
4891 |
**
|
|
4892 |
** P3 is either NULL or a string that was generated by the xBestIndex
|
|
4893 |
** method of the module. The interpretation of the P3 string is left
|
|
4894 |
** to the module implementation.
|
|
4895 |
**
|
|
4896 |
** This opcode invokes the xFilter method on the virtual table specified
|
|
4897 |
** by P1. The integer query plan parameter to xFilter is the top of the
|
|
4898 |
** stack. Next down on the stack is the argc parameter. Beneath the
|
|
4899 |
** next of stack are argc additional parameters which are passed to
|
|
4900 |
** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
|
|
4901 |
** the stack) becomes argv[argc-1] when passed to xFilter.
|
|
4902 |
**
|
|
4903 |
** The integer query plan parameter, argc, and all argv stack values
|
|
4904 |
** are popped from the stack before this instruction completes.
|
|
4905 |
**
|
|
4906 |
** A jump is made to P2 if the result set after filtering would be
|
|
4907 |
** empty.
|
|
4908 |
*/
|
|
4909 |
case OP_VFilter: { /* no-push */
|
|
4910 |
int nArg;
|
|
4911 |
|
|
4912 |
const sqlite3_module *pModule;
|
|
4913 |
|
|
4914 |
Cursor *pCur = p->apCsr[pOp->p1];
|
|
4915 |
assert( pCur->pVtabCursor );
|
|
4916 |
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
4917 |
|
|
4918 |
/* Grab the index number and argc parameters off the top of the stack. */
|
|
4919 |
assert( (&pTos[-1])>=p->aStack );
|
|
4920 |
assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
|
|
4921 |
nArg = pTos[-1].u.i;
|
|
4922 |
|
|
4923 |
/* Invoke the xFilter method */
|
|
4924 |
{
|
|
4925 |
int res = 0;
|
|
4926 |
int i;
|
|
4927 |
Mem **apArg = p->apArg;
|
|
4928 |
for(i = 0; i<nArg; i++){
|
|
4929 |
apArg[i] = &pTos[i+1-2-nArg];
|
|
4930 |
storeTypeInfo(apArg[i], 0);
|
|
4931 |
}
|
|
4932 |
|
|
4933 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
4934 |
p->inVtabMethod = 1;
|
|
4935 |
rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
|
|
4936 |
p->inVtabMethod = 0;
|
|
4937 |
if( rc==SQLITE_OK ){
|
|
4938 |
res = pModule->xEof(pCur->pVtabCursor);
|
|
4939 |
}
|
|
4940 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
4941 |
|
|
4942 |
if( res ){
|
|
4943 |
pc = pOp->p2 - 1;
|
|
4944 |
}
|
|
4945 |
}
|
|
4946 |
|
|
4947 |
/* Pop the index number, argc value and parameters off the stack */
|
|
4948 |
popStack(&pTos, 2+nArg);
|
|
4949 |
break;
|
|
4950 |
}
|
|
4951 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
4952 |
|
|
4953 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4954 |
/* Opcode: VRowid P1 * *
|
|
4955 |
**
|
|
4956 |
** Push an integer onto the stack which is the rowid of
|
|
4957 |
** the virtual-table that the P1 cursor is pointing to.
|
|
4958 |
*/
|
|
4959 |
case OP_VRowid: {
|
|
4960 |
const sqlite3_module *pModule;
|
|
4961 |
|
|
4962 |
Cursor *pCur = p->apCsr[pOp->p1];
|
|
4963 |
assert( pCur->pVtabCursor );
|
|
4964 |
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
4965 |
if( pModule->xRowid==0 ){
|
|
4966 |
sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
|
|
4967 |
rc = SQLITE_ERROR;
|
|
4968 |
} else {
|
|
4969 |
sqlite_int64 iRow;
|
|
4970 |
|
|
4971 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
4972 |
rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
|
|
4973 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
4974 |
|
|
4975 |
pTos++;
|
|
4976 |
pTos->flags = MEM_Int;
|
|
4977 |
pTos->u.i = iRow;
|
|
4978 |
}
|
|
4979 |
|
|
4980 |
break;
|
|
4981 |
}
|
|
4982 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
4983 |
|
|
4984 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
4985 |
/* Opcode: VColumn P1 P2 *
|
|
4986 |
**
|
|
4987 |
** Push onto the stack the value of the P2-th column of
|
|
4988 |
** the row of the virtual-table that the P1 cursor is pointing to.
|
|
4989 |
*/
|
|
4990 |
case OP_VColumn: {
|
|
4991 |
const sqlite3_module *pModule;
|
|
4992 |
|
|
4993 |
Cursor *pCur = p->apCsr[pOp->p1];
|
|
4994 |
assert( pCur->pVtabCursor );
|
|
4995 |
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
4996 |
if( pModule->xColumn==0 ){
|
|
4997 |
sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
|
|
4998 |
rc = SQLITE_ERROR;
|
|
4999 |
} else {
|
|
5000 |
sqlite3_context sContext;
|
|
5001 |
memset(&sContext, 0, sizeof(sContext));
|
|
5002 |
sContext.s.flags = MEM_Null;
|
|
5003 |
sContext.s.db = db;
|
|
5004 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
5005 |
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
|
|
5006 |
|
|
5007 |
/* Copy the result of the function to the top of the stack. We
|
|
5008 |
** do this regardless of whether or not an error occured to ensure any
|
|
5009 |
** dynamic allocation in sContext.s (a Mem struct) is released.
|
|
5010 |
*/
|
|
5011 |
sqlite3VdbeChangeEncoding(&sContext.s, encoding);
|
|
5012 |
pTos++;
|
|
5013 |
pTos->flags = 0;
|
|
5014 |
sqlite3VdbeMemMove(pTos, &sContext.s);
|
|
5015 |
|
|
5016 |
if( sqlite3SafetyOn(db) ){
|
|
5017 |
goto abort_due_to_misuse;
|
|
5018 |
}
|
|
5019 |
if( sqlite3VdbeMemTooBig(pTos) ){
|
|
5020 |
goto too_big;
|
|
5021 |
}
|
|
5022 |
}
|
|
5023 |
|
|
5024 |
break;
|
|
5025 |
}
|
|
5026 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
5027 |
|
|
5028 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
5029 |
/* Opcode: VNext P1 P2 *
|
|
5030 |
**
|
|
5031 |
** Advance virtual table P1 to the next row in its result set and
|
|
5032 |
** jump to instruction P2. Or, if the virtual table has reached
|
|
5033 |
** the end of its result set, then fall through to the next instruction.
|
|
5034 |
*/
|
|
5035 |
case OP_VNext: { /* no-push */
|
|
5036 |
const sqlite3_module *pModule;
|
|
5037 |
int res = 0;
|
|
5038 |
|
|
5039 |
Cursor *pCur = p->apCsr[pOp->p1];
|
|
5040 |
assert( pCur->pVtabCursor );
|
|
5041 |
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
5042 |
if( pModule->xNext==0 ){
|
|
5043 |
sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
|
|
5044 |
rc = SQLITE_ERROR;
|
|
5045 |
} else {
|
|
5046 |
/* Invoke the xNext() method of the module. There is no way for the
|
|
5047 |
** underlying implementation to return an error if one occurs during
|
|
5048 |
** xNext(). Instead, if an error occurs, true is returned (indicating that
|
|
5049 |
** data is available) and the error code returned when xColumn or
|
|
5050 |
** some other method is next invoked on the save virtual table cursor.
|
|
5051 |
*/
|
|
5052 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
5053 |
p->inVtabMethod = 1;
|
|
5054 |
rc = pModule->xNext(pCur->pVtabCursor);
|
|
5055 |
p->inVtabMethod = 0;
|
|
5056 |
if( rc==SQLITE_OK ){
|
|
5057 |
res = pModule->xEof(pCur->pVtabCursor);
|
|
5058 |
}
|
|
5059 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
5060 |
|
|
5061 |
if( !res ){
|
|
5062 |
/* If there is data, jump to P2 */
|
|
5063 |
pc = pOp->p2 - 1;
|
|
5064 |
}
|
|
5065 |
}
|
|
5066 |
|
|
5067 |
break;
|
|
5068 |
}
|
|
5069 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
5070 |
|
|
5071 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
5072 |
/* Opcode: VRename * * P3
|
|
5073 |
**
|
|
5074 |
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
5075 |
** This opcode invokes the corresponding xRename method. The value
|
|
5076 |
** on the top of the stack is popped and passed as the zName argument
|
|
5077 |
** to the xRename method.
|
|
5078 |
*/
|
|
5079 |
case OP_VRename: { /* no-push */
|
|
5080 |
sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
|
|
5081 |
assert( pVtab->pModule->xRename );
|
|
5082 |
|
|
5083 |
Stringify(pTos, encoding);
|
|
5084 |
|
|
5085 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
5086 |
sqlite3VtabLock(pVtab);
|
|
5087 |
rc = pVtab->pModule->xRename(pVtab, pTos->z);
|
|
5088 |
sqlite3VtabUnlock(db, pVtab);
|
|
5089 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
5090 |
|
|
5091 |
popStack(&pTos, 1);
|
|
5092 |
break;
|
|
5093 |
}
|
|
5094 |
#endif
|
|
5095 |
|
|
5096 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
5097 |
/* Opcode: VUpdate P1 P2 P3
|
|
5098 |
**
|
|
5099 |
** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
5100 |
** This opcode invokes the corresponding xUpdate method. P2 values
|
|
5101 |
** are taken from the stack to pass to the xUpdate invocation. The
|
|
5102 |
** value on the top of the stack corresponds to the p2th element
|
|
5103 |
** of the argv array passed to xUpdate.
|
|
5104 |
**
|
|
5105 |
** The xUpdate method will do a DELETE or an INSERT or both.
|
|
5106 |
** The argv[0] element (which corresponds to the P2-th element down
|
|
5107 |
** on the stack) is the rowid of a row to delete. If argv[0] is
|
|
5108 |
** NULL then no deletion occurs. The argv[1] element is the rowid
|
|
5109 |
** of the new row. This can be NULL to have the virtual table
|
|
5110 |
** select the new rowid for itself. The higher elements in the
|
|
5111 |
** stack are the values of columns in the new row.
|
|
5112 |
**
|
|
5113 |
** If P2==1 then no insert is performed. argv[0] is the rowid of
|
|
5114 |
** a row to delete.
|
|
5115 |
**
|
|
5116 |
** P1 is a boolean flag. If it is set to true and the xUpdate call
|
|
5117 |
** is successful, then the value returned by sqlite3_last_insert_rowid()
|
|
5118 |
** is set to the value of the rowid for the row just inserted.
|
|
5119 |
*/
|
|
5120 |
case OP_VUpdate: { /* no-push */
|
|
5121 |
sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
|
|
5122 |
sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
|
|
5123 |
int nArg = pOp->p2;
|
|
5124 |
assert( pOp->p3type==P3_VTAB );
|
|
5125 |
if( pModule->xUpdate==0 ){
|
|
5126 |
sqlite3SetString(&p->zErrMsg, "read-only table", 0);
|
|
5127 |
rc = SQLITE_ERROR;
|
|
5128 |
}else{
|
|
5129 |
int i;
|
|
5130 |
sqlite_int64 rowid;
|
|
5131 |
Mem **apArg = p->apArg;
|
|
5132 |
Mem *pX = &pTos[1-nArg];
|
|
5133 |
for(i = 0; i<nArg; i++, pX++){
|
|
5134 |
storeTypeInfo(pX, 0);
|
|
5135 |
apArg[i] = pX;
|
|
5136 |
}
|
|
5137 |
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
5138 |
sqlite3VtabLock(pVtab);
|
|
5139 |
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
|
|
5140 |
sqlite3VtabUnlock(db, pVtab);
|
|
5141 |
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
5142 |
if( pOp->p1 && rc==SQLITE_OK ){
|
|
5143 |
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
|
|
5144 |
db->lastRowid = rowid;
|
|
5145 |
}
|
|
5146 |
}
|
|
5147 |
popStack(&pTos, nArg);
|
|
5148 |
break;
|
|
5149 |
}
|
|
5150 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
5151 |
|
|
5152 |
/* An other opcode is illegal...
|
|
5153 |
*/
|
|
5154 |
default: {
|
|
5155 |
assert( 0 );
|
|
5156 |
break;
|
|
5157 |
}
|
|
5158 |
|
|
5159 |
/*****************************************************************************
|
|
5160 |
** The cases of the switch statement above this line should all be indented
|
|
5161 |
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
5162 |
** readability. From this point on down, the normal indentation rules are
|
|
5163 |
** restored.
|
|
5164 |
*****************************************************************************/
|
|
5165 |
}
|
|
5166 |
|
|
5167 |
/* Make sure the stack limit was not exceeded */
|
|
5168 |
assert( pTos<=pStackLimit );
|
|
5169 |
|
|
5170 |
#ifdef VDBE_PROFILE
|
|
5171 |
{
|
|
5172 |
long long elapse = hwtime() - start;
|
|
5173 |
pOp->cycles += elapse;
|
|
5174 |
pOp->cnt++;
|
|
5175 |
#if 0
|
|
5176 |
fprintf(stdout, "%10lld ", elapse);
|
|
5177 |
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
|
|
5178 |
#endif
|
|
5179 |
}
|
|
5180 |
#endif
|
|
5181 |
|
|
5182 |
#ifdef SQLITE_TEST
|
|
5183 |
/* Keep track of the size of the largest BLOB or STR that has appeared
|
|
5184 |
** on the top of the VDBE stack.
|
|
5185 |
*/
|
|
5186 |
if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0
|
|
5187 |
&& pTos->n>sqlite3_max_blobsize ){
|
|
5188 |
sqlite3_max_blobsize = pTos->n;
|
|
5189 |
}
|
|
5190 |
#endif
|
|
5191 |
|
|
5192 |
/* The following code adds nothing to the actual functionality
|
|
5193 |
** of the program. It is only here for testing and debugging.
|
|
5194 |
** On the other hand, it does burn CPU cycles every time through
|
|
5195 |
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
5196 |
*/
|
|
5197 |
#ifndef NDEBUG
|
|
5198 |
/* Sanity checking on the top element of the stack. If the previous
|
|
5199 |
** instruction was VNoChange, then the flags field of the top
|
|
5200 |
** of the stack is set to 0. This is technically invalid for a memory
|
|
5201 |
** cell, so avoid calling MemSanity() in this case.
|
|
5202 |
*/
|
|
5203 |
if( pTos>=p->aStack && pTos->flags ){
|
|
5204 |
assert( pTos->db==db );
|
|
5205 |
sqlite3VdbeMemSanity(pTos);
|
|
5206 |
assert( !sqlite3VdbeMemTooBig(pTos) );
|
|
5207 |
}
|
|
5208 |
assert( pc>=-1 && pc<p->nOp );
|
|
5209 |
|
|
5210 |
#ifdef SQLITE_DEBUG
|
|
5211 |
/* Code for tracing the vdbe stack. */
|
|
5212 |
if( p->trace && pTos>=p->aStack ){
|
|
5213 |
int i;
|
|
5214 |
fprintf(p->trace, "Stack:");
|
|
5215 |
for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
|
|
5216 |
if( pTos[i].flags & MEM_Null ){
|
|
5217 |
fprintf(p->trace, " NULL");
|
|
5218 |
}else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
5219 |
fprintf(p->trace, " si:%lld", pTos[i].u.i);
|
|
5220 |
}else if( pTos[i].flags & MEM_Int ){
|
|
5221 |
fprintf(p->trace, " i:%lld", pTos[i].u.i);
|
|
5222 |
}else if( pTos[i].flags & MEM_Real ){
|
|
5223 |
fprintf(p->trace, " r:%g", pTos[i].r);
|
|
5224 |
}else{
|
|
5225 |
char zBuf[200];
|
|
5226 |
sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
|
|
5227 |
fprintf(p->trace, " ");
|
|
5228 |
fprintf(p->trace, "%s", zBuf);
|
|
5229 |
}
|
|
5230 |
}
|
|
5231 |
if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
|
|
5232 |
fprintf(p->trace,"\n");
|
|
5233 |
}
|
|
5234 |
#endif /* SQLITE_DEBUG */
|
|
5235 |
#endif /* NDEBUG */
|
|
5236 |
} /* The end of the for(;;) loop the loops through opcodes */
|
|
5237 |
|
|
5238 |
/* If we reach this point, it means that execution is finished.
|
|
5239 |
*/
|
|
5240 |
vdbe_halt:
|
|
5241 |
if( rc ){
|
|
5242 |
p->rc = rc;
|
|
5243 |
rc = SQLITE_ERROR;
|
|
5244 |
}else{
|
|
5245 |
rc = SQLITE_DONE;
|
|
5246 |
}
|
|
5247 |
sqlite3VdbeHalt(p);
|
|
5248 |
p->pTos = pTos;
|
|
5249 |
|
|
5250 |
/* This is the only way out of this procedure. We have to
|
|
5251 |
** release the mutexes on btrees that were acquired at the
|
|
5252 |
** top. */
|
|
5253 |
vdbe_return:
|
|
5254 |
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
5255 |
return rc;
|
|
5256 |
|
|
5257 |
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
|
|
5258 |
** is encountered.
|
|
5259 |
*/
|
|
5260 |
too_big:
|
|
5261 |
sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
|
|
5262 |
rc = SQLITE_TOOBIG;
|
|
5263 |
goto vdbe_halt;
|
|
5264 |
|
|
5265 |
/* Jump to here if a malloc() fails.
|
|
5266 |
*/
|
|
5267 |
no_mem:
|
|
5268 |
db->mallocFailed = 1;
|
|
5269 |
sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
|
|
5270 |
rc = SQLITE_NOMEM;
|
|
5271 |
goto vdbe_halt;
|
|
5272 |
|
|
5273 |
/* Jump to here for an SQLITE_MISUSE error.
|
|
5274 |
*/
|
|
5275 |
abort_due_to_misuse:
|
|
5276 |
rc = SQLITE_MISUSE;
|
|
5277 |
/* Fall thru into abort_due_to_error */
|
|
5278 |
|
|
5279 |
/* Jump to here for any other kind of fatal error. The "rc" variable
|
|
5280 |
** should hold the error number.
|
|
5281 |
*/
|
|
5282 |
abort_due_to_error:
|
|
5283 |
if( p->zErrMsg==0 ){
|
|
5284 |
if( db->mallocFailed ) rc = SQLITE_NOMEM;
|
|
5285 |
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
5286 |
}
|
|
5287 |
goto vdbe_halt;
|
|
5288 |
|
|
5289 |
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
|
5290 |
** flag.
|
|
5291 |
*/
|
|
5292 |
abort_due_to_interrupt:
|
|
5293 |
assert( db->u1.isInterrupted );
|
|
5294 |
if( db->magic!=SQLITE_MAGIC_BUSY ){
|
|
5295 |
rc = SQLITE_MISUSE;
|
|
5296 |
}else{
|
|
5297 |
rc = SQLITE_INTERRUPT;
|
|
5298 |
}
|
|
5299 |
p->rc = rc;
|
|
5300 |
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
5301 |
goto vdbe_halt;
|
|
5302 |
}
|