2
|
1 |
/*
|
|
2 |
** 2004 May 26
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
**
|
|
13 |
** This file contains code use to implement APIs that are part of the
|
|
14 |
** VDBE.
|
|
15 |
*/
|
|
16 |
#include "sqliteInt.h"
|
|
17 |
#include "vdbeInt.h"
|
|
18 |
|
|
19 |
/*
|
|
20 |
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
|
21 |
** to be recompiled. A statement needs to be recompiled whenever the
|
|
22 |
** execution environment changes in a way that would alter the program
|
|
23 |
** that sqlite3_prepare() generates. For example, if new functions or
|
|
24 |
** collating sequences are registered or if an authorizer function is
|
|
25 |
** added or changed.
|
|
26 |
*/
|
|
27 |
EXPORT_C int sqlite3_expired(sqlite3_stmt *pStmt){
|
|
28 |
Vdbe *p = (Vdbe*)pStmt;
|
|
29 |
return p==0 || p->expired;
|
|
30 |
}
|
|
31 |
|
|
32 |
/*
|
|
33 |
** The following routine destroys a virtual machine that is created by
|
|
34 |
** the sqlite3_compile() routine. The integer returned is an SQLITE_
|
|
35 |
** success/failure code that describes the result of executing the virtual
|
|
36 |
** machine.
|
|
37 |
**
|
|
38 |
** This routine sets the error code and string returned by
|
|
39 |
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
40 |
*/
|
|
41 |
EXPORT_C int sqlite3_finalize(sqlite3_stmt *pStmt){
|
|
42 |
int rc;
|
|
43 |
if( pStmt==0 ){
|
|
44 |
rc = SQLITE_OK;
|
|
45 |
}else{
|
|
46 |
Vdbe *v = (Vdbe*)pStmt;
|
|
47 |
sqlite3_mutex *mutex = v->db->mutex;
|
|
48 |
sqlite3_mutex_enter(mutex);
|
|
49 |
rc = sqlite3VdbeFinalize(v);
|
|
50 |
sqlite3_mutex_leave(mutex);
|
|
51 |
}
|
|
52 |
return rc;
|
|
53 |
}
|
|
54 |
|
|
55 |
/*
|
|
56 |
** Terminate the current execution of an SQL statement and reset it
|
|
57 |
** back to its starting state so that it can be reused. A success code from
|
|
58 |
** the prior execution is returned.
|
|
59 |
**
|
|
60 |
** This routine sets the error code and string returned by
|
|
61 |
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
62 |
*/
|
|
63 |
EXPORT_C int sqlite3_reset(sqlite3_stmt *pStmt){
|
|
64 |
int rc;
|
|
65 |
if( pStmt==0 ){
|
|
66 |
rc = SQLITE_OK;
|
|
67 |
}else{
|
|
68 |
Vdbe *v = (Vdbe*)pStmt;
|
|
69 |
sqlite3_mutex_enter(v->db->mutex);
|
|
70 |
rc = sqlite3VdbeReset(v);
|
|
71 |
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
|
|
72 |
assert( (rc & (v->db->errMask))==rc );
|
|
73 |
sqlite3_mutex_leave(v->db->mutex);
|
|
74 |
}
|
|
75 |
return rc;
|
|
76 |
}
|
|
77 |
|
|
78 |
/*
|
|
79 |
** Set all the parameters in the compiled SQL statement to NULL.
|
|
80 |
*/
|
|
81 |
EXPORT_C int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
|
82 |
int i;
|
|
83 |
int rc = SQLITE_OK;
|
|
84 |
Vdbe *v = (Vdbe*)pStmt;
|
|
85 |
sqlite3_mutex_enter(v->db->mutex);
|
|
86 |
for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
|
|
87 |
rc = sqlite3_bind_null(pStmt, i);
|
|
88 |
}
|
|
89 |
sqlite3_mutex_leave(v->db->mutex);
|
|
90 |
return rc;
|
|
91 |
}
|
|
92 |
|
|
93 |
|
|
94 |
/**************************** sqlite3_value_ *******************************
|
|
95 |
** The following routines extract information from a Mem or sqlite3_value
|
|
96 |
** structure.
|
|
97 |
*/
|
|
98 |
EXPORT_C const void *sqlite3_value_blob(sqlite3_value *pVal){
|
|
99 |
Mem *p = (Mem*)pVal;
|
|
100 |
if( p->flags & (MEM_Blob|MEM_Str) ){
|
|
101 |
sqlite3VdbeMemExpandBlob(p);
|
|
102 |
p->flags &= ~MEM_Str;
|
|
103 |
p->flags |= MEM_Blob;
|
|
104 |
return p->z;
|
|
105 |
}else{
|
|
106 |
return sqlite3_value_text(pVal);
|
|
107 |
}
|
|
108 |
}
|
|
109 |
EXPORT_C int sqlite3_value_bytes(sqlite3_value *pVal){
|
|
110 |
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
|
|
111 |
}
|
|
112 |
EXPORT_C int sqlite3_value_bytes16(sqlite3_value *pVal){
|
|
113 |
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
|
|
114 |
}
|
|
115 |
EXPORT_C double sqlite3_value_double(sqlite3_value *pVal){
|
|
116 |
return sqlite3VdbeRealValue((Mem*)pVal);
|
|
117 |
}
|
|
118 |
EXPORT_C int sqlite3_value_int(sqlite3_value *pVal){
|
|
119 |
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
120 |
}
|
|
121 |
EXPORT_C sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
|
122 |
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
123 |
}
|
|
124 |
EXPORT_C const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
|
|
125 |
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
|
|
126 |
}
|
|
127 |
#ifndef SQLITE_OMIT_UTF16
|
|
128 |
EXPORT_C const void *sqlite3_value_text16(sqlite3_value* pVal){
|
|
129 |
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
|
|
130 |
}
|
|
131 |
EXPORT_C const void *sqlite3_value_text16be(sqlite3_value *pVal){
|
|
132 |
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
|
|
133 |
}
|
|
134 |
EXPORT_C const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
|
135 |
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
|
|
136 |
}
|
|
137 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
138 |
EXPORT_C int sqlite3_value_type(sqlite3_value* pVal){
|
|
139 |
return pVal->type;
|
|
140 |
}
|
|
141 |
|
|
142 |
/**************************** sqlite3_result_ *******************************
|
|
143 |
** The following routines are used by user-defined functions to specify
|
|
144 |
** the function result.
|
|
145 |
*/
|
|
146 |
EXPORT_C void sqlite3_result_blob(
|
|
147 |
sqlite3_context *pCtx,
|
|
148 |
const void *z,
|
|
149 |
int n,
|
|
150 |
void (*xDel)(void *)
|
|
151 |
){
|
|
152 |
assert( n>=0 );
|
|
153 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
154 |
sqlite3VdbeMemSetStr(&pCtx->s, (const char*)z, n, 0, xDel);
|
|
155 |
}
|
|
156 |
EXPORT_C void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
|
157 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
158 |
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
|
|
159 |
}
|
|
160 |
EXPORT_C void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
|
161 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
162 |
pCtx->isError = 1;
|
|
163 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
|
164 |
}
|
|
165 |
#ifndef SQLITE_OMIT_UTF16
|
|
166 |
EXPORT_C void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
|
167 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
168 |
pCtx->isError = 1;
|
|
169 |
sqlite3VdbeMemSetStr(&pCtx->s, (const char*)z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
|
170 |
}
|
|
171 |
#endif
|
|
172 |
EXPORT_C void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
|
173 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
174 |
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
|
|
175 |
}
|
|
176 |
EXPORT_C void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
|
177 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
178 |
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
|
|
179 |
}
|
|
180 |
EXPORT_C void sqlite3_result_null(sqlite3_context *pCtx){
|
|
181 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
182 |
sqlite3VdbeMemSetNull(&pCtx->s);
|
|
183 |
}
|
|
184 |
EXPORT_C void sqlite3_result_text(
|
|
185 |
sqlite3_context *pCtx,
|
|
186 |
const char *z,
|
|
187 |
int n,
|
|
188 |
void (*xDel)(void *)
|
|
189 |
){
|
|
190 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
191 |
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
|
|
192 |
}
|
|
193 |
#ifndef SQLITE_OMIT_UTF16
|
|
194 |
EXPORT_C void sqlite3_result_text16(
|
|
195 |
sqlite3_context *pCtx,
|
|
196 |
const void *z,
|
|
197 |
int n,
|
|
198 |
void (*xDel)(void *)
|
|
199 |
){
|
|
200 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
201 |
sqlite3VdbeMemSetStr(&pCtx->s, (const char*)z, n, SQLITE_UTF16NATIVE, xDel);
|
|
202 |
}
|
|
203 |
EXPORT_C void sqlite3_result_text16be(
|
|
204 |
sqlite3_context *pCtx,
|
|
205 |
const void *z,
|
|
206 |
int n,
|
|
207 |
void (*xDel)(void *)
|
|
208 |
){
|
|
209 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
210 |
sqlite3VdbeMemSetStr(&pCtx->s, (const char*)z, n, SQLITE_UTF16BE, xDel);
|
|
211 |
}
|
|
212 |
EXPORT_C void sqlite3_result_text16le(
|
|
213 |
sqlite3_context *pCtx,
|
|
214 |
const void *z,
|
|
215 |
int n,
|
|
216 |
void (*xDel)(void *)
|
|
217 |
){
|
|
218 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
219 |
sqlite3VdbeMemSetStr(&pCtx->s, (const char*)z, n, SQLITE_UTF16LE, xDel);
|
|
220 |
}
|
|
221 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
222 |
EXPORT_C void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
|
223 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
224 |
sqlite3VdbeMemCopy(&pCtx->s, pValue);
|
|
225 |
}
|
|
226 |
EXPORT_C void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
|
|
227 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
228 |
sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
|
|
229 |
}
|
|
230 |
|
|
231 |
/* Force an SQLITE_TOOBIG error. */
|
|
232 |
EXPORT_C void sqlite3_result_error_toobig(sqlite3_context *pCtx){
|
|
233 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
234 |
sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
|
|
235 |
}
|
|
236 |
|
|
237 |
/* An SQLITE_NOMEM error. */
|
|
238 |
EXPORT_C void sqlite3_result_error_nomem(sqlite3_context *pCtx){
|
|
239 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
240 |
sqlite3VdbeMemSetNull(&pCtx->s);
|
|
241 |
pCtx->isError = 1;
|
|
242 |
pCtx->s.db->mallocFailed = 1;
|
|
243 |
}
|
|
244 |
|
|
245 |
/*
|
|
246 |
** Execute the statement pStmt, either until a row of data is ready, the
|
|
247 |
** statement is completely executed or an error occurs.
|
|
248 |
**
|
|
249 |
** This routine implements the bulk of the logic behind the sqlite_step()
|
|
250 |
** API. The only thing omitted is the automatic recompile if a
|
|
251 |
** schema change has occurred. That detail is handled by the
|
|
252 |
** outer sqlite3_step() wrapper procedure.
|
|
253 |
*/
|
|
254 |
static int sqlite3Step(Vdbe *p){
|
|
255 |
sqlite3 *db;
|
|
256 |
int rc;
|
|
257 |
|
|
258 |
assert(p);
|
|
259 |
if( p->magic!=VDBE_MAGIC_RUN ){
|
|
260 |
return SQLITE_MISUSE;
|
|
261 |
}
|
|
262 |
|
|
263 |
/* Assert that malloc() has not failed */
|
|
264 |
db = p->db;
|
|
265 |
assert( !db->mallocFailed );
|
|
266 |
|
|
267 |
if( p->aborted ){
|
|
268 |
return SQLITE_ABORT;
|
|
269 |
}
|
|
270 |
if( p->pc<=0 && p->expired ){
|
|
271 |
if( p->rc==SQLITE_OK ){
|
|
272 |
p->rc = SQLITE_SCHEMA;
|
|
273 |
}
|
|
274 |
rc = SQLITE_ERROR;
|
|
275 |
goto end_of_step;
|
|
276 |
}
|
|
277 |
if( sqlite3SafetyOn(db) ){
|
|
278 |
p->rc = SQLITE_MISUSE;
|
|
279 |
return SQLITE_MISUSE;
|
|
280 |
}
|
|
281 |
if( p->pc<0 ){
|
|
282 |
/* If there are no other statements currently running, then
|
|
283 |
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
|
|
284 |
** from interrupting a statement that has not yet started.
|
|
285 |
*/
|
|
286 |
if( db->activeVdbeCnt==0 ){
|
|
287 |
db->u1.isInterrupted = 0;
|
|
288 |
}
|
|
289 |
|
|
290 |
#ifndef SQLITE_OMIT_TRACE
|
|
291 |
/* Invoke the trace callback if there is one
|
|
292 |
*/
|
|
293 |
if( db->xTrace && !db->init.busy ){
|
|
294 |
assert( p->nOp>0 );
|
|
295 |
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
|
296 |
assert( p->aOp[p->nOp-1].p3!=0 );
|
|
297 |
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
|
298 |
sqlite3SafetyOff(db);
|
|
299 |
db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
|
|
300 |
if( sqlite3SafetyOn(db) ){
|
|
301 |
p->rc = SQLITE_MISUSE;
|
|
302 |
return SQLITE_MISUSE;
|
|
303 |
}
|
|
304 |
}
|
|
305 |
if( db->xProfile && !db->init.busy ){
|
|
306 |
double rNow;
|
|
307 |
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
|
308 |
p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
|
|
309 |
}
|
|
310 |
#endif
|
|
311 |
|
|
312 |
/* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
|
|
313 |
** on in debugging mode.
|
|
314 |
*/
|
|
315 |
#ifdef SQLITE_DEBUG
|
|
316 |
if( (db->flags & SQLITE_SqlTrace)!=0 ){
|
|
317 |
sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
|
|
318 |
}
|
|
319 |
#endif /* SQLITE_DEBUG */
|
|
320 |
|
|
321 |
db->activeVdbeCnt++;
|
|
322 |
p->pc = 0;
|
|
323 |
}
|
|
324 |
#ifndef SQLITE_OMIT_EXPLAIN
|
|
325 |
if( p->explain ){
|
|
326 |
rc = sqlite3VdbeList(p);
|
|
327 |
}else
|
|
328 |
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
329 |
{
|
|
330 |
rc = sqlite3VdbeExec(p);
|
|
331 |
}
|
|
332 |
|
|
333 |
if( sqlite3SafetyOff(db) ){
|
|
334 |
rc = SQLITE_MISUSE;
|
|
335 |
}
|
|
336 |
|
|
337 |
#ifndef SQLITE_OMIT_TRACE
|
|
338 |
/* Invoke the profile callback if there is one
|
|
339 |
*/
|
|
340 |
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
|
|
341 |
double rNow;
|
|
342 |
u64 elapseTime;
|
|
343 |
|
|
344 |
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
|
345 |
elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
|
|
346 |
assert( p->nOp>0 );
|
|
347 |
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
|
348 |
assert( p->aOp[p->nOp-1].p3!=0 );
|
|
349 |
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
|
350 |
db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
|
|
351 |
}
|
|
352 |
#endif
|
|
353 |
|
|
354 |
sqlite3Error(p->db, rc, 0);
|
|
355 |
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
356 |
end_of_step:
|
|
357 |
assert( (rc&0xff)==rc );
|
|
358 |
if( p->zSql && (rc&0xff)<SQLITE_ROW ){
|
|
359 |
/* This behavior occurs if sqlite3_prepare_v2() was used to build
|
|
360 |
** the prepared statement. Return error codes directly */
|
|
361 |
sqlite3Error(p->db, p->rc, 0);
|
|
362 |
return p->rc;
|
|
363 |
}else{
|
|
364 |
/* This is for legacy sqlite3_prepare() builds and when the code
|
|
365 |
** is SQLITE_ROW or SQLITE_DONE */
|
|
366 |
return rc;
|
|
367 |
}
|
|
368 |
}
|
|
369 |
|
|
370 |
/*
|
|
371 |
** This is the top-level implementation of sqlite3_step(). Call
|
|
372 |
** sqlite3Step() to do most of the work. If a schema error occurs,
|
|
373 |
** call sqlite3Reprepare() and try again.
|
|
374 |
*/
|
|
375 |
#ifdef SQLITE_OMIT_PARSER
|
|
376 |
int sqlite3_step(sqlite3_stmt *pStmt){
|
|
377 |
int rc = SQLITE_MISUSE;
|
|
378 |
if( pStmt ){
|
|
379 |
Vdbe *v;
|
|
380 |
v = (Vdbe*)pStmt;
|
|
381 |
sqlite3_mutex_enter(v->db->mutex);
|
|
382 |
rc = sqlite3Step(v);
|
|
383 |
sqlite3_mutex_leave(v->db->mutex);
|
|
384 |
}
|
|
385 |
return rc;
|
|
386 |
}
|
|
387 |
#else
|
|
388 |
EXPORT_C int sqlite3_step(sqlite3_stmt *pStmt){
|
|
389 |
int rc = SQLITE_MISUSE;
|
|
390 |
if( pStmt ){
|
|
391 |
int cnt = 0;
|
|
392 |
Vdbe *v = (Vdbe*)pStmt;
|
|
393 |
sqlite3 *db = v->db;
|
|
394 |
sqlite3_mutex_enter(db->mutex);
|
|
395 |
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
|
|
396 |
&& cnt++ < 5
|
|
397 |
&& sqlite3Reprepare(v) ){
|
|
398 |
sqlite3_reset(pStmt);
|
|
399 |
v->expired = 0;
|
|
400 |
}
|
|
401 |
if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
|
|
402 |
/* This case occurs after failing to recompile an sql statement.
|
|
403 |
** The error message from the SQL compiler has already been loaded
|
|
404 |
** into the database handle. This block copies the error message
|
|
405 |
** from the database handle into the statement and sets the statement
|
|
406 |
** program counter to 0 to ensure that when the statement is
|
|
407 |
** finalized or reset the parser error message is available via
|
|
408 |
** sqlite3_errmsg() and sqlite3_errcode().
|
|
409 |
*/
|
|
410 |
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
|
|
411 |
sqlite3_free(v->zErrMsg);
|
|
412 |
if( !db->mallocFailed ){
|
|
413 |
v->zErrMsg = sqlite3DbStrDup(db, zErr);
|
|
414 |
} else {
|
|
415 |
v->zErrMsg = 0;
|
|
416 |
v->rc = SQLITE_NOMEM;
|
|
417 |
}
|
|
418 |
}
|
|
419 |
rc = sqlite3ApiExit(db, rc);
|
|
420 |
sqlite3_mutex_leave(db->mutex);
|
|
421 |
}
|
|
422 |
return rc;
|
|
423 |
}
|
|
424 |
#endif
|
|
425 |
|
|
426 |
/*
|
|
427 |
** Extract the user data from a sqlite3_context structure and return a
|
|
428 |
** pointer to it.
|
|
429 |
*/
|
|
430 |
EXPORT_C void *sqlite3_user_data(sqlite3_context *p){
|
|
431 |
assert( p && p->pFunc );
|
|
432 |
return p->pFunc->pUserData;
|
|
433 |
}
|
|
434 |
|
|
435 |
/*
|
|
436 |
** The following is the implementation of an SQL function that always
|
|
437 |
** fails with an error message stating that the function is used in the
|
|
438 |
** wrong context. The sqlite3_overload_function() API might construct
|
|
439 |
** SQL function that use this routine so that the functions will exist
|
|
440 |
** for name resolution but are actually overloaded by the xFindFunction
|
|
441 |
** method of virtual tables.
|
|
442 |
*/
|
|
443 |
void sqlite3InvalidFunction(
|
|
444 |
sqlite3_context *context, /* The function calling context */
|
|
445 |
int argc, /* Number of arguments to the function */
|
|
446 |
sqlite3_value **argv /* Value of each argument */
|
|
447 |
){
|
|
448 |
const char *zName = context->pFunc->zName;
|
|
449 |
char *zErr;
|
|
450 |
zErr = sqlite3MPrintf(0,
|
|
451 |
"unable to use function %s in the requested context", zName);
|
|
452 |
sqlite3_result_error(context, zErr, -1);
|
|
453 |
sqlite3_free(zErr);
|
|
454 |
}
|
|
455 |
|
|
456 |
/*
|
|
457 |
** Allocate or return the aggregate context for a user function. A new
|
|
458 |
** context is allocated on the first call. Subsequent calls return the
|
|
459 |
** same context that was returned on prior calls.
|
|
460 |
*/
|
|
461 |
EXPORT_C void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
|
462 |
Mem *pMem;
|
|
463 |
assert( p && p->pFunc && p->pFunc->xStep );
|
|
464 |
assert( sqlite3_mutex_held(p->s.db->mutex) );
|
|
465 |
pMem = p->pMem;
|
|
466 |
if( (pMem->flags & MEM_Agg)==0 ){
|
|
467 |
if( nByte==0 ){
|
|
468 |
assert( pMem->flags==MEM_Null );
|
|
469 |
pMem->z = 0;
|
|
470 |
}else{
|
|
471 |
pMem->flags = MEM_Agg;
|
|
472 |
pMem->xDel = sqlite3_free;
|
|
473 |
pMem->u.pDef = p->pFunc;
|
|
474 |
pMem->z = (char*)sqlite3DbMallocZero(p->s.db, nByte);
|
|
475 |
}
|
|
476 |
}
|
|
477 |
return (void*)pMem->z;
|
|
478 |
}
|
|
479 |
|
|
480 |
/*
|
|
481 |
** Return the auxilary data pointer, if any, for the iArg'th argument to
|
|
482 |
** the user-function defined by pCtx.
|
|
483 |
*/
|
|
484 |
EXPORT_C void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
|
485 |
VdbeFunc *pVdbeFunc;
|
|
486 |
|
|
487 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
488 |
pVdbeFunc = pCtx->pVdbeFunc;
|
|
489 |
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
|
|
490 |
return 0;
|
|
491 |
}
|
|
492 |
return pVdbeFunc->apAux[iArg].pAux;
|
|
493 |
}
|
|
494 |
|
|
495 |
/*
|
|
496 |
** Set the auxilary data pointer and delete function, for the iArg'th
|
|
497 |
** argument to the user-function defined by pCtx. Any previous value is
|
|
498 |
** deleted by calling the delete function specified when it was set.
|
|
499 |
*/
|
|
500 |
EXPORT_C void sqlite3_set_auxdata(
|
|
501 |
sqlite3_context *pCtx,
|
|
502 |
int iArg,
|
|
503 |
void *pAux,
|
|
504 |
void (*xDelete)(void*)
|
|
505 |
){
|
|
506 |
VdbeFunc::AuxData *pAuxData;
|
|
507 |
VdbeFunc *pVdbeFunc;
|
|
508 |
if( iArg<0 ) goto failed;
|
|
509 |
|
|
510 |
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
511 |
pVdbeFunc = pCtx->pVdbeFunc;
|
|
512 |
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
|
|
513 |
int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
|
|
514 |
int nMalloc = sizeof(VdbeFunc) + sizeof(VdbeFunc::AuxData)*iArg;
|
|
515 |
pVdbeFunc = (VdbeFunc*)sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
|
|
516 |
if( !pVdbeFunc ){
|
|
517 |
goto failed;
|
|
518 |
}
|
|
519 |
pCtx->pVdbeFunc = pVdbeFunc;
|
|
520 |
memset(&pVdbeFunc->apAux[nAux], 0, sizeof(VdbeFunc::AuxData)*(iArg+1-nAux));
|
|
521 |
pVdbeFunc->nAux = iArg+1;
|
|
522 |
pVdbeFunc->pFunc = pCtx->pFunc;
|
|
523 |
}
|
|
524 |
|
|
525 |
pAuxData = &pVdbeFunc->apAux[iArg];
|
|
526 |
if( pAuxData->pAux && pAuxData->xDelete ){
|
|
527 |
pAuxData->xDelete(pAuxData->pAux);
|
|
528 |
}
|
|
529 |
pAuxData->pAux = pAux;
|
|
530 |
pAuxData->xDelete = xDelete;
|
|
531 |
return;
|
|
532 |
|
|
533 |
failed:
|
|
534 |
if( xDelete ){
|
|
535 |
xDelete(pAux);
|
|
536 |
}
|
|
537 |
}
|
|
538 |
|
|
539 |
/*
|
|
540 |
** Return the number of times the Step function of a aggregate has been
|
|
541 |
** called.
|
|
542 |
**
|
|
543 |
** This function is deprecated. Do not use it for new code. It is
|
|
544 |
** provide only to avoid breaking legacy code. New aggregate function
|
|
545 |
** implementations should keep their own counts within their aggregate
|
|
546 |
** context.
|
|
547 |
*/
|
|
548 |
EXPORT_C int sqlite3_aggregate_count(sqlite3_context *p){
|
|
549 |
assert( p && p->pFunc && p->pFunc->xStep );
|
|
550 |
return p->pMem->n;
|
|
551 |
}
|
|
552 |
|
|
553 |
/*
|
|
554 |
** Return the number of columns in the result set for the statement pStmt.
|
|
555 |
*/
|
|
556 |
EXPORT_C int sqlite3_column_count(sqlite3_stmt *pStmt){
|
|
557 |
Vdbe *pVm = (Vdbe *)pStmt;
|
|
558 |
return pVm ? pVm->nResColumn : 0;
|
|
559 |
}
|
|
560 |
|
|
561 |
/*
|
|
562 |
** Return the number of values available from the current row of the
|
|
563 |
** currently executing statement pStmt.
|
|
564 |
*/
|
|
565 |
EXPORT_C int sqlite3_data_count(sqlite3_stmt *pStmt){
|
|
566 |
Vdbe *pVm = (Vdbe *)pStmt;
|
|
567 |
if( pVm==0 || !pVm->resOnStack ) return 0;
|
|
568 |
return pVm->nResColumn;
|
|
569 |
}
|
|
570 |
|
|
571 |
|
|
572 |
/*
|
|
573 |
** Check to see if column iCol of the given statement is valid. If
|
|
574 |
** it is, return a pointer to the Mem for the value of that column.
|
|
575 |
** If iCol is not valid, return a pointer to a Mem which has a value
|
|
576 |
** of NULL.
|
|
577 |
*/
|
|
578 |
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
|
579 |
Vdbe *pVm;
|
|
580 |
int vals;
|
|
581 |
Mem *pOut;
|
|
582 |
|
|
583 |
pVm = (Vdbe *)pStmt;
|
|
584 |
if( pVm && pVm->resOnStack && i<pVm->nResColumn && i>=0 ){
|
|
585 |
sqlite3_mutex_enter(pVm->db->mutex);
|
|
586 |
vals = sqlite3_data_count(pStmt);
|
|
587 |
pOut = &pVm->pTos[(1-vals)+i];
|
|
588 |
}else{
|
|
589 |
static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
|
|
590 |
if( pVm->db ){
|
|
591 |
sqlite3_mutex_enter(pVm->db->mutex);
|
|
592 |
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
|
|
593 |
}
|
|
594 |
pOut = (Mem*)&nullMem;
|
|
595 |
}
|
|
596 |
return pOut;
|
|
597 |
}
|
|
598 |
|
|
599 |
/*
|
|
600 |
** This function is called after invoking an sqlite3_value_XXX function on a
|
|
601 |
** column value (i.e. a value returned by evaluating an SQL expression in the
|
|
602 |
** select list of a SELECT statement) that may cause a malloc() failure. If
|
|
603 |
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
|
604 |
** code of statement pStmt set to SQLITE_NOMEM.
|
|
605 |
**
|
|
606 |
** Specifically, this is called from within:
|
|
607 |
**
|
|
608 |
** sqlite3_column_int()
|
|
609 |
** sqlite3_column_int64()
|
|
610 |
** sqlite3_column_text()
|
|
611 |
** sqlite3_column_text16()
|
|
612 |
** sqlite3_column_real()
|
|
613 |
** sqlite3_column_bytes()
|
|
614 |
** sqlite3_column_bytes16()
|
|
615 |
**
|
|
616 |
** But not for sqlite3_column_blob(), which never calls malloc().
|
|
617 |
*/
|
|
618 |
static void columnMallocFailure(sqlite3_stmt *pStmt)
|
|
619 |
{
|
|
620 |
/* If malloc() failed during an encoding conversion within an
|
|
621 |
** sqlite3_column_XXX API, then set the return code of the statement to
|
|
622 |
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
|
|
623 |
** and _finalize() will return NOMEM.
|
|
624 |
*/
|
|
625 |
Vdbe *p = (Vdbe *)pStmt;
|
|
626 |
if( p ){
|
|
627 |
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
628 |
sqlite3_mutex_leave(p->db->mutex);
|
|
629 |
}
|
|
630 |
}
|
|
631 |
|
|
632 |
/**************************** sqlite3_column_ *******************************
|
|
633 |
** The following routines are used to access elements of the current row
|
|
634 |
** in the result set.
|
|
635 |
*/
|
|
636 |
EXPORT_C const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
|
|
637 |
const void *val;
|
|
638 |
val = sqlite3_value_blob( columnMem(pStmt,i) );
|
|
639 |
/* Even though there is no encoding conversion, value_blob() might
|
|
640 |
** need to call malloc() to expand the result of a zeroblob()
|
|
641 |
** expression.
|
|
642 |
*/
|
|
643 |
columnMallocFailure(pStmt);
|
|
644 |
return val;
|
|
645 |
}
|
|
646 |
EXPORT_C int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
|
|
647 |
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
|
|
648 |
columnMallocFailure(pStmt);
|
|
649 |
return val;
|
|
650 |
}
|
|
651 |
EXPORT_C int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
|
|
652 |
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
|
|
653 |
columnMallocFailure(pStmt);
|
|
654 |
return val;
|
|
655 |
}
|
|
656 |
EXPORT_C double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
|
|
657 |
double val = sqlite3_value_double( columnMem(pStmt,i) );
|
|
658 |
columnMallocFailure(pStmt);
|
|
659 |
return val;
|
|
660 |
}
|
|
661 |
EXPORT_C int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
|
|
662 |
int val = sqlite3_value_int( columnMem(pStmt,i) );
|
|
663 |
columnMallocFailure(pStmt);
|
|
664 |
return val;
|
|
665 |
}
|
|
666 |
EXPORT_C sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
|
|
667 |
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
|
|
668 |
columnMallocFailure(pStmt);
|
|
669 |
return val;
|
|
670 |
}
|
|
671 |
EXPORT_C const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
|
672 |
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
|
|
673 |
columnMallocFailure(pStmt);
|
|
674 |
return val;
|
|
675 |
}
|
|
676 |
EXPORT_C sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
|
677 |
sqlite3_value *pOut = columnMem(pStmt, i);
|
|
678 |
columnMallocFailure(pStmt);
|
|
679 |
return pOut;
|
|
680 |
}
|
|
681 |
#ifndef SQLITE_OMIT_UTF16
|
|
682 |
EXPORT_C const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
|
683 |
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
|
|
684 |
columnMallocFailure(pStmt);
|
|
685 |
return val;
|
|
686 |
}
|
|
687 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
688 |
EXPORT_C int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
|
689 |
int iType = sqlite3_value_type( columnMem(pStmt,i) );
|
|
690 |
columnMallocFailure(pStmt);
|
|
691 |
return iType;
|
|
692 |
}
|
|
693 |
|
|
694 |
/* The following function is experimental and subject to change or
|
|
695 |
** removal */
|
|
696 |
/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
|
|
697 |
** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
|
|
698 |
**}
|
|
699 |
*/
|
|
700 |
|
|
701 |
/*
|
|
702 |
** Convert the N-th element of pStmt->pColName[] into a string using
|
|
703 |
** xFunc() then return that string. If N is out of range, return 0.
|
|
704 |
**
|
|
705 |
** There are up to 5 names for each column. useType determines which
|
|
706 |
** name is returned. Here are the names:
|
|
707 |
**
|
|
708 |
** 0 The column name as it should be displayed for output
|
|
709 |
** 1 The datatype name for the column
|
|
710 |
** 2 The name of the database that the column derives from
|
|
711 |
** 3 The name of the table that the column derives from
|
|
712 |
** 4 The name of the table column that the result column derives from
|
|
713 |
**
|
|
714 |
** If the result is not a simple column reference (if it is an expression
|
|
715 |
** or a constant) then useTypes 2, 3, and 4 return NULL.
|
|
716 |
*/
|
|
717 |
static const void *columnName(
|
|
718 |
sqlite3_stmt *pStmt,
|
|
719 |
int N,
|
|
720 |
const void *(*xFunc)(Mem*),
|
|
721 |
int useType
|
|
722 |
){
|
|
723 |
const void *ret = 0;
|
|
724 |
Vdbe *p = (Vdbe *)pStmt;
|
|
725 |
int n;
|
|
726 |
|
|
727 |
|
|
728 |
if( p!=0 ){
|
|
729 |
n = sqlite3_column_count(pStmt);
|
|
730 |
if( N<n && N>=0 ){
|
|
731 |
N += useType*n;
|
|
732 |
sqlite3_mutex_enter(p->db->mutex);
|
|
733 |
ret = xFunc(&p->aColName[N]);
|
|
734 |
|
|
735 |
/* A malloc may have failed inside of the xFunc() call. If this
|
|
736 |
** is the case, clear the mallocFailed flag and return NULL.
|
|
737 |
*/
|
|
738 |
if( p->db && p->db->mallocFailed ){
|
|
739 |
p->db->mallocFailed = 0;
|
|
740 |
ret = 0;
|
|
741 |
}
|
|
742 |
sqlite3_mutex_leave(p->db->mutex);
|
|
743 |
}
|
|
744 |
}
|
|
745 |
return ret;
|
|
746 |
}
|
|
747 |
|
|
748 |
/*
|
|
749 |
** Return the name of the Nth column of the result set returned by SQL
|
|
750 |
** statement pStmt.
|
|
751 |
*/
|
|
752 |
EXPORT_C const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
|
|
753 |
return (const char*)columnName(
|
|
754 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
|
|
755 |
}
|
|
756 |
#ifndef SQLITE_OMIT_UTF16
|
|
757 |
EXPORT_C const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
|
758 |
return columnName(
|
|
759 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
|
|
760 |
}
|
|
761 |
#endif
|
|
762 |
|
|
763 |
/*
|
|
764 |
** Return the column declaration type (if applicable) of the 'i'th column
|
|
765 |
** of the result set of SQL statement pStmt.
|
|
766 |
*/
|
|
767 |
EXPORT_C const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
|
|
768 |
return (const char*)columnName(
|
|
769 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
|
|
770 |
}
|
|
771 |
#ifndef SQLITE_OMIT_UTF16
|
|
772 |
EXPORT_C const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
|
773 |
return columnName(
|
|
774 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
|
|
775 |
}
|
|
776 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
777 |
|
|
778 |
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
779 |
/*
|
|
780 |
** Return the name of the database from which a result column derives.
|
|
781 |
** NULL is returned if the result column is an expression or constant or
|
|
782 |
** anything else which is not an unabiguous reference to a database column.
|
|
783 |
*/
|
|
784 |
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
|
|
785 |
return columnName(
|
|
786 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
|
|
787 |
}
|
|
788 |
#ifndef SQLITE_OMIT_UTF16
|
|
789 |
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
|
|
790 |
return columnName(
|
|
791 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
|
|
792 |
}
|
|
793 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
794 |
|
|
795 |
/*
|
|
796 |
** Return the name of the table from which a result column derives.
|
|
797 |
** NULL is returned if the result column is an expression or constant or
|
|
798 |
** anything else which is not an unabiguous reference to a database column.
|
|
799 |
*/
|
|
800 |
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
|
|
801 |
return columnName(
|
|
802 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
|
|
803 |
}
|
|
804 |
#ifndef SQLITE_OMIT_UTF16
|
|
805 |
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
|
|
806 |
return columnName(
|
|
807 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
|
|
808 |
}
|
|
809 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
810 |
|
|
811 |
/*
|
|
812 |
** Return the name of the table column from which a result column derives.
|
|
813 |
** NULL is returned if the result column is an expression or constant or
|
|
814 |
** anything else which is not an unabiguous reference to a database column.
|
|
815 |
*/
|
|
816 |
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
|
|
817 |
return columnName(
|
|
818 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
|
|
819 |
}
|
|
820 |
#ifndef SQLITE_OMIT_UTF16
|
|
821 |
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
|
822 |
return columnName(
|
|
823 |
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
|
|
824 |
}
|
|
825 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
826 |
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
|
|
827 |
|
|
828 |
|
|
829 |
/******************************* sqlite3_bind_ ***************************
|
|
830 |
**
|
|
831 |
** Routines used to attach values to wildcards in a compiled SQL statement.
|
|
832 |
*/
|
|
833 |
/*
|
|
834 |
** Unbind the value bound to variable i in virtual machine p. This is the
|
|
835 |
** the same as binding a NULL value to the column. If the "i" parameter is
|
|
836 |
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
|
837 |
**
|
|
838 |
** The error code stored in database p->db is overwritten with the return
|
|
839 |
** value in any case.
|
|
840 |
*/
|
|
841 |
static int vdbeUnbind(Vdbe *p, int i){
|
|
842 |
Mem *pVar;
|
|
843 |
if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
|
844 |
if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
|
845 |
return SQLITE_MISUSE;
|
|
846 |
}
|
|
847 |
if( i<1 || i>p->nVar ){
|
|
848 |
sqlite3Error(p->db, SQLITE_RANGE, 0);
|
|
849 |
return SQLITE_RANGE;
|
|
850 |
}
|
|
851 |
i--;
|
|
852 |
pVar = &p->aVar[i];
|
|
853 |
sqlite3VdbeMemRelease(pVar);
|
|
854 |
pVar->flags = MEM_Null;
|
|
855 |
sqlite3Error(p->db, SQLITE_OK, 0);
|
|
856 |
return SQLITE_OK;
|
|
857 |
}
|
|
858 |
|
|
859 |
/*
|
|
860 |
** Bind a text or BLOB value.
|
|
861 |
*/
|
|
862 |
static int bindText(
|
|
863 |
sqlite3_stmt *pStmt, /* The statement to bind against */
|
|
864 |
int i, /* Index of the parameter to bind */
|
|
865 |
const void *zData, /* Pointer to the data to be bound */
|
|
866 |
int nData, /* Number of bytes of data to be bound */
|
|
867 |
void (*xDel)(void*), /* Destructor for the data */
|
|
868 |
int encoding /* Encoding for the data */
|
|
869 |
){
|
|
870 |
Vdbe *p = (Vdbe *)pStmt;
|
|
871 |
Mem *pVar;
|
|
872 |
int rc;
|
|
873 |
|
|
874 |
if( p==0 ){
|
|
875 |
return SQLITE_MISUSE;
|
|
876 |
}
|
|
877 |
sqlite3_mutex_enter(p->db->mutex);
|
|
878 |
rc = vdbeUnbind(p, i);
|
|
879 |
if( rc==SQLITE_OK && zData!=0 ){
|
|
880 |
pVar = &p->aVar[i-1];
|
|
881 |
rc = sqlite3VdbeMemSetStr(pVar, (const char*)zData, nData, encoding, xDel);
|
|
882 |
if( rc==SQLITE_OK && encoding!=0 ){
|
|
883 |
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
|
884 |
}
|
|
885 |
sqlite3Error(p->db, rc, 0);
|
|
886 |
rc = sqlite3ApiExit(p->db, rc);
|
|
887 |
}
|
|
888 |
sqlite3_mutex_leave(p->db->mutex);
|
|
889 |
return rc;
|
|
890 |
}
|
|
891 |
|
|
892 |
|
|
893 |
/*
|
|
894 |
** Bind a blob value to an SQL statement variable.
|
|
895 |
*/
|
|
896 |
EXPORT_C int sqlite3_bind_blob(
|
|
897 |
sqlite3_stmt *pStmt,
|
|
898 |
int i,
|
|
899 |
const void *zData,
|
|
900 |
int nData,
|
|
901 |
void (*xDel)(void*)
|
|
902 |
){
|
|
903 |
return bindText(pStmt, i, zData, nData, xDel, 0);
|
|
904 |
}
|
|
905 |
EXPORT_C int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
|
906 |
int rc;
|
|
907 |
Vdbe *p = (Vdbe *)pStmt;
|
|
908 |
sqlite3_mutex_enter(p->db->mutex);
|
|
909 |
rc = vdbeUnbind(p, i);
|
|
910 |
if( rc==SQLITE_OK ){
|
|
911 |
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
|
912 |
}
|
|
913 |
sqlite3_mutex_leave(p->db->mutex);
|
|
914 |
return rc;
|
|
915 |
}
|
|
916 |
EXPORT_C int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
|
|
917 |
return sqlite3_bind_int64(p, i, (i64)iValue);
|
|
918 |
}
|
|
919 |
EXPORT_C int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
|
920 |
int rc;
|
|
921 |
Vdbe *p = (Vdbe *)pStmt;
|
|
922 |
sqlite3_mutex_enter(p->db->mutex);
|
|
923 |
rc = vdbeUnbind(p, i);
|
|
924 |
if( rc==SQLITE_OK ){
|
|
925 |
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
|
926 |
}
|
|
927 |
sqlite3_mutex_leave(p->db->mutex);
|
|
928 |
return rc;
|
|
929 |
}
|
|
930 |
EXPORT_C int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
|
|
931 |
int rc;
|
|
932 |
Vdbe *p = (Vdbe*)pStmt;
|
|
933 |
sqlite3_mutex_enter(p->db->mutex);
|
|
934 |
rc = vdbeUnbind(p, i);
|
|
935 |
sqlite3_mutex_leave(p->db->mutex);
|
|
936 |
return rc;
|
|
937 |
}
|
|
938 |
EXPORT_C int sqlite3_bind_text(
|
|
939 |
sqlite3_stmt *pStmt,
|
|
940 |
int i,
|
|
941 |
const char *zData,
|
|
942 |
int nData,
|
|
943 |
void (*xDel)(void*)
|
|
944 |
){
|
|
945 |
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
|
|
946 |
}
|
|
947 |
#ifndef SQLITE_OMIT_UTF16
|
|
948 |
EXPORT_C int sqlite3_bind_text16(
|
|
949 |
sqlite3_stmt *pStmt,
|
|
950 |
int i,
|
|
951 |
const void *zData,
|
|
952 |
int nData,
|
|
953 |
void (*xDel)(void*)
|
|
954 |
){
|
|
955 |
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
|
|
956 |
}
|
|
957 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
958 |
EXPORT_C int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
|
|
959 |
int rc;
|
|
960 |
Vdbe *p = (Vdbe *)pStmt;
|
|
961 |
sqlite3_mutex_enter(p->db->mutex);
|
|
962 |
rc = vdbeUnbind(p, i);
|
|
963 |
if( rc==SQLITE_OK ){
|
|
964 |
rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
|
|
965 |
}
|
|
966 |
sqlite3_mutex_leave(p->db->mutex);
|
|
967 |
return rc;
|
|
968 |
}
|
|
969 |
EXPORT_C int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
|
970 |
int rc;
|
|
971 |
Vdbe *p = (Vdbe *)pStmt;
|
|
972 |
sqlite3_mutex_enter(p->db->mutex);
|
|
973 |
rc = vdbeUnbind(p, i);
|
|
974 |
if( rc==SQLITE_OK ){
|
|
975 |
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
|
|
976 |
}
|
|
977 |
sqlite3_mutex_leave(p->db->mutex);
|
|
978 |
return rc;
|
|
979 |
}
|
|
980 |
|
|
981 |
/*
|
|
982 |
** Return the number of wildcards that can be potentially bound to.
|
|
983 |
** This routine is added to support DBD::SQLite.
|
|
984 |
*/
|
|
985 |
EXPORT_C int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
|
986 |
Vdbe *p = (Vdbe*)pStmt;
|
|
987 |
return p ? p->nVar : 0;
|
|
988 |
}
|
|
989 |
|
|
990 |
/*
|
|
991 |
** Create a mapping from variable numbers to variable names
|
|
992 |
** in the Vdbe.azVar[] array, if such a mapping does not already
|
|
993 |
** exist.
|
|
994 |
*/
|
|
995 |
static void createVarMap(Vdbe *p){
|
|
996 |
if( !p->okVar ){
|
|
997 |
sqlite3_mutex_enter(p->db->mutex);
|
|
998 |
if( !p->okVar ){
|
|
999 |
int j;
|
|
1000 |
Op *pOp;
|
|
1001 |
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
|
|
1002 |
if( pOp->opcode==OP_Variable ){
|
|
1003 |
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
|
1004 |
p->azVar[pOp->p1-1] = pOp->p3;
|
|
1005 |
}
|
|
1006 |
}
|
|
1007 |
p->okVar = 1;
|
|
1008 |
}
|
|
1009 |
sqlite3_mutex_leave(p->db->mutex);
|
|
1010 |
}
|
|
1011 |
}
|
|
1012 |
|
|
1013 |
/*
|
|
1014 |
** Return the name of a wildcard parameter. Return NULL if the index
|
|
1015 |
** is out of range or if the wildcard is unnamed.
|
|
1016 |
**
|
|
1017 |
** The result is always UTF-8.
|
|
1018 |
*/
|
|
1019 |
EXPORT_C const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
|
|
1020 |
Vdbe *p = (Vdbe*)pStmt;
|
|
1021 |
if( p==0 || i<1 || i>p->nVar ){
|
|
1022 |
return 0;
|
|
1023 |
}
|
|
1024 |
createVarMap(p);
|
|
1025 |
return p->azVar[i-1];
|
|
1026 |
}
|
|
1027 |
|
|
1028 |
/*
|
|
1029 |
** Given a wildcard parameter name, return the index of the variable
|
|
1030 |
** with that name. If there is no variable with the given name,
|
|
1031 |
** return 0.
|
|
1032 |
*/
|
|
1033 |
EXPORT_C int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
|
1034 |
Vdbe *p = (Vdbe*)pStmt;
|
|
1035 |
int i;
|
|
1036 |
if( p==0 ){
|
|
1037 |
return 0;
|
|
1038 |
}
|
|
1039 |
createVarMap(p);
|
|
1040 |
if( zName ){
|
|
1041 |
for(i=0; i<p->nVar; i++){
|
|
1042 |
const char *z = p->azVar[i];
|
|
1043 |
if( z && strcmp(z,zName)==0 ){
|
|
1044 |
return i+1;
|
|
1045 |
}
|
|
1046 |
}
|
|
1047 |
}
|
|
1048 |
return 0;
|
|
1049 |
}
|
|
1050 |
|
|
1051 |
/*
|
|
1052 |
** Transfer all bindings from the first statement over to the second.
|
|
1053 |
** If the two statements contain a different number of bindings, then
|
|
1054 |
** an SQLITE_ERROR is returned.
|
|
1055 |
*/
|
|
1056 |
EXPORT_C int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
|
1057 |
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
|
1058 |
Vdbe *pTo = (Vdbe*)pToStmt;
|
|
1059 |
int i, rc = SQLITE_OK;
|
|
1060 |
if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
|
|
1061 |
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
|
|
1062 |
|| pTo->db!=pFrom->db ){
|
|
1063 |
return SQLITE_MISUSE;
|
|
1064 |
}
|
|
1065 |
if( pFrom->nVar!=pTo->nVar ){
|
|
1066 |
return SQLITE_ERROR;
|
|
1067 |
}
|
|
1068 |
sqlite3_mutex_enter(pTo->db->mutex);
|
|
1069 |
for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
|
|
1070 |
sqlite3MallocDisallow();
|
|
1071 |
rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
|
1072 |
sqlite3MallocAllow();
|
|
1073 |
}
|
|
1074 |
sqlite3_mutex_leave(pTo->db->mutex);
|
|
1075 |
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
|
|
1076 |
return rc;
|
|
1077 |
}
|
|
1078 |
|
|
1079 |
/*
|
|
1080 |
** Return the sqlite3* database handle to which the prepared statement given
|
|
1081 |
** in the argument belongs. This is the same database handle that was
|
|
1082 |
** the first argument to the sqlite3_prepare() that was used to create
|
|
1083 |
** the statement in the first place.
|
|
1084 |
*/
|
|
1085 |
EXPORT_C sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
|
1086 |
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
|
1087 |
}
|