2
|
1 |
/*
|
|
2 |
** 2007 August 15
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains the C functions that implement a memory
|
|
13 |
** allocation subsystem for use by SQLite.
|
|
14 |
**
|
|
15 |
** $Id: mem2.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
16 |
*/
|
|
17 |
|
|
18 |
/*
|
|
19 |
** This version of the memory allocator is used only if the
|
|
20 |
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
|
|
21 |
** is not defined.
|
|
22 |
*/
|
|
23 |
#if defined(SQLITE_MEMDEBUG)
|
|
24 |
|
|
25 |
/*
|
|
26 |
** We will eventually construct multiple memory allocation subsystems
|
|
27 |
** suitable for use in various contexts:
|
|
28 |
**
|
|
29 |
** * Normal multi-threaded builds
|
|
30 |
** * Normal single-threaded builds
|
|
31 |
** * Debugging builds
|
|
32 |
**
|
|
33 |
** This version is suitable for use in debugging builds.
|
|
34 |
**
|
|
35 |
** Features:
|
|
36 |
**
|
|
37 |
** * Every allocate has guards at both ends.
|
|
38 |
** * New allocations are initialized with randomness
|
|
39 |
** * Allocations are overwritten with randomness when freed
|
|
40 |
** * Optional logs of malloc activity generated
|
|
41 |
** * Summary of outstanding allocations with backtraces to the
|
|
42 |
** point of allocation.
|
|
43 |
** * The ability to simulate memory allocation failure
|
|
44 |
*/
|
|
45 |
#include "sqliteInt.h"
|
|
46 |
#include <stdio.h>
|
|
47 |
|
|
48 |
/*
|
|
49 |
** The backtrace functionality is only available with GLIBC
|
|
50 |
*/
|
|
51 |
#ifdef __GLIBC__
|
|
52 |
extern int backtrace(void**,int);
|
|
53 |
extern void backtrace_symbols_fd(void*const*,int,int);
|
|
54 |
#else
|
|
55 |
# define backtrace(A,B) 0
|
|
56 |
# define backtrace_symbols_fd(A,B,C)
|
|
57 |
#endif
|
|
58 |
|
|
59 |
/*
|
|
60 |
** Each memory allocation looks like this:
|
|
61 |
**
|
|
62 |
** ------------------------------------------------------------------------
|
|
63 |
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
|
|
64 |
** ------------------------------------------------------------------------
|
|
65 |
**
|
|
66 |
** The application code sees only a pointer to the allocation. We have
|
|
67 |
** to back up from the allocation pointer to find the MemBlockHdr. The
|
|
68 |
** MemBlockHdr tells us the size of the allocation and the number of
|
|
69 |
** backtrace pointers. There is also a guard word at the end of the
|
|
70 |
** MemBlockHdr.
|
|
71 |
*/
|
|
72 |
struct MemBlockHdr {
|
|
73 |
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
|
|
74 |
int iSize; /* Size of this allocation */
|
|
75 |
char nBacktrace; /* Number of backtraces on this alloc */
|
|
76 |
char nBacktraceSlots; /* Available backtrace slots */
|
|
77 |
short nTitle; /* Bytes of title; includes '\0' */
|
|
78 |
int iForeGuard; /* Guard word for sanity */
|
|
79 |
};
|
|
80 |
|
|
81 |
/*
|
|
82 |
** Guard words
|
|
83 |
*/
|
|
84 |
#define FOREGUARD 0x80F5E153
|
|
85 |
#define REARGUARD 0xE4676B53
|
|
86 |
|
|
87 |
/*
|
|
88 |
** Number of malloc size increments to track.
|
|
89 |
*/
|
|
90 |
#define NCSIZE 1000
|
|
91 |
|
|
92 |
/*
|
|
93 |
** All of the static variables used by this module are collected
|
|
94 |
** into a single structure named "mem". This is to keep the
|
|
95 |
** static variables organized and to reduce namespace pollution
|
|
96 |
** when this module is combined with other in the amalgamation.
|
|
97 |
*/
|
|
98 |
static struct {
|
|
99 |
/*
|
|
100 |
** The alarm callback and its arguments. The mem.mutex lock will
|
|
101 |
** be held while the callback is running. Recursive calls into
|
|
102 |
** the memory subsystem are allowed, but no new callbacks will be
|
|
103 |
** issued. The alarmBusy variable is set to prevent recursive
|
|
104 |
** callbacks.
|
|
105 |
*/
|
|
106 |
sqlite3_int64 alarmThreshold;
|
|
107 |
void (*alarmCallback)(void*, sqlite3_int64, int);
|
|
108 |
void *alarmArg;
|
|
109 |
int alarmBusy;
|
|
110 |
|
|
111 |
/*
|
|
112 |
** Mutex to control access to the memory allocation subsystem.
|
|
113 |
*/
|
|
114 |
sqlite3_mutex *mutex;
|
|
115 |
|
|
116 |
/*
|
|
117 |
** Current allocation and high-water mark.
|
|
118 |
*/
|
|
119 |
sqlite3_int64 nowUsed;
|
|
120 |
sqlite3_int64 mxUsed;
|
|
121 |
|
|
122 |
/*
|
|
123 |
** Head and tail of a linked list of all outstanding allocations
|
|
124 |
*/
|
|
125 |
struct MemBlockHdr *pFirst;
|
|
126 |
struct MemBlockHdr *pLast;
|
|
127 |
|
|
128 |
/*
|
|
129 |
** The number of levels of backtrace to save in new allocations.
|
|
130 |
*/
|
|
131 |
int nBacktrace;
|
|
132 |
|
|
133 |
/*
|
|
134 |
** Title text to insert in front of each block
|
|
135 |
*/
|
|
136 |
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
|
|
137 |
char zTitle[100]; /* The title text */
|
|
138 |
|
|
139 |
/*
|
|
140 |
** These values are used to simulate malloc failures. When
|
|
141 |
** iFail is 1, simulate a malloc failures and reset the value
|
|
142 |
** to iReset.
|
|
143 |
*/
|
|
144 |
int iFail; /* Decrement and fail malloc when this is 1 */
|
|
145 |
int iReset; /* When malloc fails set iiFail to this value */
|
|
146 |
int iFailCnt; /* Number of failures */
|
|
147 |
int iBenignFailCnt; /* Number of benign failures */
|
|
148 |
int iNextIsBenign; /* True if the next call to malloc may fail benignly */
|
|
149 |
int iIsBenign; /* All malloc calls may fail benignly */
|
|
150 |
|
|
151 |
/*
|
|
152 |
** sqlite3MallocDisallow() increments the following counter.
|
|
153 |
** sqlite3MallocAllow() decrements it.
|
|
154 |
*/
|
|
155 |
int disallow; /* Do not allow memory allocation */
|
|
156 |
|
|
157 |
/*
|
|
158 |
** Gather statistics on the sizes of memory allocations.
|
|
159 |
** sizeCnt[i] is the number of allocation attempts of i*8
|
|
160 |
** bytes. i==NCSIZE is the number of allocation attempts for
|
|
161 |
** sizes more than NCSIZE*8 bytes.
|
|
162 |
*/
|
|
163 |
int sizeCnt[NCSIZE];
|
|
164 |
|
|
165 |
} mem;
|
|
166 |
|
|
167 |
|
|
168 |
/*
|
|
169 |
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
170 |
*/
|
|
171 |
static void enterMem(void){
|
|
172 |
if( mem.mutex==0 ){
|
|
173 |
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
174 |
}
|
|
175 |
sqlite3_mutex_enter(mem.mutex);
|
|
176 |
}
|
|
177 |
|
|
178 |
/*
|
|
179 |
** Return the amount of memory currently checked out.
|
|
180 |
*/
|
|
181 |
sqlite3_int64 sqlite3_memory_used(void){
|
|
182 |
sqlite3_int64 n;
|
|
183 |
enterMem();
|
|
184 |
n = mem.nowUsed;
|
|
185 |
sqlite3_mutex_leave(mem.mutex);
|
|
186 |
return n;
|
|
187 |
}
|
|
188 |
|
|
189 |
/*
|
|
190 |
** Return the maximum amount of memory that has ever been
|
|
191 |
** checked out since either the beginning of this process
|
|
192 |
** or since the most recent reset.
|
|
193 |
*/
|
|
194 |
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
195 |
sqlite3_int64 n;
|
|
196 |
enterMem();
|
|
197 |
n = mem.mxUsed;
|
|
198 |
if( resetFlag ){
|
|
199 |
mem.mxUsed = mem.nowUsed;
|
|
200 |
}
|
|
201 |
sqlite3_mutex_leave(mem.mutex);
|
|
202 |
return n;
|
|
203 |
}
|
|
204 |
|
|
205 |
/*
|
|
206 |
** Change the alarm callback
|
|
207 |
*/
|
|
208 |
int sqlite3_memory_alarm(
|
|
209 |
void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
|
|
210 |
void *pArg,
|
|
211 |
sqlite3_int64 iThreshold
|
|
212 |
){
|
|
213 |
enterMem();
|
|
214 |
mem.alarmCallback = xCallback;
|
|
215 |
mem.alarmArg = pArg;
|
|
216 |
mem.alarmThreshold = iThreshold;
|
|
217 |
sqlite3_mutex_leave(mem.mutex);
|
|
218 |
return SQLITE_OK;
|
|
219 |
}
|
|
220 |
|
|
221 |
/*
|
|
222 |
** Trigger the alarm
|
|
223 |
*/
|
|
224 |
static void sqlite3MemsysAlarm(int nByte){
|
|
225 |
void (*xCallback)(void*,sqlite3_int64,int);
|
|
226 |
sqlite3_int64 nowUsed;
|
|
227 |
void *pArg;
|
|
228 |
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
|
229 |
mem.alarmBusy = 1;
|
|
230 |
xCallback = mem.alarmCallback;
|
|
231 |
nowUsed = mem.nowUsed;
|
|
232 |
pArg = mem.alarmArg;
|
|
233 |
sqlite3_mutex_leave(mem.mutex);
|
|
234 |
xCallback(pArg, nowUsed, nByte);
|
|
235 |
sqlite3_mutex_enter(mem.mutex);
|
|
236 |
mem.alarmBusy = 0;
|
|
237 |
}
|
|
238 |
|
|
239 |
/*
|
|
240 |
** Given an allocation, find the MemBlockHdr for that allocation.
|
|
241 |
**
|
|
242 |
** This routine checks the guards at either end of the allocation and
|
|
243 |
** if they are incorrect it asserts.
|
|
244 |
*/
|
|
245 |
static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
|
|
246 |
struct MemBlockHdr *p;
|
|
247 |
int *pInt;
|
|
248 |
|
|
249 |
p = (struct MemBlockHdr*)pAllocation;
|
|
250 |
p--;
|
|
251 |
assert( p->iForeGuard==FOREGUARD );
|
|
252 |
assert( (p->iSize & 3)==0 );
|
|
253 |
pInt = (int*)pAllocation;
|
|
254 |
assert( pInt[p->iSize/sizeof(int)]==REARGUARD );
|
|
255 |
return p;
|
|
256 |
}
|
|
257 |
|
|
258 |
/*
|
|
259 |
** This routine is called once the first time a simulated memory
|
|
260 |
** failure occurs. The sole purpose of this routine is to provide
|
|
261 |
** a convenient place to set a debugger breakpoint when debugging
|
|
262 |
** errors related to malloc() failures.
|
|
263 |
*/
|
|
264 |
static void sqlite3MemsysFailed(void){
|
|
265 |
mem.iFailCnt = 0;
|
|
266 |
mem.iBenignFailCnt = 0;
|
|
267 |
}
|
|
268 |
|
|
269 |
/*
|
|
270 |
** Allocate nByte bytes of memory.
|
|
271 |
*/
|
|
272 |
void *sqlite3_malloc(int nByte){
|
|
273 |
struct MemBlockHdr *pHdr;
|
|
274 |
void **pBt;
|
|
275 |
char *z;
|
|
276 |
int *pInt;
|
|
277 |
void *p = 0;
|
|
278 |
int totalSize;
|
|
279 |
|
|
280 |
if( nByte>0 ){
|
|
281 |
enterMem();
|
|
282 |
assert( mem.disallow==0 );
|
|
283 |
if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
|
|
284 |
sqlite3MemsysAlarm(nByte);
|
|
285 |
}
|
|
286 |
nByte = (nByte+3)&~3;
|
|
287 |
if( nByte/8>NCSIZE-1 ){
|
|
288 |
mem.sizeCnt[NCSIZE-1]++;
|
|
289 |
}else{
|
|
290 |
mem.sizeCnt[nByte/8]++;
|
|
291 |
}
|
|
292 |
totalSize = nByte + sizeof(*pHdr) + sizeof(int) +
|
|
293 |
mem.nBacktrace*sizeof(void*) + mem.nTitle;
|
|
294 |
if( mem.iFail>0 ){
|
|
295 |
if( mem.iFail==1 ){
|
|
296 |
p = 0;
|
|
297 |
mem.iFail = mem.iReset;
|
|
298 |
if( mem.iFailCnt==0 ){
|
|
299 |
sqlite3MemsysFailed(); /* A place to set a breakpoint */
|
|
300 |
}
|
|
301 |
mem.iFailCnt++;
|
|
302 |
if( mem.iNextIsBenign || mem.iIsBenign ){
|
|
303 |
mem.iBenignFailCnt++;
|
|
304 |
}
|
|
305 |
}else{
|
|
306 |
p = malloc(totalSize);
|
|
307 |
mem.iFail--;
|
|
308 |
}
|
|
309 |
}else{
|
|
310 |
p = malloc(totalSize);
|
|
311 |
if( p==0 ){
|
|
312 |
sqlite3MemsysAlarm(nByte);
|
|
313 |
p = malloc(totalSize);
|
|
314 |
}
|
|
315 |
}
|
|
316 |
if( p ){
|
|
317 |
z = p;
|
|
318 |
pBt = (void**)&z[mem.nTitle];
|
|
319 |
pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
|
|
320 |
pHdr->pNext = 0;
|
|
321 |
pHdr->pPrev = mem.pLast;
|
|
322 |
if( mem.pLast ){
|
|
323 |
mem.pLast->pNext = pHdr;
|
|
324 |
}else{
|
|
325 |
mem.pFirst = pHdr;
|
|
326 |
}
|
|
327 |
mem.pLast = pHdr;
|
|
328 |
pHdr->iForeGuard = FOREGUARD;
|
|
329 |
pHdr->nBacktraceSlots = mem.nBacktrace;
|
|
330 |
pHdr->nTitle = mem.nTitle;
|
|
331 |
if( mem.nBacktrace ){
|
|
332 |
void *aAddr[40];
|
|
333 |
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
|
|
334 |
memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
|
|
335 |
}else{
|
|
336 |
pHdr->nBacktrace = 0;
|
|
337 |
}
|
|
338 |
if( mem.nTitle ){
|
|
339 |
memcpy(z, mem.zTitle, mem.nTitle);
|
|
340 |
}
|
|
341 |
pHdr->iSize = nByte;
|
|
342 |
pInt = (int*)&pHdr[1];
|
|
343 |
pInt[nByte/sizeof(int)] = REARGUARD;
|
|
344 |
memset(pInt, 0x65, nByte);
|
|
345 |
mem.nowUsed += nByte;
|
|
346 |
if( mem.nowUsed>mem.mxUsed ){
|
|
347 |
mem.mxUsed = mem.nowUsed;
|
|
348 |
}
|
|
349 |
p = (void*)pInt;
|
|
350 |
}
|
|
351 |
sqlite3_mutex_leave(mem.mutex);
|
|
352 |
}
|
|
353 |
mem.iNextIsBenign = 0;
|
|
354 |
return p;
|
|
355 |
}
|
|
356 |
|
|
357 |
/*
|
|
358 |
** Free memory.
|
|
359 |
*/
|
|
360 |
void sqlite3_free(void *pPrior){
|
|
361 |
struct MemBlockHdr *pHdr;
|
|
362 |
void **pBt;
|
|
363 |
char *z;
|
|
364 |
if( pPrior==0 ){
|
|
365 |
return;
|
|
366 |
}
|
|
367 |
assert( mem.mutex!=0 );
|
|
368 |
pHdr = sqlite3MemsysGetHeader(pPrior);
|
|
369 |
pBt = (void**)pHdr;
|
|
370 |
pBt -= pHdr->nBacktraceSlots;
|
|
371 |
sqlite3_mutex_enter(mem.mutex);
|
|
372 |
mem.nowUsed -= pHdr->iSize;
|
|
373 |
if( pHdr->pPrev ){
|
|
374 |
assert( pHdr->pPrev->pNext==pHdr );
|
|
375 |
pHdr->pPrev->pNext = pHdr->pNext;
|
|
376 |
}else{
|
|
377 |
assert( mem.pFirst==pHdr );
|
|
378 |
mem.pFirst = pHdr->pNext;
|
|
379 |
}
|
|
380 |
if( pHdr->pNext ){
|
|
381 |
assert( pHdr->pNext->pPrev==pHdr );
|
|
382 |
pHdr->pNext->pPrev = pHdr->pPrev;
|
|
383 |
}else{
|
|
384 |
assert( mem.pLast==pHdr );
|
|
385 |
mem.pLast = pHdr->pPrev;
|
|
386 |
}
|
|
387 |
z = (char*)pBt;
|
|
388 |
z -= pHdr->nTitle;
|
|
389 |
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
|
|
390 |
pHdr->iSize + sizeof(int) + pHdr->nTitle);
|
|
391 |
free(z);
|
|
392 |
sqlite3_mutex_leave(mem.mutex);
|
|
393 |
}
|
|
394 |
|
|
395 |
/*
|
|
396 |
** Change the size of an existing memory allocation.
|
|
397 |
**
|
|
398 |
** For this debugging implementation, we *always* make a copy of the
|
|
399 |
** allocation into a new place in memory. In this way, if the
|
|
400 |
** higher level code is using pointer to the old allocation, it is
|
|
401 |
** much more likely to break and we are much more liking to find
|
|
402 |
** the error.
|
|
403 |
*/
|
|
404 |
void *sqlite3_realloc(void *pPrior, int nByte){
|
|
405 |
struct MemBlockHdr *pOldHdr;
|
|
406 |
void *pNew;
|
|
407 |
if( pPrior==0 ){
|
|
408 |
return sqlite3_malloc(nByte);
|
|
409 |
}
|
|
410 |
if( nByte<=0 ){
|
|
411 |
sqlite3_free(pPrior);
|
|
412 |
return 0;
|
|
413 |
}
|
|
414 |
assert( mem.disallow==0 );
|
|
415 |
pOldHdr = sqlite3MemsysGetHeader(pPrior);
|
|
416 |
pNew = sqlite3_malloc(nByte);
|
|
417 |
if( pNew ){
|
|
418 |
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
|
|
419 |
if( nByte>pOldHdr->iSize ){
|
|
420 |
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
|
|
421 |
}
|
|
422 |
sqlite3_free(pPrior);
|
|
423 |
}
|
|
424 |
return pNew;
|
|
425 |
}
|
|
426 |
|
|
427 |
/*
|
|
428 |
** Set the number of backtrace levels kept for each allocation.
|
|
429 |
** A value of zero turns of backtracing. The number is always rounded
|
|
430 |
** up to a multiple of 2.
|
|
431 |
*/
|
|
432 |
void sqlite3_memdebug_backtrace(int depth){
|
|
433 |
if( depth<0 ){ depth = 0; }
|
|
434 |
if( depth>20 ){ depth = 20; }
|
|
435 |
depth = (depth+1)&0xfe;
|
|
436 |
mem.nBacktrace = depth;
|
|
437 |
}
|
|
438 |
|
|
439 |
/*
|
|
440 |
** Set the title string for subsequent allocations.
|
|
441 |
*/
|
|
442 |
void sqlite3_memdebug_settitle(const char *zTitle){
|
|
443 |
int n = strlen(zTitle) + 1;
|
|
444 |
enterMem();
|
|
445 |
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
|
|
446 |
memcpy(mem.zTitle, zTitle, n);
|
|
447 |
mem.zTitle[n] = 0;
|
|
448 |
mem.nTitle = (n+3)&~3;
|
|
449 |
sqlite3_mutex_leave(mem.mutex);
|
|
450 |
}
|
|
451 |
|
|
452 |
/*
|
|
453 |
** Open the file indicated and write a log of all unfreed memory
|
|
454 |
** allocations into that log.
|
|
455 |
*/
|
|
456 |
void sqlite3_memdebug_dump(const char *zFilename){
|
|
457 |
FILE *out;
|
|
458 |
struct MemBlockHdr *pHdr;
|
|
459 |
void **pBt;
|
|
460 |
int i;
|
|
461 |
out = fopen(zFilename, "w");
|
|
462 |
if( out==0 ){
|
|
463 |
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
|
464 |
zFilename);
|
|
465 |
return;
|
|
466 |
}
|
|
467 |
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
|
468 |
char *z = (char*)pHdr;
|
|
469 |
z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
|
|
470 |
fprintf(out, "**** %d bytes at %p from %s ****\n",
|
|
471 |
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
|
|
472 |
if( pHdr->nBacktrace ){
|
|
473 |
fflush(out);
|
|
474 |
pBt = (void**)pHdr;
|
|
475 |
pBt -= pHdr->nBacktraceSlots;
|
|
476 |
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
|
|
477 |
fprintf(out, "\n");
|
|
478 |
}
|
|
479 |
}
|
|
480 |
fprintf(out, "COUNTS:\n");
|
|
481 |
for(i=0; i<NCSIZE-1; i++){
|
|
482 |
if( mem.sizeCnt[i] ){
|
|
483 |
fprintf(out, " %3d: %d\n", i*8+8, mem.sizeCnt[i]);
|
|
484 |
}
|
|
485 |
}
|
|
486 |
if( mem.sizeCnt[NCSIZE-1] ){
|
|
487 |
fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]);
|
|
488 |
}
|
|
489 |
fclose(out);
|
|
490 |
}
|
|
491 |
|
|
492 |
/*
|
|
493 |
** This routine is used to simulate malloc failures.
|
|
494 |
**
|
|
495 |
** After calling this routine, there will be iFail successful
|
|
496 |
** memory allocations and then a failure. If iRepeat is 1
|
|
497 |
** all subsequent memory allocations will fail. If iRepeat is
|
|
498 |
** 0, only a single allocation will fail. If iRepeat is negative
|
|
499 |
** then the previous setting for iRepeat is unchanged.
|
|
500 |
**
|
|
501 |
** Each call to this routine overrides the previous. To disable
|
|
502 |
** the simulated allocation failure mechanism, set iFail to -1.
|
|
503 |
**
|
|
504 |
** This routine returns the number of simulated failures that have
|
|
505 |
** occurred since the previous call.
|
|
506 |
*/
|
|
507 |
int sqlite3_memdebug_fail(int iFail, int iRepeat, int *piBenign){
|
|
508 |
int n = mem.iFailCnt;
|
|
509 |
if( piBenign ){
|
|
510 |
*piBenign = mem.iBenignFailCnt;
|
|
511 |
}
|
|
512 |
mem.iFail = iFail+1;
|
|
513 |
if( iRepeat>=0 ){
|
|
514 |
mem.iReset = iRepeat;
|
|
515 |
}
|
|
516 |
mem.iFailCnt = 0;
|
|
517 |
mem.iBenignFailCnt = 0;
|
|
518 |
return n;
|
|
519 |
}
|
|
520 |
|
|
521 |
int sqlite3_memdebug_pending(){
|
|
522 |
return (mem.iFail-1);
|
|
523 |
}
|
|
524 |
|
|
525 |
/*
|
|
526 |
** The following three functions are used to indicate to the test
|
|
527 |
** infrastructure which malloc() calls may fail benignly without
|
|
528 |
** affecting functionality. This can happen when resizing hash tables
|
|
529 |
** (failing to resize a hash-table is a performance hit, but not an
|
|
530 |
** error) or sometimes during a rollback operation.
|
|
531 |
**
|
|
532 |
** If the argument is true, sqlite3MallocBenignFailure() indicates that the
|
|
533 |
** next call to allocate memory may fail benignly.
|
|
534 |
**
|
|
535 |
** If sqlite3MallocEnterBenignBlock() is called with a non-zero argument,
|
|
536 |
** then all memory allocations requested before the next call to
|
|
537 |
** sqlite3MallocLeaveBenignBlock() may fail benignly.
|
|
538 |
*/
|
|
539 |
void sqlite3MallocBenignFailure(int isBenign){
|
|
540 |
if( isBenign ){
|
|
541 |
mem.iNextIsBenign = 1;
|
|
542 |
}
|
|
543 |
}
|
|
544 |
void sqlite3MallocEnterBenignBlock(int isBenign){
|
|
545 |
if( isBenign ){
|
|
546 |
mem.iIsBenign = 1;
|
|
547 |
}
|
|
548 |
}
|
|
549 |
void sqlite3MallocLeaveBenignBlock(){
|
|
550 |
mem.iIsBenign = 0;
|
|
551 |
}
|
|
552 |
|
|
553 |
/*
|
|
554 |
** The following two routines are used to assert that no memory
|
|
555 |
** allocations occur between one call and the next. The use of
|
|
556 |
** these routines does not change the computed results in any way.
|
|
557 |
** These routines are like asserts.
|
|
558 |
*/
|
|
559 |
void sqlite3MallocDisallow(void){
|
|
560 |
assert( mem.mutex!=0 );
|
|
561 |
sqlite3_mutex_enter(mem.mutex);
|
|
562 |
mem.disallow++;
|
|
563 |
sqlite3_mutex_leave(mem.mutex);
|
|
564 |
}
|
|
565 |
void sqlite3MallocAllow(void){
|
|
566 |
assert( mem.mutex );
|
|
567 |
sqlite3_mutex_enter(mem.mutex);
|
|
568 |
assert( mem.disallow>0 );
|
|
569 |
mem.disallow--;
|
|
570 |
sqlite3_mutex_leave(mem.mutex);
|
|
571 |
}
|
|
572 |
|
|
573 |
#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|