2
|
1 |
/*
|
|
2 |
** 2004 April 6
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** $Id: btree.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
13 |
**
|
|
14 |
** This file implements a external (disk-based) database using BTrees.
|
|
15 |
** See the header comment on "btreeInt.h" for additional information.
|
|
16 |
** Including a description of file format and an overview of operation.
|
|
17 |
*/
|
|
18 |
#include "btreeInt.h"
|
|
19 |
|
|
20 |
/*
|
|
21 |
** The header string that appears at the beginning of every
|
|
22 |
** SQLite database.
|
|
23 |
*/
|
|
24 |
static const char zMagicHeader[] = SQLITE_FILE_HEADER;
|
|
25 |
|
|
26 |
/*
|
|
27 |
** Set this global variable to 1 to enable tracing using the TRACE
|
|
28 |
** macro.
|
|
29 |
*/
|
|
30 |
#if SQLITE_TEST
|
|
31 |
int sqlite3_btree_trace=0; /* True to enable tracing */
|
|
32 |
#endif
|
|
33 |
|
|
34 |
|
|
35 |
|
|
36 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
37 |
/*
|
|
38 |
** A flag to indicate whether or not shared cache is enabled. Also,
|
|
39 |
** a list of BtShared objects that are eligible for participation
|
|
40 |
** in shared cache. The variables have file scope during normal builds,
|
|
41 |
** but the test harness needs to access these variables so we make them
|
|
42 |
** global for test builds.
|
|
43 |
*/
|
|
44 |
#ifdef SQLITE_TEST
|
|
45 |
BtShared *sqlite3SharedCacheList = 0;
|
|
46 |
int sqlite3SharedCacheEnabled = 0;
|
|
47 |
#else
|
|
48 |
static BtShared *sqlite3SharedCacheList = 0;
|
|
49 |
static int sqlite3SharedCacheEnabled = 0;
|
|
50 |
#endif
|
|
51 |
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
52 |
|
|
53 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
54 |
/*
|
|
55 |
** Enable or disable the shared pager and schema features.
|
|
56 |
**
|
|
57 |
** This routine has no effect on existing database connections.
|
|
58 |
** The shared cache setting effects only future calls to
|
|
59 |
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
|
|
60 |
*/
|
|
61 |
EXPORT_C int sqlite3_enable_shared_cache(int enable){
|
|
62 |
sqlite3SharedCacheEnabled = enable;
|
|
63 |
return SQLITE_OK;
|
|
64 |
}
|
|
65 |
#endif
|
|
66 |
|
|
67 |
|
|
68 |
/*
|
|
69 |
** Forward declaration
|
|
70 |
*/
|
|
71 |
static int checkReadLocks(Btree*,Pgno,BtCursor*);
|
|
72 |
|
|
73 |
|
|
74 |
#ifdef SQLITE_OMIT_SHARED_CACHE
|
|
75 |
/*
|
|
76 |
** The functions queryTableLock(), lockTable() and unlockAllTables()
|
|
77 |
** manipulate entries in the BtShared.pLock linked list used to store
|
|
78 |
** shared-cache table level locks. If the library is compiled with the
|
|
79 |
** shared-cache feature disabled, then there is only ever one user
|
|
80 |
** of each BtShared structure and so this locking is not necessary.
|
|
81 |
** So define the lock related functions as no-ops.
|
|
82 |
*/
|
|
83 |
#define queryTableLock(a,b,c) SQLITE_OK
|
|
84 |
#define lockTable(a,b,c) SQLITE_OK
|
|
85 |
#define unlockAllTables(a)
|
|
86 |
#endif
|
|
87 |
|
|
88 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
89 |
/*
|
|
90 |
** Query to see if btree handle p may obtain a lock of type eLock
|
|
91 |
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
|
|
92 |
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
|
|
93 |
** SQLITE_LOCKED if not.
|
|
94 |
*/
|
|
95 |
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
|
|
96 |
BtShared *pBt = p->pBt;
|
|
97 |
BtLock *pIter;
|
|
98 |
|
|
99 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
100 |
|
|
101 |
/* This is a no-op if the shared-cache is not enabled */
|
|
102 |
if( !p->sharable ){
|
|
103 |
return SQLITE_OK;
|
|
104 |
}
|
|
105 |
|
|
106 |
/* This (along with lockTable()) is where the ReadUncommitted flag is
|
|
107 |
** dealt with. If the caller is querying for a read-lock and the flag is
|
|
108 |
** set, it is unconditionally granted - even if there are write-locks
|
|
109 |
** on the table. If a write-lock is requested, the ReadUncommitted flag
|
|
110 |
** is not considered.
|
|
111 |
**
|
|
112 |
** In function lockTable(), if a read-lock is demanded and the
|
|
113 |
** ReadUncommitted flag is set, no entry is added to the locks list
|
|
114 |
** (BtShared.pLock).
|
|
115 |
**
|
|
116 |
** To summarize: If the ReadUncommitted flag is set, then read cursors do
|
|
117 |
** not create or respect table locks. The locking procedure for a
|
|
118 |
** write-cursor does not change.
|
|
119 |
*/
|
|
120 |
if(
|
|
121 |
!p->db ||
|
|
122 |
0==(p->db->flags&SQLITE_ReadUncommitted) ||
|
|
123 |
eLock==WRITE_LOCK ||
|
|
124 |
iTab==MASTER_ROOT
|
|
125 |
){
|
|
126 |
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
127 |
if( pIter->pBtree!=p && pIter->iTable==iTab &&
|
|
128 |
(pIter->eLock!=eLock || eLock!=READ_LOCK) ){
|
|
129 |
return SQLITE_LOCKED;
|
|
130 |
}
|
|
131 |
}
|
|
132 |
}
|
|
133 |
return SQLITE_OK;
|
|
134 |
}
|
|
135 |
#endif /* !SQLITE_OMIT_SHARED_CACHE */
|
|
136 |
|
|
137 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
138 |
/*
|
|
139 |
** Add a lock on the table with root-page iTable to the shared-btree used
|
|
140 |
** by Btree handle p. Parameter eLock must be either READ_LOCK or
|
|
141 |
** WRITE_LOCK.
|
|
142 |
**
|
|
143 |
** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
|
|
144 |
** SQLITE_NOMEM may also be returned.
|
|
145 |
*/
|
|
146 |
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
|
|
147 |
BtShared *pBt = p->pBt;
|
|
148 |
BtLock *pLock = 0;
|
|
149 |
BtLock *pIter;
|
|
150 |
|
|
151 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
152 |
|
|
153 |
/* This is a no-op if the shared-cache is not enabled */
|
|
154 |
if( !p->sharable ){
|
|
155 |
return SQLITE_OK;
|
|
156 |
}
|
|
157 |
|
|
158 |
assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
|
|
159 |
|
|
160 |
/* If the read-uncommitted flag is set and a read-lock is requested,
|
|
161 |
** return early without adding an entry to the BtShared.pLock list. See
|
|
162 |
** comment in function queryTableLock() for more info on handling
|
|
163 |
** the ReadUncommitted flag.
|
|
164 |
*/
|
|
165 |
if(
|
|
166 |
(p->db) &&
|
|
167 |
(p->db->flags&SQLITE_ReadUncommitted) &&
|
|
168 |
(eLock==READ_LOCK) &&
|
|
169 |
iTable!=MASTER_ROOT
|
|
170 |
){
|
|
171 |
return SQLITE_OK;
|
|
172 |
}
|
|
173 |
|
|
174 |
/* First search the list for an existing lock on this table. */
|
|
175 |
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
176 |
if( pIter->iTable==iTable && pIter->pBtree==p ){
|
|
177 |
pLock = pIter;
|
|
178 |
break;
|
|
179 |
}
|
|
180 |
}
|
|
181 |
|
|
182 |
/* If the above search did not find a BtLock struct associating Btree p
|
|
183 |
** with table iTable, allocate one and link it into the list.
|
|
184 |
*/
|
|
185 |
if( !pLock ){
|
|
186 |
pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
|
|
187 |
if( !pLock ){
|
|
188 |
return SQLITE_NOMEM;
|
|
189 |
}
|
|
190 |
pLock->iTable = iTable;
|
|
191 |
pLock->pBtree = p;
|
|
192 |
pLock->pNext = pBt->pLock;
|
|
193 |
pBt->pLock = pLock;
|
|
194 |
}
|
|
195 |
|
|
196 |
/* Set the BtLock.eLock variable to the maximum of the current lock
|
|
197 |
** and the requested lock. This means if a write-lock was already held
|
|
198 |
** and a read-lock requested, we don't incorrectly downgrade the lock.
|
|
199 |
*/
|
|
200 |
assert( WRITE_LOCK>READ_LOCK );
|
|
201 |
if( eLock>pLock->eLock ){
|
|
202 |
pLock->eLock = eLock;
|
|
203 |
}
|
|
204 |
|
|
205 |
return SQLITE_OK;
|
|
206 |
}
|
|
207 |
#endif /* !SQLITE_OMIT_SHARED_CACHE */
|
|
208 |
|
|
209 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
210 |
/*
|
|
211 |
** Release all the table locks (locks obtained via calls to the lockTable()
|
|
212 |
** procedure) held by Btree handle p.
|
|
213 |
*/
|
|
214 |
static void unlockAllTables(Btree *p){
|
|
215 |
BtLock **ppIter = &p->pBt->pLock;
|
|
216 |
|
|
217 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
218 |
assert( p->sharable || 0==*ppIter );
|
|
219 |
|
|
220 |
while( *ppIter ){
|
|
221 |
BtLock *pLock = *ppIter;
|
|
222 |
if( pLock->pBtree==p ){
|
|
223 |
*ppIter = pLock->pNext;
|
|
224 |
sqlite3_free(pLock);
|
|
225 |
}else{
|
|
226 |
ppIter = &pLock->pNext;
|
|
227 |
}
|
|
228 |
}
|
|
229 |
}
|
|
230 |
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
231 |
|
|
232 |
static void releasePage(MemPage *pPage); /* Forward reference */
|
|
233 |
|
|
234 |
/*
|
|
235 |
** Verify that the cursor holds a mutex on the BtShared
|
|
236 |
*/
|
|
237 |
#ifndef NDEBUG
|
|
238 |
static int cursorHoldsMutex(BtCursor *p){
|
|
239 |
return sqlite3_mutex_held(p->pBt->mutex);
|
|
240 |
}
|
|
241 |
#endif
|
|
242 |
|
|
243 |
|
|
244 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
245 |
/*
|
|
246 |
** Invalidate the overflow page-list cache for cursor pCur, if any.
|
|
247 |
*/
|
|
248 |
static void invalidateOverflowCache(BtCursor *pCur){
|
|
249 |
assert( cursorHoldsMutex(pCur) );
|
|
250 |
sqlite3_free(pCur->aOverflow);
|
|
251 |
pCur->aOverflow = 0;
|
|
252 |
}
|
|
253 |
|
|
254 |
/*
|
|
255 |
** Invalidate the overflow page-list cache for all cursors opened
|
|
256 |
** on the shared btree structure pBt.
|
|
257 |
*/
|
|
258 |
static void invalidateAllOverflowCache(BtShared *pBt){
|
|
259 |
BtCursor *p;
|
|
260 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
261 |
for(p=pBt->pCursor; p; p=p->pNext){
|
|
262 |
invalidateOverflowCache(p);
|
|
263 |
}
|
|
264 |
}
|
|
265 |
#else
|
|
266 |
#define invalidateOverflowCache(x)
|
|
267 |
#define invalidateAllOverflowCache(x)
|
|
268 |
#endif
|
|
269 |
|
|
270 |
/*
|
|
271 |
** Save the current cursor position in the variables BtCursor.nKey
|
|
272 |
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
|
|
273 |
*/
|
|
274 |
static int saveCursorPosition(BtCursor *pCur){
|
|
275 |
int rc;
|
|
276 |
|
|
277 |
assert( CURSOR_VALID==pCur->eState );
|
|
278 |
assert( 0==pCur->pKey );
|
|
279 |
assert( cursorHoldsMutex(pCur) );
|
|
280 |
|
|
281 |
rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
|
|
282 |
|
|
283 |
/* If this is an intKey table, then the above call to BtreeKeySize()
|
|
284 |
** stores the integer key in pCur->nKey. In this case this value is
|
|
285 |
** all that is required. Otherwise, if pCur is not open on an intKey
|
|
286 |
** table, then malloc space for and store the pCur->nKey bytes of key
|
|
287 |
** data.
|
|
288 |
*/
|
|
289 |
if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
|
|
290 |
void *pKey = sqlite3_malloc(pCur->nKey);
|
|
291 |
if( pKey ){
|
|
292 |
rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
|
|
293 |
if( rc==SQLITE_OK ){
|
|
294 |
pCur->pKey = pKey;
|
|
295 |
}else{
|
|
296 |
sqlite3_free(pKey);
|
|
297 |
}
|
|
298 |
}else{
|
|
299 |
rc = SQLITE_NOMEM;
|
|
300 |
}
|
|
301 |
}
|
|
302 |
assert( !pCur->pPage->intKey || !pCur->pKey );
|
|
303 |
|
|
304 |
if( rc==SQLITE_OK ){
|
|
305 |
releasePage(pCur->pPage);
|
|
306 |
pCur->pPage = 0;
|
|
307 |
pCur->eState = CURSOR_REQUIRESEEK;
|
|
308 |
}
|
|
309 |
|
|
310 |
invalidateOverflowCache(pCur);
|
|
311 |
return rc;
|
|
312 |
}
|
|
313 |
|
|
314 |
/*
|
|
315 |
** Save the positions of all cursors except pExcept open on the table
|
|
316 |
** with root-page iRoot. Usually, this is called just before cursor
|
|
317 |
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
|
|
318 |
*/
|
|
319 |
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
|
|
320 |
BtCursor *p;
|
|
321 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
322 |
assert( pExcept==0 || pExcept->pBt==pBt );
|
|
323 |
for(p=pBt->pCursor; p; p=p->pNext){
|
|
324 |
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
|
|
325 |
p->eState==CURSOR_VALID ){
|
|
326 |
int rc = saveCursorPosition(p);
|
|
327 |
if( SQLITE_OK!=rc ){
|
|
328 |
return rc;
|
|
329 |
}
|
|
330 |
}
|
|
331 |
}
|
|
332 |
return SQLITE_OK;
|
|
333 |
}
|
|
334 |
|
|
335 |
/*
|
|
336 |
** Clear the current cursor position.
|
|
337 |
*/
|
|
338 |
static void clearCursorPosition(BtCursor *pCur){
|
|
339 |
assert( cursorHoldsMutex(pCur) );
|
|
340 |
sqlite3_free(pCur->pKey);
|
|
341 |
pCur->pKey = 0;
|
|
342 |
pCur->eState = CURSOR_INVALID;
|
|
343 |
}
|
|
344 |
|
|
345 |
/*
|
|
346 |
** Restore the cursor to the position it was in (or as close to as possible)
|
|
347 |
** when saveCursorPosition() was called. Note that this call deletes the
|
|
348 |
** saved position info stored by saveCursorPosition(), so there can be
|
|
349 |
** at most one effective restoreOrClearCursorPosition() call after each
|
|
350 |
** saveCursorPosition().
|
|
351 |
**
|
|
352 |
** If the second argument argument - doSeek - is false, then instead of
|
|
353 |
** returning the cursor to its saved position, any saved position is deleted
|
|
354 |
** and the cursor state set to CURSOR_INVALID.
|
|
355 |
*/
|
|
356 |
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
|
|
357 |
int rc;
|
|
358 |
assert( cursorHoldsMutex(pCur) );
|
|
359 |
assert( pCur->eState>=CURSOR_REQUIRESEEK );
|
|
360 |
if( pCur->eState==CURSOR_FAULT ){
|
|
361 |
return pCur->skip;
|
|
362 |
}
|
|
363 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
364 |
if( pCur->isIncrblobHandle ){
|
|
365 |
return SQLITE_ABORT;
|
|
366 |
}
|
|
367 |
#endif
|
|
368 |
pCur->eState = CURSOR_INVALID;
|
|
369 |
rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
|
|
370 |
if( rc==SQLITE_OK ){
|
|
371 |
sqlite3_free(pCur->pKey);
|
|
372 |
pCur->pKey = 0;
|
|
373 |
assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
|
|
374 |
}
|
|
375 |
return rc;
|
|
376 |
}
|
|
377 |
|
|
378 |
#define restoreOrClearCursorPosition(p) \
|
|
379 |
(p->eState>=CURSOR_REQUIRESEEK ? \
|
|
380 |
sqlite3BtreeRestoreOrClearCursorPosition(p) : \
|
|
381 |
SQLITE_OK)
|
|
382 |
|
|
383 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
384 |
/*
|
|
385 |
** Given a page number of a regular database page, return the page
|
|
386 |
** number for the pointer-map page that contains the entry for the
|
|
387 |
** input page number.
|
|
388 |
*/
|
|
389 |
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
|
|
390 |
int nPagesPerMapPage, iPtrMap, ret;
|
|
391 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
392 |
nPagesPerMapPage = (pBt->usableSize/5)+1;
|
|
393 |
iPtrMap = (pgno-2)/nPagesPerMapPage;
|
|
394 |
ret = (iPtrMap*nPagesPerMapPage) + 2;
|
|
395 |
if( ret==PENDING_BYTE_PAGE(pBt) ){
|
|
396 |
ret++;
|
|
397 |
}
|
|
398 |
return ret;
|
|
399 |
}
|
|
400 |
|
|
401 |
/*
|
|
402 |
** Write an entry into the pointer map.
|
|
403 |
**
|
|
404 |
** This routine updates the pointer map entry for page number 'key'
|
|
405 |
** so that it maps to type 'eType' and parent page number 'pgno'.
|
|
406 |
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
|
|
407 |
*/
|
|
408 |
static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
|
|
409 |
DbPage *pDbPage; /* The pointer map page */
|
|
410 |
u8 *pPtrmap; /* The pointer map data */
|
|
411 |
Pgno iPtrmap; /* The pointer map page number */
|
|
412 |
int offset; /* Offset in pointer map page */
|
|
413 |
int rc;
|
|
414 |
|
|
415 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
416 |
/* The master-journal page number must never be used as a pointer map page */
|
|
417 |
assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
|
|
418 |
|
|
419 |
assert( pBt->autoVacuum );
|
|
420 |
if( key==0 ){
|
|
421 |
return SQLITE_CORRUPT_BKPT;
|
|
422 |
}
|
|
423 |
iPtrmap = PTRMAP_PAGENO(pBt, key);
|
|
424 |
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
|
|
425 |
if( rc!=SQLITE_OK ){
|
|
426 |
return rc;
|
|
427 |
}
|
|
428 |
offset = PTRMAP_PTROFFSET(pBt, key);
|
|
429 |
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
|
|
430 |
|
|
431 |
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
|
|
432 |
TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
|
|
433 |
rc = sqlite3PagerWrite(pDbPage);
|
|
434 |
if( rc==SQLITE_OK ){
|
|
435 |
pPtrmap[offset] = eType;
|
|
436 |
put4byte(&pPtrmap[offset+1], parent);
|
|
437 |
}
|
|
438 |
}
|
|
439 |
|
|
440 |
sqlite3PagerUnref(pDbPage);
|
|
441 |
return rc;
|
|
442 |
}
|
|
443 |
|
|
444 |
/*
|
|
445 |
** Read an entry from the pointer map.
|
|
446 |
**
|
|
447 |
** This routine retrieves the pointer map entry for page 'key', writing
|
|
448 |
** the type and parent page number to *pEType and *pPgno respectively.
|
|
449 |
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
|
|
450 |
*/
|
|
451 |
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
|
|
452 |
DbPage *pDbPage; /* The pointer map page */
|
|
453 |
int iPtrmap; /* Pointer map page index */
|
|
454 |
u8 *pPtrmap; /* Pointer map page data */
|
|
455 |
int offset; /* Offset of entry in pointer map */
|
|
456 |
int rc;
|
|
457 |
|
|
458 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
459 |
|
|
460 |
iPtrmap = PTRMAP_PAGENO(pBt, key);
|
|
461 |
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
|
|
462 |
if( rc!=0 ){
|
|
463 |
return rc;
|
|
464 |
}
|
|
465 |
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
|
|
466 |
|
|
467 |
offset = PTRMAP_PTROFFSET(pBt, key);
|
|
468 |
assert( pEType!=0 );
|
|
469 |
*pEType = pPtrmap[offset];
|
|
470 |
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
|
|
471 |
|
|
472 |
sqlite3PagerUnref(pDbPage);
|
|
473 |
if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
|
|
474 |
return SQLITE_OK;
|
|
475 |
}
|
|
476 |
|
|
477 |
#endif /* SQLITE_OMIT_AUTOVACUUM */
|
|
478 |
|
|
479 |
/*
|
|
480 |
** Given a btree page and a cell index (0 means the first cell on
|
|
481 |
** the page, 1 means the second cell, and so forth) return a pointer
|
|
482 |
** to the cell content.
|
|
483 |
**
|
|
484 |
** This routine works only for pages that do not contain overflow cells.
|
|
485 |
*/
|
|
486 |
#define findCell(pPage, iCell) \
|
|
487 |
((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
|
|
488 |
#ifdef SQLITE_TEST
|
|
489 |
u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
|
|
490 |
assert( iCell>=0 );
|
|
491 |
assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
|
|
492 |
return findCell(pPage, iCell);
|
|
493 |
}
|
|
494 |
#endif
|
|
495 |
|
|
496 |
/*
|
|
497 |
** This a more complex version of sqlite3BtreeFindCell() that works for
|
|
498 |
** pages that do contain overflow cells. See insert
|
|
499 |
*/
|
|
500 |
static u8 *findOverflowCell(MemPage *pPage, int iCell){
|
|
501 |
int i;
|
|
502 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
503 |
for(i=pPage->nOverflow-1; i>=0; i--){
|
|
504 |
int k;
|
|
505 |
MemPage::_OvflCell *pOvfl;
|
|
506 |
pOvfl = &pPage->aOvfl[i];
|
|
507 |
k = pOvfl->idx;
|
|
508 |
if( k<=iCell ){
|
|
509 |
if( k==iCell ){
|
|
510 |
return pOvfl->pCell;
|
|
511 |
}
|
|
512 |
iCell--;
|
|
513 |
}
|
|
514 |
}
|
|
515 |
return findCell(pPage, iCell);
|
|
516 |
}
|
|
517 |
|
|
518 |
/*
|
|
519 |
** Parse a cell content block and fill in the CellInfo structure. There
|
|
520 |
** are two versions of this function. sqlite3BtreeParseCell() takes a
|
|
521 |
** cell index as the second argument and sqlite3BtreeParseCellPtr()
|
|
522 |
** takes a pointer to the body of the cell as its second argument.
|
|
523 |
**
|
|
524 |
** Within this file, the parseCell() macro can be called instead of
|
|
525 |
** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
|
|
526 |
*/
|
|
527 |
void sqlite3BtreeParseCellPtr(
|
|
528 |
MemPage *pPage, /* Page containing the cell */
|
|
529 |
u8 *pCell, /* Pointer to the cell text. */
|
|
530 |
CellInfo *pInfo /* Fill in this structure */
|
|
531 |
){
|
|
532 |
int n; /* Number bytes in cell content header */
|
|
533 |
u32 nPayload; /* Number of bytes of cell payload */
|
|
534 |
|
|
535 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
536 |
|
|
537 |
pInfo->pCell = pCell;
|
|
538 |
assert( pPage->leaf==0 || pPage->leaf==1 );
|
|
539 |
n = pPage->childPtrSize;
|
|
540 |
assert( n==4-4*pPage->leaf );
|
|
541 |
if( pPage->hasData ){
|
|
542 |
n += getVarint32(&pCell[n], &nPayload);
|
|
543 |
}else{
|
|
544 |
nPayload = 0;
|
|
545 |
}
|
|
546 |
pInfo->nData = nPayload;
|
|
547 |
if( pPage->intKey ){
|
|
548 |
n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
|
|
549 |
}else{
|
|
550 |
u32 x;
|
|
551 |
n += getVarint32(&pCell[n], &x);
|
|
552 |
pInfo->nKey = x;
|
|
553 |
nPayload += x;
|
|
554 |
}
|
|
555 |
pInfo->nPayload = nPayload;
|
|
556 |
pInfo->nHeader = n;
|
|
557 |
if( nPayload<=pPage->maxLocal ){
|
|
558 |
/* This is the (easy) common case where the entire payload fits
|
|
559 |
** on the local page. No overflow is required.
|
|
560 |
*/
|
|
561 |
int nSize; /* Total size of cell content in bytes */
|
|
562 |
pInfo->nLocal = nPayload;
|
|
563 |
pInfo->iOverflow = 0;
|
|
564 |
nSize = nPayload + n;
|
|
565 |
if( nSize<4 ){
|
|
566 |
nSize = 4; /* Minimum cell size is 4 */
|
|
567 |
}
|
|
568 |
pInfo->nSize = nSize;
|
|
569 |
}else{
|
|
570 |
/* If the payload will not fit completely on the local page, we have
|
|
571 |
** to decide how much to store locally and how much to spill onto
|
|
572 |
** overflow pages. The strategy is to minimize the amount of unused
|
|
573 |
** space on overflow pages while keeping the amount of local storage
|
|
574 |
** in between minLocal and maxLocal.
|
|
575 |
**
|
|
576 |
** Warning: changing the way overflow payload is distributed in any
|
|
577 |
** way will result in an incompatible file format.
|
|
578 |
*/
|
|
579 |
int minLocal; /* Minimum amount of payload held locally */
|
|
580 |
int maxLocal; /* Maximum amount of payload held locally */
|
|
581 |
int surplus; /* Overflow payload available for local storage */
|
|
582 |
|
|
583 |
minLocal = pPage->minLocal;
|
|
584 |
maxLocal = pPage->maxLocal;
|
|
585 |
surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
|
|
586 |
if( surplus <= maxLocal ){
|
|
587 |
pInfo->nLocal = surplus;
|
|
588 |
}else{
|
|
589 |
pInfo->nLocal = minLocal;
|
|
590 |
}
|
|
591 |
pInfo->iOverflow = pInfo->nLocal + n;
|
|
592 |
pInfo->nSize = pInfo->iOverflow + 4;
|
|
593 |
}
|
|
594 |
}
|
|
595 |
#define parseCell(pPage, iCell, pInfo) \
|
|
596 |
sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
|
|
597 |
void sqlite3BtreeParseCell(
|
|
598 |
MemPage *pPage, /* Page containing the cell */
|
|
599 |
int iCell, /* The cell index. First cell is 0 */
|
|
600 |
CellInfo *pInfo /* Fill in this structure */
|
|
601 |
){
|
|
602 |
parseCell(pPage, iCell, pInfo);
|
|
603 |
}
|
|
604 |
|
|
605 |
/*
|
|
606 |
** Compute the total number of bytes that a Cell needs in the cell
|
|
607 |
** data area of the btree-page. The return number includes the cell
|
|
608 |
** data header and the local payload, but not any overflow page or
|
|
609 |
** the space used by the cell pointer.
|
|
610 |
*/
|
|
611 |
#ifndef NDEBUG
|
|
612 |
static int cellSize(MemPage *pPage, int iCell){
|
|
613 |
CellInfo info;
|
|
614 |
sqlite3BtreeParseCell(pPage, iCell, &info);
|
|
615 |
return info.nSize;
|
|
616 |
}
|
|
617 |
#endif
|
|
618 |
static int cellSizePtr(MemPage *pPage, u8 *pCell){
|
|
619 |
CellInfo info;
|
|
620 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
621 |
return info.nSize;
|
|
622 |
}
|
|
623 |
|
|
624 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
625 |
/*
|
|
626 |
** If the cell pCell, part of page pPage contains a pointer
|
|
627 |
** to an overflow page, insert an entry into the pointer-map
|
|
628 |
** for the overflow page.
|
|
629 |
*/
|
|
630 |
static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
|
|
631 |
if( pCell ){
|
|
632 |
CellInfo info;
|
|
633 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
634 |
assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
|
|
635 |
if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
|
|
636 |
Pgno ovfl = get4byte(&pCell[info.iOverflow]);
|
|
637 |
return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
|
|
638 |
}
|
|
639 |
}
|
|
640 |
return SQLITE_OK;
|
|
641 |
}
|
|
642 |
/*
|
|
643 |
** If the cell with index iCell on page pPage contains a pointer
|
|
644 |
** to an overflow page, insert an entry into the pointer-map
|
|
645 |
** for the overflow page.
|
|
646 |
*/
|
|
647 |
static int ptrmapPutOvfl(MemPage *pPage, int iCell){
|
|
648 |
u8 *pCell;
|
|
649 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
650 |
pCell = findOverflowCell(pPage, iCell);
|
|
651 |
return ptrmapPutOvflPtr(pPage, pCell);
|
|
652 |
}
|
|
653 |
#endif
|
|
654 |
|
|
655 |
|
|
656 |
/*
|
|
657 |
** Defragment the page given. All Cells are moved to the
|
|
658 |
** end of the page and all free space is collected into one
|
|
659 |
** big FreeBlk that occurs in between the header and cell
|
|
660 |
** pointer array and the cell content area.
|
|
661 |
*/
|
|
662 |
static int defragmentPage(MemPage *pPage){
|
|
663 |
int i; /* Loop counter */
|
|
664 |
int pc; /* Address of a i-th cell */
|
|
665 |
int addr; /* Offset of first byte after cell pointer array */
|
|
666 |
int hdr; /* Offset to the page header */
|
|
667 |
int size; /* Size of a cell */
|
|
668 |
int usableSize; /* Number of usable bytes on a page */
|
|
669 |
int cellOffset; /* Offset to the cell pointer array */
|
|
670 |
int brk; /* Offset to the cell content area */
|
|
671 |
int nCell; /* Number of cells on the page */
|
|
672 |
unsigned char *data; /* The page data */
|
|
673 |
unsigned char *temp; /* Temp area for cell content */
|
|
674 |
|
|
675 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
676 |
assert( pPage->pBt!=0 );
|
|
677 |
assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
|
|
678 |
assert( pPage->nOverflow==0 );
|
|
679 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
680 |
temp = (unsigned char*)sqlite3PagerTempSpace(pPage->pBt->pPager);
|
|
681 |
data = pPage->aData;
|
|
682 |
hdr = pPage->hdrOffset;
|
|
683 |
cellOffset = pPage->cellOffset;
|
|
684 |
nCell = pPage->nCell;
|
|
685 |
assert( nCell==get2byte(&data[hdr+3]) );
|
|
686 |
usableSize = pPage->pBt->usableSize;
|
|
687 |
brk = get2byte(&data[hdr+5]);
|
|
688 |
memcpy(&temp[brk], &data[brk], usableSize - brk);
|
|
689 |
brk = usableSize;
|
|
690 |
for(i=0; i<nCell; i++){
|
|
691 |
u8 *pAddr; /* The i-th cell pointer */
|
|
692 |
pAddr = &data[cellOffset + i*2];
|
|
693 |
pc = get2byte(pAddr);
|
|
694 |
assert( pc<pPage->pBt->usableSize );
|
|
695 |
size = cellSizePtr(pPage, &temp[pc]);
|
|
696 |
brk -= size;
|
|
697 |
memcpy(&data[brk], &temp[pc], size);
|
|
698 |
put2byte(pAddr, brk);
|
|
699 |
}
|
|
700 |
assert( brk>=cellOffset+2*nCell );
|
|
701 |
put2byte(&data[hdr+5], brk);
|
|
702 |
data[hdr+1] = 0;
|
|
703 |
data[hdr+2] = 0;
|
|
704 |
data[hdr+7] = 0;
|
|
705 |
addr = cellOffset+2*nCell;
|
|
706 |
memset(&data[addr], 0, brk-addr);
|
|
707 |
return SQLITE_OK;
|
|
708 |
}
|
|
709 |
|
|
710 |
/*
|
|
711 |
** Allocate nByte bytes of space on a page.
|
|
712 |
**
|
|
713 |
** Return the index into pPage->aData[] of the first byte of
|
|
714 |
** the new allocation. Or return 0 if there is not enough free
|
|
715 |
** space on the page to satisfy the allocation request.
|
|
716 |
**
|
|
717 |
** If the page contains nBytes of free space but does not contain
|
|
718 |
** nBytes of contiguous free space, then this routine automatically
|
|
719 |
** calls defragementPage() to consolidate all free space before
|
|
720 |
** allocating the new chunk.
|
|
721 |
*/
|
|
722 |
static int allocateSpace(MemPage *pPage, int nByte){
|
|
723 |
int addr, pc, hdr;
|
|
724 |
int size;
|
|
725 |
int nFrag;
|
|
726 |
int top;
|
|
727 |
int nCell;
|
|
728 |
int cellOffset;
|
|
729 |
unsigned char *data;
|
|
730 |
|
|
731 |
data = pPage->aData;
|
|
732 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
733 |
assert( pPage->pBt );
|
|
734 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
735 |
if( nByte<4 ) nByte = 4;
|
|
736 |
if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
|
|
737 |
pPage->nFree -= nByte;
|
|
738 |
hdr = pPage->hdrOffset;
|
|
739 |
|
|
740 |
nFrag = data[hdr+7];
|
|
741 |
if( nFrag<60 ){
|
|
742 |
/* Search the freelist looking for a slot big enough to satisfy the
|
|
743 |
** space request. */
|
|
744 |
addr = hdr+1;
|
|
745 |
while( (pc = get2byte(&data[addr]))>0 ){
|
|
746 |
size = get2byte(&data[pc+2]);
|
|
747 |
if( size>=nByte ){
|
|
748 |
if( size<nByte+4 ){
|
|
749 |
memcpy(&data[addr], &data[pc], 2);
|
|
750 |
data[hdr+7] = nFrag + size - nByte;
|
|
751 |
return pc;
|
|
752 |
}else{
|
|
753 |
put2byte(&data[pc+2], size-nByte);
|
|
754 |
return pc + size - nByte;
|
|
755 |
}
|
|
756 |
}
|
|
757 |
addr = pc;
|
|
758 |
}
|
|
759 |
}
|
|
760 |
|
|
761 |
/* Allocate memory from the gap in between the cell pointer array
|
|
762 |
** and the cell content area.
|
|
763 |
*/
|
|
764 |
top = get2byte(&data[hdr+5]);
|
|
765 |
nCell = get2byte(&data[hdr+3]);
|
|
766 |
cellOffset = pPage->cellOffset;
|
|
767 |
if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
|
|
768 |
if( defragmentPage(pPage) ) return 0;
|
|
769 |
top = get2byte(&data[hdr+5]);
|
|
770 |
}
|
|
771 |
top -= nByte;
|
|
772 |
assert( cellOffset + 2*nCell <= top );
|
|
773 |
put2byte(&data[hdr+5], top);
|
|
774 |
return top;
|
|
775 |
}
|
|
776 |
|
|
777 |
/*
|
|
778 |
** Return a section of the pPage->aData to the freelist.
|
|
779 |
** The first byte of the new free block is pPage->aDisk[start]
|
|
780 |
** and the size of the block is "size" bytes.
|
|
781 |
**
|
|
782 |
** Most of the effort here is involved in coalesing adjacent
|
|
783 |
** free blocks into a single big free block.
|
|
784 |
*/
|
|
785 |
static void freeSpace(MemPage *pPage, int start, int size){
|
|
786 |
int addr, pbegin, hdr;
|
|
787 |
unsigned char *data = pPage->aData;
|
|
788 |
|
|
789 |
assert( pPage->pBt!=0 );
|
|
790 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
791 |
assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
|
|
792 |
assert( (start + size)<=pPage->pBt->usableSize );
|
|
793 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
794 |
if( size<4 ) size = 4;
|
|
795 |
|
|
796 |
#ifdef SQLITE_SECURE_DELETE
|
|
797 |
/* Overwrite deleted information with zeros when the SECURE_DELETE
|
|
798 |
** option is enabled at compile-time */
|
|
799 |
memset(&data[start], 0, size);
|
|
800 |
#endif
|
|
801 |
|
|
802 |
/* Add the space back into the linked list of freeblocks */
|
|
803 |
hdr = pPage->hdrOffset;
|
|
804 |
addr = hdr + 1;
|
|
805 |
while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
|
|
806 |
assert( pbegin<=pPage->pBt->usableSize-4 );
|
|
807 |
assert( pbegin>addr );
|
|
808 |
addr = pbegin;
|
|
809 |
}
|
|
810 |
assert( pbegin<=pPage->pBt->usableSize-4 );
|
|
811 |
assert( pbegin>addr || pbegin==0 );
|
|
812 |
put2byte(&data[addr], start);
|
|
813 |
put2byte(&data[start], pbegin);
|
|
814 |
put2byte(&data[start+2], size);
|
|
815 |
pPage->nFree += size;
|
|
816 |
|
|
817 |
/* Coalesce adjacent free blocks */
|
|
818 |
addr = pPage->hdrOffset + 1;
|
|
819 |
while( (pbegin = get2byte(&data[addr]))>0 ){
|
|
820 |
int pnext, psize;
|
|
821 |
assert( pbegin>addr );
|
|
822 |
assert( pbegin<=pPage->pBt->usableSize-4 );
|
|
823 |
pnext = get2byte(&data[pbegin]);
|
|
824 |
psize = get2byte(&data[pbegin+2]);
|
|
825 |
if( pbegin + psize + 3 >= pnext && pnext>0 ){
|
|
826 |
int frag = pnext - (pbegin+psize);
|
|
827 |
assert( frag<=data[pPage->hdrOffset+7] );
|
|
828 |
data[pPage->hdrOffset+7] -= frag;
|
|
829 |
put2byte(&data[pbegin], get2byte(&data[pnext]));
|
|
830 |
put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
|
|
831 |
}else{
|
|
832 |
addr = pbegin;
|
|
833 |
}
|
|
834 |
}
|
|
835 |
|
|
836 |
/* If the cell content area begins with a freeblock, remove it. */
|
|
837 |
if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
|
|
838 |
int top;
|
|
839 |
pbegin = get2byte(&data[hdr+1]);
|
|
840 |
memcpy(&data[hdr+1], &data[pbegin], 2);
|
|
841 |
top = get2byte(&data[hdr+5]);
|
|
842 |
put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
|
|
843 |
}
|
|
844 |
}
|
|
845 |
|
|
846 |
/*
|
|
847 |
** Decode the flags byte (the first byte of the header) for a page
|
|
848 |
** and initialize fields of the MemPage structure accordingly.
|
|
849 |
*/
|
|
850 |
static void decodeFlags(MemPage *pPage, int flagByte){
|
|
851 |
BtShared *pBt; /* A copy of pPage->pBt */
|
|
852 |
|
|
853 |
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
|
|
854 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
855 |
pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
|
|
856 |
pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
|
|
857 |
pPage->leaf = (flagByte & PTF_LEAF)!=0;
|
|
858 |
pPage->childPtrSize = 4*(pPage->leaf==0);
|
|
859 |
pBt = pPage->pBt;
|
|
860 |
if( flagByte & PTF_LEAFDATA ){
|
|
861 |
pPage->leafData = 1;
|
|
862 |
pPage->maxLocal = pBt->maxLeaf;
|
|
863 |
pPage->minLocal = pBt->minLeaf;
|
|
864 |
}else{
|
|
865 |
pPage->leafData = 0;
|
|
866 |
pPage->maxLocal = pBt->maxLocal;
|
|
867 |
pPage->minLocal = pBt->minLocal;
|
|
868 |
}
|
|
869 |
pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
|
|
870 |
}
|
|
871 |
|
|
872 |
/*
|
|
873 |
** Initialize the auxiliary information for a disk block.
|
|
874 |
**
|
|
875 |
** The pParent parameter must be a pointer to the MemPage which
|
|
876 |
** is the parent of the page being initialized. The root of a
|
|
877 |
** BTree has no parent and so for that page, pParent==NULL.
|
|
878 |
**
|
|
879 |
** Return SQLITE_OK on success. If we see that the page does
|
|
880 |
** not contain a well-formed database page, then return
|
|
881 |
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
|
882 |
** guarantee that the page is well-formed. It only shows that
|
|
883 |
** we failed to detect any corruption.
|
|
884 |
*/
|
|
885 |
int sqlite3BtreeInitPage(
|
|
886 |
MemPage *pPage, /* The page to be initialized */
|
|
887 |
MemPage *pParent /* The parent. Might be NULL */
|
|
888 |
){
|
|
889 |
int pc; /* Address of a freeblock within pPage->aData[] */
|
|
890 |
int hdr; /* Offset to beginning of page header */
|
|
891 |
u8 *data; /* Equal to pPage->aData */
|
|
892 |
BtShared *pBt; /* The main btree structure */
|
|
893 |
int usableSize; /* Amount of usable space on each page */
|
|
894 |
int cellOffset; /* Offset from start of page to first cell pointer */
|
|
895 |
int nFree; /* Number of unused bytes on the page */
|
|
896 |
int top; /* First byte of the cell content area */
|
|
897 |
|
|
898 |
pBt = pPage->pBt;
|
|
899 |
assert( pBt!=0 );
|
|
900 |
assert( pParent==0 || pParent->pBt==pBt );
|
|
901 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
902 |
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
|
|
903 |
assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
|
|
904 |
assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
|
|
905 |
if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
|
|
906 |
/* The parent page should never change unless the file is corrupt */
|
|
907 |
return SQLITE_CORRUPT_BKPT;
|
|
908 |
}
|
|
909 |
if( pPage->isInit ) return SQLITE_OK;
|
|
910 |
if( pPage->pParent==0 && pParent!=0 ){
|
|
911 |
pPage->pParent = pParent;
|
|
912 |
sqlite3PagerRef(pParent->pDbPage);
|
|
913 |
}
|
|
914 |
hdr = pPage->hdrOffset;
|
|
915 |
data = pPage->aData;
|
|
916 |
decodeFlags(pPage, data[hdr]);
|
|
917 |
pPage->nOverflow = 0;
|
|
918 |
pPage->idxShift = 0;
|
|
919 |
usableSize = pBt->usableSize;
|
|
920 |
pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
|
|
921 |
top = get2byte(&data[hdr+5]);
|
|
922 |
pPage->nCell = get2byte(&data[hdr+3]);
|
|
923 |
if( pPage->nCell>MX_CELL(pBt) ){
|
|
924 |
/* To many cells for a single page. The page must be corrupt */
|
|
925 |
return SQLITE_CORRUPT_BKPT;
|
|
926 |
}
|
|
927 |
if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
|
|
928 |
/* All pages must have at least one cell, except for root pages */
|
|
929 |
return SQLITE_CORRUPT_BKPT;
|
|
930 |
}
|
|
931 |
|
|
932 |
/* Compute the total free space on the page */
|
|
933 |
pc = get2byte(&data[hdr+1]);
|
|
934 |
nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
|
|
935 |
while( pc>0 ){
|
|
936 |
int next, size;
|
|
937 |
if( pc>usableSize-4 ){
|
|
938 |
/* Free block is off the page */
|
|
939 |
return SQLITE_CORRUPT_BKPT;
|
|
940 |
}
|
|
941 |
next = get2byte(&data[pc]);
|
|
942 |
size = get2byte(&data[pc+2]);
|
|
943 |
if( next>0 && next<=pc+size+3 ){
|
|
944 |
/* Free blocks must be in accending order */
|
|
945 |
return SQLITE_CORRUPT_BKPT;
|
|
946 |
}
|
|
947 |
nFree += size;
|
|
948 |
pc = next;
|
|
949 |
}
|
|
950 |
pPage->nFree = nFree;
|
|
951 |
if( nFree>=usableSize ){
|
|
952 |
/* Free space cannot exceed total page size */
|
|
953 |
return SQLITE_CORRUPT_BKPT;
|
|
954 |
}
|
|
955 |
|
|
956 |
pPage->isInit = 1;
|
|
957 |
return SQLITE_OK;
|
|
958 |
}
|
|
959 |
|
|
960 |
/*
|
|
961 |
** Set up a raw page so that it looks like a database page holding
|
|
962 |
** no entries.
|
|
963 |
*/
|
|
964 |
static void zeroPage(MemPage *pPage, int flags){
|
|
965 |
unsigned char *data = pPage->aData;
|
|
966 |
BtShared *pBt = pPage->pBt;
|
|
967 |
int hdr = pPage->hdrOffset;
|
|
968 |
int first;
|
|
969 |
|
|
970 |
assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
|
|
971 |
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
972 |
assert( sqlite3PagerGetData(pPage->pDbPage) == data );
|
|
973 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
974 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
975 |
memset(&data[hdr], 0, pBt->usableSize - hdr);
|
|
976 |
data[hdr] = flags;
|
|
977 |
first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
|
|
978 |
memset(&data[hdr+1], 0, 4);
|
|
979 |
data[hdr+7] = 0;
|
|
980 |
put2byte(&data[hdr+5], pBt->usableSize);
|
|
981 |
pPage->nFree = pBt->usableSize - first;
|
|
982 |
decodeFlags(pPage, flags);
|
|
983 |
pPage->hdrOffset = hdr;
|
|
984 |
pPage->cellOffset = first;
|
|
985 |
pPage->nOverflow = 0;
|
|
986 |
pPage->idxShift = 0;
|
|
987 |
pPage->nCell = 0;
|
|
988 |
pPage->isInit = 1;
|
|
989 |
}
|
|
990 |
|
|
991 |
/*
|
|
992 |
** Get a page from the pager. Initialize the MemPage.pBt and
|
|
993 |
** MemPage.aData elements if needed.
|
|
994 |
**
|
|
995 |
** If the noContent flag is set, it means that we do not care about
|
|
996 |
** the content of the page at this time. So do not go to the disk
|
|
997 |
** to fetch the content. Just fill in the content with zeros for now.
|
|
998 |
** If in the future we call sqlite3PagerWrite() on this page, that
|
|
999 |
** means we have started to be concerned about content and the disk
|
|
1000 |
** read should occur at that point.
|
|
1001 |
*/
|
|
1002 |
int sqlite3BtreeGetPage(
|
|
1003 |
BtShared *pBt, /* The btree */
|
|
1004 |
Pgno pgno, /* Number of the page to fetch */
|
|
1005 |
MemPage **ppPage, /* Return the page in this parameter */
|
|
1006 |
int noContent /* Do not load page content if true */
|
|
1007 |
){
|
|
1008 |
int rc;
|
|
1009 |
MemPage *pPage;
|
|
1010 |
DbPage *pDbPage;
|
|
1011 |
|
|
1012 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
1013 |
rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
|
|
1014 |
if( rc ) return rc;
|
|
1015 |
pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
|
|
1016 |
pPage->aData = (u8*)sqlite3PagerGetData(pDbPage);
|
|
1017 |
pPage->pDbPage = pDbPage;
|
|
1018 |
pPage->pBt = pBt;
|
|
1019 |
pPage->pgno = pgno;
|
|
1020 |
pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
|
|
1021 |
*ppPage = pPage;
|
|
1022 |
return SQLITE_OK;
|
|
1023 |
}
|
|
1024 |
|
|
1025 |
/*
|
|
1026 |
** Get a page from the pager and initialize it. This routine
|
|
1027 |
** is just a convenience wrapper around separate calls to
|
|
1028 |
** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
|
|
1029 |
*/
|
|
1030 |
static int getAndInitPage(
|
|
1031 |
BtShared *pBt, /* The database file */
|
|
1032 |
Pgno pgno, /* Number of the page to get */
|
|
1033 |
MemPage **ppPage, /* Write the page pointer here */
|
|
1034 |
MemPage *pParent /* Parent of the page */
|
|
1035 |
){
|
|
1036 |
int rc;
|
|
1037 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
1038 |
if( pgno==0 ){
|
|
1039 |
return SQLITE_CORRUPT_BKPT;
|
|
1040 |
}
|
|
1041 |
rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
|
|
1042 |
if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
|
|
1043 |
rc = sqlite3BtreeInitPage(*ppPage, pParent);
|
|
1044 |
}
|
|
1045 |
return rc;
|
|
1046 |
}
|
|
1047 |
|
|
1048 |
/*
|
|
1049 |
** Release a MemPage. This should be called once for each prior
|
|
1050 |
** call to sqlite3BtreeGetPage.
|
|
1051 |
*/
|
|
1052 |
static void releasePage(MemPage *pPage){
|
|
1053 |
if( pPage ){
|
|
1054 |
assert( pPage->aData );
|
|
1055 |
assert( pPage->pBt );
|
|
1056 |
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
1057 |
assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
|
|
1058 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
1059 |
sqlite3PagerUnref(pPage->pDbPage);
|
|
1060 |
}
|
|
1061 |
}
|
|
1062 |
|
|
1063 |
/*
|
|
1064 |
** This routine is called when the reference count for a page
|
|
1065 |
** reaches zero. We need to unref the pParent pointer when that
|
|
1066 |
** happens.
|
|
1067 |
*/
|
|
1068 |
static void pageDestructor(DbPage *pData, int pageSize){
|
|
1069 |
MemPage *pPage;
|
|
1070 |
assert( (pageSize & 7)==0 );
|
|
1071 |
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
|
|
1072 |
assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
1073 |
if( pPage->pParent ){
|
|
1074 |
MemPage *pParent = pPage->pParent;
|
|
1075 |
assert( pParent->pBt==pPage->pBt );
|
|
1076 |
pPage->pParent = 0;
|
|
1077 |
releasePage(pParent);
|
|
1078 |
}
|
|
1079 |
pPage->isInit = 0;
|
|
1080 |
}
|
|
1081 |
|
|
1082 |
/*
|
|
1083 |
** During a rollback, when the pager reloads information into the cache
|
|
1084 |
** so that the cache is restored to its original state at the start of
|
|
1085 |
** the transaction, for each page restored this routine is called.
|
|
1086 |
**
|
|
1087 |
** This routine needs to reset the extra data section at the end of the
|
|
1088 |
** page to agree with the restored data.
|
|
1089 |
*/
|
|
1090 |
static void pageReinit(DbPage *pData, int pageSize){
|
|
1091 |
MemPage *pPage;
|
|
1092 |
assert( (pageSize & 7)==0 );
|
|
1093 |
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
|
|
1094 |
if( pPage->isInit ){
|
|
1095 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
1096 |
pPage->isInit = 0;
|
|
1097 |
sqlite3BtreeInitPage(pPage, pPage->pParent);
|
|
1098 |
}
|
|
1099 |
}
|
|
1100 |
|
|
1101 |
/*
|
|
1102 |
** Invoke the busy handler for a btree.
|
|
1103 |
*/
|
|
1104 |
static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
|
|
1105 |
BtShared *pBt = (BtShared*)pArg;
|
|
1106 |
assert( pBt->db );
|
|
1107 |
assert( sqlite3_mutex_held(pBt->db->mutex) );
|
|
1108 |
return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
|
|
1109 |
}
|
|
1110 |
|
|
1111 |
/*
|
|
1112 |
** Open a database file.
|
|
1113 |
**
|
|
1114 |
** zFilename is the name of the database file. If zFilename is NULL
|
|
1115 |
** a new database with a random name is created. This randomly named
|
|
1116 |
** database file will be deleted when sqlite3BtreeClose() is called.
|
|
1117 |
** If zFilename is ":memory:" then an in-memory database is created
|
|
1118 |
** that is automatically destroyed when it is closed.
|
|
1119 |
*/
|
|
1120 |
int sqlite3BtreeOpen(
|
|
1121 |
const char *zFilename, /* Name of the file containing the BTree database */
|
|
1122 |
sqlite3 *db, /* Associated database handle */
|
|
1123 |
Btree **ppBtree, /* Pointer to new Btree object written here */
|
|
1124 |
int flags, /* Options */
|
|
1125 |
int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
|
|
1126 |
){
|
|
1127 |
sqlite3_vfs *pVfs; /* The VFS to use for this btree */
|
|
1128 |
BtShared *pBt = 0; /* Shared part of btree structure */
|
|
1129 |
Btree *p; /* Handle to return */
|
|
1130 |
int rc = SQLITE_OK;
|
|
1131 |
int nReserve;
|
|
1132 |
unsigned char zDbHeader[100];
|
|
1133 |
|
|
1134 |
/* Set the variable isMemdb to true for an in-memory database, or
|
|
1135 |
** false for a file-based database. This symbol is only required if
|
|
1136 |
** either of the shared-data or autovacuum features are compiled
|
|
1137 |
** into the library.
|
|
1138 |
*/
|
|
1139 |
#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
1140 |
#ifdef SQLITE_OMIT_MEMORYDB
|
|
1141 |
const int isMemdb = 0;
|
|
1142 |
#else
|
|
1143 |
const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
|
|
1144 |
#endif
|
|
1145 |
#endif
|
|
1146 |
|
|
1147 |
assert( db!=0 );
|
|
1148 |
assert( sqlite3_mutex_held(db->mutex) );
|
|
1149 |
|
|
1150 |
pVfs = db->pVfs;
|
|
1151 |
p = (Btree*)sqlite3MallocZero(sizeof(Btree));
|
|
1152 |
if( !p ){
|
|
1153 |
return SQLITE_NOMEM;
|
|
1154 |
}
|
|
1155 |
p->inTrans = TRANS_NONE;
|
|
1156 |
p->db = db;
|
|
1157 |
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
1158 |
/*
|
|
1159 |
** If this Btree is a candidate for shared cache, try to find an
|
|
1160 |
** existing BtShared object that we can share with
|
|
1161 |
*/
|
|
1162 |
|
|
1163 |
if( (flags & BTREE_PRIVATE)==0
|
|
1164 |
&& isMemdb==0
|
|
1165 |
&& (db->flags & SQLITE_Vtab)==0
|
|
1166 |
&& zFilename && zFilename[0]
|
|
1167 |
){
|
|
1168 |
if( sqlite3SharedCacheEnabled ){
|
|
1169 |
int nFullPathname = pVfs->mxPathname+1;
|
|
1170 |
|
|
1171 |
char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
|
|
1172 |
|
|
1173 |
sqlite3_mutex *mutexShared;
|
|
1174 |
p->sharable = 1;
|
|
1175 |
if( db ){
|
|
1176 |
db->flags |= SQLITE_SharedCache;
|
|
1177 |
}
|
|
1178 |
if( !zFullPathname ){
|
|
1179 |
sqlite3_free(p);
|
|
1180 |
return SQLITE_NOMEM;
|
|
1181 |
}
|
|
1182 |
|
|
1183 |
sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
|
|
1184 |
mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
1185 |
sqlite3_mutex_enter(mutexShared);
|
|
1186 |
for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
|
|
1187 |
assert( pBt->nRef>0 );
|
|
1188 |
if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
|
|
1189 |
&& sqlite3PagerVfs(pBt->pPager)==pVfs ){
|
|
1190 |
p->pBt = pBt;
|
|
1191 |
pBt->nRef++;
|
|
1192 |
break;
|
|
1193 |
}
|
|
1194 |
}
|
|
1195 |
sqlite3_mutex_leave(mutexShared);
|
|
1196 |
sqlite3_free(zFullPathname);
|
|
1197 |
}
|
|
1198 |
#ifdef SQLITE_DEBUG
|
|
1199 |
else{
|
|
1200 |
/* In debug mode, we mark all persistent databases as sharable
|
|
1201 |
** even when they are not. This exercises the locking code and
|
|
1202 |
** gives more opportunity for asserts(sqlite3_mutex_held())
|
|
1203 |
** statements to find locking problems.
|
|
1204 |
*/
|
|
1205 |
p->sharable = 1;
|
|
1206 |
}
|
|
1207 |
#endif
|
|
1208 |
}
|
|
1209 |
#endif
|
|
1210 |
|
|
1211 |
if( pBt==0 ){
|
|
1212 |
|
|
1213 |
/*
|
|
1214 |
** The following asserts make sure that structures used by the btree are
|
|
1215 |
** the right size. This is to guard against size changes that result
|
|
1216 |
** when compiling on a different architecture.
|
|
1217 |
*/
|
|
1218 |
assert( sizeof(i64)==8 || sizeof(i64)==4 );
|
|
1219 |
assert( sizeof(u64)==8 || sizeof(u64)==4 );
|
|
1220 |
assert( sizeof(u32)==4 );
|
|
1221 |
assert( sizeof(u16)==2 );
|
|
1222 |
assert( sizeof(Pgno)==4 );
|
|
1223 |
|
|
1224 |
pBt = (BtShared*)sqlite3MallocZero( sizeof(*pBt) );
|
|
1225 |
if( pBt==0 ){
|
|
1226 |
rc = SQLITE_NOMEM;
|
|
1227 |
goto btree_open_out;
|
|
1228 |
}
|
|
1229 |
pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
|
|
1230 |
pBt->busyHdr.pArg = pBt;
|
|
1231 |
|
|
1232 |
|
|
1233 |
rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
|
|
1234 |
EXTRA_SIZE, flags, vfsFlags);
|
|
1235 |
if( rc==SQLITE_OK ){
|
|
1236 |
rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
|
|
1237 |
}
|
|
1238 |
if( rc!=SQLITE_OK ){
|
|
1239 |
goto btree_open_out;
|
|
1240 |
}
|
|
1241 |
|
|
1242 |
sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
|
|
1243 |
p->pBt = pBt;
|
|
1244 |
|
|
1245 |
sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
|
|
1246 |
sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
|
|
1247 |
pBt->pCursor = 0;
|
|
1248 |
pBt->pPage1 = 0;
|
|
1249 |
pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
|
|
1250 |
pBt->pageSize = get2byte(&zDbHeader[16]);
|
|
1251 |
if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
|
|
1252 |
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
|
|
1253 |
pBt->pageSize = 0;
|
|
1254 |
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
|
|
1255 |
pBt->maxEmbedFrac = 64; /* 25% */
|
|
1256 |
pBt->minEmbedFrac = 32; /* 12.5% */
|
|
1257 |
pBt->minLeafFrac = 32; /* 12.5% */
|
|
1258 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1259 |
/* If the magic name ":memory:" will create an in-memory database, then
|
|
1260 |
** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
|
|
1261 |
** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
|
|
1262 |
** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
|
|
1263 |
** regular file-name. In this case the auto-vacuum applies as per normal.
|
|
1264 |
*/
|
|
1265 |
if( zFilename && !isMemdb ){
|
|
1266 |
pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
|
|
1267 |
pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
|
|
1268 |
}
|
|
1269 |
#endif
|
|
1270 |
nReserve = 0;
|
|
1271 |
}else{
|
|
1272 |
nReserve = zDbHeader[20];
|
|
1273 |
pBt->maxEmbedFrac = zDbHeader[21];
|
|
1274 |
pBt->minEmbedFrac = zDbHeader[22];
|
|
1275 |
pBt->minLeafFrac = zDbHeader[23];
|
|
1276 |
pBt->pageSizeFixed = 1;
|
|
1277 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1278 |
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
|
|
1279 |
pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
|
|
1280 |
#endif
|
|
1281 |
}
|
|
1282 |
pBt->usableSize = pBt->pageSize - nReserve;
|
|
1283 |
assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
|
|
1284 |
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
|
|
1285 |
|
|
1286 |
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
1287 |
/* Add the new BtShared object to the linked list sharable BtShareds.
|
|
1288 |
*/
|
|
1289 |
if( p->sharable ){
|
|
1290 |
sqlite3_mutex *mutexShared;
|
|
1291 |
pBt->nRef = 1;
|
|
1292 |
mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
1293 |
if( SQLITE_THREADSAFE ){
|
|
1294 |
pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
|
|
1295 |
if( pBt->mutex==0 ){
|
|
1296 |
rc = SQLITE_NOMEM;
|
|
1297 |
db->mallocFailed = 0;
|
|
1298 |
goto btree_open_out;
|
|
1299 |
}
|
|
1300 |
}
|
|
1301 |
sqlite3_mutex_enter(mutexShared);
|
|
1302 |
pBt->pNext = sqlite3SharedCacheList;
|
|
1303 |
sqlite3SharedCacheList = pBt;
|
|
1304 |
sqlite3_mutex_leave(mutexShared);
|
|
1305 |
}
|
|
1306 |
#endif
|
|
1307 |
}
|
|
1308 |
|
|
1309 |
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
1310 |
/* If the new Btree uses a sharable pBtShared, then link the new
|
|
1311 |
** Btree into the list of all sharable Btrees for the same connection.
|
|
1312 |
** The list is kept in ascending order by pBt address.
|
|
1313 |
*/
|
|
1314 |
if( p->sharable ){
|
|
1315 |
int i;
|
|
1316 |
Btree *pSib;
|
|
1317 |
for(i=0; i<db->nDb; i++){
|
|
1318 |
if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
|
|
1319 |
while( pSib->pPrev ){ pSib = pSib->pPrev; }
|
|
1320 |
if( p->pBt<pSib->pBt ){
|
|
1321 |
p->pNext = pSib;
|
|
1322 |
p->pPrev = 0;
|
|
1323 |
pSib->pPrev = p;
|
|
1324 |
}else{
|
|
1325 |
while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
|
|
1326 |
pSib = pSib->pNext;
|
|
1327 |
}
|
|
1328 |
p->pNext = pSib->pNext;
|
|
1329 |
p->pPrev = pSib;
|
|
1330 |
if( p->pNext ){
|
|
1331 |
p->pNext->pPrev = p;
|
|
1332 |
}
|
|
1333 |
pSib->pNext = p;
|
|
1334 |
}
|
|
1335 |
break;
|
|
1336 |
}
|
|
1337 |
}
|
|
1338 |
}
|
|
1339 |
#endif
|
|
1340 |
*ppBtree = p;
|
|
1341 |
|
|
1342 |
btree_open_out:
|
|
1343 |
if( rc!=SQLITE_OK ){
|
|
1344 |
if( pBt && pBt->pPager ){
|
|
1345 |
sqlite3PagerClose(pBt->pPager);
|
|
1346 |
}
|
|
1347 |
sqlite3_free(pBt);
|
|
1348 |
sqlite3_free(p);
|
|
1349 |
*ppBtree = 0;
|
|
1350 |
}
|
|
1351 |
return rc;
|
|
1352 |
}
|
|
1353 |
|
|
1354 |
/*
|
|
1355 |
** Decrement the BtShared.nRef counter. When it reaches zero,
|
|
1356 |
** remove the BtShared structure from the sharing list. Return
|
|
1357 |
** true if the BtShared.nRef counter reaches zero and return
|
|
1358 |
** false if it is still positive.
|
|
1359 |
*/
|
|
1360 |
static int removeFromSharingList(BtShared *pBt){
|
|
1361 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
1362 |
sqlite3_mutex *pMaster;
|
|
1363 |
BtShared *pList;
|
|
1364 |
int removed = 0;
|
|
1365 |
|
|
1366 |
assert( sqlite3_mutex_notheld(pBt->mutex) );
|
|
1367 |
pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
1368 |
sqlite3_mutex_enter(pMaster);
|
|
1369 |
pBt->nRef--;
|
|
1370 |
if( pBt->nRef<=0 ){
|
|
1371 |
if( sqlite3SharedCacheList==pBt ){
|
|
1372 |
sqlite3SharedCacheList = pBt->pNext;
|
|
1373 |
}else{
|
|
1374 |
pList = sqlite3SharedCacheList;
|
|
1375 |
while( pList && pList->pNext!=pBt ){
|
|
1376 |
pList=pList->pNext;
|
|
1377 |
}
|
|
1378 |
if( pList ){
|
|
1379 |
pList->pNext = pBt->pNext;
|
|
1380 |
}
|
|
1381 |
}
|
|
1382 |
if( SQLITE_THREADSAFE ){
|
|
1383 |
sqlite3_mutex_free(pBt->mutex);
|
|
1384 |
}
|
|
1385 |
removed = 1;
|
|
1386 |
}
|
|
1387 |
sqlite3_mutex_leave(pMaster);
|
|
1388 |
return removed;
|
|
1389 |
#else
|
|
1390 |
return 1;
|
|
1391 |
#endif
|
|
1392 |
}
|
|
1393 |
|
|
1394 |
/*
|
|
1395 |
** Close an open database and invalidate all cursors.
|
|
1396 |
*/
|
|
1397 |
int sqlite3BtreeClose(Btree *p){
|
|
1398 |
BtShared *pBt = p->pBt;
|
|
1399 |
BtCursor *pCur;
|
|
1400 |
|
|
1401 |
/* Close all cursors opened via this handle. */
|
|
1402 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
1403 |
sqlite3BtreeEnter(p);
|
|
1404 |
pBt->db = p->db;
|
|
1405 |
pCur = pBt->pCursor;
|
|
1406 |
while( pCur ){
|
|
1407 |
BtCursor *pTmp = pCur;
|
|
1408 |
pCur = pCur->pNext;
|
|
1409 |
if( pTmp->pBtree==p ){
|
|
1410 |
sqlite3BtreeCloseCursor(pTmp);
|
|
1411 |
}
|
|
1412 |
}
|
|
1413 |
|
|
1414 |
/* Rollback any active transaction and free the handle structure.
|
|
1415 |
** The call to sqlite3BtreeRollback() drops any table-locks held by
|
|
1416 |
** this handle.
|
|
1417 |
*/
|
|
1418 |
sqlite3BtreeRollback(p);
|
|
1419 |
sqlite3BtreeLeave(p);
|
|
1420 |
|
|
1421 |
/* If there are still other outstanding references to the shared-btree
|
|
1422 |
** structure, return now. The remainder of this procedure cleans
|
|
1423 |
** up the shared-btree.
|
|
1424 |
*/
|
|
1425 |
assert( p->wantToLock==0 && p->locked==0 );
|
|
1426 |
if( !p->sharable || removeFromSharingList(pBt) ){
|
|
1427 |
/* The pBt is no longer on the sharing list, so we can access
|
|
1428 |
** it without having to hold the mutex.
|
|
1429 |
**
|
|
1430 |
** Clean out and delete the BtShared object.
|
|
1431 |
*/
|
|
1432 |
assert( !pBt->pCursor );
|
|
1433 |
sqlite3PagerClose(pBt->pPager);
|
|
1434 |
if( pBt->xFreeSchema && pBt->pSchema ){
|
|
1435 |
pBt->xFreeSchema(pBt->pSchema);
|
|
1436 |
}
|
|
1437 |
sqlite3_free(pBt->pSchema);
|
|
1438 |
sqlite3_free(pBt);
|
|
1439 |
}
|
|
1440 |
|
|
1441 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
1442 |
assert( p->wantToLock==0 );
|
|
1443 |
assert( p->locked==0 );
|
|
1444 |
if( p->pPrev ) p->pPrev->pNext = p->pNext;
|
|
1445 |
if( p->pNext ) p->pNext->pPrev = p->pPrev;
|
|
1446 |
#endif
|
|
1447 |
|
|
1448 |
sqlite3_free(p);
|
|
1449 |
return SQLITE_OK;
|
|
1450 |
}
|
|
1451 |
|
|
1452 |
/*
|
|
1453 |
** Change the limit on the number of pages allowed in the cache.
|
|
1454 |
**
|
|
1455 |
** The maximum number of cache pages is set to the absolute
|
|
1456 |
** value of mxPage. If mxPage is negative, the pager will
|
|
1457 |
** operate asynchronously - it will not stop to do fsync()s
|
|
1458 |
** to insure data is written to the disk surface before
|
|
1459 |
** continuing. Transactions still work if synchronous is off,
|
|
1460 |
** and the database cannot be corrupted if this program
|
|
1461 |
** crashes. But if the operating system crashes or there is
|
|
1462 |
** an abrupt power failure when synchronous is off, the database
|
|
1463 |
** could be left in an inconsistent and unrecoverable state.
|
|
1464 |
** Synchronous is on by default so database corruption is not
|
|
1465 |
** normally a worry.
|
|
1466 |
*/
|
|
1467 |
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
|
|
1468 |
BtShared *pBt = p->pBt;
|
|
1469 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
1470 |
sqlite3BtreeEnter(p);
|
|
1471 |
sqlite3PagerSetCachesize(pBt->pPager, mxPage);
|
|
1472 |
sqlite3BtreeLeave(p);
|
|
1473 |
return SQLITE_OK;
|
|
1474 |
}
|
|
1475 |
|
|
1476 |
/*
|
|
1477 |
** Change the way data is synced to disk in order to increase or decrease
|
|
1478 |
** how well the database resists damage due to OS crashes and power
|
|
1479 |
** failures. Level 1 is the same as asynchronous (no syncs() occur and
|
|
1480 |
** there is a high probability of damage) Level 2 is the default. There
|
|
1481 |
** is a very low but non-zero probability of damage. Level 3 reduces the
|
|
1482 |
** probability of damage to near zero but with a write performance reduction.
|
|
1483 |
*/
|
|
1484 |
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
1485 |
int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
|
|
1486 |
BtShared *pBt = p->pBt;
|
|
1487 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
1488 |
sqlite3BtreeEnter(p);
|
|
1489 |
sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
|
|
1490 |
sqlite3BtreeLeave(p);
|
|
1491 |
return SQLITE_OK;
|
|
1492 |
}
|
|
1493 |
#endif
|
|
1494 |
|
|
1495 |
/*
|
|
1496 |
** Return TRUE if the given btree is set to safety level 1. In other
|
|
1497 |
** words, return TRUE if no sync() occurs on the disk files.
|
|
1498 |
*/
|
|
1499 |
int sqlite3BtreeSyncDisabled(Btree *p){
|
|
1500 |
BtShared *pBt = p->pBt;
|
|
1501 |
int rc;
|
|
1502 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
1503 |
sqlite3BtreeEnter(p);
|
|
1504 |
assert( pBt && pBt->pPager );
|
|
1505 |
rc = sqlite3PagerNosync(pBt->pPager);
|
|
1506 |
sqlite3BtreeLeave(p);
|
|
1507 |
return rc;
|
|
1508 |
}
|
|
1509 |
|
|
1510 |
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
|
|
1511 |
/*
|
|
1512 |
** Change the default pages size and the number of reserved bytes per page.
|
|
1513 |
**
|
|
1514 |
** The page size must be a power of 2 between 512 and 65536. If the page
|
|
1515 |
** size supplied does not meet this constraint then the page size is not
|
|
1516 |
** changed.
|
|
1517 |
**
|
|
1518 |
** Page sizes are constrained to be a power of two so that the region
|
|
1519 |
** of the database file used for locking (beginning at PENDING_BYTE,
|
|
1520 |
** the first byte past the 1GB boundary, 0x40000000) needs to occur
|
|
1521 |
** at the beginning of a page.
|
|
1522 |
**
|
|
1523 |
** If parameter nReserve is less than zero, then the number of reserved
|
|
1524 |
** bytes per page is left unchanged.
|
|
1525 |
*/
|
|
1526 |
int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
|
|
1527 |
int rc = SQLITE_OK;
|
|
1528 |
BtShared *pBt = p->pBt;
|
|
1529 |
sqlite3BtreeEnter(p);
|
|
1530 |
if( pBt->pageSizeFixed ){
|
|
1531 |
sqlite3BtreeLeave(p);
|
|
1532 |
return SQLITE_READONLY;
|
|
1533 |
}
|
|
1534 |
if( nReserve<0 ){
|
|
1535 |
nReserve = pBt->pageSize - pBt->usableSize;
|
|
1536 |
}
|
|
1537 |
if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
|
|
1538 |
((pageSize-1)&pageSize)==0 ){
|
|
1539 |
assert( (pageSize & 7)==0 );
|
|
1540 |
assert( !pBt->pPage1 && !pBt->pCursor );
|
|
1541 |
pBt->pageSize = pageSize;
|
|
1542 |
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
|
|
1543 |
}
|
|
1544 |
pBt->usableSize = pBt->pageSize - nReserve;
|
|
1545 |
sqlite3BtreeLeave(p);
|
|
1546 |
return rc;
|
|
1547 |
}
|
|
1548 |
|
|
1549 |
/*
|
|
1550 |
** Return the currently defined page size
|
|
1551 |
*/
|
|
1552 |
int sqlite3BtreeGetPageSize(Btree *p){
|
|
1553 |
return p->pBt->pageSize;
|
|
1554 |
}
|
|
1555 |
int sqlite3BtreeGetReserve(Btree *p){
|
|
1556 |
int n;
|
|
1557 |
sqlite3BtreeEnter(p);
|
|
1558 |
n = p->pBt->pageSize - p->pBt->usableSize;
|
|
1559 |
sqlite3BtreeLeave(p);
|
|
1560 |
return n;
|
|
1561 |
}
|
|
1562 |
|
|
1563 |
/*
|
|
1564 |
** Set the maximum page count for a database if mxPage is positive.
|
|
1565 |
** No changes are made if mxPage is 0 or negative.
|
|
1566 |
** Regardless of the value of mxPage, return the maximum page count.
|
|
1567 |
*/
|
|
1568 |
int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
|
|
1569 |
int n;
|
|
1570 |
sqlite3BtreeEnter(p);
|
|
1571 |
n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
|
|
1572 |
sqlite3BtreeLeave(p);
|
|
1573 |
return n;
|
|
1574 |
}
|
|
1575 |
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
|
|
1576 |
|
|
1577 |
/*
|
|
1578 |
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
|
|
1579 |
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
|
|
1580 |
** is disabled. The default value for the auto-vacuum property is
|
|
1581 |
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
|
|
1582 |
*/
|
|
1583 |
int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
|
|
1584 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
1585 |
return SQLITE_READONLY;
|
|
1586 |
#else
|
|
1587 |
BtShared *pBt = p->pBt;
|
|
1588 |
int rc = SQLITE_OK;
|
|
1589 |
int av = (autoVacuum?1:0);
|
|
1590 |
|
|
1591 |
sqlite3BtreeEnter(p);
|
|
1592 |
if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
|
|
1593 |
rc = SQLITE_READONLY;
|
|
1594 |
}else{
|
|
1595 |
pBt->autoVacuum = av;
|
|
1596 |
}
|
|
1597 |
sqlite3BtreeLeave(p);
|
|
1598 |
return rc;
|
|
1599 |
#endif
|
|
1600 |
}
|
|
1601 |
|
|
1602 |
/*
|
|
1603 |
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
|
|
1604 |
** enabled 1 is returned. Otherwise 0.
|
|
1605 |
*/
|
|
1606 |
int sqlite3BtreeGetAutoVacuum(Btree *p){
|
|
1607 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
1608 |
return BTREE_AUTOVACUUM_NONE;
|
|
1609 |
#else
|
|
1610 |
int rc;
|
|
1611 |
sqlite3BtreeEnter(p);
|
|
1612 |
rc = (
|
|
1613 |
(!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
|
|
1614 |
(!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
|
|
1615 |
BTREE_AUTOVACUUM_INCR
|
|
1616 |
);
|
|
1617 |
sqlite3BtreeLeave(p);
|
|
1618 |
return rc;
|
|
1619 |
#endif
|
|
1620 |
}
|
|
1621 |
|
|
1622 |
|
|
1623 |
/*
|
|
1624 |
** Get a reference to pPage1 of the database file. This will
|
|
1625 |
** also acquire a readlock on that file.
|
|
1626 |
**
|
|
1627 |
** SQLITE_OK is returned on success. If the file is not a
|
|
1628 |
** well-formed database file, then SQLITE_CORRUPT is returned.
|
|
1629 |
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
|
|
1630 |
** is returned if we run out of memory.
|
|
1631 |
*/
|
|
1632 |
static int lockBtree(BtShared *pBt){
|
|
1633 |
int rc, pageSize;
|
|
1634 |
MemPage *pPage1;
|
|
1635 |
|
|
1636 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
1637 |
if( pBt->pPage1 ) return SQLITE_OK;
|
|
1638 |
rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
|
|
1639 |
if( rc!=SQLITE_OK ) return rc;
|
|
1640 |
|
|
1641 |
|
|
1642 |
/* Do some checking to help insure the file we opened really is
|
|
1643 |
** a valid database file.
|
|
1644 |
*/
|
|
1645 |
rc = SQLITE_NOTADB;
|
|
1646 |
if( sqlite3PagerPagecount(pBt->pPager)>0 ){
|
|
1647 |
u8 *page1 = pPage1->aData;
|
|
1648 |
if( memcmp(page1, zMagicHeader, 16)!=0 ){
|
|
1649 |
goto page1_init_failed;
|
|
1650 |
}
|
|
1651 |
if( page1[18]>1 ){
|
|
1652 |
pBt->readOnly = 1;
|
|
1653 |
}
|
|
1654 |
if( page1[19]>1 ){
|
|
1655 |
goto page1_init_failed;
|
|
1656 |
}
|
|
1657 |
pageSize = get2byte(&page1[16]);
|
|
1658 |
if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
|
|
1659 |
(SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
|
|
1660 |
){
|
|
1661 |
goto page1_init_failed;
|
|
1662 |
}
|
|
1663 |
assert( (pageSize & 7)==0 );
|
|
1664 |
pBt->pageSize = pageSize;
|
|
1665 |
pBt->usableSize = pageSize - page1[20];
|
|
1666 |
if( pBt->usableSize<500 ){
|
|
1667 |
goto page1_init_failed;
|
|
1668 |
}
|
|
1669 |
pBt->maxEmbedFrac = page1[21];
|
|
1670 |
pBt->minEmbedFrac = page1[22];
|
|
1671 |
pBt->minLeafFrac = page1[23];
|
|
1672 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1673 |
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
|
|
1674 |
pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
|
|
1675 |
#endif
|
|
1676 |
}
|
|
1677 |
|
|
1678 |
/* maxLocal is the maximum amount of payload to store locally for
|
|
1679 |
** a cell. Make sure it is small enough so that at least minFanout
|
|
1680 |
** cells can will fit on one page. We assume a 10-byte page header.
|
|
1681 |
** Besides the payload, the cell must store:
|
|
1682 |
** 2-byte pointer to the cell
|
|
1683 |
** 4-byte child pointer
|
|
1684 |
** 9-byte nKey value
|
|
1685 |
** 4-byte nData value
|
|
1686 |
** 4-byte overflow page pointer
|
|
1687 |
** So a cell consists of a 2-byte poiner, a header which is as much as
|
|
1688 |
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
|
|
1689 |
** page pointer.
|
|
1690 |
*/
|
|
1691 |
pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
|
|
1692 |
pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
|
|
1693 |
pBt->maxLeaf = pBt->usableSize - 35;
|
|
1694 |
pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
|
|
1695 |
if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
|
|
1696 |
goto page1_init_failed;
|
|
1697 |
}
|
|
1698 |
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
|
|
1699 |
pBt->pPage1 = pPage1;
|
|
1700 |
return SQLITE_OK;
|
|
1701 |
|
|
1702 |
page1_init_failed:
|
|
1703 |
releasePage(pPage1);
|
|
1704 |
pBt->pPage1 = 0;
|
|
1705 |
return rc;
|
|
1706 |
}
|
|
1707 |
|
|
1708 |
/*
|
|
1709 |
** This routine works like lockBtree() except that it also invokes the
|
|
1710 |
** busy callback if there is lock contention.
|
|
1711 |
*/
|
|
1712 |
static int lockBtreeWithRetry(Btree *pRef){
|
|
1713 |
int rc = SQLITE_OK;
|
|
1714 |
|
|
1715 |
assert( sqlite3BtreeHoldsMutex(pRef) );
|
|
1716 |
if( pRef->inTrans==TRANS_NONE ){
|
|
1717 |
u8 inTransaction = pRef->pBt->inTransaction;
|
|
1718 |
btreeIntegrity(pRef);
|
|
1719 |
rc = sqlite3BtreeBeginTrans(pRef, 0);
|
|
1720 |
pRef->pBt->inTransaction = inTransaction;
|
|
1721 |
pRef->inTrans = TRANS_NONE;
|
|
1722 |
if( rc==SQLITE_OK ){
|
|
1723 |
pRef->pBt->nTransaction--;
|
|
1724 |
}
|
|
1725 |
btreeIntegrity(pRef);
|
|
1726 |
}
|
|
1727 |
return rc;
|
|
1728 |
}
|
|
1729 |
|
|
1730 |
|
|
1731 |
/*
|
|
1732 |
** If there are no outstanding cursors and we are not in the middle
|
|
1733 |
** of a transaction but there is a read lock on the database, then
|
|
1734 |
** this routine unrefs the first page of the database file which
|
|
1735 |
** has the effect of releasing the read lock.
|
|
1736 |
**
|
|
1737 |
** If there are any outstanding cursors, this routine is a no-op.
|
|
1738 |
**
|
|
1739 |
** If there is a transaction in progress, this routine is a no-op.
|
|
1740 |
*/
|
|
1741 |
static void unlockBtreeIfUnused(BtShared *pBt){
|
|
1742 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
1743 |
if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
|
|
1744 |
if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
|
|
1745 |
if( pBt->pPage1->aData==0 ){
|
|
1746 |
MemPage *pPage = pBt->pPage1;
|
|
1747 |
pPage->aData = (u8*)sqlite3PagerGetData(pPage->pDbPage);
|
|
1748 |
pPage->pBt = pBt;
|
|
1749 |
pPage->pgno = 1;
|
|
1750 |
}
|
|
1751 |
releasePage(pBt->pPage1);
|
|
1752 |
}
|
|
1753 |
pBt->pPage1 = 0;
|
|
1754 |
pBt->inStmt = 0;
|
|
1755 |
}
|
|
1756 |
}
|
|
1757 |
|
|
1758 |
/*
|
|
1759 |
** Create a new database by initializing the first page of the
|
|
1760 |
** file.
|
|
1761 |
*/
|
|
1762 |
static int newDatabase(BtShared *pBt){
|
|
1763 |
MemPage *pP1;
|
|
1764 |
unsigned char *data;
|
|
1765 |
int rc;
|
|
1766 |
|
|
1767 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
1768 |
if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
|
|
1769 |
pP1 = pBt->pPage1;
|
|
1770 |
assert( pP1!=0 );
|
|
1771 |
data = pP1->aData;
|
|
1772 |
rc = sqlite3PagerWrite(pP1->pDbPage);
|
|
1773 |
if( rc ) return rc;
|
|
1774 |
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
|
|
1775 |
assert( sizeof(zMagicHeader)==16 );
|
|
1776 |
put2byte(&data[16], pBt->pageSize);
|
|
1777 |
data[18] = 1;
|
|
1778 |
data[19] = 1;
|
|
1779 |
data[20] = pBt->pageSize - pBt->usableSize;
|
|
1780 |
data[21] = pBt->maxEmbedFrac;
|
|
1781 |
data[22] = pBt->minEmbedFrac;
|
|
1782 |
data[23] = pBt->minLeafFrac;
|
|
1783 |
memset(&data[24], 0, 100-24);
|
|
1784 |
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
|
|
1785 |
pBt->pageSizeFixed = 1;
|
|
1786 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1787 |
assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
|
|
1788 |
assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
|
|
1789 |
put4byte(&data[36 + 4*4], pBt->autoVacuum);
|
|
1790 |
put4byte(&data[36 + 7*4], pBt->incrVacuum);
|
|
1791 |
#endif
|
|
1792 |
return SQLITE_OK;
|
|
1793 |
}
|
|
1794 |
|
|
1795 |
/*
|
|
1796 |
** Attempt to start a new transaction. A write-transaction
|
|
1797 |
** is started if the second argument is nonzero, otherwise a read-
|
|
1798 |
** transaction. If the second argument is 2 or more and exclusive
|
|
1799 |
** transaction is started, meaning that no other process is allowed
|
|
1800 |
** to access the database. A preexisting transaction may not be
|
|
1801 |
** upgraded to exclusive by calling this routine a second time - the
|
|
1802 |
** exclusivity flag only works for a new transaction.
|
|
1803 |
**
|
|
1804 |
** A write-transaction must be started before attempting any
|
|
1805 |
** changes to the database. None of the following routines
|
|
1806 |
** will work unless a transaction is started first:
|
|
1807 |
**
|
|
1808 |
** sqlite3BtreeCreateTable()
|
|
1809 |
** sqlite3BtreeCreateIndex()
|
|
1810 |
** sqlite3BtreeClearTable()
|
|
1811 |
** sqlite3BtreeDropTable()
|
|
1812 |
** sqlite3BtreeInsert()
|
|
1813 |
** sqlite3BtreeDelete()
|
|
1814 |
** sqlite3BtreeUpdateMeta()
|
|
1815 |
**
|
|
1816 |
** If an initial attempt to acquire the lock fails because of lock contention
|
|
1817 |
** and the database was previously unlocked, then invoke the busy handler
|
|
1818 |
** if there is one. But if there was previously a read-lock, do not
|
|
1819 |
** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
|
|
1820 |
** returned when there is already a read-lock in order to avoid a deadlock.
|
|
1821 |
**
|
|
1822 |
** Suppose there are two processes A and B. A has a read lock and B has
|
|
1823 |
** a reserved lock. B tries to promote to exclusive but is blocked because
|
|
1824 |
** of A's read lock. A tries to promote to reserved but is blocked by B.
|
|
1825 |
** One or the other of the two processes must give way or there can be
|
|
1826 |
** no progress. By returning SQLITE_BUSY and not invoking the busy callback
|
|
1827 |
** when A already has a read lock, we encourage A to give up and let B
|
|
1828 |
** proceed.
|
|
1829 |
*/
|
|
1830 |
int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
|
|
1831 |
BtShared *pBt = p->pBt;
|
|
1832 |
int rc = SQLITE_OK;
|
|
1833 |
|
|
1834 |
sqlite3BtreeEnter(p);
|
|
1835 |
pBt->db = p->db;
|
|
1836 |
btreeIntegrity(p);
|
|
1837 |
|
|
1838 |
/* If the btree is already in a write-transaction, or it
|
|
1839 |
** is already in a read-transaction and a read-transaction
|
|
1840 |
** is requested, this is a no-op.
|
|
1841 |
*/
|
|
1842 |
if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
|
|
1843 |
goto trans_begun;
|
|
1844 |
}
|
|
1845 |
|
|
1846 |
/* Write transactions are not possible on a read-only database */
|
|
1847 |
if( pBt->readOnly && wrflag ){
|
|
1848 |
rc = SQLITE_READONLY;
|
|
1849 |
goto trans_begun;
|
|
1850 |
}
|
|
1851 |
|
|
1852 |
/* If another database handle has already opened a write transaction
|
|
1853 |
** on this shared-btree structure and a second write transaction is
|
|
1854 |
** requested, return SQLITE_BUSY.
|
|
1855 |
*/
|
|
1856 |
if( pBt->inTransaction==TRANS_WRITE && wrflag ){
|
|
1857 |
rc = SQLITE_BUSY;
|
|
1858 |
goto trans_begun;
|
|
1859 |
}
|
|
1860 |
|
|
1861 |
do {
|
|
1862 |
if( pBt->pPage1==0 ){
|
|
1863 |
rc = lockBtree(pBt);
|
|
1864 |
}
|
|
1865 |
|
|
1866 |
if( rc==SQLITE_OK && wrflag ){
|
|
1867 |
if( pBt->readOnly ){
|
|
1868 |
rc = SQLITE_READONLY;
|
|
1869 |
}else{
|
|
1870 |
rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
|
|
1871 |
if( rc==SQLITE_OK ){
|
|
1872 |
rc = newDatabase(pBt);
|
|
1873 |
}
|
|
1874 |
}
|
|
1875 |
}
|
|
1876 |
|
|
1877 |
if( rc==SQLITE_OK ){
|
|
1878 |
if( wrflag ) pBt->inStmt = 0;
|
|
1879 |
}else{
|
|
1880 |
unlockBtreeIfUnused(pBt);
|
|
1881 |
}
|
|
1882 |
}while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
|
|
1883 |
sqlite3BtreeInvokeBusyHandler(pBt, 0) );
|
|
1884 |
|
|
1885 |
if( rc==SQLITE_OK ){
|
|
1886 |
if( p->inTrans==TRANS_NONE ){
|
|
1887 |
pBt->nTransaction++;
|
|
1888 |
}
|
|
1889 |
p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
|
|
1890 |
if( p->inTrans>pBt->inTransaction ){
|
|
1891 |
pBt->inTransaction = p->inTrans;
|
|
1892 |
}
|
|
1893 |
}
|
|
1894 |
|
|
1895 |
|
|
1896 |
trans_begun:
|
|
1897 |
btreeIntegrity(p);
|
|
1898 |
sqlite3BtreeLeave(p);
|
|
1899 |
return rc;
|
|
1900 |
}
|
|
1901 |
|
|
1902 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
1903 |
|
|
1904 |
/*
|
|
1905 |
** Set the pointer-map entries for all children of page pPage. Also, if
|
|
1906 |
** pPage contains cells that point to overflow pages, set the pointer
|
|
1907 |
** map entries for the overflow pages as well.
|
|
1908 |
*/
|
|
1909 |
static int setChildPtrmaps(MemPage *pPage){
|
|
1910 |
int i; /* Counter variable */
|
|
1911 |
int nCell; /* Number of cells in page pPage */
|
|
1912 |
int rc; /* Return code */
|
|
1913 |
BtShared *pBt = pPage->pBt;
|
|
1914 |
int isInitOrig = pPage->isInit;
|
|
1915 |
Pgno pgno = pPage->pgno;
|
|
1916 |
|
|
1917 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
1918 |
rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
|
|
1919 |
if( rc!=SQLITE_OK ){
|
|
1920 |
goto set_child_ptrmaps_out;
|
|
1921 |
}
|
|
1922 |
nCell = pPage->nCell;
|
|
1923 |
|
|
1924 |
for(i=0; i<nCell; i++){
|
|
1925 |
u8 *pCell = findCell(pPage, i);
|
|
1926 |
|
|
1927 |
rc = ptrmapPutOvflPtr(pPage, pCell);
|
|
1928 |
if( rc!=SQLITE_OK ){
|
|
1929 |
goto set_child_ptrmaps_out;
|
|
1930 |
}
|
|
1931 |
|
|
1932 |
if( !pPage->leaf ){
|
|
1933 |
Pgno childPgno = get4byte(pCell);
|
|
1934 |
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
|
|
1935 |
if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
|
|
1936 |
}
|
|
1937 |
}
|
|
1938 |
|
|
1939 |
if( !pPage->leaf ){
|
|
1940 |
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
1941 |
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
|
|
1942 |
}
|
|
1943 |
|
|
1944 |
set_child_ptrmaps_out:
|
|
1945 |
pPage->isInit = isInitOrig;
|
|
1946 |
return rc;
|
|
1947 |
}
|
|
1948 |
|
|
1949 |
/*
|
|
1950 |
** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
|
|
1951 |
** page, is a pointer to page iFrom. Modify this pointer so that it points to
|
|
1952 |
** iTo. Parameter eType describes the type of pointer to be modified, as
|
|
1953 |
** follows:
|
|
1954 |
**
|
|
1955 |
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
|
|
1956 |
** page of pPage.
|
|
1957 |
**
|
|
1958 |
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
|
|
1959 |
** page pointed to by one of the cells on pPage.
|
|
1960 |
**
|
|
1961 |
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
|
|
1962 |
** overflow page in the list.
|
|
1963 |
*/
|
|
1964 |
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
|
|
1965 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
1966 |
if( eType==PTRMAP_OVERFLOW2 ){
|
|
1967 |
/* The pointer is always the first 4 bytes of the page in this case. */
|
|
1968 |
if( get4byte(pPage->aData)!=iFrom ){
|
|
1969 |
return SQLITE_CORRUPT_BKPT;
|
|
1970 |
}
|
|
1971 |
put4byte(pPage->aData, iTo);
|
|
1972 |
}else{
|
|
1973 |
int isInitOrig = pPage->isInit;
|
|
1974 |
int i;
|
|
1975 |
int nCell;
|
|
1976 |
|
|
1977 |
sqlite3BtreeInitPage(pPage, 0);
|
|
1978 |
nCell = pPage->nCell;
|
|
1979 |
|
|
1980 |
for(i=0; i<nCell; i++){
|
|
1981 |
u8 *pCell = findCell(pPage, i);
|
|
1982 |
if( eType==PTRMAP_OVERFLOW1 ){
|
|
1983 |
CellInfo info;
|
|
1984 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
1985 |
if( info.iOverflow ){
|
|
1986 |
if( iFrom==get4byte(&pCell[info.iOverflow]) ){
|
|
1987 |
put4byte(&pCell[info.iOverflow], iTo);
|
|
1988 |
break;
|
|
1989 |
}
|
|
1990 |
}
|
|
1991 |
}else{
|
|
1992 |
if( get4byte(pCell)==iFrom ){
|
|
1993 |
put4byte(pCell, iTo);
|
|
1994 |
break;
|
|
1995 |
}
|
|
1996 |
}
|
|
1997 |
}
|
|
1998 |
|
|
1999 |
if( i==nCell ){
|
|
2000 |
if( eType!=PTRMAP_BTREE ||
|
|
2001 |
get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
|
|
2002 |
return SQLITE_CORRUPT_BKPT;
|
|
2003 |
}
|
|
2004 |
put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
|
|
2005 |
}
|
|
2006 |
|
|
2007 |
pPage->isInit = isInitOrig;
|
|
2008 |
}
|
|
2009 |
return SQLITE_OK;
|
|
2010 |
}
|
|
2011 |
|
|
2012 |
|
|
2013 |
/*
|
|
2014 |
** Move the open database page pDbPage to location iFreePage in the
|
|
2015 |
** database. The pDbPage reference remains valid.
|
|
2016 |
*/
|
|
2017 |
static int relocatePage(
|
|
2018 |
BtShared *pBt, /* Btree */
|
|
2019 |
MemPage *pDbPage, /* Open page to move */
|
|
2020 |
u8 eType, /* Pointer map 'type' entry for pDbPage */
|
|
2021 |
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
|
|
2022 |
Pgno iFreePage /* The location to move pDbPage to */
|
|
2023 |
){
|
|
2024 |
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
|
|
2025 |
Pgno iDbPage = pDbPage->pgno;
|
|
2026 |
Pager *pPager = pBt->pPager;
|
|
2027 |
int rc;
|
|
2028 |
|
|
2029 |
assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
|
|
2030 |
eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
|
|
2031 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
2032 |
assert( pDbPage->pBt==pBt );
|
|
2033 |
|
|
2034 |
/* Move page iDbPage from its current location to page number iFreePage */
|
|
2035 |
TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
|
|
2036 |
iDbPage, iFreePage, iPtrPage, eType));
|
|
2037 |
rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
|
|
2038 |
if( rc!=SQLITE_OK ){
|
|
2039 |
return rc;
|
|
2040 |
}
|
|
2041 |
pDbPage->pgno = iFreePage;
|
|
2042 |
|
|
2043 |
/* If pDbPage was a btree-page, then it may have child pages and/or cells
|
|
2044 |
** that point to overflow pages. The pointer map entries for all these
|
|
2045 |
** pages need to be changed.
|
|
2046 |
**
|
|
2047 |
** If pDbPage is an overflow page, then the first 4 bytes may store a
|
|
2048 |
** pointer to a subsequent overflow page. If this is the case, then
|
|
2049 |
** the pointer map needs to be updated for the subsequent overflow page.
|
|
2050 |
*/
|
|
2051 |
if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
|
|
2052 |
rc = setChildPtrmaps(pDbPage);
|
|
2053 |
if( rc!=SQLITE_OK ){
|
|
2054 |
return rc;
|
|
2055 |
}
|
|
2056 |
}else{
|
|
2057 |
Pgno nextOvfl = get4byte(pDbPage->aData);
|
|
2058 |
if( nextOvfl!=0 ){
|
|
2059 |
rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
|
|
2060 |
if( rc!=SQLITE_OK ){
|
|
2061 |
return rc;
|
|
2062 |
}
|
|
2063 |
}
|
|
2064 |
}
|
|
2065 |
|
|
2066 |
/* Fix the database pointer on page iPtrPage that pointed at iDbPage so
|
|
2067 |
** that it points at iFreePage. Also fix the pointer map entry for
|
|
2068 |
** iPtrPage.
|
|
2069 |
*/
|
|
2070 |
if( eType!=PTRMAP_ROOTPAGE ){
|
|
2071 |
rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
|
|
2072 |
if( rc!=SQLITE_OK ){
|
|
2073 |
return rc;
|
|
2074 |
}
|
|
2075 |
rc = sqlite3PagerWrite(pPtrPage->pDbPage);
|
|
2076 |
if( rc!=SQLITE_OK ){
|
|
2077 |
releasePage(pPtrPage);
|
|
2078 |
return rc;
|
|
2079 |
}
|
|
2080 |
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
|
|
2081 |
releasePage(pPtrPage);
|
|
2082 |
if( rc==SQLITE_OK ){
|
|
2083 |
rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
|
|
2084 |
}
|
|
2085 |
}
|
|
2086 |
return rc;
|
|
2087 |
}
|
|
2088 |
|
|
2089 |
/* Forward declaration required by incrVacuumStep(). */
|
|
2090 |
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
|
|
2091 |
|
|
2092 |
/*
|
|
2093 |
** Perform a single step of an incremental-vacuum. If successful,
|
|
2094 |
** return SQLITE_OK. If there is no work to do (and therefore no
|
|
2095 |
** point in calling this function again), return SQLITE_DONE.
|
|
2096 |
**
|
|
2097 |
** More specificly, this function attempts to re-organize the
|
|
2098 |
** database so that the last page of the file currently in use
|
|
2099 |
** is no longer in use.
|
|
2100 |
**
|
|
2101 |
** If the nFin parameter is non-zero, the implementation assumes
|
|
2102 |
** that the caller will keep calling incrVacuumStep() until
|
|
2103 |
** it returns SQLITE_DONE or an error, and that nFin is the
|
|
2104 |
** number of pages the database file will contain after this
|
|
2105 |
** process is complete.
|
|
2106 |
*/
|
|
2107 |
static int incrVacuumStep(BtShared *pBt, Pgno nFin){
|
|
2108 |
Pgno iLastPg; /* Last page in the database */
|
|
2109 |
Pgno nFreeList; /* Number of pages still on the free-list */
|
|
2110 |
|
|
2111 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
2112 |
iLastPg = pBt->nTrunc;
|
|
2113 |
if( iLastPg==0 ){
|
|
2114 |
iLastPg = sqlite3PagerPagecount(pBt->pPager);
|
|
2115 |
}
|
|
2116 |
|
|
2117 |
if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
|
|
2118 |
int rc;
|
|
2119 |
u8 eType;
|
|
2120 |
Pgno iPtrPage;
|
|
2121 |
|
|
2122 |
nFreeList = get4byte(&pBt->pPage1->aData[36]);
|
|
2123 |
if( nFreeList==0 || nFin==iLastPg ){
|
|
2124 |
return SQLITE_DONE;
|
|
2125 |
}
|
|
2126 |
|
|
2127 |
rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
|
|
2128 |
if( rc!=SQLITE_OK ){
|
|
2129 |
return rc;
|
|
2130 |
}
|
|
2131 |
if( eType==PTRMAP_ROOTPAGE ){
|
|
2132 |
return SQLITE_CORRUPT_BKPT;
|
|
2133 |
}
|
|
2134 |
|
|
2135 |
if( eType==PTRMAP_FREEPAGE ){
|
|
2136 |
if( nFin==0 ){
|
|
2137 |
/* Remove the page from the files free-list. This is not required
|
|
2138 |
** if nFin is non-zero. In that case, the free-list will be
|
|
2139 |
** truncated to zero after this function returns, so it doesn't
|
|
2140 |
** matter if it still contains some garbage entries.
|
|
2141 |
*/
|
|
2142 |
Pgno iFreePg;
|
|
2143 |
MemPage *pFreePg;
|
|
2144 |
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
|
|
2145 |
if( rc!=SQLITE_OK ){
|
|
2146 |
return rc;
|
|
2147 |
}
|
|
2148 |
assert( iFreePg==iLastPg );
|
|
2149 |
releasePage(pFreePg);
|
|
2150 |
}
|
|
2151 |
} else {
|
|
2152 |
Pgno iFreePg; /* Index of free page to move pLastPg to */
|
|
2153 |
MemPage *pLastPg;
|
|
2154 |
|
|
2155 |
rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
|
|
2156 |
if( rc!=SQLITE_OK ){
|
|
2157 |
return rc;
|
|
2158 |
}
|
|
2159 |
|
|
2160 |
/* If nFin is zero, this loop runs exactly once and page pLastPg
|
|
2161 |
** is swapped with the first free page pulled off the free list.
|
|
2162 |
**
|
|
2163 |
** On the other hand, if nFin is greater than zero, then keep
|
|
2164 |
** looping until a free-page located within the first nFin pages
|
|
2165 |
** of the file is found.
|
|
2166 |
*/
|
|
2167 |
do {
|
|
2168 |
MemPage *pFreePg;
|
|
2169 |
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
|
|
2170 |
if( rc!=SQLITE_OK ){
|
|
2171 |
releasePage(pLastPg);
|
|
2172 |
return rc;
|
|
2173 |
}
|
|
2174 |
releasePage(pFreePg);
|
|
2175 |
}while( nFin!=0 && iFreePg>nFin );
|
|
2176 |
assert( iFreePg<iLastPg );
|
|
2177 |
|
|
2178 |
rc = sqlite3PagerWrite(pLastPg->pDbPage);
|
|
2179 |
if( rc==SQLITE_OK ){
|
|
2180 |
rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
|
|
2181 |
}
|
|
2182 |
releasePage(pLastPg);
|
|
2183 |
if( rc!=SQLITE_OK ){
|
|
2184 |
return rc;
|
|
2185 |
}
|
|
2186 |
}
|
|
2187 |
}
|
|
2188 |
|
|
2189 |
pBt->nTrunc = iLastPg - 1;
|
|
2190 |
while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
|
|
2191 |
pBt->nTrunc--;
|
|
2192 |
}
|
|
2193 |
return SQLITE_OK;
|
|
2194 |
}
|
|
2195 |
|
|
2196 |
/*
|
|
2197 |
** A write-transaction must be opened before calling this function.
|
|
2198 |
** It performs a single unit of work towards an incremental vacuum.
|
|
2199 |
**
|
|
2200 |
** If the incremental vacuum is finished after this function has run,
|
|
2201 |
** SQLITE_DONE is returned. If it is not finished, but no error occured,
|
|
2202 |
** SQLITE_OK is returned. Otherwise an SQLite error code.
|
|
2203 |
*/
|
|
2204 |
int sqlite3BtreeIncrVacuum(Btree *p){
|
|
2205 |
int rc;
|
|
2206 |
BtShared *pBt = p->pBt;
|
|
2207 |
|
|
2208 |
sqlite3BtreeEnter(p);
|
|
2209 |
pBt->db = p->db;
|
|
2210 |
assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
|
|
2211 |
if( !pBt->autoVacuum ){
|
|
2212 |
rc = SQLITE_DONE;
|
|
2213 |
}else{
|
|
2214 |
invalidateAllOverflowCache(pBt);
|
|
2215 |
rc = incrVacuumStep(pBt, 0);
|
|
2216 |
}
|
|
2217 |
sqlite3BtreeLeave(p);
|
|
2218 |
return rc;
|
|
2219 |
}
|
|
2220 |
|
|
2221 |
/*
|
|
2222 |
** This routine is called prior to sqlite3PagerCommit when a transaction
|
|
2223 |
** is commited for an auto-vacuum database.
|
|
2224 |
**
|
|
2225 |
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
|
|
2226 |
** the database file should be truncated to during the commit process.
|
|
2227 |
** i.e. the database has been reorganized so that only the first *pnTrunc
|
|
2228 |
** pages are in use.
|
|
2229 |
*/
|
|
2230 |
static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
|
|
2231 |
int rc = SQLITE_OK;
|
|
2232 |
Pager *pPager = pBt->pPager;
|
|
2233 |
#ifndef NDEBUG
|
|
2234 |
int nRef = sqlite3PagerRefcount(pPager);
|
|
2235 |
#endif
|
|
2236 |
|
|
2237 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
2238 |
invalidateAllOverflowCache(pBt);
|
|
2239 |
assert(pBt->autoVacuum);
|
|
2240 |
if( !pBt->incrVacuum ){
|
|
2241 |
Pgno nFin = 0;
|
|
2242 |
|
|
2243 |
if( pBt->nTrunc==0 ){
|
|
2244 |
Pgno nFree;
|
|
2245 |
Pgno nPtrmap;
|
|
2246 |
const int pgsz = pBt->pageSize;
|
|
2247 |
Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
|
|
2248 |
|
|
2249 |
if( PTRMAP_ISPAGE(pBt, nOrig) ){
|
|
2250 |
return SQLITE_CORRUPT_BKPT;
|
|
2251 |
}
|
|
2252 |
if( nOrig==PENDING_BYTE_PAGE(pBt) ){
|
|
2253 |
nOrig--;
|
|
2254 |
}
|
|
2255 |
nFree = get4byte(&pBt->pPage1->aData[36]);
|
|
2256 |
nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
|
|
2257 |
nFin = nOrig - nFree - nPtrmap;
|
|
2258 |
if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
|
|
2259 |
nFin--;
|
|
2260 |
}
|
|
2261 |
while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
|
|
2262 |
nFin--;
|
|
2263 |
}
|
|
2264 |
}
|
|
2265 |
|
|
2266 |
while( rc==SQLITE_OK ){
|
|
2267 |
rc = incrVacuumStep(pBt, nFin);
|
|
2268 |
}
|
|
2269 |
if( rc==SQLITE_DONE ){
|
|
2270 |
assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
|
|
2271 |
rc = SQLITE_OK;
|
|
2272 |
if( pBt->nTrunc ){
|
|
2273 |
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
2274 |
put4byte(&pBt->pPage1->aData[32], 0);
|
|
2275 |
put4byte(&pBt->pPage1->aData[36], 0);
|
|
2276 |
pBt->nTrunc = nFin;
|
|
2277 |
}
|
|
2278 |
}
|
|
2279 |
if( rc!=SQLITE_OK ){
|
|
2280 |
sqlite3PagerRollback(pPager);
|
|
2281 |
}
|
|
2282 |
}
|
|
2283 |
|
|
2284 |
if( rc==SQLITE_OK ){
|
|
2285 |
*pnTrunc = pBt->nTrunc;
|
|
2286 |
pBt->nTrunc = 0;
|
|
2287 |
}
|
|
2288 |
assert( nRef==sqlite3PagerRefcount(pPager) );
|
|
2289 |
return rc;
|
|
2290 |
}
|
|
2291 |
|
|
2292 |
#endif
|
|
2293 |
|
|
2294 |
/*
|
|
2295 |
** This routine does the first phase of a two-phase commit. This routine
|
|
2296 |
** causes a rollback journal to be created (if it does not already exist)
|
|
2297 |
** and populated with enough information so that if a power loss occurs
|
|
2298 |
** the database can be restored to its original state by playing back
|
|
2299 |
** the journal. Then the contents of the journal are flushed out to
|
|
2300 |
** the disk. After the journal is safely on oxide, the changes to the
|
|
2301 |
** database are written into the database file and flushed to oxide.
|
|
2302 |
** At the end of this call, the rollback journal still exists on the
|
|
2303 |
** disk and we are still holding all locks, so the transaction has not
|
|
2304 |
** committed. See sqlite3BtreeCommit() for the second phase of the
|
|
2305 |
** commit process.
|
|
2306 |
**
|
|
2307 |
** This call is a no-op if no write-transaction is currently active on pBt.
|
|
2308 |
**
|
|
2309 |
** Otherwise, sync the database file for the btree pBt. zMaster points to
|
|
2310 |
** the name of a master journal file that should be written into the
|
|
2311 |
** individual journal file, or is NULL, indicating no master journal file
|
|
2312 |
** (single database transaction).
|
|
2313 |
**
|
|
2314 |
** When this is called, the master journal should already have been
|
|
2315 |
** created, populated with this journal pointer and synced to disk.
|
|
2316 |
**
|
|
2317 |
** Once this is routine has returned, the only thing required to commit
|
|
2318 |
** the write-transaction for this database file is to delete the journal.
|
|
2319 |
*/
|
|
2320 |
int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
|
|
2321 |
int rc = SQLITE_OK;
|
|
2322 |
if( p->inTrans==TRANS_WRITE ){
|
|
2323 |
BtShared *pBt = p->pBt;
|
|
2324 |
Pgno nTrunc = 0;
|
|
2325 |
sqlite3BtreeEnter(p);
|
|
2326 |
pBt->db = p->db;
|
|
2327 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
2328 |
if( pBt->autoVacuum ){
|
|
2329 |
rc = autoVacuumCommit(pBt, &nTrunc);
|
|
2330 |
if( rc!=SQLITE_OK ){
|
|
2331 |
sqlite3BtreeLeave(p);
|
|
2332 |
return rc;
|
|
2333 |
}
|
|
2334 |
}
|
|
2335 |
#endif
|
|
2336 |
rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
|
|
2337 |
sqlite3BtreeLeave(p);
|
|
2338 |
}
|
|
2339 |
return rc;
|
|
2340 |
}
|
|
2341 |
|
|
2342 |
/*
|
|
2343 |
** Commit the transaction currently in progress.
|
|
2344 |
**
|
|
2345 |
** This routine implements the second phase of a 2-phase commit. The
|
|
2346 |
** sqlite3BtreeSync() routine does the first phase and should be invoked
|
|
2347 |
** prior to calling this routine. The sqlite3BtreeSync() routine did
|
|
2348 |
** all the work of writing information out to disk and flushing the
|
|
2349 |
** contents so that they are written onto the disk platter. All this
|
|
2350 |
** routine has to do is delete or truncate the rollback journal
|
|
2351 |
** (which causes the transaction to commit) and drop locks.
|
|
2352 |
**
|
|
2353 |
** This will release the write lock on the database file. If there
|
|
2354 |
** are no active cursors, it also releases the read lock.
|
|
2355 |
*/
|
|
2356 |
int sqlite3BtreeCommitPhaseTwo(Btree *p){
|
|
2357 |
BtShared *pBt = p->pBt;
|
|
2358 |
|
|
2359 |
sqlite3BtreeEnter(p);
|
|
2360 |
pBt->db = p->db;
|
|
2361 |
btreeIntegrity(p);
|
|
2362 |
|
|
2363 |
/* If the handle has a write-transaction open, commit the shared-btrees
|
|
2364 |
** transaction and set the shared state to TRANS_READ.
|
|
2365 |
*/
|
|
2366 |
if( p->inTrans==TRANS_WRITE ){
|
|
2367 |
int rc;
|
|
2368 |
assert( pBt->inTransaction==TRANS_WRITE );
|
|
2369 |
assert( pBt->nTransaction>0 );
|
|
2370 |
rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
|
|
2371 |
if( rc!=SQLITE_OK ){
|
|
2372 |
sqlite3BtreeLeave(p);
|
|
2373 |
return rc;
|
|
2374 |
}
|
|
2375 |
pBt->inTransaction = TRANS_READ;
|
|
2376 |
pBt->inStmt = 0;
|
|
2377 |
}
|
|
2378 |
unlockAllTables(p);
|
|
2379 |
|
|
2380 |
/* If the handle has any kind of transaction open, decrement the transaction
|
|
2381 |
** count of the shared btree. If the transaction count reaches 0, set
|
|
2382 |
** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
|
|
2383 |
** will unlock the pager.
|
|
2384 |
*/
|
|
2385 |
if( p->inTrans!=TRANS_NONE ){
|
|
2386 |
pBt->nTransaction--;
|
|
2387 |
if( 0==pBt->nTransaction ){
|
|
2388 |
pBt->inTransaction = TRANS_NONE;
|
|
2389 |
}
|
|
2390 |
}
|
|
2391 |
|
|
2392 |
/* Set the handles current transaction state to TRANS_NONE and unlock
|
|
2393 |
** the pager if this call closed the only read or write transaction.
|
|
2394 |
*/
|
|
2395 |
p->inTrans = TRANS_NONE;
|
|
2396 |
unlockBtreeIfUnused(pBt);
|
|
2397 |
|
|
2398 |
btreeIntegrity(p);
|
|
2399 |
sqlite3BtreeLeave(p);
|
|
2400 |
return SQLITE_OK;
|
|
2401 |
}
|
|
2402 |
|
|
2403 |
/*
|
|
2404 |
** Do both phases of a commit.
|
|
2405 |
*/
|
|
2406 |
int sqlite3BtreeCommit(Btree *p){
|
|
2407 |
int rc;
|
|
2408 |
sqlite3BtreeEnter(p);
|
|
2409 |
rc = sqlite3BtreeCommitPhaseOne(p, 0);
|
|
2410 |
if( rc==SQLITE_OK ){
|
|
2411 |
rc = sqlite3BtreeCommitPhaseTwo(p);
|
|
2412 |
}
|
|
2413 |
sqlite3BtreeLeave(p);
|
|
2414 |
return rc;
|
|
2415 |
}
|
|
2416 |
|
|
2417 |
#ifndef NDEBUG
|
|
2418 |
/*
|
|
2419 |
** Return the number of write-cursors open on this handle. This is for use
|
|
2420 |
** in assert() expressions, so it is only compiled if NDEBUG is not
|
|
2421 |
** defined.
|
|
2422 |
**
|
|
2423 |
** For the purposes of this routine, a write-cursor is any cursor that
|
|
2424 |
** is capable of writing to the databse. That means the cursor was
|
|
2425 |
** originally opened for writing and the cursor has not be disabled
|
|
2426 |
** by having its state changed to CURSOR_FAULT.
|
|
2427 |
*/
|
|
2428 |
static int countWriteCursors(BtShared *pBt){
|
|
2429 |
BtCursor *pCur;
|
|
2430 |
int r = 0;
|
|
2431 |
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
2432 |
if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
|
|
2433 |
}
|
|
2434 |
return r;
|
|
2435 |
}
|
|
2436 |
#endif
|
|
2437 |
|
|
2438 |
/*
|
|
2439 |
** This routine sets the state to CURSOR_FAULT and the error
|
|
2440 |
** code to errCode for every cursor on BtShared that pBtree
|
|
2441 |
** references.
|
|
2442 |
**
|
|
2443 |
** Every cursor is tripped, including cursors that belong
|
|
2444 |
** to other database connections that happen to be sharing
|
|
2445 |
** the cache with pBtree.
|
|
2446 |
**
|
|
2447 |
** This routine gets called when a rollback occurs.
|
|
2448 |
** All cursors using the same cache must be tripped
|
|
2449 |
** to prevent them from trying to use the btree after
|
|
2450 |
** the rollback. The rollback may have deleted tables
|
|
2451 |
** or moved root pages, so it is not sufficient to
|
|
2452 |
** save the state of the cursor. The cursor must be
|
|
2453 |
** invalidated.
|
|
2454 |
*/
|
|
2455 |
void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
|
|
2456 |
BtCursor *p;
|
|
2457 |
sqlite3BtreeEnter(pBtree);
|
|
2458 |
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
|
|
2459 |
clearCursorPosition(p);
|
|
2460 |
p->eState = CURSOR_FAULT;
|
|
2461 |
p->skip = errCode;
|
|
2462 |
}
|
|
2463 |
sqlite3BtreeLeave(pBtree);
|
|
2464 |
}
|
|
2465 |
|
|
2466 |
/*
|
|
2467 |
** Rollback the transaction in progress. All cursors will be
|
|
2468 |
** invalided by this operation. Any attempt to use a cursor
|
|
2469 |
** that was open at the beginning of this operation will result
|
|
2470 |
** in an error.
|
|
2471 |
**
|
|
2472 |
** This will release the write lock on the database file. If there
|
|
2473 |
** are no active cursors, it also releases the read lock.
|
|
2474 |
*/
|
|
2475 |
int sqlite3BtreeRollback(Btree *p){
|
|
2476 |
int rc;
|
|
2477 |
BtShared *pBt = p->pBt;
|
|
2478 |
MemPage *pPage1;
|
|
2479 |
|
|
2480 |
sqlite3BtreeEnter(p);
|
|
2481 |
pBt->db = p->db;
|
|
2482 |
rc = saveAllCursors(pBt, 0, 0);
|
|
2483 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
2484 |
if( rc!=SQLITE_OK ){
|
|
2485 |
/* This is a horrible situation. An IO or malloc() error occured whilst
|
|
2486 |
** trying to save cursor positions. If this is an automatic rollback (as
|
|
2487 |
** the result of a constraint, malloc() failure or IO error) then
|
|
2488 |
** the cache may be internally inconsistent (not contain valid trees) so
|
|
2489 |
** we cannot simply return the error to the caller. Instead, abort
|
|
2490 |
** all queries that may be using any of the cursors that failed to save.
|
|
2491 |
*/
|
|
2492 |
sqlite3BtreeTripAllCursors(p, rc);
|
|
2493 |
}
|
|
2494 |
#endif
|
|
2495 |
btreeIntegrity(p);
|
|
2496 |
unlockAllTables(p);
|
|
2497 |
|
|
2498 |
if( p->inTrans==TRANS_WRITE ){
|
|
2499 |
int rc2;
|
|
2500 |
|
|
2501 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
2502 |
pBt->nTrunc = 0;
|
|
2503 |
#endif
|
|
2504 |
|
|
2505 |
assert( TRANS_WRITE==pBt->inTransaction );
|
|
2506 |
rc2 = sqlite3PagerRollback(pBt->pPager);
|
|
2507 |
if( rc2!=SQLITE_OK ){
|
|
2508 |
rc = rc2;
|
|
2509 |
}
|
|
2510 |
|
|
2511 |
/* The rollback may have destroyed the pPage1->aData value. So
|
|
2512 |
** call sqlite3BtreeGetPage() on page 1 again to make
|
|
2513 |
** sure pPage1->aData is set correctly. */
|
|
2514 |
if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
|
|
2515 |
releasePage(pPage1);
|
|
2516 |
}
|
|
2517 |
assert( countWriteCursors(pBt)==0 );
|
|
2518 |
pBt->inTransaction = TRANS_READ;
|
|
2519 |
}
|
|
2520 |
|
|
2521 |
if( p->inTrans!=TRANS_NONE ){
|
|
2522 |
assert( pBt->nTransaction>0 );
|
|
2523 |
pBt->nTransaction--;
|
|
2524 |
if( 0==pBt->nTransaction ){
|
|
2525 |
pBt->inTransaction = TRANS_NONE;
|
|
2526 |
}
|
|
2527 |
}
|
|
2528 |
|
|
2529 |
p->inTrans = TRANS_NONE;
|
|
2530 |
pBt->inStmt = 0;
|
|
2531 |
unlockBtreeIfUnused(pBt);
|
|
2532 |
|
|
2533 |
btreeIntegrity(p);
|
|
2534 |
sqlite3BtreeLeave(p);
|
|
2535 |
return rc;
|
|
2536 |
}
|
|
2537 |
|
|
2538 |
/*
|
|
2539 |
** Start a statement subtransaction. The subtransaction can
|
|
2540 |
** can be rolled back independently of the main transaction.
|
|
2541 |
** You must start a transaction before starting a subtransaction.
|
|
2542 |
** The subtransaction is ended automatically if the main transaction
|
|
2543 |
** commits or rolls back.
|
|
2544 |
**
|
|
2545 |
** Only one subtransaction may be active at a time. It is an error to try
|
|
2546 |
** to start a new subtransaction if another subtransaction is already active.
|
|
2547 |
**
|
|
2548 |
** Statement subtransactions are used around individual SQL statements
|
|
2549 |
** that are contained within a BEGIN...COMMIT block. If a constraint
|
|
2550 |
** error occurs within the statement, the effect of that one statement
|
|
2551 |
** can be rolled back without having to rollback the entire transaction.
|
|
2552 |
*/
|
|
2553 |
int sqlite3BtreeBeginStmt(Btree *p){
|
|
2554 |
int rc;
|
|
2555 |
BtShared *pBt = p->pBt;
|
|
2556 |
sqlite3BtreeEnter(p);
|
|
2557 |
pBt->db = p->db;
|
|
2558 |
if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
|
|
2559 |
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
2560 |
}else{
|
|
2561 |
assert( pBt->inTransaction==TRANS_WRITE );
|
|
2562 |
rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
|
|
2563 |
pBt->inStmt = 1;
|
|
2564 |
}
|
|
2565 |
sqlite3BtreeLeave(p);
|
|
2566 |
return rc;
|
|
2567 |
}
|
|
2568 |
|
|
2569 |
|
|
2570 |
/*
|
|
2571 |
** Commit the statment subtransaction currently in progress. If no
|
|
2572 |
** subtransaction is active, this is a no-op.
|
|
2573 |
*/
|
|
2574 |
int sqlite3BtreeCommitStmt(Btree *p){
|
|
2575 |
int rc;
|
|
2576 |
BtShared *pBt = p->pBt;
|
|
2577 |
sqlite3BtreeEnter(p);
|
|
2578 |
pBt->db = p->db;
|
|
2579 |
if( pBt->inStmt && !pBt->readOnly ){
|
|
2580 |
rc = sqlite3PagerStmtCommit(pBt->pPager);
|
|
2581 |
}else{
|
|
2582 |
rc = SQLITE_OK;
|
|
2583 |
}
|
|
2584 |
pBt->inStmt = 0;
|
|
2585 |
sqlite3BtreeLeave(p);
|
|
2586 |
return rc;
|
|
2587 |
}
|
|
2588 |
|
|
2589 |
/*
|
|
2590 |
** Rollback the active statement subtransaction. If no subtransaction
|
|
2591 |
** is active this routine is a no-op.
|
|
2592 |
**
|
|
2593 |
** All cursors will be invalidated by this operation. Any attempt
|
|
2594 |
** to use a cursor that was open at the beginning of this operation
|
|
2595 |
** will result in an error.
|
|
2596 |
*/
|
|
2597 |
int sqlite3BtreeRollbackStmt(Btree *p){
|
|
2598 |
int rc = SQLITE_OK;
|
|
2599 |
BtShared *pBt = p->pBt;
|
|
2600 |
sqlite3BtreeEnter(p);
|
|
2601 |
pBt->db = p->db;
|
|
2602 |
if( pBt->inStmt && !pBt->readOnly ){
|
|
2603 |
rc = sqlite3PagerStmtRollback(pBt->pPager);
|
|
2604 |
assert( countWriteCursors(pBt)==0 );
|
|
2605 |
pBt->inStmt = 0;
|
|
2606 |
}
|
|
2607 |
sqlite3BtreeLeave(p);
|
|
2608 |
return rc;
|
|
2609 |
}
|
|
2610 |
|
|
2611 |
/*
|
|
2612 |
** Default key comparison function to be used if no comparison function
|
|
2613 |
** is specified on the sqlite3BtreeCursor() call.
|
|
2614 |
*/
|
|
2615 |
static int dfltCompare(
|
|
2616 |
void *NotUsed, /* User data is not used */
|
|
2617 |
int n1, const void *p1, /* First key to compare */
|
|
2618 |
int n2, const void *p2 /* Second key to compare */
|
|
2619 |
){
|
|
2620 |
int c;
|
|
2621 |
c = memcmp(p1, p2, n1<n2 ? n1 : n2);
|
|
2622 |
if( c==0 ){
|
|
2623 |
c = n1 - n2;
|
|
2624 |
}
|
|
2625 |
return c;
|
|
2626 |
}
|
|
2627 |
|
|
2628 |
/*
|
|
2629 |
** Create a new cursor for the BTree whose root is on the page
|
|
2630 |
** iTable. The act of acquiring a cursor gets a read lock on
|
|
2631 |
** the database file.
|
|
2632 |
**
|
|
2633 |
** If wrFlag==0, then the cursor can only be used for reading.
|
|
2634 |
** If wrFlag==1, then the cursor can be used for reading or for
|
|
2635 |
** writing if other conditions for writing are also met. These
|
|
2636 |
** are the conditions that must be met in order for writing to
|
|
2637 |
** be allowed:
|
|
2638 |
**
|
|
2639 |
** 1: The cursor must have been opened with wrFlag==1
|
|
2640 |
**
|
|
2641 |
** 2: Other database connections that share the same pager cache
|
|
2642 |
** but which are not in the READ_UNCOMMITTED state may not have
|
|
2643 |
** cursors open with wrFlag==0 on the same table. Otherwise
|
|
2644 |
** the changes made by this write cursor would be visible to
|
|
2645 |
** the read cursors in the other database connection.
|
|
2646 |
**
|
|
2647 |
** 3: The database must be writable (not on read-only media)
|
|
2648 |
**
|
|
2649 |
** 4: There must be an active transaction.
|
|
2650 |
**
|
|
2651 |
** No checking is done to make sure that page iTable really is the
|
|
2652 |
** root page of a b-tree. If it is not, then the cursor acquired
|
|
2653 |
** will not work correctly.
|
|
2654 |
**
|
|
2655 |
** The comparison function must be logically the same for every cursor
|
|
2656 |
** on a particular table. Changing the comparison function will result
|
|
2657 |
** in incorrect operations. If the comparison function is NULL, a
|
|
2658 |
** default comparison function is used. The comparison function is
|
|
2659 |
** always ignored for INTKEY tables.
|
|
2660 |
*/
|
|
2661 |
static int btreeCursor(
|
|
2662 |
Btree *p, /* The btree */
|
|
2663 |
int iTable, /* Root page of table to open */
|
|
2664 |
int wrFlag, /* 1 to write. 0 read-only */
|
|
2665 |
int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
|
|
2666 |
void *pArg, /* First arg to xCompare() */
|
|
2667 |
BtCursor **ppCur /* Write new cursor here */
|
|
2668 |
){
|
|
2669 |
int rc;
|
|
2670 |
BtCursor *pCur;
|
|
2671 |
BtShared *pBt = p->pBt;
|
|
2672 |
|
|
2673 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
2674 |
*ppCur = 0;
|
|
2675 |
if( wrFlag ){
|
|
2676 |
if( pBt->readOnly ){
|
|
2677 |
return SQLITE_READONLY;
|
|
2678 |
}
|
|
2679 |
if( checkReadLocks(p, iTable, 0) ){
|
|
2680 |
return SQLITE_LOCKED;
|
|
2681 |
}
|
|
2682 |
}
|
|
2683 |
|
|
2684 |
if( pBt->pPage1==0 ){
|
|
2685 |
rc = lockBtreeWithRetry(p);
|
|
2686 |
if( rc!=SQLITE_OK ){
|
|
2687 |
return rc;
|
|
2688 |
}
|
|
2689 |
if( pBt->readOnly && wrFlag ){
|
|
2690 |
return SQLITE_READONLY;
|
|
2691 |
}
|
|
2692 |
}
|
|
2693 |
pCur = (BtCursor*)sqlite3MallocZero( sizeof(*pCur) );
|
|
2694 |
if( pCur==0 ){
|
|
2695 |
rc = SQLITE_NOMEM;
|
|
2696 |
goto create_cursor_exception;
|
|
2697 |
}
|
|
2698 |
pCur->pgnoRoot = (Pgno)iTable;
|
|
2699 |
if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
|
|
2700 |
rc = SQLITE_EMPTY;
|
|
2701 |
goto create_cursor_exception;
|
|
2702 |
}
|
|
2703 |
rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
|
|
2704 |
if( rc!=SQLITE_OK ){
|
|
2705 |
goto create_cursor_exception;
|
|
2706 |
}
|
|
2707 |
|
|
2708 |
/* Now that no other errors can occur, finish filling in the BtCursor
|
|
2709 |
** variables, link the cursor into the BtShared list and set *ppCur (the
|
|
2710 |
** output argument to this function).
|
|
2711 |
*/
|
|
2712 |
pCur->xCompare = xCmp ? xCmp : dfltCompare;
|
|
2713 |
pCur->pArg = pArg;
|
|
2714 |
pCur->pBtree = p;
|
|
2715 |
pCur->pBt = pBt;
|
|
2716 |
pCur->wrFlag = wrFlag;
|
|
2717 |
pCur->pNext = pBt->pCursor;
|
|
2718 |
if( pCur->pNext ){
|
|
2719 |
pCur->pNext->pPrev = pCur;
|
|
2720 |
}
|
|
2721 |
pBt->pCursor = pCur;
|
|
2722 |
pCur->eState = CURSOR_INVALID;
|
|
2723 |
*ppCur = pCur;
|
|
2724 |
|
|
2725 |
return SQLITE_OK;
|
|
2726 |
|
|
2727 |
create_cursor_exception:
|
|
2728 |
if( pCur ){
|
|
2729 |
releasePage(pCur->pPage);
|
|
2730 |
sqlite3_free(pCur);
|
|
2731 |
}
|
|
2732 |
unlockBtreeIfUnused(pBt);
|
|
2733 |
return rc;
|
|
2734 |
}
|
|
2735 |
int sqlite3BtreeCursor(
|
|
2736 |
Btree *p, /* The btree */
|
|
2737 |
int iTable, /* Root page of table to open */
|
|
2738 |
int wrFlag, /* 1 to write. 0 read-only */
|
|
2739 |
int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
|
|
2740 |
void *pArg, /* First arg to xCompare() */
|
|
2741 |
BtCursor **ppCur /* Write new cursor here */
|
|
2742 |
){
|
|
2743 |
int rc;
|
|
2744 |
sqlite3BtreeEnter(p);
|
|
2745 |
p->pBt->db = p->db;
|
|
2746 |
rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur);
|
|
2747 |
sqlite3BtreeLeave(p);
|
|
2748 |
return rc;
|
|
2749 |
}
|
|
2750 |
|
|
2751 |
|
|
2752 |
/*
|
|
2753 |
** Close a cursor. The read lock on the database file is released
|
|
2754 |
** when the last cursor is closed.
|
|
2755 |
*/
|
|
2756 |
int sqlite3BtreeCloseCursor(BtCursor *pCur){
|
|
2757 |
BtShared *pBt = pCur->pBt;
|
|
2758 |
Btree *pBtree = pCur->pBtree;
|
|
2759 |
|
|
2760 |
sqlite3BtreeEnter(pBtree);
|
|
2761 |
pBt->db = pBtree->db;
|
|
2762 |
clearCursorPosition(pCur);
|
|
2763 |
if( pCur->pPrev ){
|
|
2764 |
pCur->pPrev->pNext = pCur->pNext;
|
|
2765 |
}else{
|
|
2766 |
pBt->pCursor = pCur->pNext;
|
|
2767 |
}
|
|
2768 |
if( pCur->pNext ){
|
|
2769 |
pCur->pNext->pPrev = pCur->pPrev;
|
|
2770 |
}
|
|
2771 |
releasePage(pCur->pPage);
|
|
2772 |
unlockBtreeIfUnused(pBt);
|
|
2773 |
invalidateOverflowCache(pCur);
|
|
2774 |
sqlite3_free(pCur);
|
|
2775 |
sqlite3BtreeLeave(pBtree);
|
|
2776 |
return SQLITE_OK;
|
|
2777 |
}
|
|
2778 |
|
|
2779 |
/*
|
|
2780 |
** Make a temporary cursor by filling in the fields of pTempCur.
|
|
2781 |
** The temporary cursor is not on the cursor list for the Btree.
|
|
2782 |
*/
|
|
2783 |
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
|
|
2784 |
assert( cursorHoldsMutex(pCur) );
|
|
2785 |
memcpy(pTempCur, pCur, sizeof(*pCur));
|
|
2786 |
pTempCur->pNext = 0;
|
|
2787 |
pTempCur->pPrev = 0;
|
|
2788 |
if( pTempCur->pPage ){
|
|
2789 |
sqlite3PagerRef(pTempCur->pPage->pDbPage);
|
|
2790 |
}
|
|
2791 |
}
|
|
2792 |
|
|
2793 |
/*
|
|
2794 |
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
|
|
2795 |
** function above.
|
|
2796 |
*/
|
|
2797 |
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
|
|
2798 |
assert( cursorHoldsMutex(pCur) );
|
|
2799 |
if( pCur->pPage ){
|
|
2800 |
sqlite3PagerUnref(pCur->pPage->pDbPage);
|
|
2801 |
}
|
|
2802 |
}
|
|
2803 |
|
|
2804 |
/*
|
|
2805 |
** Make sure the BtCursor* given in the argument has a valid
|
|
2806 |
** BtCursor.info structure. If it is not already valid, call
|
|
2807 |
** sqlite3BtreeParseCell() to fill it in.
|
|
2808 |
**
|
|
2809 |
** BtCursor.info is a cache of the information in the current cell.
|
|
2810 |
** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
|
|
2811 |
**
|
|
2812 |
** 2007-06-25: There is a bug in some versions of MSVC that cause the
|
|
2813 |
** compiler to crash when getCellInfo() is implemented as a macro.
|
|
2814 |
** But there is a measureable speed advantage to using the macro on gcc
|
|
2815 |
** (when less compiler optimizations like -Os or -O0 are used and the
|
|
2816 |
** compiler is not doing agressive inlining.) So we use a real function
|
|
2817 |
** for MSVC and a macro for everything else. Ticket #2457.
|
|
2818 |
*/
|
|
2819 |
#ifndef NDEBUG
|
|
2820 |
static void assertCellInfo(BtCursor *pCur){
|
|
2821 |
CellInfo info;
|
|
2822 |
memset(&info, 0, sizeof(info));
|
|
2823 |
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
|
|
2824 |
assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
|
|
2825 |
}
|
|
2826 |
#else
|
|
2827 |
#define assertCellInfo(x)
|
|
2828 |
#endif
|
|
2829 |
#ifdef _MSC_VER
|
|
2830 |
/* Use a real function in MSVC to work around bugs in that compiler. */
|
|
2831 |
static void getCellInfo(BtCursor *pCur){
|
|
2832 |
if( pCur->info.nSize==0 ){
|
|
2833 |
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
|
|
2834 |
}else{
|
|
2835 |
assertCellInfo(pCur);
|
|
2836 |
}
|
|
2837 |
}
|
|
2838 |
#else /* if not _MSC_VER */
|
|
2839 |
/* Use a macro in all other compilers so that the function is inlined */
|
|
2840 |
#define getCellInfo(pCur) \
|
|
2841 |
if( pCur->info.nSize==0 ){ \
|
|
2842 |
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
|
|
2843 |
}else{ \
|
|
2844 |
assertCellInfo(pCur); \
|
|
2845 |
}
|
|
2846 |
#endif /* _MSC_VER */
|
|
2847 |
|
|
2848 |
/*
|
|
2849 |
** Set *pSize to the size of the buffer needed to hold the value of
|
|
2850 |
** the key for the current entry. If the cursor is not pointing
|
|
2851 |
** to a valid entry, *pSize is set to 0.
|
|
2852 |
**
|
|
2853 |
** For a table with the INTKEY flag set, this routine returns the key
|
|
2854 |
** itself, not the number of bytes in the key.
|
|
2855 |
*/
|
|
2856 |
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
|
|
2857 |
int rc;
|
|
2858 |
|
|
2859 |
assert( cursorHoldsMutex(pCur) );
|
|
2860 |
rc = restoreOrClearCursorPosition(pCur);
|
|
2861 |
if( rc==SQLITE_OK ){
|
|
2862 |
assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
|
|
2863 |
if( pCur->eState==CURSOR_INVALID ){
|
|
2864 |
*pSize = 0;
|
|
2865 |
}else{
|
|
2866 |
getCellInfo(pCur);
|
|
2867 |
*pSize = pCur->info.nKey;
|
|
2868 |
}
|
|
2869 |
}
|
|
2870 |
return rc;
|
|
2871 |
}
|
|
2872 |
|
|
2873 |
/*
|
|
2874 |
** Set *pSize to the number of bytes of data in the entry the
|
|
2875 |
** cursor currently points to. Always return SQLITE_OK.
|
|
2876 |
** Failure is not possible. If the cursor is not currently
|
|
2877 |
** pointing to an entry (which can happen, for example, if
|
|
2878 |
** the database is empty) then *pSize is set to 0.
|
|
2879 |
*/
|
|
2880 |
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
|
|
2881 |
int rc;
|
|
2882 |
|
|
2883 |
assert( cursorHoldsMutex(pCur) );
|
|
2884 |
rc = restoreOrClearCursorPosition(pCur);
|
|
2885 |
if( rc==SQLITE_OK ){
|
|
2886 |
assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
|
|
2887 |
if( pCur->eState==CURSOR_INVALID ){
|
|
2888 |
/* Not pointing at a valid entry - set *pSize to 0. */
|
|
2889 |
*pSize = 0;
|
|
2890 |
}else{
|
|
2891 |
getCellInfo(pCur);
|
|
2892 |
*pSize = pCur->info.nData;
|
|
2893 |
}
|
|
2894 |
}
|
|
2895 |
return rc;
|
|
2896 |
}
|
|
2897 |
|
|
2898 |
/*
|
|
2899 |
** Given the page number of an overflow page in the database (parameter
|
|
2900 |
** ovfl), this function finds the page number of the next page in the
|
|
2901 |
** linked list of overflow pages. If possible, it uses the auto-vacuum
|
|
2902 |
** pointer-map data instead of reading the content of page ovfl to do so.
|
|
2903 |
**
|
|
2904 |
** If an error occurs an SQLite error code is returned. Otherwise:
|
|
2905 |
**
|
|
2906 |
** Unless pPgnoNext is NULL, the page number of the next overflow
|
|
2907 |
** page in the linked list is written to *pPgnoNext. If page ovfl
|
|
2908 |
** is the last page in its linked list, *pPgnoNext is set to zero.
|
|
2909 |
**
|
|
2910 |
** If ppPage is not NULL, *ppPage is set to the MemPage* handle
|
|
2911 |
** for page ovfl. The underlying pager page may have been requested
|
|
2912 |
** with the noContent flag set, so the page data accessable via
|
|
2913 |
** this handle may not be trusted.
|
|
2914 |
*/
|
|
2915 |
static int getOverflowPage(
|
|
2916 |
BtShared *pBt,
|
|
2917 |
Pgno ovfl, /* Overflow page */
|
|
2918 |
MemPage **ppPage, /* OUT: MemPage handle */
|
|
2919 |
Pgno *pPgnoNext /* OUT: Next overflow page number */
|
|
2920 |
){
|
|
2921 |
Pgno next = 0;
|
|
2922 |
int rc;
|
|
2923 |
|
|
2924 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
2925 |
/* One of these must not be NULL. Otherwise, why call this function? */
|
|
2926 |
assert(ppPage || pPgnoNext);
|
|
2927 |
|
|
2928 |
/* If pPgnoNext is NULL, then this function is being called to obtain
|
|
2929 |
** a MemPage* reference only. No page-data is required in this case.
|
|
2930 |
*/
|
|
2931 |
if( !pPgnoNext ){
|
|
2932 |
return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
|
|
2933 |
}
|
|
2934 |
|
|
2935 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
2936 |
/* Try to find the next page in the overflow list using the
|
|
2937 |
** autovacuum pointer-map pages. Guess that the next page in
|
|
2938 |
** the overflow list is page number (ovfl+1). If that guess turns
|
|
2939 |
** out to be wrong, fall back to loading the data of page
|
|
2940 |
** number ovfl to determine the next page number.
|
|
2941 |
*/
|
|
2942 |
if( pBt->autoVacuum ){
|
|
2943 |
Pgno pgno;
|
|
2944 |
Pgno iGuess = ovfl+1;
|
|
2945 |
u8 eType;
|
|
2946 |
|
|
2947 |
while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
|
|
2948 |
iGuess++;
|
|
2949 |
}
|
|
2950 |
|
|
2951 |
if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
|
|
2952 |
rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
|
|
2953 |
if( rc!=SQLITE_OK ){
|
|
2954 |
return rc;
|
|
2955 |
}
|
|
2956 |
if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
|
|
2957 |
next = iGuess;
|
|
2958 |
}
|
|
2959 |
}
|
|
2960 |
}
|
|
2961 |
#endif
|
|
2962 |
|
|
2963 |
if( next==0 || ppPage ){
|
|
2964 |
MemPage *pPage = 0;
|
|
2965 |
|
|
2966 |
rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
|
|
2967 |
assert(rc==SQLITE_OK || pPage==0);
|
|
2968 |
if( next==0 && rc==SQLITE_OK ){
|
|
2969 |
next = get4byte(pPage->aData);
|
|
2970 |
}
|
|
2971 |
|
|
2972 |
if( ppPage ){
|
|
2973 |
*ppPage = pPage;
|
|
2974 |
}else{
|
|
2975 |
releasePage(pPage);
|
|
2976 |
}
|
|
2977 |
}
|
|
2978 |
*pPgnoNext = next;
|
|
2979 |
|
|
2980 |
return rc;
|
|
2981 |
}
|
|
2982 |
|
|
2983 |
/*
|
|
2984 |
** Copy data from a buffer to a page, or from a page to a buffer.
|
|
2985 |
**
|
|
2986 |
** pPayload is a pointer to data stored on database page pDbPage.
|
|
2987 |
** If argument eOp is false, then nByte bytes of data are copied
|
|
2988 |
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
|
|
2989 |
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
|
|
2990 |
** of data are copied from the buffer pBuf to pPayload.
|
|
2991 |
**
|
|
2992 |
** SQLITE_OK is returned on success, otherwise an error code.
|
|
2993 |
*/
|
|
2994 |
static int copyPayload(
|
|
2995 |
void *pPayload, /* Pointer to page data */
|
|
2996 |
void *pBuf, /* Pointer to buffer */
|
|
2997 |
int nByte, /* Number of bytes to copy */
|
|
2998 |
int eOp, /* 0 -> copy from page, 1 -> copy to page */
|
|
2999 |
DbPage *pDbPage /* Page containing pPayload */
|
|
3000 |
){
|
|
3001 |
if( eOp ){
|
|
3002 |
/* Copy data from buffer to page (a write operation) */
|
|
3003 |
int rc = sqlite3PagerWrite(pDbPage);
|
|
3004 |
if( rc!=SQLITE_OK ){
|
|
3005 |
return rc;
|
|
3006 |
}
|
|
3007 |
memcpy(pPayload, pBuf, nByte);
|
|
3008 |
}else{
|
|
3009 |
/* Copy data from page to buffer (a read operation) */
|
|
3010 |
memcpy(pBuf, pPayload, nByte);
|
|
3011 |
}
|
|
3012 |
return SQLITE_OK;
|
|
3013 |
}
|
|
3014 |
|
|
3015 |
/*
|
|
3016 |
** This function is used to read or overwrite payload information
|
|
3017 |
** for the entry that the pCur cursor is pointing to. If the eOp
|
|
3018 |
** parameter is 0, this is a read operation (data copied into
|
|
3019 |
** buffer pBuf). If it is non-zero, a write (data copied from
|
|
3020 |
** buffer pBuf).
|
|
3021 |
**
|
|
3022 |
** A total of "amt" bytes are read or written beginning at "offset".
|
|
3023 |
** Data is read to or from the buffer pBuf.
|
|
3024 |
**
|
|
3025 |
** This routine does not make a distinction between key and data.
|
|
3026 |
** It just reads or writes bytes from the payload area. Data might
|
|
3027 |
** appear on the main page or be scattered out on multiple overflow
|
|
3028 |
** pages.
|
|
3029 |
**
|
|
3030 |
** If the BtCursor.isIncrblobHandle flag is set, and the current
|
|
3031 |
** cursor entry uses one or more overflow pages, this function
|
|
3032 |
** allocates space for and lazily popluates the overflow page-list
|
|
3033 |
** cache array (BtCursor.aOverflow). Subsequent calls use this
|
|
3034 |
** cache to make seeking to the supplied offset more efficient.
|
|
3035 |
**
|
|
3036 |
** Once an overflow page-list cache has been allocated, it may be
|
|
3037 |
** invalidated if some other cursor writes to the same table, or if
|
|
3038 |
** the cursor is moved to a different row. Additionally, in auto-vacuum
|
|
3039 |
** mode, the following events may invalidate an overflow page-list cache.
|
|
3040 |
**
|
|
3041 |
** * An incremental vacuum,
|
|
3042 |
** * A commit in auto_vacuum="full" mode,
|
|
3043 |
** * Creating a table (may require moving an overflow page).
|
|
3044 |
*/
|
|
3045 |
static int accessPayload(
|
|
3046 |
BtCursor *pCur, /* Cursor pointing to entry to read from */
|
|
3047 |
int offset, /* Begin reading this far into payload */
|
|
3048 |
int amt, /* Read this many bytes */
|
|
3049 |
unsigned char *pBuf, /* Write the bytes into this buffer */
|
|
3050 |
int skipKey, /* offset begins at data if this is true */
|
|
3051 |
int eOp /* zero to read. non-zero to write. */
|
|
3052 |
){
|
|
3053 |
unsigned char *aPayload;
|
|
3054 |
int rc = SQLITE_OK;
|
|
3055 |
u32 nKey;
|
|
3056 |
int iIdx = 0;
|
|
3057 |
MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
|
|
3058 |
BtShared *pBt; /* Btree this cursor belongs to */
|
|
3059 |
|
|
3060 |
assert( pPage );
|
|
3061 |
assert( pCur->eState==CURSOR_VALID );
|
|
3062 |
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
3063 |
assert( offset>=0 );
|
|
3064 |
assert( cursorHoldsMutex(pCur) );
|
|
3065 |
|
|
3066 |
getCellInfo(pCur);
|
|
3067 |
aPayload = pCur->info.pCell + pCur->info.nHeader;
|
|
3068 |
nKey = (pPage->intKey ? 0 : pCur->info.nKey);
|
|
3069 |
|
|
3070 |
if( skipKey ){
|
|
3071 |
offset += nKey;
|
|
3072 |
}
|
|
3073 |
if( offset+amt > nKey+pCur->info.nData ){
|
|
3074 |
/* Trying to read or write past the end of the data is an error */
|
|
3075 |
return SQLITE_ERROR;
|
|
3076 |
}
|
|
3077 |
|
|
3078 |
/* Check if data must be read/written to/from the btree page itself. */
|
|
3079 |
if( offset<pCur->info.nLocal ){
|
|
3080 |
int a = amt;
|
|
3081 |
if( a+offset>pCur->info.nLocal ){
|
|
3082 |
a = pCur->info.nLocal - offset;
|
|
3083 |
}
|
|
3084 |
rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
|
|
3085 |
offset = 0;
|
|
3086 |
pBuf += a;
|
|
3087 |
amt -= a;
|
|
3088 |
}else{
|
|
3089 |
offset -= pCur->info.nLocal;
|
|
3090 |
}
|
|
3091 |
|
|
3092 |
pBt = pCur->pBt;
|
|
3093 |
if( rc==SQLITE_OK && amt>0 ){
|
|
3094 |
const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
|
|
3095 |
Pgno nextPage;
|
|
3096 |
|
|
3097 |
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
|
|
3098 |
|
|
3099 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
3100 |
/* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
|
|
3101 |
** has not been allocated, allocate it now. The array is sized at
|
|
3102 |
** one entry for each overflow page in the overflow chain. The
|
|
3103 |
** page number of the first overflow page is stored in aOverflow[0],
|
|
3104 |
** etc. A value of 0 in the aOverflow[] array means "not yet known"
|
|
3105 |
** (the cache is lazily populated).
|
|
3106 |
*/
|
|
3107 |
if( pCur->isIncrblobHandle && !pCur->aOverflow ){
|
|
3108 |
int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
|
|
3109 |
pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
|
|
3110 |
if( nOvfl && !pCur->aOverflow ){
|
|
3111 |
rc = SQLITE_NOMEM;
|
|
3112 |
}
|
|
3113 |
}
|
|
3114 |
|
|
3115 |
/* If the overflow page-list cache has been allocated and the
|
|
3116 |
** entry for the first required overflow page is valid, skip
|
|
3117 |
** directly to it.
|
|
3118 |
*/
|
|
3119 |
if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
|
|
3120 |
iIdx = (offset/ovflSize);
|
|
3121 |
nextPage = pCur->aOverflow[iIdx];
|
|
3122 |
offset = (offset%ovflSize);
|
|
3123 |
}
|
|
3124 |
#endif
|
|
3125 |
|
|
3126 |
for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
|
|
3127 |
|
|
3128 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
3129 |
/* If required, populate the overflow page-list cache. */
|
|
3130 |
if( pCur->aOverflow ){
|
|
3131 |
assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
|
|
3132 |
pCur->aOverflow[iIdx] = nextPage;
|
|
3133 |
}
|
|
3134 |
#endif
|
|
3135 |
|
|
3136 |
if( offset>=ovflSize ){
|
|
3137 |
/* The only reason to read this page is to obtain the page
|
|
3138 |
** number for the next page in the overflow chain. The page
|
|
3139 |
** data is not required. So first try to lookup the overflow
|
|
3140 |
** page-list cache, if any, then fall back to the getOverflowPage()
|
|
3141 |
** function.
|
|
3142 |
*/
|
|
3143 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
3144 |
if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
|
|
3145 |
nextPage = pCur->aOverflow[iIdx+1];
|
|
3146 |
} else
|
|
3147 |
#endif
|
|
3148 |
rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
|
|
3149 |
offset -= ovflSize;
|
|
3150 |
}else{
|
|
3151 |
/* Need to read this page properly. It contains some of the
|
|
3152 |
** range of data that is being read (eOp==0) or written (eOp!=0).
|
|
3153 |
*/
|
|
3154 |
DbPage *pDbPage;
|
|
3155 |
int a = amt;
|
|
3156 |
rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
|
|
3157 |
if( rc==SQLITE_OK ){
|
|
3158 |
aPayload = (unsigned char*)sqlite3PagerGetData(pDbPage);
|
|
3159 |
nextPage = get4byte(aPayload);
|
|
3160 |
if( a + offset > ovflSize ){
|
|
3161 |
a = ovflSize - offset;
|
|
3162 |
}
|
|
3163 |
rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
|
|
3164 |
sqlite3PagerUnref(pDbPage);
|
|
3165 |
offset = 0;
|
|
3166 |
amt -= a;
|
|
3167 |
pBuf += a;
|
|
3168 |
}
|
|
3169 |
}
|
|
3170 |
}
|
|
3171 |
}
|
|
3172 |
|
|
3173 |
if( rc==SQLITE_OK && amt>0 ){
|
|
3174 |
return SQLITE_CORRUPT_BKPT;
|
|
3175 |
}
|
|
3176 |
return rc;
|
|
3177 |
}
|
|
3178 |
|
|
3179 |
/*
|
|
3180 |
** Read part of the key associated with cursor pCur. Exactly
|
|
3181 |
** "amt" bytes will be transfered into pBuf[]. The transfer
|
|
3182 |
** begins at "offset".
|
|
3183 |
**
|
|
3184 |
** Return SQLITE_OK on success or an error code if anything goes
|
|
3185 |
** wrong. An error is returned if "offset+amt" is larger than
|
|
3186 |
** the available payload.
|
|
3187 |
*/
|
|
3188 |
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
|
|
3189 |
int rc;
|
|
3190 |
|
|
3191 |
assert( cursorHoldsMutex(pCur) );
|
|
3192 |
rc = restoreOrClearCursorPosition(pCur);
|
|
3193 |
if( rc==SQLITE_OK ){
|
|
3194 |
assert( pCur->eState==CURSOR_VALID );
|
|
3195 |
assert( pCur->pPage!=0 );
|
|
3196 |
if( pCur->pPage->intKey ){
|
|
3197 |
return SQLITE_CORRUPT_BKPT;
|
|
3198 |
}
|
|
3199 |
assert( pCur->pPage->intKey==0 );
|
|
3200 |
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
3201 |
rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
|
|
3202 |
}
|
|
3203 |
return rc;
|
|
3204 |
}
|
|
3205 |
|
|
3206 |
/*
|
|
3207 |
** Read part of the data associated with cursor pCur. Exactly
|
|
3208 |
** "amt" bytes will be transfered into pBuf[]. The transfer
|
|
3209 |
** begins at "offset".
|
|
3210 |
**
|
|
3211 |
** Return SQLITE_OK on success or an error code if anything goes
|
|
3212 |
** wrong. An error is returned if "offset+amt" is larger than
|
|
3213 |
** the available payload.
|
|
3214 |
*/
|
|
3215 |
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
|
|
3216 |
int rc;
|
|
3217 |
|
|
3218 |
assert( cursorHoldsMutex(pCur) );
|
|
3219 |
rc = restoreOrClearCursorPosition(pCur);
|
|
3220 |
if( rc==SQLITE_OK ){
|
|
3221 |
assert( pCur->eState==CURSOR_VALID );
|
|
3222 |
assert( pCur->pPage!=0 );
|
|
3223 |
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
3224 |
rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 1, 0);
|
|
3225 |
}
|
|
3226 |
return rc;
|
|
3227 |
}
|
|
3228 |
|
|
3229 |
/*
|
|
3230 |
** Return a pointer to payload information from the entry that the
|
|
3231 |
** pCur cursor is pointing to. The pointer is to the beginning of
|
|
3232 |
** the key if skipKey==0 and it points to the beginning of data if
|
|
3233 |
** skipKey==1. The number of bytes of available key/data is written
|
|
3234 |
** into *pAmt. If *pAmt==0, then the value returned will not be
|
|
3235 |
** a valid pointer.
|
|
3236 |
**
|
|
3237 |
** This routine is an optimization. It is common for the entire key
|
|
3238 |
** and data to fit on the local page and for there to be no overflow
|
|
3239 |
** pages. When that is so, this routine can be used to access the
|
|
3240 |
** key and data without making a copy. If the key and/or data spills
|
|
3241 |
** onto overflow pages, then accessPayload() must be used to reassembly
|
|
3242 |
** the key/data and copy it into a preallocated buffer.
|
|
3243 |
**
|
|
3244 |
** The pointer returned by this routine looks directly into the cached
|
|
3245 |
** page of the database. The data might change or move the next time
|
|
3246 |
** any btree routine is called.
|
|
3247 |
*/
|
|
3248 |
static const unsigned char *fetchPayload(
|
|
3249 |
BtCursor *pCur, /* Cursor pointing to entry to read from */
|
|
3250 |
int *pAmt, /* Write the number of available bytes here */
|
|
3251 |
int skipKey /* read beginning at data if this is true */
|
|
3252 |
){
|
|
3253 |
unsigned char *aPayload;
|
|
3254 |
MemPage *pPage;
|
|
3255 |
u32 nKey;
|
|
3256 |
int nLocal;
|
|
3257 |
|
|
3258 |
assert( pCur!=0 && pCur->pPage!=0 );
|
|
3259 |
assert( pCur->eState==CURSOR_VALID );
|
|
3260 |
assert( cursorHoldsMutex(pCur) );
|
|
3261 |
pPage = pCur->pPage;
|
|
3262 |
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
3263 |
getCellInfo(pCur);
|
|
3264 |
aPayload = pCur->info.pCell;
|
|
3265 |
aPayload += pCur->info.nHeader;
|
|
3266 |
if( pPage->intKey ){
|
|
3267 |
nKey = 0;
|
|
3268 |
}else{
|
|
3269 |
nKey = pCur->info.nKey;
|
|
3270 |
}
|
|
3271 |
if( skipKey ){
|
|
3272 |
aPayload += nKey;
|
|
3273 |
nLocal = pCur->info.nLocal - nKey;
|
|
3274 |
}else{
|
|
3275 |
nLocal = pCur->info.nLocal;
|
|
3276 |
if( nLocal>nKey ){
|
|
3277 |
nLocal = nKey;
|
|
3278 |
}
|
|
3279 |
}
|
|
3280 |
*pAmt = nLocal;
|
|
3281 |
return aPayload;
|
|
3282 |
}
|
|
3283 |
|
|
3284 |
|
|
3285 |
/*
|
|
3286 |
** For the entry that cursor pCur is point to, return as
|
|
3287 |
** many bytes of the key or data as are available on the local
|
|
3288 |
** b-tree page. Write the number of available bytes into *pAmt.
|
|
3289 |
**
|
|
3290 |
** The pointer returned is ephemeral. The key/data may move
|
|
3291 |
** or be destroyed on the next call to any Btree routine,
|
|
3292 |
** including calls from other threads against the same cache.
|
|
3293 |
** Hence, a mutex on the BtShared should be held prior to calling
|
|
3294 |
** this routine.
|
|
3295 |
**
|
|
3296 |
** These routines is used to get quick access to key and data
|
|
3297 |
** in the common case where no overflow pages are used.
|
|
3298 |
*/
|
|
3299 |
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
|
|
3300 |
assert( cursorHoldsMutex(pCur) );
|
|
3301 |
if( pCur->eState==CURSOR_VALID ){
|
|
3302 |
return (const void*)fetchPayload(pCur, pAmt, 0);
|
|
3303 |
}
|
|
3304 |
return 0;
|
|
3305 |
}
|
|
3306 |
const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
|
|
3307 |
assert( cursorHoldsMutex(pCur) );
|
|
3308 |
if( pCur->eState==CURSOR_VALID ){
|
|
3309 |
return (const void*)fetchPayload(pCur, pAmt, 1);
|
|
3310 |
}
|
|
3311 |
return 0;
|
|
3312 |
}
|
|
3313 |
|
|
3314 |
|
|
3315 |
/*
|
|
3316 |
** Move the cursor down to a new child page. The newPgno argument is the
|
|
3317 |
** page number of the child page to move to.
|
|
3318 |
*/
|
|
3319 |
static int moveToChild(BtCursor *pCur, u32 newPgno){
|
|
3320 |
int rc;
|
|
3321 |
MemPage *pNewPage;
|
|
3322 |
MemPage *pOldPage;
|
|
3323 |
BtShared *pBt = pCur->pBt;
|
|
3324 |
|
|
3325 |
assert( cursorHoldsMutex(pCur) );
|
|
3326 |
assert( pCur->eState==CURSOR_VALID );
|
|
3327 |
rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
|
|
3328 |
if( rc ) return rc;
|
|
3329 |
pNewPage->idxParent = pCur->idx;
|
|
3330 |
pOldPage = pCur->pPage;
|
|
3331 |
pOldPage->idxShift = 0;
|
|
3332 |
releasePage(pOldPage);
|
|
3333 |
pCur->pPage = pNewPage;
|
|
3334 |
pCur->idx = 0;
|
|
3335 |
pCur->info.nSize = 0;
|
|
3336 |
if( pNewPage->nCell<1 ){
|
|
3337 |
return SQLITE_CORRUPT_BKPT;
|
|
3338 |
}
|
|
3339 |
return SQLITE_OK;
|
|
3340 |
}
|
|
3341 |
|
|
3342 |
/*
|
|
3343 |
** Return true if the page is the virtual root of its table.
|
|
3344 |
**
|
|
3345 |
** The virtual root page is the root page for most tables. But
|
|
3346 |
** for the table rooted on page 1, sometime the real root page
|
|
3347 |
** is empty except for the right-pointer. In such cases the
|
|
3348 |
** virtual root page is the page that the right-pointer of page
|
|
3349 |
** 1 is pointing to.
|
|
3350 |
*/
|
|
3351 |
int sqlite3BtreeIsRootPage(MemPage *pPage){
|
|
3352 |
MemPage *pParent;
|
|
3353 |
|
|
3354 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
3355 |
pParent = pPage->pParent;
|
|
3356 |
if( pParent==0 ) return 1;
|
|
3357 |
if( pParent->pgno>1 ) return 0;
|
|
3358 |
if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
|
|
3359 |
return 0;
|
|
3360 |
}
|
|
3361 |
|
|
3362 |
/*
|
|
3363 |
** Move the cursor up to the parent page.
|
|
3364 |
**
|
|
3365 |
** pCur->idx is set to the cell index that contains the pointer
|
|
3366 |
** to the page we are coming from. If we are coming from the
|
|
3367 |
** right-most child page then pCur->idx is set to one more than
|
|
3368 |
** the largest cell index.
|
|
3369 |
*/
|
|
3370 |
void sqlite3BtreeMoveToParent(BtCursor *pCur){
|
|
3371 |
MemPage *pParent;
|
|
3372 |
MemPage *pPage;
|
|
3373 |
int idxParent;
|
|
3374 |
|
|
3375 |
assert( cursorHoldsMutex(pCur) );
|
|
3376 |
assert( pCur->eState==CURSOR_VALID );
|
|
3377 |
pPage = pCur->pPage;
|
|
3378 |
assert( pPage!=0 );
|
|
3379 |
assert( !sqlite3BtreeIsRootPage(pPage) );
|
|
3380 |
pParent = pPage->pParent;
|
|
3381 |
assert( pParent!=0 );
|
|
3382 |
idxParent = pPage->idxParent;
|
|
3383 |
sqlite3PagerRef(pParent->pDbPage);
|
|
3384 |
releasePage(pPage);
|
|
3385 |
pCur->pPage = pParent;
|
|
3386 |
pCur->info.nSize = 0;
|
|
3387 |
assert( pParent->idxShift==0 );
|
|
3388 |
pCur->idx = idxParent;
|
|
3389 |
}
|
|
3390 |
|
|
3391 |
/*
|
|
3392 |
** Move the cursor to the root page
|
|
3393 |
*/
|
|
3394 |
static int moveToRoot(BtCursor *pCur){
|
|
3395 |
MemPage *pRoot;
|
|
3396 |
int rc = SQLITE_OK;
|
|
3397 |
Btree *p = pCur->pBtree;
|
|
3398 |
BtShared *pBt = p->pBt;
|
|
3399 |
|
|
3400 |
assert( cursorHoldsMutex(pCur) );
|
|
3401 |
assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
|
|
3402 |
assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
|
|
3403 |
assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
|
|
3404 |
if( pCur->eState>=CURSOR_REQUIRESEEK ){
|
|
3405 |
if( pCur->eState==CURSOR_FAULT ){
|
|
3406 |
return pCur->skip;
|
|
3407 |
}
|
|
3408 |
clearCursorPosition(pCur);
|
|
3409 |
}
|
|
3410 |
pRoot = pCur->pPage;
|
|
3411 |
if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
|
|
3412 |
assert( pRoot->isInit );
|
|
3413 |
}else{
|
|
3414 |
if(
|
|
3415 |
SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
|
|
3416 |
){
|
|
3417 |
pCur->eState = CURSOR_INVALID;
|
|
3418 |
return rc;
|
|
3419 |
}
|
|
3420 |
releasePage(pCur->pPage);
|
|
3421 |
pCur->pPage = pRoot;
|
|
3422 |
}
|
|
3423 |
pCur->idx = 0;
|
|
3424 |
pCur->info.nSize = 0;
|
|
3425 |
if( pRoot->nCell==0 && !pRoot->leaf ){
|
|
3426 |
Pgno subpage;
|
|
3427 |
assert( pRoot->pgno==1 );
|
|
3428 |
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
|
|
3429 |
assert( subpage>0 );
|
|
3430 |
pCur->eState = CURSOR_VALID;
|
|
3431 |
rc = moveToChild(pCur, subpage);
|
|
3432 |
}
|
|
3433 |
pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
|
|
3434 |
return rc;
|
|
3435 |
}
|
|
3436 |
|
|
3437 |
/*
|
|
3438 |
** Move the cursor down to the left-most leaf entry beneath the
|
|
3439 |
** entry to which it is currently pointing.
|
|
3440 |
**
|
|
3441 |
** The left-most leaf is the one with the smallest key - the first
|
|
3442 |
** in ascending order.
|
|
3443 |
*/
|
|
3444 |
static int moveToLeftmost(BtCursor *pCur){
|
|
3445 |
Pgno pgno;
|
|
3446 |
int rc = SQLITE_OK;
|
|
3447 |
MemPage *pPage;
|
|
3448 |
|
|
3449 |
assert( cursorHoldsMutex(pCur) );
|
|
3450 |
assert( pCur->eState==CURSOR_VALID );
|
|
3451 |
while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
|
|
3452 |
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
3453 |
pgno = get4byte(findCell(pPage, pCur->idx));
|
|
3454 |
rc = moveToChild(pCur, pgno);
|
|
3455 |
}
|
|
3456 |
return rc;
|
|
3457 |
}
|
|
3458 |
|
|
3459 |
/*
|
|
3460 |
** Move the cursor down to the right-most leaf entry beneath the
|
|
3461 |
** page to which it is currently pointing. Notice the difference
|
|
3462 |
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
|
|
3463 |
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
|
|
3464 |
** finds the right-most entry beneath the *page*.
|
|
3465 |
**
|
|
3466 |
** The right-most entry is the one with the largest key - the last
|
|
3467 |
** key in ascending order.
|
|
3468 |
*/
|
|
3469 |
static int moveToRightmost(BtCursor *pCur){
|
|
3470 |
Pgno pgno;
|
|
3471 |
int rc = SQLITE_OK;
|
|
3472 |
MemPage *pPage;
|
|
3473 |
|
|
3474 |
assert( cursorHoldsMutex(pCur) );
|
|
3475 |
assert( pCur->eState==CURSOR_VALID );
|
|
3476 |
while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
|
|
3477 |
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
3478 |
pCur->idx = pPage->nCell;
|
|
3479 |
rc = moveToChild(pCur, pgno);
|
|
3480 |
}
|
|
3481 |
if( rc==SQLITE_OK ){
|
|
3482 |
pCur->idx = pPage->nCell - 1;
|
|
3483 |
pCur->info.nSize = 0;
|
|
3484 |
}
|
|
3485 |
return SQLITE_OK;
|
|
3486 |
}
|
|
3487 |
|
|
3488 |
/* Move the cursor to the first entry in the table. Return SQLITE_OK
|
|
3489 |
** on success. Set *pRes to 0 if the cursor actually points to something
|
|
3490 |
** or set *pRes to 1 if the table is empty.
|
|
3491 |
*/
|
|
3492 |
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
|
|
3493 |
int rc;
|
|
3494 |
|
|
3495 |
assert( cursorHoldsMutex(pCur) );
|
|
3496 |
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
3497 |
rc = moveToRoot(pCur);
|
|
3498 |
if( rc==SQLITE_OK ){
|
|
3499 |
if( pCur->eState==CURSOR_INVALID ){
|
|
3500 |
assert( pCur->pPage->nCell==0 );
|
|
3501 |
*pRes = 1;
|
|
3502 |
rc = SQLITE_OK;
|
|
3503 |
}else{
|
|
3504 |
assert( pCur->pPage->nCell>0 );
|
|
3505 |
*pRes = 0;
|
|
3506 |
rc = moveToLeftmost(pCur);
|
|
3507 |
}
|
|
3508 |
}
|
|
3509 |
return rc;
|
|
3510 |
}
|
|
3511 |
|
|
3512 |
/* Move the cursor to the last entry in the table. Return SQLITE_OK
|
|
3513 |
** on success. Set *pRes to 0 if the cursor actually points to something
|
|
3514 |
** or set *pRes to 1 if the table is empty.
|
|
3515 |
*/
|
|
3516 |
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
|
|
3517 |
int rc;
|
|
3518 |
|
|
3519 |
assert( cursorHoldsMutex(pCur) );
|
|
3520 |
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
3521 |
rc = moveToRoot(pCur);
|
|
3522 |
if( rc==SQLITE_OK ){
|
|
3523 |
if( CURSOR_INVALID==pCur->eState ){
|
|
3524 |
assert( pCur->pPage->nCell==0 );
|
|
3525 |
*pRes = 1;
|
|
3526 |
}else{
|
|
3527 |
assert( pCur->eState==CURSOR_VALID );
|
|
3528 |
*pRes = 0;
|
|
3529 |
rc = moveToRightmost(pCur);
|
|
3530 |
}
|
|
3531 |
}
|
|
3532 |
return rc;
|
|
3533 |
}
|
|
3534 |
|
|
3535 |
/* Move the cursor so that it points to an entry near pKey/nKey.
|
|
3536 |
** Return a success code.
|
|
3537 |
**
|
|
3538 |
** For INTKEY tables, only the nKey parameter is used. pKey is
|
|
3539 |
** ignored. For other tables, nKey is the number of bytes of data
|
|
3540 |
** in pKey. The comparison function specified when the cursor was
|
|
3541 |
** created is used to compare keys.
|
|
3542 |
**
|
|
3543 |
** If an exact match is not found, then the cursor is always
|
|
3544 |
** left pointing at a leaf page which would hold the entry if it
|
|
3545 |
** were present. The cursor might point to an entry that comes
|
|
3546 |
** before or after the key.
|
|
3547 |
**
|
|
3548 |
** The result of comparing the key with the entry to which the
|
|
3549 |
** cursor is written to *pRes if pRes!=NULL. The meaning of
|
|
3550 |
** this value is as follows:
|
|
3551 |
**
|
|
3552 |
** *pRes<0 The cursor is left pointing at an entry that
|
|
3553 |
** is smaller than pKey or if the table is empty
|
|
3554 |
** and the cursor is therefore left point to nothing.
|
|
3555 |
**
|
|
3556 |
** *pRes==0 The cursor is left pointing at an entry that
|
|
3557 |
** exactly matches pKey.
|
|
3558 |
**
|
|
3559 |
** *pRes>0 The cursor is left pointing at an entry that
|
|
3560 |
** is larger than pKey.
|
|
3561 |
**
|
|
3562 |
*/
|
|
3563 |
int sqlite3BtreeMoveto(
|
|
3564 |
BtCursor *pCur, /* The cursor to be moved */
|
|
3565 |
const void *pKey, /* The key content for indices. Not used by tables */
|
|
3566 |
i64 nKey, /* Size of pKey. Or the key for tables */
|
|
3567 |
int biasRight, /* If true, bias the search to the high end */
|
|
3568 |
int *pRes /* Search result flag */
|
|
3569 |
){
|
|
3570 |
int rc;
|
|
3571 |
|
|
3572 |
assert( cursorHoldsMutex(pCur) );
|
|
3573 |
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
3574 |
rc = moveToRoot(pCur);
|
|
3575 |
if( rc ){
|
|
3576 |
return rc;
|
|
3577 |
}
|
|
3578 |
assert( pCur->pPage );
|
|
3579 |
assert( pCur->pPage->isInit );
|
|
3580 |
if( pCur->eState==CURSOR_INVALID ){
|
|
3581 |
*pRes = -1;
|
|
3582 |
assert( pCur->pPage->nCell==0 );
|
|
3583 |
return SQLITE_OK;
|
|
3584 |
}
|
|
3585 |
for(;;){
|
|
3586 |
int lwr, upr;
|
|
3587 |
Pgno chldPg;
|
|
3588 |
MemPage *pPage = pCur->pPage;
|
|
3589 |
int c = -1; /* pRes return if table is empty must be -1 */
|
|
3590 |
lwr = 0;
|
|
3591 |
upr = pPage->nCell-1;
|
|
3592 |
if( !pPage->intKey && pKey==0 ){
|
|
3593 |
return SQLITE_CORRUPT_BKPT;
|
|
3594 |
}
|
|
3595 |
if( biasRight ){
|
|
3596 |
pCur->idx = upr;
|
|
3597 |
}else{
|
|
3598 |
pCur->idx = (upr+lwr)/2;
|
|
3599 |
}
|
|
3600 |
if( lwr<=upr ) for(;;){
|
|
3601 |
void *pCellKey;
|
|
3602 |
i64 nCellKey;
|
|
3603 |
pCur->info.nSize = 0;
|
|
3604 |
if( pPage->intKey ){
|
|
3605 |
u8 *pCell;
|
|
3606 |
pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
|
|
3607 |
if( pPage->hasData ){
|
|
3608 |
u32 dummy;
|
|
3609 |
pCell += getVarint32(pCell, &dummy);
|
|
3610 |
}
|
|
3611 |
getVarint(pCell, (u64 *)&nCellKey);
|
|
3612 |
if( nCellKey<nKey ){
|
|
3613 |
c = -1;
|
|
3614 |
}else if( nCellKey>nKey ){
|
|
3615 |
c = +1;
|
|
3616 |
}else{
|
|
3617 |
c = 0;
|
|
3618 |
}
|
|
3619 |
}else{
|
|
3620 |
int available;
|
|
3621 |
pCellKey = (void *)fetchPayload(pCur, &available, 0);
|
|
3622 |
nCellKey = pCur->info.nKey;
|
|
3623 |
if( available>=nCellKey ){
|
|
3624 |
c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
|
|
3625 |
}else{
|
|
3626 |
pCellKey = sqlite3_malloc( nCellKey );
|
|
3627 |
if( pCellKey==0 ) return SQLITE_NOMEM;
|
|
3628 |
rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
|
|
3629 |
c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
|
|
3630 |
sqlite3_free(pCellKey);
|
|
3631 |
if( rc ){
|
|
3632 |
return rc;
|
|
3633 |
}
|
|
3634 |
}
|
|
3635 |
}
|
|
3636 |
if( c==0 ){
|
|
3637 |
if( pPage->leafData && !pPage->leaf ){
|
|
3638 |
lwr = pCur->idx;
|
|
3639 |
upr = lwr - 1;
|
|
3640 |
break;
|
|
3641 |
}else{
|
|
3642 |
if( pRes ) *pRes = 0;
|
|
3643 |
return SQLITE_OK;
|
|
3644 |
}
|
|
3645 |
}
|
|
3646 |
if( c<0 ){
|
|
3647 |
lwr = pCur->idx+1;
|
|
3648 |
}else{
|
|
3649 |
upr = pCur->idx-1;
|
|
3650 |
}
|
|
3651 |
if( lwr>upr ){
|
|
3652 |
break;
|
|
3653 |
}
|
|
3654 |
pCur->idx = (lwr+upr)/2;
|
|
3655 |
}
|
|
3656 |
assert( lwr==upr+1 );
|
|
3657 |
assert( pPage->isInit );
|
|
3658 |
if( pPage->leaf ){
|
|
3659 |
chldPg = 0;
|
|
3660 |
}else if( lwr>=pPage->nCell ){
|
|
3661 |
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
3662 |
}else{
|
|
3663 |
chldPg = get4byte(findCell(pPage, lwr));
|
|
3664 |
}
|
|
3665 |
if( chldPg==0 ){
|
|
3666 |
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
3667 |
if( pRes ) *pRes = c;
|
|
3668 |
return SQLITE_OK;
|
|
3669 |
}
|
|
3670 |
pCur->idx = lwr;
|
|
3671 |
pCur->info.nSize = 0;
|
|
3672 |
rc = moveToChild(pCur, chldPg);
|
|
3673 |
if( rc ){
|
|
3674 |
return rc;
|
|
3675 |
}
|
|
3676 |
}
|
|
3677 |
/* NOT REACHED */
|
|
3678 |
}
|
|
3679 |
|
|
3680 |
|
|
3681 |
/*
|
|
3682 |
** Return TRUE if the cursor is not pointing at an entry of the table.
|
|
3683 |
**
|
|
3684 |
** TRUE will be returned after a call to sqlite3BtreeNext() moves
|
|
3685 |
** past the last entry in the table or sqlite3BtreePrev() moves past
|
|
3686 |
** the first entry. TRUE is also returned if the table is empty.
|
|
3687 |
*/
|
|
3688 |
int sqlite3BtreeEof(BtCursor *pCur){
|
|
3689 |
/* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
|
|
3690 |
** have been deleted? This API will need to change to return an error code
|
|
3691 |
** as well as the boolean result value.
|
|
3692 |
*/
|
|
3693 |
return (CURSOR_VALID!=pCur->eState);
|
|
3694 |
}
|
|
3695 |
|
|
3696 |
/*
|
|
3697 |
** Return the database connection handle for a cursor.
|
|
3698 |
*/
|
|
3699 |
sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
|
|
3700 |
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
3701 |
return pCur->pBtree->db;
|
|
3702 |
}
|
|
3703 |
|
|
3704 |
/*
|
|
3705 |
** Advance the cursor to the next entry in the database. If
|
|
3706 |
** successful then set *pRes=0. If the cursor
|
|
3707 |
** was already pointing to the last entry in the database before
|
|
3708 |
** this routine was called, then set *pRes=1.
|
|
3709 |
*/
|
|
3710 |
static int btreeNext(BtCursor *pCur, int *pRes){
|
|
3711 |
int rc;
|
|
3712 |
MemPage *pPage;
|
|
3713 |
|
|
3714 |
assert( cursorHoldsMutex(pCur) );
|
|
3715 |
rc = restoreOrClearCursorPosition(pCur);
|
|
3716 |
if( rc!=SQLITE_OK ){
|
|
3717 |
return rc;
|
|
3718 |
}
|
|
3719 |
assert( pRes!=0 );
|
|
3720 |
pPage = pCur->pPage;
|
|
3721 |
if( CURSOR_INVALID==pCur->eState ){
|
|
3722 |
*pRes = 1;
|
|
3723 |
return SQLITE_OK;
|
|
3724 |
}
|
|
3725 |
if( pCur->skip>0 ){
|
|
3726 |
pCur->skip = 0;
|
|
3727 |
*pRes = 0;
|
|
3728 |
return SQLITE_OK;
|
|
3729 |
}
|
|
3730 |
pCur->skip = 0;
|
|
3731 |
|
|
3732 |
assert( pPage->isInit );
|
|
3733 |
assert( pCur->idx<pPage->nCell );
|
|
3734 |
|
|
3735 |
pCur->idx++;
|
|
3736 |
pCur->info.nSize = 0;
|
|
3737 |
if( pCur->idx>=pPage->nCell ){
|
|
3738 |
if( !pPage->leaf ){
|
|
3739 |
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
|
|
3740 |
if( rc ) return rc;
|
|
3741 |
rc = moveToLeftmost(pCur);
|
|
3742 |
*pRes = 0;
|
|
3743 |
return rc;
|
|
3744 |
}
|
|
3745 |
do{
|
|
3746 |
if( sqlite3BtreeIsRootPage(pPage) ){
|
|
3747 |
*pRes = 1;
|
|
3748 |
pCur->eState = CURSOR_INVALID;
|
|
3749 |
return SQLITE_OK;
|
|
3750 |
}
|
|
3751 |
sqlite3BtreeMoveToParent(pCur);
|
|
3752 |
pPage = pCur->pPage;
|
|
3753 |
}while( pCur->idx>=pPage->nCell );
|
|
3754 |
*pRes = 0;
|
|
3755 |
if( pPage->leafData ){
|
|
3756 |
rc = sqlite3BtreeNext(pCur, pRes);
|
|
3757 |
}else{
|
|
3758 |
rc = SQLITE_OK;
|
|
3759 |
}
|
|
3760 |
return rc;
|
|
3761 |
}
|
|
3762 |
*pRes = 0;
|
|
3763 |
if( pPage->leaf ){
|
|
3764 |
return SQLITE_OK;
|
|
3765 |
}
|
|
3766 |
rc = moveToLeftmost(pCur);
|
|
3767 |
return rc;
|
|
3768 |
}
|
|
3769 |
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
|
|
3770 |
int rc;
|
|
3771 |
assert( cursorHoldsMutex(pCur) );
|
|
3772 |
rc = btreeNext(pCur, pRes);
|
|
3773 |
return rc;
|
|
3774 |
}
|
|
3775 |
|
|
3776 |
|
|
3777 |
/*
|
|
3778 |
** Step the cursor to the back to the previous entry in the database. If
|
|
3779 |
** successful then set *pRes=0. If the cursor
|
|
3780 |
** was already pointing to the first entry in the database before
|
|
3781 |
** this routine was called, then set *pRes=1.
|
|
3782 |
*/
|
|
3783 |
static int btreePrevious(BtCursor *pCur, int *pRes){
|
|
3784 |
int rc;
|
|
3785 |
Pgno pgno;
|
|
3786 |
MemPage *pPage;
|
|
3787 |
|
|
3788 |
assert( cursorHoldsMutex(pCur) );
|
|
3789 |
rc = restoreOrClearCursorPosition(pCur);
|
|
3790 |
if( rc!=SQLITE_OK ){
|
|
3791 |
return rc;
|
|
3792 |
}
|
|
3793 |
if( CURSOR_INVALID==pCur->eState ){
|
|
3794 |
*pRes = 1;
|
|
3795 |
return SQLITE_OK;
|
|
3796 |
}
|
|
3797 |
if( pCur->skip<0 ){
|
|
3798 |
pCur->skip = 0;
|
|
3799 |
*pRes = 0;
|
|
3800 |
return SQLITE_OK;
|
|
3801 |
}
|
|
3802 |
pCur->skip = 0;
|
|
3803 |
|
|
3804 |
pPage = pCur->pPage;
|
|
3805 |
assert( pPage->isInit );
|
|
3806 |
assert( pCur->idx>=0 );
|
|
3807 |
if( !pPage->leaf ){
|
|
3808 |
pgno = get4byte( findCell(pPage, pCur->idx) );
|
|
3809 |
rc = moveToChild(pCur, pgno);
|
|
3810 |
if( rc ){
|
|
3811 |
return rc;
|
|
3812 |
}
|
|
3813 |
rc = moveToRightmost(pCur);
|
|
3814 |
}else{
|
|
3815 |
while( pCur->idx==0 ){
|
|
3816 |
if( sqlite3BtreeIsRootPage(pPage) ){
|
|
3817 |
pCur->eState = CURSOR_INVALID;
|
|
3818 |
*pRes = 1;
|
|
3819 |
return SQLITE_OK;
|
|
3820 |
}
|
|
3821 |
sqlite3BtreeMoveToParent(pCur);
|
|
3822 |
pPage = pCur->pPage;
|
|
3823 |
}
|
|
3824 |
pCur->idx--;
|
|
3825 |
pCur->info.nSize = 0;
|
|
3826 |
if( pPage->leafData && !pPage->leaf ){
|
|
3827 |
rc = sqlite3BtreePrevious(pCur, pRes);
|
|
3828 |
}else{
|
|
3829 |
rc = SQLITE_OK;
|
|
3830 |
}
|
|
3831 |
}
|
|
3832 |
*pRes = 0;
|
|
3833 |
return rc;
|
|
3834 |
}
|
|
3835 |
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
|
|
3836 |
int rc;
|
|
3837 |
assert( cursorHoldsMutex(pCur) );
|
|
3838 |
rc = btreePrevious(pCur, pRes);
|
|
3839 |
return rc;
|
|
3840 |
}
|
|
3841 |
|
|
3842 |
/*
|
|
3843 |
** Allocate a new page from the database file.
|
|
3844 |
**
|
|
3845 |
** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
|
|
3846 |
** has already been called on the new page.) The new page has also
|
|
3847 |
** been referenced and the calling routine is responsible for calling
|
|
3848 |
** sqlite3PagerUnref() on the new page when it is done.
|
|
3849 |
**
|
|
3850 |
** SQLITE_OK is returned on success. Any other return value indicates
|
|
3851 |
** an error. *ppPage and *pPgno are undefined in the event of an error.
|
|
3852 |
** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
|
|
3853 |
**
|
|
3854 |
** If the "nearby" parameter is not 0, then a (feeble) effort is made to
|
|
3855 |
** locate a page close to the page number "nearby". This can be used in an
|
|
3856 |
** attempt to keep related pages close to each other in the database file,
|
|
3857 |
** which in turn can make database access faster.
|
|
3858 |
**
|
|
3859 |
** If the "exact" parameter is not 0, and the page-number nearby exists
|
|
3860 |
** anywhere on the free-list, then it is guarenteed to be returned. This
|
|
3861 |
** is only used by auto-vacuum databases when allocating a new table.
|
|
3862 |
*/
|
|
3863 |
static int allocateBtreePage(
|
|
3864 |
BtShared *pBt,
|
|
3865 |
MemPage **ppPage,
|
|
3866 |
Pgno *pPgno,
|
|
3867 |
Pgno nearby,
|
|
3868 |
u8 exact
|
|
3869 |
){
|
|
3870 |
MemPage *pPage1;
|
|
3871 |
int rc;
|
|
3872 |
int n; /* Number of pages on the freelist */
|
|
3873 |
int k; /* Number of leaves on the trunk of the freelist */
|
|
3874 |
MemPage *pTrunk = 0;
|
|
3875 |
MemPage *pPrevTrunk = 0;
|
|
3876 |
|
|
3877 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
3878 |
pPage1 = pBt->pPage1;
|
|
3879 |
n = get4byte(&pPage1->aData[36]);
|
|
3880 |
if( n>0 ){
|
|
3881 |
/* There are pages on the freelist. Reuse one of those pages. */
|
|
3882 |
Pgno iTrunk;
|
|
3883 |
u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
|
|
3884 |
|
|
3885 |
/* If the 'exact' parameter was true and a query of the pointer-map
|
|
3886 |
** shows that the page 'nearby' is somewhere on the free-list, then
|
|
3887 |
** the entire-list will be searched for that page.
|
|
3888 |
*/
|
|
3889 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
3890 |
if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
|
|
3891 |
u8 eType;
|
|
3892 |
assert( nearby>0 );
|
|
3893 |
assert( pBt->autoVacuum );
|
|
3894 |
rc = ptrmapGet(pBt, nearby, &eType, 0);
|
|
3895 |
if( rc ) return rc;
|
|
3896 |
if( eType==PTRMAP_FREEPAGE ){
|
|
3897 |
searchList = 1;
|
|
3898 |
}
|
|
3899 |
*pPgno = nearby;
|
|
3900 |
}
|
|
3901 |
#endif
|
|
3902 |
|
|
3903 |
/* Decrement the free-list count by 1. Set iTrunk to the index of the
|
|
3904 |
** first free-list trunk page. iPrevTrunk is initially 1.
|
|
3905 |
*/
|
|
3906 |
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
3907 |
if( rc ) return rc;
|
|
3908 |
put4byte(&pPage1->aData[36], n-1);
|
|
3909 |
|
|
3910 |
/* The code within this loop is run only once if the 'searchList' variable
|
|
3911 |
** is not true. Otherwise, it runs once for each trunk-page on the
|
|
3912 |
** free-list until the page 'nearby' is located.
|
|
3913 |
*/
|
|
3914 |
do {
|
|
3915 |
pPrevTrunk = pTrunk;
|
|
3916 |
if( pPrevTrunk ){
|
|
3917 |
iTrunk = get4byte(&pPrevTrunk->aData[0]);
|
|
3918 |
}else{
|
|
3919 |
iTrunk = get4byte(&pPage1->aData[32]);
|
|
3920 |
}
|
|
3921 |
rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
|
|
3922 |
if( rc ){
|
|
3923 |
pTrunk = 0;
|
|
3924 |
goto end_allocate_page;
|
|
3925 |
}
|
|
3926 |
|
|
3927 |
k = get4byte(&pTrunk->aData[4]);
|
|
3928 |
if( k==0 && !searchList ){
|
|
3929 |
/* The trunk has no leaves and the list is not being searched.
|
|
3930 |
** So extract the trunk page itself and use it as the newly
|
|
3931 |
** allocated page */
|
|
3932 |
assert( pPrevTrunk==0 );
|
|
3933 |
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
3934 |
if( rc ){
|
|
3935 |
goto end_allocate_page;
|
|
3936 |
}
|
|
3937 |
*pPgno = iTrunk;
|
|
3938 |
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
|
|
3939 |
*ppPage = pTrunk;
|
|
3940 |
pTrunk = 0;
|
|
3941 |
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
|
|
3942 |
}else if( k>pBt->usableSize/4 - 8 ){
|
|
3943 |
/* Value of k is out of range. Database corruption */
|
|
3944 |
rc = SQLITE_CORRUPT_BKPT;
|
|
3945 |
goto end_allocate_page;
|
|
3946 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
3947 |
}else if( searchList && nearby==iTrunk ){
|
|
3948 |
/* The list is being searched and this trunk page is the page
|
|
3949 |
** to allocate, regardless of whether it has leaves.
|
|
3950 |
*/
|
|
3951 |
assert( *pPgno==iTrunk );
|
|
3952 |
*ppPage = pTrunk;
|
|
3953 |
searchList = 0;
|
|
3954 |
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
3955 |
if( rc ){
|
|
3956 |
goto end_allocate_page;
|
|
3957 |
}
|
|
3958 |
if( k==0 ){
|
|
3959 |
if( !pPrevTrunk ){
|
|
3960 |
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
|
|
3961 |
}else{
|
|
3962 |
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
|
|
3963 |
}
|
|
3964 |
}else{
|
|
3965 |
/* The trunk page is required by the caller but it contains
|
|
3966 |
** pointers to free-list leaves. The first leaf becomes a trunk
|
|
3967 |
** page in this case.
|
|
3968 |
*/
|
|
3969 |
MemPage *pNewTrunk;
|
|
3970 |
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
|
|
3971 |
rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
|
|
3972 |
if( rc!=SQLITE_OK ){
|
|
3973 |
goto end_allocate_page;
|
|
3974 |
}
|
|
3975 |
rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
|
|
3976 |
if( rc!=SQLITE_OK ){
|
|
3977 |
releasePage(pNewTrunk);
|
|
3978 |
goto end_allocate_page;
|
|
3979 |
}
|
|
3980 |
memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
|
|
3981 |
put4byte(&pNewTrunk->aData[4], k-1);
|
|
3982 |
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
|
|
3983 |
releasePage(pNewTrunk);
|
|
3984 |
if( !pPrevTrunk ){
|
|
3985 |
put4byte(&pPage1->aData[32], iNewTrunk);
|
|
3986 |
}else{
|
|
3987 |
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
|
|
3988 |
if( rc ){
|
|
3989 |
goto end_allocate_page;
|
|
3990 |
}
|
|
3991 |
put4byte(&pPrevTrunk->aData[0], iNewTrunk);
|
|
3992 |
}
|
|
3993 |
}
|
|
3994 |
pTrunk = 0;
|
|
3995 |
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
|
|
3996 |
#endif
|
|
3997 |
}else{
|
|
3998 |
/* Extract a leaf from the trunk */
|
|
3999 |
int closest;
|
|
4000 |
Pgno iPage;
|
|
4001 |
unsigned char *aData = pTrunk->aData;
|
|
4002 |
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
4003 |
if( rc ){
|
|
4004 |
goto end_allocate_page;
|
|
4005 |
}
|
|
4006 |
if( nearby>0 ){
|
|
4007 |
int i, dist;
|
|
4008 |
closest = 0;
|
|
4009 |
dist = get4byte(&aData[8]) - nearby;
|
|
4010 |
if( dist<0 ) dist = -dist;
|
|
4011 |
for(i=1; i<k; i++){
|
|
4012 |
int d2 = get4byte(&aData[8+i*4]) - nearby;
|
|
4013 |
if( d2<0 ) d2 = -d2;
|
|
4014 |
if( d2<dist ){
|
|
4015 |
closest = i;
|
|
4016 |
dist = d2;
|
|
4017 |
}
|
|
4018 |
}
|
|
4019 |
}else{
|
|
4020 |
closest = 0;
|
|
4021 |
}
|
|
4022 |
|
|
4023 |
iPage = get4byte(&aData[8+closest*4]);
|
|
4024 |
if( !searchList || iPage==nearby ){
|
|
4025 |
*pPgno = iPage;
|
|
4026 |
if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
|
|
4027 |
/* Free page off the end of the file */
|
|
4028 |
return SQLITE_CORRUPT_BKPT;
|
|
4029 |
}
|
|
4030 |
TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
|
|
4031 |
": %d more free pages\n",
|
|
4032 |
*pPgno, closest+1, k, pTrunk->pgno, n-1));
|
|
4033 |
if( closest<k-1 ){
|
|
4034 |
memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
|
|
4035 |
}
|
|
4036 |
put4byte(&aData[4], k-1);
|
|
4037 |
rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
|
|
4038 |
if( rc==SQLITE_OK ){
|
|
4039 |
sqlite3PagerDontRollback((*ppPage)->pDbPage);
|
|
4040 |
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
|
|
4041 |
if( rc!=SQLITE_OK ){
|
|
4042 |
releasePage(*ppPage);
|
|
4043 |
}
|
|
4044 |
}
|
|
4045 |
searchList = 0;
|
|
4046 |
}
|
|
4047 |
}
|
|
4048 |
releasePage(pPrevTrunk);
|
|
4049 |
pPrevTrunk = 0;
|
|
4050 |
}while( searchList );
|
|
4051 |
}else{
|
|
4052 |
/* There are no pages on the freelist, so create a new page at the
|
|
4053 |
** end of the file */
|
|
4054 |
*pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
|
|
4055 |
|
|
4056 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4057 |
if( pBt->nTrunc ){
|
|
4058 |
/* An incr-vacuum has already run within this transaction. So the
|
|
4059 |
** page to allocate is not from the physical end of the file, but
|
|
4060 |
** at pBt->nTrunc.
|
|
4061 |
*/
|
|
4062 |
*pPgno = pBt->nTrunc+1;
|
|
4063 |
if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
|
|
4064 |
(*pPgno)++;
|
|
4065 |
}
|
|
4066 |
}
|
|
4067 |
if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
|
|
4068 |
/* If *pPgno refers to a pointer-map page, allocate two new pages
|
|
4069 |
** at the end of the file instead of one. The first allocated page
|
|
4070 |
** becomes a new pointer-map page, the second is used by the caller.
|
|
4071 |
*/
|
|
4072 |
TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
|
|
4073 |
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
4074 |
(*pPgno)++;
|
|
4075 |
}
|
|
4076 |
if( pBt->nTrunc ){
|
|
4077 |
pBt->nTrunc = *pPgno;
|
|
4078 |
}
|
|
4079 |
#endif
|
|
4080 |
|
|
4081 |
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
4082 |
rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
|
|
4083 |
if( rc ) return rc;
|
|
4084 |
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
|
|
4085 |
if( rc!=SQLITE_OK ){
|
|
4086 |
releasePage(*ppPage);
|
|
4087 |
}
|
|
4088 |
TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
|
|
4089 |
}
|
|
4090 |
|
|
4091 |
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
4092 |
|
|
4093 |
end_allocate_page:
|
|
4094 |
releasePage(pTrunk);
|
|
4095 |
releasePage(pPrevTrunk);
|
|
4096 |
return rc;
|
|
4097 |
}
|
|
4098 |
|
|
4099 |
/*
|
|
4100 |
** Add a page of the database file to the freelist.
|
|
4101 |
**
|
|
4102 |
** sqlite3PagerUnref() is NOT called for pPage.
|
|
4103 |
*/
|
|
4104 |
static int freePage(MemPage *pPage){
|
|
4105 |
BtShared *pBt = pPage->pBt;
|
|
4106 |
MemPage *pPage1 = pBt->pPage1;
|
|
4107 |
int rc, n, k;
|
|
4108 |
|
|
4109 |
/* Prepare the page for freeing */
|
|
4110 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4111 |
assert( pPage->pgno>1 );
|
|
4112 |
pPage->isInit = 0;
|
|
4113 |
releasePage(pPage->pParent);
|
|
4114 |
pPage->pParent = 0;
|
|
4115 |
|
|
4116 |
/* Increment the free page count on pPage1 */
|
|
4117 |
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
4118 |
if( rc ) return rc;
|
|
4119 |
n = get4byte(&pPage1->aData[36]);
|
|
4120 |
put4byte(&pPage1->aData[36], n+1);
|
|
4121 |
|
|
4122 |
#ifdef SQLITE_SECURE_DELETE
|
|
4123 |
/* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
|
|
4124 |
** always fully overwrite deleted information with zeros.
|
|
4125 |
*/
|
|
4126 |
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
4127 |
if( rc ) return rc;
|
|
4128 |
memset(pPage->aData, 0, pPage->pBt->pageSize);
|
|
4129 |
#endif
|
|
4130 |
|
|
4131 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4132 |
/* If the database supports auto-vacuum, write an entry in the pointer-map
|
|
4133 |
** to indicate that the page is free.
|
|
4134 |
*/
|
|
4135 |
if( pBt->autoVacuum ){
|
|
4136 |
rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
|
|
4137 |
if( rc ) return rc;
|
|
4138 |
}
|
|
4139 |
#endif
|
|
4140 |
|
|
4141 |
if( n==0 ){
|
|
4142 |
/* This is the first free page */
|
|
4143 |
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
4144 |
if( rc ) return rc;
|
|
4145 |
memset(pPage->aData, 0, 8);
|
|
4146 |
put4byte(&pPage1->aData[32], pPage->pgno);
|
|
4147 |
TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
|
|
4148 |
}else{
|
|
4149 |
/* Other free pages already exist. Retrive the first trunk page
|
|
4150 |
** of the freelist and find out how many leaves it has. */
|
|
4151 |
MemPage *pTrunk;
|
|
4152 |
rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
|
|
4153 |
if( rc ) return rc;
|
|
4154 |
k = get4byte(&pTrunk->aData[4]);
|
|
4155 |
if( k>=pBt->usableSize/4 - 8 ){
|
|
4156 |
/* The trunk is full. Turn the page being freed into a new
|
|
4157 |
** trunk page with no leaves. */
|
|
4158 |
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
4159 |
if( rc==SQLITE_OK ){
|
|
4160 |
put4byte(pPage->aData, pTrunk->pgno);
|
|
4161 |
put4byte(&pPage->aData[4], 0);
|
|
4162 |
put4byte(&pPage1->aData[32], pPage->pgno);
|
|
4163 |
TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
|
|
4164 |
pPage->pgno, pTrunk->pgno));
|
|
4165 |
}
|
|
4166 |
}else if( k<0 ){
|
|
4167 |
rc = SQLITE_CORRUPT;
|
|
4168 |
}else{
|
|
4169 |
/* Add the newly freed page as a leaf on the current trunk */
|
|
4170 |
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
4171 |
if( rc==SQLITE_OK ){
|
|
4172 |
put4byte(&pTrunk->aData[4], k+1);
|
|
4173 |
put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
|
|
4174 |
#ifndef SQLITE_SECURE_DELETE
|
|
4175 |
sqlite3PagerDontWrite(pPage->pDbPage);
|
|
4176 |
#endif
|
|
4177 |
}
|
|
4178 |
TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
|
|
4179 |
}
|
|
4180 |
releasePage(pTrunk);
|
|
4181 |
}
|
|
4182 |
return rc;
|
|
4183 |
}
|
|
4184 |
|
|
4185 |
/*
|
|
4186 |
** Free any overflow pages associated with the given Cell.
|
|
4187 |
*/
|
|
4188 |
static int clearCell(MemPage *pPage, unsigned char *pCell){
|
|
4189 |
BtShared *pBt = pPage->pBt;
|
|
4190 |
CellInfo info;
|
|
4191 |
Pgno ovflPgno;
|
|
4192 |
int rc;
|
|
4193 |
int nOvfl;
|
|
4194 |
int ovflPageSize;
|
|
4195 |
|
|
4196 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4197 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
4198 |
if( info.iOverflow==0 ){
|
|
4199 |
return SQLITE_OK; /* No overflow pages. Return without doing anything */
|
|
4200 |
}
|
|
4201 |
ovflPgno = get4byte(&pCell[info.iOverflow]);
|
|
4202 |
ovflPageSize = pBt->usableSize - 4;
|
|
4203 |
nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
|
|
4204 |
assert( ovflPgno==0 || nOvfl>0 );
|
|
4205 |
while( nOvfl-- ){
|
|
4206 |
MemPage *pOvfl;
|
|
4207 |
if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
|
|
4208 |
return SQLITE_CORRUPT_BKPT;
|
|
4209 |
}
|
|
4210 |
|
|
4211 |
rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
|
|
4212 |
if( rc ) return rc;
|
|
4213 |
rc = freePage(pOvfl);
|
|
4214 |
sqlite3PagerUnref(pOvfl->pDbPage);
|
|
4215 |
if( rc ) return rc;
|
|
4216 |
}
|
|
4217 |
return SQLITE_OK;
|
|
4218 |
}
|
|
4219 |
|
|
4220 |
/*
|
|
4221 |
** Create the byte sequence used to represent a cell on page pPage
|
|
4222 |
** and write that byte sequence into pCell[]. Overflow pages are
|
|
4223 |
** allocated and filled in as necessary. The calling procedure
|
|
4224 |
** is responsible for making sure sufficient space has been allocated
|
|
4225 |
** for pCell[].
|
|
4226 |
**
|
|
4227 |
** Note that pCell does not necessary need to point to the pPage->aData
|
|
4228 |
** area. pCell might point to some temporary storage. The cell will
|
|
4229 |
** be constructed in this temporary area then copied into pPage->aData
|
|
4230 |
** later.
|
|
4231 |
*/
|
|
4232 |
static int fillInCell(
|
|
4233 |
MemPage *pPage, /* The page that contains the cell */
|
|
4234 |
unsigned char *pCell, /* Complete text of the cell */
|
|
4235 |
const void *pKey, i64 nKey, /* The key */
|
|
4236 |
const void *pData,int nData, /* The data */
|
|
4237 |
int nZero, /* Extra zero bytes to append to pData */
|
|
4238 |
int *pnSize /* Write cell size here */
|
|
4239 |
){
|
|
4240 |
int nPayload;
|
|
4241 |
const u8 *pSrc;
|
|
4242 |
int nSrc, n, rc;
|
|
4243 |
int spaceLeft;
|
|
4244 |
MemPage *pOvfl = 0;
|
|
4245 |
MemPage *pToRelease = 0;
|
|
4246 |
unsigned char *pPrior;
|
|
4247 |
unsigned char *pPayload;
|
|
4248 |
BtShared *pBt = pPage->pBt;
|
|
4249 |
Pgno pgnoOvfl = 0;
|
|
4250 |
int nHeader;
|
|
4251 |
CellInfo info;
|
|
4252 |
|
|
4253 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4254 |
|
|
4255 |
/* Fill in the header. */
|
|
4256 |
nHeader = 0;
|
|
4257 |
if( !pPage->leaf ){
|
|
4258 |
nHeader += 4;
|
|
4259 |
}
|
|
4260 |
if( pPage->hasData ){
|
|
4261 |
nHeader += putVarint(&pCell[nHeader], nData+nZero);
|
|
4262 |
}else{
|
|
4263 |
nData = nZero = 0;
|
|
4264 |
}
|
|
4265 |
nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
|
|
4266 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
4267 |
assert( info.nHeader==nHeader );
|
|
4268 |
assert( info.nKey==nKey );
|
|
4269 |
assert( info.nData==nData+nZero );
|
|
4270 |
|
|
4271 |
/* Fill in the payload */
|
|
4272 |
nPayload = nData + nZero;
|
|
4273 |
if( pPage->intKey ){
|
|
4274 |
pSrc = (const u8*)pData;
|
|
4275 |
nSrc = nData;
|
|
4276 |
nData = 0;
|
|
4277 |
}else{
|
|
4278 |
nPayload += nKey;
|
|
4279 |
pSrc = (const u8*)pKey;
|
|
4280 |
nSrc = nKey;
|
|
4281 |
}
|
|
4282 |
*pnSize = info.nSize;
|
|
4283 |
spaceLeft = info.nLocal;
|
|
4284 |
pPayload = &pCell[nHeader];
|
|
4285 |
pPrior = &pCell[info.iOverflow];
|
|
4286 |
|
|
4287 |
while( nPayload>0 ){
|
|
4288 |
if( spaceLeft==0 ){
|
|
4289 |
int isExact = 0;
|
|
4290 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4291 |
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
|
|
4292 |
if( pBt->autoVacuum ){
|
|
4293 |
do{
|
|
4294 |
pgnoOvfl++;
|
|
4295 |
} while(
|
|
4296 |
PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
|
|
4297 |
);
|
|
4298 |
if( pgnoOvfl>1 ){
|
|
4299 |
/* isExact = 1; */
|
|
4300 |
}
|
|
4301 |
}
|
|
4302 |
#endif
|
|
4303 |
rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
|
|
4304 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4305 |
/* If the database supports auto-vacuum, and the second or subsequent
|
|
4306 |
** overflow page is being allocated, add an entry to the pointer-map
|
|
4307 |
** for that page now.
|
|
4308 |
**
|
|
4309 |
** If this is the first overflow page, then write a partial entry
|
|
4310 |
** to the pointer-map. If we write nothing to this pointer-map slot,
|
|
4311 |
** then the optimistic overflow chain processing in clearCell()
|
|
4312 |
** may misinterpret the uninitialised values and delete the
|
|
4313 |
** wrong pages from the database.
|
|
4314 |
*/
|
|
4315 |
if( pBt->autoVacuum && rc==SQLITE_OK ){
|
|
4316 |
u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
|
|
4317 |
rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
|
|
4318 |
if( rc ){
|
|
4319 |
releasePage(pOvfl);
|
|
4320 |
}
|
|
4321 |
}
|
|
4322 |
#endif
|
|
4323 |
if( rc ){
|
|
4324 |
releasePage(pToRelease);
|
|
4325 |
return rc;
|
|
4326 |
}
|
|
4327 |
put4byte(pPrior, pgnoOvfl);
|
|
4328 |
releasePage(pToRelease);
|
|
4329 |
pToRelease = pOvfl;
|
|
4330 |
pPrior = pOvfl->aData;
|
|
4331 |
put4byte(pPrior, 0);
|
|
4332 |
pPayload = &pOvfl->aData[4];
|
|
4333 |
spaceLeft = pBt->usableSize - 4;
|
|
4334 |
}
|
|
4335 |
n = nPayload;
|
|
4336 |
if( n>spaceLeft ) n = spaceLeft;
|
|
4337 |
if( nSrc>0 ){
|
|
4338 |
if( n>nSrc ) n = nSrc;
|
|
4339 |
assert( pSrc );
|
|
4340 |
memcpy(pPayload, pSrc, n);
|
|
4341 |
}else{
|
|
4342 |
memset(pPayload, 0, n);
|
|
4343 |
}
|
|
4344 |
nPayload -= n;
|
|
4345 |
pPayload += n;
|
|
4346 |
pSrc += n;
|
|
4347 |
nSrc -= n;
|
|
4348 |
spaceLeft -= n;
|
|
4349 |
if( nSrc==0 ){
|
|
4350 |
nSrc = nData;
|
|
4351 |
pSrc = (u8*)pData;
|
|
4352 |
}
|
|
4353 |
}
|
|
4354 |
releasePage(pToRelease);
|
|
4355 |
return SQLITE_OK;
|
|
4356 |
}
|
|
4357 |
|
|
4358 |
/*
|
|
4359 |
** Change the MemPage.pParent pointer on the page whose number is
|
|
4360 |
** given in the second argument so that MemPage.pParent holds the
|
|
4361 |
** pointer in the third argument.
|
|
4362 |
*/
|
|
4363 |
static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
|
|
4364 |
MemPage *pThis;
|
|
4365 |
DbPage *pDbPage;
|
|
4366 |
|
|
4367 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
4368 |
assert( pNewParent!=0 );
|
|
4369 |
if( pgno==0 ) return SQLITE_OK;
|
|
4370 |
assert( pBt->pPager!=0 );
|
|
4371 |
pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
|
|
4372 |
if( pDbPage ){
|
|
4373 |
pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
|
|
4374 |
if( pThis->isInit ){
|
|
4375 |
assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
|
|
4376 |
if( pThis->pParent!=pNewParent ){
|
|
4377 |
if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
|
|
4378 |
pThis->pParent = pNewParent;
|
|
4379 |
sqlite3PagerRef(pNewParent->pDbPage);
|
|
4380 |
}
|
|
4381 |
pThis->idxParent = idx;
|
|
4382 |
}
|
|
4383 |
sqlite3PagerUnref(pDbPage);
|
|
4384 |
}
|
|
4385 |
|
|
4386 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4387 |
if( pBt->autoVacuum ){
|
|
4388 |
return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
|
|
4389 |
}
|
|
4390 |
#endif
|
|
4391 |
return SQLITE_OK;
|
|
4392 |
}
|
|
4393 |
|
|
4394 |
|
|
4395 |
|
|
4396 |
/*
|
|
4397 |
** Change the pParent pointer of all children of pPage to point back
|
|
4398 |
** to pPage.
|
|
4399 |
**
|
|
4400 |
** In other words, for every child of pPage, invoke reparentPage()
|
|
4401 |
** to make sure that each child knows that pPage is its parent.
|
|
4402 |
**
|
|
4403 |
** This routine gets called after you memcpy() one page into
|
|
4404 |
** another.
|
|
4405 |
*/
|
|
4406 |
static int reparentChildPages(MemPage *pPage){
|
|
4407 |
int i;
|
|
4408 |
BtShared *pBt = pPage->pBt;
|
|
4409 |
int rc = SQLITE_OK;
|
|
4410 |
|
|
4411 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4412 |
if( pPage->leaf ) return SQLITE_OK;
|
|
4413 |
|
|
4414 |
for(i=0; i<pPage->nCell; i++){
|
|
4415 |
u8 *pCell = findCell(pPage, i);
|
|
4416 |
if( !pPage->leaf ){
|
|
4417 |
rc = reparentPage(pBt, get4byte(pCell), pPage, i);
|
|
4418 |
if( rc!=SQLITE_OK ) return rc;
|
|
4419 |
}
|
|
4420 |
}
|
|
4421 |
if( !pPage->leaf ){
|
|
4422 |
rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
|
|
4423 |
pPage, i);
|
|
4424 |
pPage->idxShift = 0;
|
|
4425 |
}
|
|
4426 |
return rc;
|
|
4427 |
}
|
|
4428 |
|
|
4429 |
/*
|
|
4430 |
** Remove the i-th cell from pPage. This routine effects pPage only.
|
|
4431 |
** The cell content is not freed or deallocated. It is assumed that
|
|
4432 |
** the cell content has been copied someplace else. This routine just
|
|
4433 |
** removes the reference to the cell from pPage.
|
|
4434 |
**
|
|
4435 |
** "sz" must be the number of bytes in the cell.
|
|
4436 |
*/
|
|
4437 |
static void dropCell(MemPage *pPage, int idx, int sz){
|
|
4438 |
int i; /* Loop counter */
|
|
4439 |
int pc; /* Offset to cell content of cell being deleted */
|
|
4440 |
u8 *data; /* pPage->aData */
|
|
4441 |
u8 *ptr; /* Used to move bytes around within data[] */
|
|
4442 |
|
|
4443 |
assert( idx>=0 && idx<pPage->nCell );
|
|
4444 |
assert( sz==cellSize(pPage, idx) );
|
|
4445 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
4446 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4447 |
data = pPage->aData;
|
|
4448 |
ptr = &data[pPage->cellOffset + 2*idx];
|
|
4449 |
pc = get2byte(ptr);
|
|
4450 |
assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
|
|
4451 |
freeSpace(pPage, pc, sz);
|
|
4452 |
for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
|
|
4453 |
ptr[0] = ptr[2];
|
|
4454 |
ptr[1] = ptr[3];
|
|
4455 |
}
|
|
4456 |
pPage->nCell--;
|
|
4457 |
put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
|
|
4458 |
pPage->nFree += 2;
|
|
4459 |
pPage->idxShift = 1;
|
|
4460 |
}
|
|
4461 |
|
|
4462 |
/*
|
|
4463 |
** Insert a new cell on pPage at cell index "i". pCell points to the
|
|
4464 |
** content of the cell.
|
|
4465 |
**
|
|
4466 |
** If the cell content will fit on the page, then put it there. If it
|
|
4467 |
** will not fit, then make a copy of the cell content into pTemp if
|
|
4468 |
** pTemp is not null. Regardless of pTemp, allocate a new entry
|
|
4469 |
** in pPage->aOvfl[] and make it point to the cell content (either
|
|
4470 |
** in pTemp or the original pCell) and also record its index.
|
|
4471 |
** Allocating a new entry in pPage->aCell[] implies that
|
|
4472 |
** pPage->nOverflow is incremented.
|
|
4473 |
**
|
|
4474 |
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
|
|
4475 |
** cell. The caller will overwrite them after this function returns. If
|
|
4476 |
** nSkip is non-zero, then pCell may not point to an invalid memory location
|
|
4477 |
** (but pCell+nSkip is always valid).
|
|
4478 |
*/
|
|
4479 |
static int insertCell(
|
|
4480 |
MemPage *pPage, /* Page into which we are copying */
|
|
4481 |
int i, /* New cell becomes the i-th cell of the page */
|
|
4482 |
u8 *pCell, /* Content of the new cell */
|
|
4483 |
int sz, /* Bytes of content in pCell */
|
|
4484 |
u8 *pTemp, /* Temp storage space for pCell, if needed */
|
|
4485 |
u8 nSkip /* Do not write the first nSkip bytes of the cell */
|
|
4486 |
){
|
|
4487 |
int idx; /* Where to write new cell content in data[] */
|
|
4488 |
int j; /* Loop counter */
|
|
4489 |
int top; /* First byte of content for any cell in data[] */
|
|
4490 |
int end; /* First byte past the last cell pointer in data[] */
|
|
4491 |
int ins; /* Index in data[] where new cell pointer is inserted */
|
|
4492 |
int hdr; /* Offset into data[] of the page header */
|
|
4493 |
int cellOffset; /* Address of first cell pointer in data[] */
|
|
4494 |
u8 *data; /* The content of the whole page */
|
|
4495 |
u8 *ptr; /* Used for moving information around in data[] */
|
|
4496 |
|
|
4497 |
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
|
|
4498 |
assert( sz==cellSizePtr(pPage, pCell) );
|
|
4499 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4500 |
if( pPage->nOverflow || sz+2>pPage->nFree ){
|
|
4501 |
if( pTemp ){
|
|
4502 |
memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
|
|
4503 |
pCell = pTemp;
|
|
4504 |
}
|
|
4505 |
j = pPage->nOverflow++;
|
|
4506 |
assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
|
|
4507 |
pPage->aOvfl[j].pCell = pCell;
|
|
4508 |
pPage->aOvfl[j].idx = i;
|
|
4509 |
pPage->nFree = 0;
|
|
4510 |
}else{
|
|
4511 |
int rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
4512 |
if( rc!=SQLITE_OK ){
|
|
4513 |
return rc;
|
|
4514 |
}
|
|
4515 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
4516 |
data = pPage->aData;
|
|
4517 |
hdr = pPage->hdrOffset;
|
|
4518 |
top = get2byte(&data[hdr+5]);
|
|
4519 |
cellOffset = pPage->cellOffset;
|
|
4520 |
end = cellOffset + 2*pPage->nCell + 2;
|
|
4521 |
ins = cellOffset + 2*i;
|
|
4522 |
if( end > top - sz ){
|
|
4523 |
rc = defragmentPage(pPage);
|
|
4524 |
if( rc!=SQLITE_OK ) return rc;
|
|
4525 |
top = get2byte(&data[hdr+5]);
|
|
4526 |
assert( end + sz <= top );
|
|
4527 |
}
|
|
4528 |
idx = allocateSpace(pPage, sz);
|
|
4529 |
assert( idx>0 );
|
|
4530 |
assert( end <= get2byte(&data[hdr+5]) );
|
|
4531 |
pPage->nCell++;
|
|
4532 |
pPage->nFree -= 2;
|
|
4533 |
memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
|
|
4534 |
for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
|
|
4535 |
ptr[0] = ptr[-2];
|
|
4536 |
ptr[1] = ptr[-1];
|
|
4537 |
}
|
|
4538 |
put2byte(&data[ins], idx);
|
|
4539 |
put2byte(&data[hdr+3], pPage->nCell);
|
|
4540 |
pPage->idxShift = 1;
|
|
4541 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4542 |
if( pPage->pBt->autoVacuum ){
|
|
4543 |
/* The cell may contain a pointer to an overflow page. If so, write
|
|
4544 |
** the entry for the overflow page into the pointer map.
|
|
4545 |
*/
|
|
4546 |
CellInfo info;
|
|
4547 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
4548 |
assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
|
|
4549 |
if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
|
|
4550 |
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
|
|
4551 |
rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
|
|
4552 |
if( rc!=SQLITE_OK ) return rc;
|
|
4553 |
}
|
|
4554 |
}
|
|
4555 |
#endif
|
|
4556 |
}
|
|
4557 |
|
|
4558 |
return SQLITE_OK;
|
|
4559 |
}
|
|
4560 |
|
|
4561 |
/*
|
|
4562 |
** Add a list of cells to a page. The page should be initially empty.
|
|
4563 |
** The cells are guaranteed to fit on the page.
|
|
4564 |
*/
|
|
4565 |
static void assemblePage(
|
|
4566 |
MemPage *pPage, /* The page to be assemblied */
|
|
4567 |
int nCell, /* The number of cells to add to this page */
|
|
4568 |
u8 **apCell, /* Pointers to cell bodies */
|
|
4569 |
int *aSize /* Sizes of the cells */
|
|
4570 |
){
|
|
4571 |
int i; /* Loop counter */
|
|
4572 |
int totalSize; /* Total size of all cells */
|
|
4573 |
int hdr; /* Index of page header */
|
|
4574 |
int cellptr; /* Address of next cell pointer */
|
|
4575 |
int cellbody; /* Address of next cell body */
|
|
4576 |
u8 *data; /* Data for the page */
|
|
4577 |
|
|
4578 |
assert( pPage->nOverflow==0 );
|
|
4579 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4580 |
totalSize = 0;
|
|
4581 |
for(i=0; i<nCell; i++){
|
|
4582 |
totalSize += aSize[i];
|
|
4583 |
}
|
|
4584 |
assert( totalSize+2*nCell<=pPage->nFree );
|
|
4585 |
assert( pPage->nCell==0 );
|
|
4586 |
cellptr = pPage->cellOffset;
|
|
4587 |
data = pPage->aData;
|
|
4588 |
hdr = pPage->hdrOffset;
|
|
4589 |
put2byte(&data[hdr+3], nCell);
|
|
4590 |
if( nCell ){
|
|
4591 |
cellbody = allocateSpace(pPage, totalSize);
|
|
4592 |
assert( cellbody>0 );
|
|
4593 |
assert( pPage->nFree >= 2*nCell );
|
|
4594 |
pPage->nFree -= 2*nCell;
|
|
4595 |
for(i=0; i<nCell; i++){
|
|
4596 |
put2byte(&data[cellptr], cellbody);
|
|
4597 |
memcpy(&data[cellbody], apCell[i], aSize[i]);
|
|
4598 |
cellptr += 2;
|
|
4599 |
cellbody += aSize[i];
|
|
4600 |
}
|
|
4601 |
assert( cellbody==pPage->pBt->usableSize );
|
|
4602 |
}
|
|
4603 |
pPage->nCell = nCell;
|
|
4604 |
}
|
|
4605 |
|
|
4606 |
/*
|
|
4607 |
** The following parameters determine how many adjacent pages get involved
|
|
4608 |
** in a balancing operation. NN is the number of neighbors on either side
|
|
4609 |
** of the page that participate in the balancing operation. NB is the
|
|
4610 |
** total number of pages that participate, including the target page and
|
|
4611 |
** NN neighbors on either side.
|
|
4612 |
**
|
|
4613 |
** The minimum value of NN is 1 (of course). Increasing NN above 1
|
|
4614 |
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
|
|
4615 |
** in exchange for a larger degradation in INSERT and UPDATE performance.
|
|
4616 |
** The value of NN appears to give the best results overall.
|
|
4617 |
*/
|
|
4618 |
#define NN 1 /* Number of neighbors on either side of pPage */
|
|
4619 |
#define NB (NN*2+1) /* Total pages involved in the balance */
|
|
4620 |
|
|
4621 |
/* Forward reference */
|
|
4622 |
static int balance(MemPage*, int);
|
|
4623 |
|
|
4624 |
#ifndef SQLITE_OMIT_QUICKBALANCE
|
|
4625 |
/*
|
|
4626 |
** This version of balance() handles the common special case where
|
|
4627 |
** a new entry is being inserted on the extreme right-end of the
|
|
4628 |
** tree, in other words, when the new entry will become the largest
|
|
4629 |
** entry in the tree.
|
|
4630 |
**
|
|
4631 |
** Instead of trying balance the 3 right-most leaf pages, just add
|
|
4632 |
** a new page to the right-hand side and put the one new entry in
|
|
4633 |
** that page. This leaves the right side of the tree somewhat
|
|
4634 |
** unbalanced. But odds are that we will be inserting new entries
|
|
4635 |
** at the end soon afterwards so the nearly empty page will quickly
|
|
4636 |
** fill up. On average.
|
|
4637 |
**
|
|
4638 |
** pPage is the leaf page which is the right-most page in the tree.
|
|
4639 |
** pParent is its parent. pPage must have a single overflow entry
|
|
4640 |
** which is also the right-most entry on the page.
|
|
4641 |
*/
|
|
4642 |
static int balance_quick(MemPage *pPage, MemPage *pParent){
|
|
4643 |
int rc;
|
|
4644 |
MemPage *pNew;
|
|
4645 |
Pgno pgnoNew;
|
|
4646 |
u8 *pCell;
|
|
4647 |
int szCell;
|
|
4648 |
CellInfo info;
|
|
4649 |
BtShared *pBt = pPage->pBt;
|
|
4650 |
int parentIdx = pParent->nCell; /* pParent new divider cell index */
|
|
4651 |
int parentSize; /* Size of new divider cell */
|
|
4652 |
u8 parentCell[64]; /* Space for the new divider cell */
|
|
4653 |
|
|
4654 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4655 |
|
|
4656 |
/* Allocate a new page. Insert the overflow cell from pPage
|
|
4657 |
** into it. Then remove the overflow cell from pPage.
|
|
4658 |
*/
|
|
4659 |
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
|
|
4660 |
if( rc!=SQLITE_OK ){
|
|
4661 |
return rc;
|
|
4662 |
}
|
|
4663 |
pCell = pPage->aOvfl[0].pCell;
|
|
4664 |
szCell = cellSizePtr(pPage, pCell);
|
|
4665 |
zeroPage(pNew, pPage->aData[0]);
|
|
4666 |
assemblePage(pNew, 1, &pCell, &szCell);
|
|
4667 |
pPage->nOverflow = 0;
|
|
4668 |
|
|
4669 |
/* Set the parent of the newly allocated page to pParent. */
|
|
4670 |
pNew->pParent = pParent;
|
|
4671 |
sqlite3PagerRef(pParent->pDbPage);
|
|
4672 |
|
|
4673 |
/* pPage is currently the right-child of pParent. Change this
|
|
4674 |
** so that the right-child is the new page allocated above and
|
|
4675 |
** pPage is the next-to-right child.
|
|
4676 |
*/
|
|
4677 |
assert( pPage->nCell>0 );
|
|
4678 |
pCell = findCell(pPage, pPage->nCell-1);
|
|
4679 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
4680 |
rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
|
|
4681 |
if( rc!=SQLITE_OK ){
|
|
4682 |
return rc;
|
|
4683 |
}
|
|
4684 |
assert( parentSize<64 );
|
|
4685 |
rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
|
|
4686 |
if( rc!=SQLITE_OK ){
|
|
4687 |
return rc;
|
|
4688 |
}
|
|
4689 |
put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
|
|
4690 |
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
|
|
4691 |
|
|
4692 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4693 |
/* If this is an auto-vacuum database, update the pointer map
|
|
4694 |
** with entries for the new page, and any pointer from the
|
|
4695 |
** cell on the page to an overflow page.
|
|
4696 |
*/
|
|
4697 |
if( pBt->autoVacuum ){
|
|
4698 |
rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
|
|
4699 |
if( rc==SQLITE_OK ){
|
|
4700 |
rc = ptrmapPutOvfl(pNew, 0);
|
|
4701 |
}
|
|
4702 |
if( rc!=SQLITE_OK ){
|
|
4703 |
releasePage(pNew);
|
|
4704 |
return rc;
|
|
4705 |
}
|
|
4706 |
}
|
|
4707 |
#endif
|
|
4708 |
|
|
4709 |
/* Release the reference to the new page and balance the parent page,
|
|
4710 |
** in case the divider cell inserted caused it to become overfull.
|
|
4711 |
*/
|
|
4712 |
releasePage(pNew);
|
|
4713 |
return balance(pParent, 0);
|
|
4714 |
}
|
|
4715 |
#endif /* SQLITE_OMIT_QUICKBALANCE */
|
|
4716 |
|
|
4717 |
/*
|
|
4718 |
** This routine redistributes Cells on pPage and up to NN*2 siblings
|
|
4719 |
** of pPage so that all pages have about the same amount of free space.
|
|
4720 |
** Usually NN siblings on either side of pPage is used in the balancing,
|
|
4721 |
** though more siblings might come from one side if pPage is the first
|
|
4722 |
** or last child of its parent. If pPage has fewer than 2*NN siblings
|
|
4723 |
** (something which can only happen if pPage is the root page or a
|
|
4724 |
** child of root) then all available siblings participate in the balancing.
|
|
4725 |
**
|
|
4726 |
** The number of siblings of pPage might be increased or decreased by one or
|
|
4727 |
** two in an effort to keep pages nearly full but not over full. The root page
|
|
4728 |
** is special and is allowed to be nearly empty. If pPage is
|
|
4729 |
** the root page, then the depth of the tree might be increased
|
|
4730 |
** or decreased by one, as necessary, to keep the root page from being
|
|
4731 |
** overfull or completely empty.
|
|
4732 |
**
|
|
4733 |
** Note that when this routine is called, some of the Cells on pPage
|
|
4734 |
** might not actually be stored in pPage->aData[]. This can happen
|
|
4735 |
** if the page is overfull. Part of the job of this routine is to
|
|
4736 |
** make sure all Cells for pPage once again fit in pPage->aData[].
|
|
4737 |
**
|
|
4738 |
** In the course of balancing the siblings of pPage, the parent of pPage
|
|
4739 |
** might become overfull or underfull. If that happens, then this routine
|
|
4740 |
** is called recursively on the parent.
|
|
4741 |
**
|
|
4742 |
** If this routine fails for any reason, it might leave the database
|
|
4743 |
** in a corrupted state. So if this routine fails, the database should
|
|
4744 |
** be rolled back.
|
|
4745 |
*/
|
|
4746 |
static int balance_nonroot(MemPage *pPage){
|
|
4747 |
MemPage *pParent; /* The parent of pPage */
|
|
4748 |
BtShared *pBt; /* The whole database */
|
|
4749 |
int nCell = 0; /* Number of cells in apCell[] */
|
|
4750 |
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
|
|
4751 |
int nOld; /* Number of pages in apOld[] */
|
|
4752 |
int nNew; /* Number of pages in apNew[] */
|
|
4753 |
int nDiv; /* Number of cells in apDiv[] */
|
|
4754 |
int i, j, k; /* Loop counters */
|
|
4755 |
int idx; /* Index of pPage in pParent->aCell[] */
|
|
4756 |
int nxDiv; /* Next divider slot in pParent->aCell[] */
|
|
4757 |
int rc; /* The return code */
|
|
4758 |
int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
|
|
4759 |
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
|
|
4760 |
int usableSpace; /* Bytes in pPage beyond the header */
|
|
4761 |
int pageFlags; /* Value of pPage->aData[0] */
|
|
4762 |
int subtotal; /* Subtotal of bytes in cells on one page */
|
|
4763 |
int iSpace = 0; /* First unused byte of aSpace[] */
|
|
4764 |
MemPage *apOld[NB]; /* pPage and up to two siblings */
|
|
4765 |
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
|
|
4766 |
MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
|
|
4767 |
MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
|
|
4768 |
Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
|
|
4769 |
u8 *apDiv[NB]; /* Divider cells in pParent */
|
|
4770 |
int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
|
|
4771 |
int szNew[NB+2]; /* Combined size of cells place on i-th page */
|
|
4772 |
u8 **apCell = 0; /* All cells begin balanced */
|
|
4773 |
int *szCell; /* Local size of all cells in apCell[] */
|
|
4774 |
u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
|
|
4775 |
u8 *aSpace; /* Space to hold copies of dividers cells */
|
|
4776 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4777 |
u8 *aFrom = 0;
|
|
4778 |
#endif
|
|
4779 |
|
|
4780 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
4781 |
|
|
4782 |
/*
|
|
4783 |
** Find the parent page.
|
|
4784 |
*/
|
|
4785 |
assert( pPage->isInit );
|
|
4786 |
assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
|
|
4787 |
pBt = pPage->pBt;
|
|
4788 |
pParent = pPage->pParent;
|
|
4789 |
assert( pParent );
|
|
4790 |
if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
|
|
4791 |
return rc;
|
|
4792 |
}
|
|
4793 |
TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
|
|
4794 |
|
|
4795 |
#ifndef SQLITE_OMIT_QUICKBALANCE
|
|
4796 |
/*
|
|
4797 |
** A special case: If a new entry has just been inserted into a
|
|
4798 |
** table (that is, a btree with integer keys and all data at the leaves)
|
|
4799 |
** and the new entry is the right-most entry in the tree (it has the
|
|
4800 |
** largest key) then use the special balance_quick() routine for
|
|
4801 |
** balancing. balance_quick() is much faster and results in a tighter
|
|
4802 |
** packing of data in the common case.
|
|
4803 |
*/
|
|
4804 |
if( pPage->leaf &&
|
|
4805 |
pPage->intKey &&
|
|
4806 |
pPage->leafData &&
|
|
4807 |
pPage->nOverflow==1 &&
|
|
4808 |
pPage->aOvfl[0].idx==pPage->nCell &&
|
|
4809 |
pPage->pParent->pgno!=1 &&
|
|
4810 |
get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
|
|
4811 |
){
|
|
4812 |
/*
|
|
4813 |
** TODO: Check the siblings to the left of pPage. It may be that
|
|
4814 |
** they are not full and no new page is required.
|
|
4815 |
*/
|
|
4816 |
return balance_quick(pPage, pParent);
|
|
4817 |
}
|
|
4818 |
#endif
|
|
4819 |
|
|
4820 |
if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
|
|
4821 |
return rc;
|
|
4822 |
}
|
|
4823 |
|
|
4824 |
/*
|
|
4825 |
** Find the cell in the parent page whose left child points back
|
|
4826 |
** to pPage. The "idx" variable is the index of that cell. If pPage
|
|
4827 |
** is the rightmost child of pParent then set idx to pParent->nCell
|
|
4828 |
*/
|
|
4829 |
if( pParent->idxShift ){
|
|
4830 |
Pgno pgno;
|
|
4831 |
pgno = pPage->pgno;
|
|
4832 |
assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
|
|
4833 |
for(idx=0; idx<pParent->nCell; idx++){
|
|
4834 |
if( get4byte(findCell(pParent, idx))==pgno ){
|
|
4835 |
break;
|
|
4836 |
}
|
|
4837 |
}
|
|
4838 |
assert( idx<pParent->nCell
|
|
4839 |
|| get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
|
|
4840 |
}else{
|
|
4841 |
idx = pPage->idxParent;
|
|
4842 |
}
|
|
4843 |
|
|
4844 |
/*
|
|
4845 |
** Initialize variables so that it will be safe to jump
|
|
4846 |
** directly to balance_cleanup at any moment.
|
|
4847 |
*/
|
|
4848 |
nOld = nNew = 0;
|
|
4849 |
sqlite3PagerRef(pParent->pDbPage);
|
|
4850 |
|
|
4851 |
/*
|
|
4852 |
** Find sibling pages to pPage and the cells in pParent that divide
|
|
4853 |
** the siblings. An attempt is made to find NN siblings on either
|
|
4854 |
** side of pPage. More siblings are taken from one side, however, if
|
|
4855 |
** pPage there are fewer than NN siblings on the other side. If pParent
|
|
4856 |
** has NB or fewer children then all children of pParent are taken.
|
|
4857 |
*/
|
|
4858 |
nxDiv = idx - NN;
|
|
4859 |
if( nxDiv + NB > pParent->nCell ){
|
|
4860 |
nxDiv = pParent->nCell - NB + 1;
|
|
4861 |
}
|
|
4862 |
if( nxDiv<0 ){
|
|
4863 |
nxDiv = 0;
|
|
4864 |
}
|
|
4865 |
nDiv = 0;
|
|
4866 |
for(i=0, k=nxDiv; i<NB; i++, k++){
|
|
4867 |
if( k<pParent->nCell ){
|
|
4868 |
apDiv[i] = findCell(pParent, k);
|
|
4869 |
nDiv++;
|
|
4870 |
assert( !pParent->leaf );
|
|
4871 |
pgnoOld[i] = get4byte(apDiv[i]);
|
|
4872 |
}else if( k==pParent->nCell ){
|
|
4873 |
pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
|
|
4874 |
}else{
|
|
4875 |
break;
|
|
4876 |
}
|
|
4877 |
rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
|
|
4878 |
if( rc ) goto balance_cleanup;
|
|
4879 |
apOld[i]->idxParent = k;
|
|
4880 |
apCopy[i] = 0;
|
|
4881 |
assert( i==nOld );
|
|
4882 |
nOld++;
|
|
4883 |
nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
|
|
4884 |
}
|
|
4885 |
|
|
4886 |
/* Make nMaxCells a multiple of 2 in order to preserve 8-byte
|
|
4887 |
** alignment */
|
|
4888 |
nMaxCells = (nMaxCells + 1)&~1;
|
|
4889 |
|
|
4890 |
/*
|
|
4891 |
** Allocate space for memory structures
|
|
4892 |
*/
|
|
4893 |
apCell = (u8**)sqlite3_malloc(
|
|
4894 |
nMaxCells*sizeof(u8*) /* apCell */
|
|
4895 |
+ nMaxCells*sizeof(int) /* szCell */
|
|
4896 |
+ ROUND8(sizeof(MemPage))*NB /* aCopy */
|
|
4897 |
+ pBt->pageSize*(5+NB) /* aSpace */
|
|
4898 |
+ (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
|
|
4899 |
);
|
|
4900 |
if( apCell==0 ){
|
|
4901 |
rc = SQLITE_NOMEM;
|
|
4902 |
goto balance_cleanup;
|
|
4903 |
}
|
|
4904 |
szCell = (int*)&apCell[nMaxCells];
|
|
4905 |
aCopy[0] = (u8*)&szCell[nMaxCells];
|
|
4906 |
assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
|
|
4907 |
for(i=1; i<NB; i++){
|
|
4908 |
aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
|
|
4909 |
assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
|
|
4910 |
}
|
|
4911 |
aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
|
|
4912 |
assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
|
|
4913 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4914 |
if( pBt->autoVacuum ){
|
|
4915 |
aFrom = &aSpace[5*pBt->pageSize];
|
|
4916 |
}
|
|
4917 |
#endif
|
|
4918 |
|
|
4919 |
/*
|
|
4920 |
** Make copies of the content of pPage and its siblings into aOld[].
|
|
4921 |
** The rest of this function will use data from the copies rather
|
|
4922 |
** that the original pages since the original pages will be in the
|
|
4923 |
** process of being overwritten.
|
|
4924 |
*/
|
|
4925 |
for(i=0; i<nOld; i++){
|
|
4926 |
MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
|
|
4927 |
memcpy(p, apOld[i], sizeof(MemPage));
|
|
4928 |
p->aData = (u8*)(void*)&p[1];
|
|
4929 |
memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
|
|
4930 |
}
|
|
4931 |
|
|
4932 |
/*
|
|
4933 |
** Load pointers to all cells on sibling pages and the divider cells
|
|
4934 |
** into the local apCell[] array. Make copies of the divider cells
|
|
4935 |
** into space obtained form aSpace[] and remove the the divider Cells
|
|
4936 |
** from pParent.
|
|
4937 |
**
|
|
4938 |
** If the siblings are on leaf pages, then the child pointers of the
|
|
4939 |
** divider cells are stripped from the cells before they are copied
|
|
4940 |
** into aSpace[]. In this way, all cells in apCell[] are without
|
|
4941 |
** child pointers. If siblings are not leaves, then all cell in
|
|
4942 |
** apCell[] include child pointers. Either way, all cells in apCell[]
|
|
4943 |
** are alike.
|
|
4944 |
**
|
|
4945 |
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
|
|
4946 |
** leafData: 1 if pPage holds key+data and pParent holds only keys.
|
|
4947 |
*/
|
|
4948 |
nCell = 0;
|
|
4949 |
leafCorrection = pPage->leaf*4;
|
|
4950 |
leafData = pPage->leafData && pPage->leaf;
|
|
4951 |
for(i=0; i<nOld; i++){
|
|
4952 |
MemPage *pOld = apCopy[i];
|
|
4953 |
int limit = pOld->nCell+pOld->nOverflow;
|
|
4954 |
for(j=0; j<limit; j++){
|
|
4955 |
assert( nCell<nMaxCells );
|
|
4956 |
apCell[nCell] = findOverflowCell(pOld, j);
|
|
4957 |
szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
|
|
4958 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4959 |
if( pBt->autoVacuum ){
|
|
4960 |
int a;
|
|
4961 |
aFrom[nCell] = i;
|
|
4962 |
for(a=0; a<pOld->nOverflow; a++){
|
|
4963 |
if( pOld->aOvfl[a].pCell==apCell[nCell] ){
|
|
4964 |
aFrom[nCell] = 0xFF;
|
|
4965 |
break;
|
|
4966 |
}
|
|
4967 |
}
|
|
4968 |
}
|
|
4969 |
#endif
|
|
4970 |
nCell++;
|
|
4971 |
}
|
|
4972 |
if( i<nOld-1 ){
|
|
4973 |
int sz = cellSizePtr(pParent, apDiv[i]);
|
|
4974 |
if( leafData ){
|
|
4975 |
/* With the LEAFDATA flag, pParent cells hold only INTKEYs that
|
|
4976 |
** are duplicates of keys on the child pages. We need to remove
|
|
4977 |
** the divider cells from pParent, but the dividers cells are not
|
|
4978 |
** added to apCell[] because they are duplicates of child cells.
|
|
4979 |
*/
|
|
4980 |
dropCell(pParent, nxDiv, sz);
|
|
4981 |
}else{
|
|
4982 |
u8 *pTemp;
|
|
4983 |
assert( nCell<nMaxCells );
|
|
4984 |
szCell[nCell] = sz;
|
|
4985 |
pTemp = &aSpace[iSpace];
|
|
4986 |
iSpace += sz;
|
|
4987 |
assert( iSpace<=pBt->pageSize*5 );
|
|
4988 |
memcpy(pTemp, apDiv[i], sz);
|
|
4989 |
apCell[nCell] = pTemp+leafCorrection;
|
|
4990 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4991 |
if( pBt->autoVacuum ){
|
|
4992 |
aFrom[nCell] = 0xFF;
|
|
4993 |
}
|
|
4994 |
#endif
|
|
4995 |
dropCell(pParent, nxDiv, sz);
|
|
4996 |
szCell[nCell] -= leafCorrection;
|
|
4997 |
assert( get4byte(pTemp)==pgnoOld[i] );
|
|
4998 |
if( !pOld->leaf ){
|
|
4999 |
assert( leafCorrection==0 );
|
|
5000 |
/* The right pointer of the child page pOld becomes the left
|
|
5001 |
** pointer of the divider cell */
|
|
5002 |
memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
|
|
5003 |
}else{
|
|
5004 |
assert( leafCorrection==4 );
|
|
5005 |
if( szCell[nCell]<4 ){
|
|
5006 |
/* Do not allow any cells smaller than 4 bytes. */
|
|
5007 |
szCell[nCell] = 4;
|
|
5008 |
}
|
|
5009 |
}
|
|
5010 |
nCell++;
|
|
5011 |
}
|
|
5012 |
}
|
|
5013 |
}
|
|
5014 |
|
|
5015 |
/*
|
|
5016 |
** Figure out the number of pages needed to hold all nCell cells.
|
|
5017 |
** Store this number in "k". Also compute szNew[] which is the total
|
|
5018 |
** size of all cells on the i-th page and cntNew[] which is the index
|
|
5019 |
** in apCell[] of the cell that divides page i from page i+1.
|
|
5020 |
** cntNew[k] should equal nCell.
|
|
5021 |
**
|
|
5022 |
** Values computed by this block:
|
|
5023 |
**
|
|
5024 |
** k: The total number of sibling pages
|
|
5025 |
** szNew[i]: Spaced used on the i-th sibling page.
|
|
5026 |
** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
|
|
5027 |
** the right of the i-th sibling page.
|
|
5028 |
** usableSpace: Number of bytes of space available on each sibling.
|
|
5029 |
**
|
|
5030 |
*/
|
|
5031 |
usableSpace = pBt->usableSize - 12 + leafCorrection;
|
|
5032 |
for(subtotal=k=i=0; i<nCell; i++){
|
|
5033 |
assert( i<nMaxCells );
|
|
5034 |
subtotal += szCell[i] + 2;
|
|
5035 |
if( subtotal > usableSpace ){
|
|
5036 |
szNew[k] = subtotal - szCell[i];
|
|
5037 |
cntNew[k] = i;
|
|
5038 |
if( leafData ){ i--; }
|
|
5039 |
subtotal = 0;
|
|
5040 |
k++;
|
|
5041 |
}
|
|
5042 |
}
|
|
5043 |
szNew[k] = subtotal;
|
|
5044 |
cntNew[k] = nCell;
|
|
5045 |
k++;
|
|
5046 |
|
|
5047 |
/*
|
|
5048 |
** The packing computed by the previous block is biased toward the siblings
|
|
5049 |
** on the left side. The left siblings are always nearly full, while the
|
|
5050 |
** right-most sibling might be nearly empty. This block of code attempts
|
|
5051 |
** to adjust the packing of siblings to get a better balance.
|
|
5052 |
**
|
|
5053 |
** This adjustment is more than an optimization. The packing above might
|
|
5054 |
** be so out of balance as to be illegal. For example, the right-most
|
|
5055 |
** sibling might be completely empty. This adjustment is not optional.
|
|
5056 |
*/
|
|
5057 |
for(i=k-1; i>0; i--){
|
|
5058 |
int szRight = szNew[i]; /* Size of sibling on the right */
|
|
5059 |
int szLeft = szNew[i-1]; /* Size of sibling on the left */
|
|
5060 |
int r; /* Index of right-most cell in left sibling */
|
|
5061 |
int d; /* Index of first cell to the left of right sibling */
|
|
5062 |
|
|
5063 |
r = cntNew[i-1] - 1;
|
|
5064 |
d = r + 1 - leafData;
|
|
5065 |
assert( d<nMaxCells );
|
|
5066 |
assert( r<nMaxCells );
|
|
5067 |
while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
|
|
5068 |
szRight += szCell[d] + 2;
|
|
5069 |
szLeft -= szCell[r] + 2;
|
|
5070 |
cntNew[i-1]--;
|
|
5071 |
r = cntNew[i-1] - 1;
|
|
5072 |
d = r + 1 - leafData;
|
|
5073 |
}
|
|
5074 |
szNew[i] = szRight;
|
|
5075 |
szNew[i-1] = szLeft;
|
|
5076 |
}
|
|
5077 |
|
|
5078 |
/* Either we found one or more cells (cntnew[0])>0) or we are the
|
|
5079 |
** a virtual root page. A virtual root page is when the real root
|
|
5080 |
** page is page 1 and we are the only child of that page.
|
|
5081 |
*/
|
|
5082 |
assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
|
|
5083 |
|
|
5084 |
/*
|
|
5085 |
** Allocate k new pages. Reuse old pages where possible.
|
|
5086 |
*/
|
|
5087 |
assert( pPage->pgno>1 );
|
|
5088 |
pageFlags = pPage->aData[0];
|
|
5089 |
for(i=0; i<k; i++){
|
|
5090 |
MemPage *pNew;
|
|
5091 |
if( i<nOld ){
|
|
5092 |
pNew = apNew[i] = apOld[i];
|
|
5093 |
pgnoNew[i] = pgnoOld[i];
|
|
5094 |
apOld[i] = 0;
|
|
5095 |
rc = sqlite3PagerWrite(pNew->pDbPage);
|
|
5096 |
nNew++;
|
|
5097 |
if( rc ) goto balance_cleanup;
|
|
5098 |
}else{
|
|
5099 |
assert( i>0 );
|
|
5100 |
rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
|
|
5101 |
if( rc ) goto balance_cleanup;
|
|
5102 |
apNew[i] = pNew;
|
|
5103 |
nNew++;
|
|
5104 |
}
|
|
5105 |
zeroPage(pNew, pageFlags);
|
|
5106 |
}
|
|
5107 |
|
|
5108 |
/* Free any old pages that were not reused as new pages.
|
|
5109 |
*/
|
|
5110 |
while( i<nOld ){
|
|
5111 |
rc = freePage(apOld[i]);
|
|
5112 |
if( rc ) goto balance_cleanup;
|
|
5113 |
releasePage(apOld[i]);
|
|
5114 |
apOld[i] = 0;
|
|
5115 |
i++;
|
|
5116 |
}
|
|
5117 |
|
|
5118 |
/*
|
|
5119 |
** Put the new pages in accending order. This helps to
|
|
5120 |
** keep entries in the disk file in order so that a scan
|
|
5121 |
** of the table is a linear scan through the file. That
|
|
5122 |
** in turn helps the operating system to deliver pages
|
|
5123 |
** from the disk more rapidly.
|
|
5124 |
**
|
|
5125 |
** An O(n^2) insertion sort algorithm is used, but since
|
|
5126 |
** n is never more than NB (a small constant), that should
|
|
5127 |
** not be a problem.
|
|
5128 |
**
|
|
5129 |
** When NB==3, this one optimization makes the database
|
|
5130 |
** about 25% faster for large insertions and deletions.
|
|
5131 |
*/
|
|
5132 |
for(i=0; i<k-1; i++){
|
|
5133 |
int minV = pgnoNew[i];
|
|
5134 |
int minI = i;
|
|
5135 |
for(j=i+1; j<k; j++){
|
|
5136 |
if( pgnoNew[j]<(unsigned)minV ){
|
|
5137 |
minI = j;
|
|
5138 |
minV = pgnoNew[j];
|
|
5139 |
}
|
|
5140 |
}
|
|
5141 |
if( minI>i ){
|
|
5142 |
int t;
|
|
5143 |
MemPage *pT;
|
|
5144 |
t = pgnoNew[i];
|
|
5145 |
pT = apNew[i];
|
|
5146 |
pgnoNew[i] = pgnoNew[minI];
|
|
5147 |
apNew[i] = apNew[minI];
|
|
5148 |
pgnoNew[minI] = t;
|
|
5149 |
apNew[minI] = pT;
|
|
5150 |
}
|
|
5151 |
}
|
|
5152 |
TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
|
|
5153 |
pgnoOld[0],
|
|
5154 |
nOld>=2 ? pgnoOld[1] : 0,
|
|
5155 |
nOld>=3 ? pgnoOld[2] : 0,
|
|
5156 |
pgnoNew[0], szNew[0],
|
|
5157 |
nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
|
|
5158 |
nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
|
|
5159 |
nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
|
|
5160 |
nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
|
|
5161 |
|
|
5162 |
/*
|
|
5163 |
** Evenly distribute the data in apCell[] across the new pages.
|
|
5164 |
** Insert divider cells into pParent as necessary.
|
|
5165 |
*/
|
|
5166 |
j = 0;
|
|
5167 |
for(i=0; i<nNew; i++){
|
|
5168 |
/* Assemble the new sibling page. */
|
|
5169 |
MemPage *pNew = apNew[i];
|
|
5170 |
assert( j<nMaxCells );
|
|
5171 |
assert( pNew->pgno==pgnoNew[i] );
|
|
5172 |
assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
|
|
5173 |
assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
|
|
5174 |
assert( pNew->nOverflow==0 );
|
|
5175 |
|
|
5176 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
5177 |
/* If this is an auto-vacuum database, update the pointer map entries
|
|
5178 |
** that point to the siblings that were rearranged. These can be: left
|
|
5179 |
** children of cells, the right-child of the page, or overflow pages
|
|
5180 |
** pointed to by cells.
|
|
5181 |
*/
|
|
5182 |
if( pBt->autoVacuum ){
|
|
5183 |
for(k=j; k<cntNew[i]; k++){
|
|
5184 |
assert( k<nMaxCells );
|
|
5185 |
if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
|
|
5186 |
rc = ptrmapPutOvfl(pNew, k-j);
|
|
5187 |
if( rc!=SQLITE_OK ){
|
|
5188 |
goto balance_cleanup;
|
|
5189 |
}
|
|
5190 |
}
|
|
5191 |
}
|
|
5192 |
}
|
|
5193 |
#endif
|
|
5194 |
|
|
5195 |
j = cntNew[i];
|
|
5196 |
|
|
5197 |
/* If the sibling page assembled above was not the right-most sibling,
|
|
5198 |
** insert a divider cell into the parent page.
|
|
5199 |
*/
|
|
5200 |
if( i<nNew-1 && j<nCell ){
|
|
5201 |
u8 *pCell;
|
|
5202 |
u8 *pTemp;
|
|
5203 |
int sz;
|
|
5204 |
|
|
5205 |
assert( j<nMaxCells );
|
|
5206 |
pCell = apCell[j];
|
|
5207 |
sz = szCell[j] + leafCorrection;
|
|
5208 |
if( !pNew->leaf ){
|
|
5209 |
memcpy(&pNew->aData[8], pCell, 4);
|
|
5210 |
pTemp = 0;
|
|
5211 |
}else if( leafData ){
|
|
5212 |
/* If the tree is a leaf-data tree, and the siblings are leaves,
|
|
5213 |
** then there is no divider cell in apCell[]. Instead, the divider
|
|
5214 |
** cell consists of the integer key for the right-most cell of
|
|
5215 |
** the sibling-page assembled above only.
|
|
5216 |
*/
|
|
5217 |
CellInfo info;
|
|
5218 |
j--;
|
|
5219 |
sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
|
|
5220 |
pCell = &aSpace[iSpace];
|
|
5221 |
fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
|
|
5222 |
iSpace += sz;
|
|
5223 |
assert( iSpace<=pBt->pageSize*5 );
|
|
5224 |
pTemp = 0;
|
|
5225 |
}else{
|
|
5226 |
pCell -= 4;
|
|
5227 |
pTemp = &aSpace[iSpace];
|
|
5228 |
iSpace += sz;
|
|
5229 |
assert( iSpace<=pBt->pageSize*5 );
|
|
5230 |
/* Obscure case for non-leaf-data trees: If the cell at pCell was
|
|
5231 |
** previously stored on a leaf node, and its reported size was 4
|
|
5232 |
** bytes, then it may actually be smaller than this
|
|
5233 |
** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
|
|
5234 |
** any cell). But it is important to pass the correct size to
|
|
5235 |
** insertCell(), so reparse the cell now.
|
|
5236 |
**
|
|
5237 |
** Note that this can never happen in an SQLite data file, as all
|
|
5238 |
** cells are at least 4 bytes. It only happens in b-trees used
|
|
5239 |
** to evaluate "IN (SELECT ...)" and similar clauses.
|
|
5240 |
*/
|
|
5241 |
if( szCell[j]==4 ){
|
|
5242 |
assert(leafCorrection==4);
|
|
5243 |
sz = cellSizePtr(pParent, pCell);
|
|
5244 |
}
|
|
5245 |
}
|
|
5246 |
rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
|
|
5247 |
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
5248 |
put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
|
|
5249 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
5250 |
/* If this is an auto-vacuum database, and not a leaf-data tree,
|
|
5251 |
** then update the pointer map with an entry for the overflow page
|
|
5252 |
** that the cell just inserted points to (if any).
|
|
5253 |
*/
|
|
5254 |
if( pBt->autoVacuum && !leafData ){
|
|
5255 |
rc = ptrmapPutOvfl(pParent, nxDiv);
|
|
5256 |
if( rc!=SQLITE_OK ){
|
|
5257 |
goto balance_cleanup;
|
|
5258 |
}
|
|
5259 |
}
|
|
5260 |
#endif
|
|
5261 |
j++;
|
|
5262 |
nxDiv++;
|
|
5263 |
}
|
|
5264 |
}
|
|
5265 |
assert( j==nCell );
|
|
5266 |
assert( nOld>0 );
|
|
5267 |
assert( nNew>0 );
|
|
5268 |
if( (pageFlags & PTF_LEAF)==0 ){
|
|
5269 |
memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
|
|
5270 |
}
|
|
5271 |
if( nxDiv==pParent->nCell+pParent->nOverflow ){
|
|
5272 |
/* Right-most sibling is the right-most child of pParent */
|
|
5273 |
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
|
|
5274 |
}else{
|
|
5275 |
/* Right-most sibling is the left child of the first entry in pParent
|
|
5276 |
** past the right-most divider entry */
|
|
5277 |
put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
|
|
5278 |
}
|
|
5279 |
|
|
5280 |
/*
|
|
5281 |
** Reparent children of all cells.
|
|
5282 |
*/
|
|
5283 |
for(i=0; i<nNew; i++){
|
|
5284 |
rc = reparentChildPages(apNew[i]);
|
|
5285 |
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
5286 |
}
|
|
5287 |
rc = reparentChildPages(pParent);
|
|
5288 |
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
5289 |
|
|
5290 |
/*
|
|
5291 |
** Balance the parent page. Note that the current page (pPage) might
|
|
5292 |
** have been added to the freelist so it might no longer be initialized.
|
|
5293 |
** But the parent page will always be initialized.
|
|
5294 |
*/
|
|
5295 |
assert( pParent->isInit );
|
|
5296 |
rc = balance(pParent, 0);
|
|
5297 |
|
|
5298 |
/*
|
|
5299 |
** Cleanup before returning.
|
|
5300 |
*/
|
|
5301 |
balance_cleanup:
|
|
5302 |
sqlite3_free(apCell);
|
|
5303 |
for(i=0; i<nOld; i++){
|
|
5304 |
releasePage(apOld[i]);
|
|
5305 |
}
|
|
5306 |
for(i=0; i<nNew; i++){
|
|
5307 |
releasePage(apNew[i]);
|
|
5308 |
}
|
|
5309 |
releasePage(pParent);
|
|
5310 |
TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
|
|
5311 |
pPage->pgno, nOld, nNew, nCell));
|
|
5312 |
return rc;
|
|
5313 |
}
|
|
5314 |
|
|
5315 |
/*
|
|
5316 |
** This routine is called for the root page of a btree when the root
|
|
5317 |
** page contains no cells. This is an opportunity to make the tree
|
|
5318 |
** shallower by one level.
|
|
5319 |
*/
|
|
5320 |
static int balance_shallower(MemPage *pPage){
|
|
5321 |
MemPage *pChild; /* The only child page of pPage */
|
|
5322 |
Pgno pgnoChild; /* Page number for pChild */
|
|
5323 |
int rc = SQLITE_OK; /* Return code from subprocedures */
|
|
5324 |
BtShared *pBt; /* The main BTree structure */
|
|
5325 |
int mxCellPerPage; /* Maximum number of cells per page */
|
|
5326 |
u8 **apCell; /* All cells from pages being balanced */
|
|
5327 |
int *szCell; /* Local size of all cells */
|
|
5328 |
|
|
5329 |
assert( pPage->pParent==0 );
|
|
5330 |
assert( pPage->nCell==0 );
|
|
5331 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
5332 |
pBt = pPage->pBt;
|
|
5333 |
mxCellPerPage = MX_CELL(pBt);
|
|
5334 |
apCell = (u8**)sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
|
|
5335 |
if( apCell==0 ) return SQLITE_NOMEM;
|
|
5336 |
szCell = (int*)&apCell[mxCellPerPage];
|
|
5337 |
if( pPage->leaf ){
|
|
5338 |
/* The table is completely empty */
|
|
5339 |
TRACE(("BALANCE: empty table %d\n", pPage->pgno));
|
|
5340 |
}else{
|
|
5341 |
/* The root page is empty but has one child. Transfer the
|
|
5342 |
** information from that one child into the root page if it
|
|
5343 |
** will fit. This reduces the depth of the tree by one.
|
|
5344 |
**
|
|
5345 |
** If the root page is page 1, it has less space available than
|
|
5346 |
** its child (due to the 100 byte header that occurs at the beginning
|
|
5347 |
** of the database fle), so it might not be able to hold all of the
|
|
5348 |
** information currently contained in the child. If this is the
|
|
5349 |
** case, then do not do the transfer. Leave page 1 empty except
|
|
5350 |
** for the right-pointer to the child page. The child page becomes
|
|
5351 |
** the virtual root of the tree.
|
|
5352 |
*/
|
|
5353 |
pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
5354 |
assert( pgnoChild>0 );
|
|
5355 |
assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
|
|
5356 |
rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
|
|
5357 |
if( rc ) goto end_shallow_balance;
|
|
5358 |
if( pPage->pgno==1 ){
|
|
5359 |
rc = sqlite3BtreeInitPage(pChild, pPage);
|
|
5360 |
if( rc ) goto end_shallow_balance;
|
|
5361 |
assert( pChild->nOverflow==0 );
|
|
5362 |
if( pChild->nFree>=100 ){
|
|
5363 |
/* The child information will fit on the root page, so do the
|
|
5364 |
** copy */
|
|
5365 |
int i;
|
|
5366 |
zeroPage(pPage, pChild->aData[0]);
|
|
5367 |
for(i=0; i<pChild->nCell; i++){
|
|
5368 |
apCell[i] = findCell(pChild,i);
|
|
5369 |
szCell[i] = cellSizePtr(pChild, apCell[i]);
|
|
5370 |
}
|
|
5371 |
assemblePage(pPage, pChild->nCell, apCell, szCell);
|
|
5372 |
/* Copy the right-pointer of the child to the parent. */
|
|
5373 |
put4byte(&pPage->aData[pPage->hdrOffset+8],
|
|
5374 |
get4byte(&pChild->aData[pChild->hdrOffset+8]));
|
|
5375 |
freePage(pChild);
|
|
5376 |
TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
|
|
5377 |
}else{
|
|
5378 |
/* The child has more information that will fit on the root.
|
|
5379 |
** The tree is already balanced. Do nothing. */
|
|
5380 |
TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
|
|
5381 |
}
|
|
5382 |
}else{
|
|
5383 |
memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
|
|
5384 |
pPage->isInit = 0;
|
|
5385 |
pPage->pParent = 0;
|
|
5386 |
rc = sqlite3BtreeInitPage(pPage, 0);
|
|
5387 |
assert( rc==SQLITE_OK );
|
|
5388 |
freePage(pChild);
|
|
5389 |
TRACE(("BALANCE: transfer child %d into root %d\n",
|
|
5390 |
pChild->pgno, pPage->pgno));
|
|
5391 |
}
|
|
5392 |
rc = reparentChildPages(pPage);
|
|
5393 |
assert( pPage->nOverflow==0 );
|
|
5394 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
5395 |
if( pBt->autoVacuum ){
|
|
5396 |
int i;
|
|
5397 |
for(i=0; i<pPage->nCell; i++){
|
|
5398 |
rc = ptrmapPutOvfl(pPage, i);
|
|
5399 |
if( rc!=SQLITE_OK ){
|
|
5400 |
goto end_shallow_balance;
|
|
5401 |
}
|
|
5402 |
}
|
|
5403 |
}
|
|
5404 |
#endif
|
|
5405 |
releasePage(pChild);
|
|
5406 |
}
|
|
5407 |
end_shallow_balance:
|
|
5408 |
sqlite3_free(apCell);
|
|
5409 |
return rc;
|
|
5410 |
}
|
|
5411 |
|
|
5412 |
|
|
5413 |
/*
|
|
5414 |
** The root page is overfull
|
|
5415 |
**
|
|
5416 |
** When this happens, Create a new child page and copy the
|
|
5417 |
** contents of the root into the child. Then make the root
|
|
5418 |
** page an empty page with rightChild pointing to the new
|
|
5419 |
** child. Finally, call balance_internal() on the new child
|
|
5420 |
** to cause it to split.
|
|
5421 |
*/
|
|
5422 |
static int balance_deeper(MemPage *pPage){
|
|
5423 |
int rc; /* Return value from subprocedures */
|
|
5424 |
MemPage *pChild; /* Pointer to a new child page */
|
|
5425 |
Pgno pgnoChild; /* Page number of the new child page */
|
|
5426 |
BtShared *pBt; /* The BTree */
|
|
5427 |
int usableSize; /* Total usable size of a page */
|
|
5428 |
u8 *data; /* Content of the parent page */
|
|
5429 |
u8 *cdata; /* Content of the child page */
|
|
5430 |
int hdr; /* Offset to page header in parent */
|
|
5431 |
int brk; /* Offset to content of first cell in parent */
|
|
5432 |
|
|
5433 |
assert( pPage->pParent==0 );
|
|
5434 |
assert( pPage->nOverflow>0 );
|
|
5435 |
pBt = pPage->pBt;
|
|
5436 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
5437 |
rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
|
|
5438 |
if( rc ) return rc;
|
|
5439 |
assert( sqlite3PagerIswriteable(pChild->pDbPage) );
|
|
5440 |
usableSize = pBt->usableSize;
|
|
5441 |
data = pPage->aData;
|
|
5442 |
hdr = pPage->hdrOffset;
|
|
5443 |
brk = get2byte(&data[hdr+5]);
|
|
5444 |
cdata = pChild->aData;
|
|
5445 |
memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
|
|
5446 |
memcpy(&cdata[brk], &data[brk], usableSize-brk);
|
|
5447 |
assert( pChild->isInit==0 );
|
|
5448 |
rc = sqlite3BtreeInitPage(pChild, pPage);
|
|
5449 |
if( rc ) goto balancedeeper_out;
|
|
5450 |
memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
|
|
5451 |
pChild->nOverflow = pPage->nOverflow;
|
|
5452 |
if( pChild->nOverflow ){
|
|
5453 |
pChild->nFree = 0;
|
|
5454 |
}
|
|
5455 |
assert( pChild->nCell==pPage->nCell );
|
|
5456 |
zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
|
|
5457 |
put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
|
|
5458 |
TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
|
|
5459 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
5460 |
if( pBt->autoVacuum ){
|
|
5461 |
int i;
|
|
5462 |
rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
|
|
5463 |
if( rc ) goto balancedeeper_out;
|
|
5464 |
for(i=0; i<pChild->nCell; i++){
|
|
5465 |
rc = ptrmapPutOvfl(pChild, i);
|
|
5466 |
if( rc!=SQLITE_OK ){
|
|
5467 |
return rc;
|
|
5468 |
}
|
|
5469 |
}
|
|
5470 |
}
|
|
5471 |
#endif
|
|
5472 |
rc = balance_nonroot(pChild);
|
|
5473 |
|
|
5474 |
balancedeeper_out:
|
|
5475 |
releasePage(pChild);
|
|
5476 |
return rc;
|
|
5477 |
}
|
|
5478 |
|
|
5479 |
/*
|
|
5480 |
** Decide if the page pPage needs to be balanced. If balancing is
|
|
5481 |
** required, call the appropriate balancing routine.
|
|
5482 |
*/
|
|
5483 |
static int balance(MemPage *pPage, int insert){
|
|
5484 |
int rc = SQLITE_OK;
|
|
5485 |
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
5486 |
if( pPage->pParent==0 ){
|
|
5487 |
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
5488 |
if( rc==SQLITE_OK && pPage->nOverflow>0 ){
|
|
5489 |
rc = balance_deeper(pPage);
|
|
5490 |
}
|
|
5491 |
if( rc==SQLITE_OK && pPage->nCell==0 ){
|
|
5492 |
rc = balance_shallower(pPage);
|
|
5493 |
}
|
|
5494 |
}else{
|
|
5495 |
if( pPage->nOverflow>0 ||
|
|
5496 |
(!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
|
|
5497 |
rc = balance_nonroot(pPage);
|
|
5498 |
}
|
|
5499 |
}
|
|
5500 |
return rc;
|
|
5501 |
}
|
|
5502 |
|
|
5503 |
/*
|
|
5504 |
** This routine checks all cursors that point to table pgnoRoot.
|
|
5505 |
** If any of those cursors were opened with wrFlag==0 in a different
|
|
5506 |
** database connection (a database connection that shares the pager
|
|
5507 |
** cache with the current connection) and that other connection
|
|
5508 |
** is not in the ReadUncommmitted state, then this routine returns
|
|
5509 |
** SQLITE_LOCKED.
|
|
5510 |
**
|
|
5511 |
** In addition to checking for read-locks (where a read-lock
|
|
5512 |
** means a cursor opened with wrFlag==0) this routine also moves
|
|
5513 |
** all write cursors so that they are pointing to the
|
|
5514 |
** first Cell on the root page. This is necessary because an insert
|
|
5515 |
** or delete might change the number of cells on a page or delete
|
|
5516 |
** a page entirely and we do not want to leave any cursors
|
|
5517 |
** pointing to non-existant pages or cells.
|
|
5518 |
*/
|
|
5519 |
static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
|
|
5520 |
BtCursor *p;
|
|
5521 |
BtShared *pBt = pBtree->pBt;
|
|
5522 |
sqlite3 *db = pBtree->db;
|
|
5523 |
assert( sqlite3BtreeHoldsMutex(pBtree) );
|
|
5524 |
for(p=pBt->pCursor; p; p=p->pNext){
|
|
5525 |
if( p==pExclude ) continue;
|
|
5526 |
if( p->eState!=CURSOR_VALID ) continue;
|
|
5527 |
if( p->pgnoRoot!=pgnoRoot ) continue;
|
|
5528 |
if( p->wrFlag==0 ){
|
|
5529 |
sqlite3 *dbOther = p->pBtree->db;
|
|
5530 |
if( dbOther==0 ||
|
|
5531 |
(dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
|
|
5532 |
return SQLITE_LOCKED;
|
|
5533 |
}
|
|
5534 |
}else if( p->pPage->pgno!=p->pgnoRoot ){
|
|
5535 |
moveToRoot(p);
|
|
5536 |
}
|
|
5537 |
}
|
|
5538 |
return SQLITE_OK;
|
|
5539 |
}
|
|
5540 |
|
|
5541 |
/*
|
|
5542 |
** Insert a new record into the BTree. The key is given by (pKey,nKey)
|
|
5543 |
** and the data is given by (pData,nData). The cursor is used only to
|
|
5544 |
** define what table the record should be inserted into. The cursor
|
|
5545 |
** is left pointing at a random location.
|
|
5546 |
**
|
|
5547 |
** For an INTKEY table, only the nKey value of the key is used. pKey is
|
|
5548 |
** ignored. For a ZERODATA table, the pData and nData are both ignored.
|
|
5549 |
*/
|
|
5550 |
int sqlite3BtreeInsert(
|
|
5551 |
BtCursor *pCur, /* Insert data into the table of this cursor */
|
|
5552 |
const void *pKey, i64 nKey, /* The key of the new record */
|
|
5553 |
const void *pData, int nData, /* The data of the new record */
|
|
5554 |
int nZero, /* Number of extra 0 bytes to append to data */
|
|
5555 |
int appendBias /* True if this is likely an append */
|
|
5556 |
){
|
|
5557 |
int rc;
|
|
5558 |
int loc;
|
|
5559 |
int szNew;
|
|
5560 |
MemPage *pPage;
|
|
5561 |
Btree *p = pCur->pBtree;
|
|
5562 |
BtShared *pBt = p->pBt;
|
|
5563 |
unsigned char *oldCell;
|
|
5564 |
unsigned char *newCell = 0;
|
|
5565 |
|
|
5566 |
assert( cursorHoldsMutex(pCur) );
|
|
5567 |
if( pBt->inTransaction!=TRANS_WRITE ){
|
|
5568 |
/* Must start a transaction before doing an insert */
|
|
5569 |
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
5570 |
return rc;
|
|
5571 |
}
|
|
5572 |
assert( !pBt->readOnly );
|
|
5573 |
if( !pCur->wrFlag ){
|
|
5574 |
return SQLITE_PERM; /* Cursor not open for writing */
|
|
5575 |
}
|
|
5576 |
if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
|
|
5577 |
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
5578 |
}
|
|
5579 |
if( pCur->eState==CURSOR_FAULT ){
|
|
5580 |
return pCur->skip;
|
|
5581 |
}
|
|
5582 |
|
|
5583 |
/* Save the positions of any other cursors open on this table */
|
|
5584 |
clearCursorPosition(pCur);
|
|
5585 |
if(
|
|
5586 |
SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
|
|
5587 |
SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
|
|
5588 |
){
|
|
5589 |
return rc;
|
|
5590 |
}
|
|
5591 |
|
|
5592 |
pPage = pCur->pPage;
|
|
5593 |
assert( pPage->intKey || nKey>=0 );
|
|
5594 |
assert( pPage->leaf || !pPage->leafData );
|
|
5595 |
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
|
|
5596 |
pCur->pgnoRoot, nKey, nData, pPage->pgno,
|
|
5597 |
loc==0 ? "overwrite" : "new entry"));
|
|
5598 |
assert( pPage->isInit );
|
|
5599 |
newCell = (unsigned char*)sqlite3_malloc( MX_CELL_SIZE(pBt) );
|
|
5600 |
if( newCell==0 ) return SQLITE_NOMEM;
|
|
5601 |
rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
|
|
5602 |
if( rc ) goto end_insert;
|
|
5603 |
assert( szNew==cellSizePtr(pPage, newCell) );
|
|
5604 |
assert( szNew<=MX_CELL_SIZE(pBt) );
|
|
5605 |
if( loc==0 && CURSOR_VALID==pCur->eState ){
|
|
5606 |
int szOld;
|
|
5607 |
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
5608 |
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
5609 |
if( rc ){
|
|
5610 |
goto end_insert;
|
|
5611 |
}
|
|
5612 |
oldCell = findCell(pPage, pCur->idx);
|
|
5613 |
if( !pPage->leaf ){
|
|
5614 |
memcpy(newCell, oldCell, 4);
|
|
5615 |
}
|
|
5616 |
szOld = cellSizePtr(pPage, oldCell);
|
|
5617 |
rc = clearCell(pPage, oldCell);
|
|
5618 |
if( rc ) goto end_insert;
|
|
5619 |
dropCell(pPage, pCur->idx, szOld);
|
|
5620 |
}else if( loc<0 && pPage->nCell>0 ){
|
|
5621 |
assert( pPage->leaf );
|
|
5622 |
pCur->idx++;
|
|
5623 |
pCur->info.nSize = 0;
|
|
5624 |
}else{
|
|
5625 |
assert( pPage->leaf );
|
|
5626 |
}
|
|
5627 |
rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
|
|
5628 |
if( rc!=SQLITE_OK ) goto end_insert;
|
|
5629 |
rc = balance(pPage, 1);
|
|
5630 |
/* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
|
|
5631 |
/* fflush(stdout); */
|
|
5632 |
if( rc==SQLITE_OK ){
|
|
5633 |
moveToRoot(pCur);
|
|
5634 |
}
|
|
5635 |
end_insert:
|
|
5636 |
sqlite3_free(newCell);
|
|
5637 |
return rc;
|
|
5638 |
}
|
|
5639 |
|
|
5640 |
/*
|
|
5641 |
** Delete the entry that the cursor is pointing to. The cursor
|
|
5642 |
** is left pointing at a random location.
|
|
5643 |
*/
|
|
5644 |
int sqlite3BtreeDelete(BtCursor *pCur){
|
|
5645 |
MemPage *pPage = pCur->pPage;
|
|
5646 |
unsigned char *pCell;
|
|
5647 |
int rc;
|
|
5648 |
Pgno pgnoChild = 0;
|
|
5649 |
Btree *p = pCur->pBtree;
|
|
5650 |
BtShared *pBt = p->pBt;
|
|
5651 |
|
|
5652 |
assert( cursorHoldsMutex(pCur) );
|
|
5653 |
assert( pPage->isInit );
|
|
5654 |
if( pBt->inTransaction!=TRANS_WRITE ){
|
|
5655 |
/* Must start a transaction before doing a delete */
|
|
5656 |
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
5657 |
return rc;
|
|
5658 |
}
|
|
5659 |
assert( !pBt->readOnly );
|
|
5660 |
if( pCur->eState==CURSOR_FAULT ){
|
|
5661 |
return pCur->skip;
|
|
5662 |
}
|
|
5663 |
if( pCur->idx >= pPage->nCell ){
|
|
5664 |
return SQLITE_ERROR; /* The cursor is not pointing to anything */
|
|
5665 |
}
|
|
5666 |
if( !pCur->wrFlag ){
|
|
5667 |
return SQLITE_PERM; /* Did not open this cursor for writing */
|
|
5668 |
}
|
|
5669 |
if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
|
|
5670 |
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
5671 |
}
|
|
5672 |
|
|
5673 |
/* Restore the current cursor position (a no-op if the cursor is not in
|
|
5674 |
** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
|
|
5675 |
** open on the same table. Then call sqlite3PagerWrite() on the page
|
|
5676 |
** that the entry will be deleted from.
|
|
5677 |
*/
|
|
5678 |
if(
|
|
5679 |
(rc = restoreOrClearCursorPosition(pCur))!=0 ||
|
|
5680 |
(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
|
|
5681 |
(rc = sqlite3PagerWrite(pPage->pDbPage))!=0
|
|
5682 |
){
|
|
5683 |
return rc;
|
|
5684 |
}
|
|
5685 |
|
|
5686 |
/* Locate the cell within its page and leave pCell pointing to the
|
|
5687 |
** data. The clearCell() call frees any overflow pages associated with the
|
|
5688 |
** cell. The cell itself is still intact.
|
|
5689 |
*/
|
|
5690 |
pCell = findCell(pPage, pCur->idx);
|
|
5691 |
if( !pPage->leaf ){
|
|
5692 |
pgnoChild = get4byte(pCell);
|
|
5693 |
}
|
|
5694 |
rc = clearCell(pPage, pCell);
|
|
5695 |
if( rc ){
|
|
5696 |
return rc;
|
|
5697 |
}
|
|
5698 |
|
|
5699 |
if( !pPage->leaf ){
|
|
5700 |
/*
|
|
5701 |
** The entry we are about to delete is not a leaf so if we do not
|
|
5702 |
** do something we will leave a hole on an internal page.
|
|
5703 |
** We have to fill the hole by moving in a cell from a leaf. The
|
|
5704 |
** next Cell after the one to be deleted is guaranteed to exist and
|
|
5705 |
** to be a leaf so we can use it.
|
|
5706 |
*/
|
|
5707 |
BtCursor leafCur;
|
|
5708 |
unsigned char *pNext;
|
|
5709 |
int szNext; /* The compiler warning is wrong: szNext is always
|
|
5710 |
** initialized before use. Adding an extra initialization
|
|
5711 |
** to silence the compiler slows down the code. */
|
|
5712 |
int notUsed;
|
|
5713 |
unsigned char *tempCell = 0;
|
|
5714 |
assert( !pPage->leafData );
|
|
5715 |
sqlite3BtreeGetTempCursor(pCur, &leafCur);
|
|
5716 |
rc = sqlite3BtreeNext(&leafCur, ¬Used);
|
|
5717 |
if( rc==SQLITE_OK ){
|
|
5718 |
rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
|
|
5719 |
}
|
|
5720 |
if( rc==SQLITE_OK ){
|
|
5721 |
TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
|
|
5722 |
pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
|
|
5723 |
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
|
|
5724 |
pNext = findCell(leafCur.pPage, leafCur.idx);
|
|
5725 |
szNext = cellSizePtr(leafCur.pPage, pNext);
|
|
5726 |
assert( MX_CELL_SIZE(pBt)>=szNext+4 );
|
|
5727 |
tempCell = (unsigned char*)sqlite3_malloc( MX_CELL_SIZE(pBt) );
|
|
5728 |
if( tempCell==0 ){
|
|
5729 |
rc = SQLITE_NOMEM;
|
|
5730 |
}
|
|
5731 |
}
|
|
5732 |
if( rc==SQLITE_OK ){
|
|
5733 |
rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
|
|
5734 |
}
|
|
5735 |
if( rc==SQLITE_OK ){
|
|
5736 |
put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
|
|
5737 |
rc = balance(pPage, 0);
|
|
5738 |
}
|
|
5739 |
if( rc==SQLITE_OK ){
|
|
5740 |
dropCell(leafCur.pPage, leafCur.idx, szNext);
|
|
5741 |
rc = balance(leafCur.pPage, 0);
|
|
5742 |
}
|
|
5743 |
sqlite3_free(tempCell);
|
|
5744 |
sqlite3BtreeReleaseTempCursor(&leafCur);
|
|
5745 |
}else{
|
|
5746 |
TRACE(("DELETE: table=%d delete from leaf %d\n",
|
|
5747 |
pCur->pgnoRoot, pPage->pgno));
|
|
5748 |
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
|
|
5749 |
rc = balance(pPage, 0);
|
|
5750 |
}
|
|
5751 |
if( rc==SQLITE_OK ){
|
|
5752 |
moveToRoot(pCur);
|
|
5753 |
}
|
|
5754 |
return rc;
|
|
5755 |
}
|
|
5756 |
|
|
5757 |
/*
|
|
5758 |
** Create a new BTree table. Write into *piTable the page
|
|
5759 |
** number for the root page of the new table.
|
|
5760 |
**
|
|
5761 |
** The type of type is determined by the flags parameter. Only the
|
|
5762 |
** following values of flags are currently in use. Other values for
|
|
5763 |
** flags might not work:
|
|
5764 |
**
|
|
5765 |
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
|
|
5766 |
** BTREE_ZERODATA Used for SQL indices
|
|
5767 |
*/
|
|
5768 |
static int btreeCreateTable(Btree *p, int *piTable, int flags){
|
|
5769 |
BtShared *pBt = p->pBt;
|
|
5770 |
MemPage *pRoot;
|
|
5771 |
Pgno pgnoRoot;
|
|
5772 |
int rc;
|
|
5773 |
|
|
5774 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
5775 |
if( pBt->inTransaction!=TRANS_WRITE ){
|
|
5776 |
/* Must start a transaction first */
|
|
5777 |
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
5778 |
return rc;
|
|
5779 |
}
|
|
5780 |
assert( !pBt->readOnly );
|
|
5781 |
|
|
5782 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
5783 |
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
|
|
5784 |
if( rc ){
|
|
5785 |
return rc;
|
|
5786 |
}
|
|
5787 |
#else
|
|
5788 |
if( pBt->autoVacuum ){
|
|
5789 |
Pgno pgnoMove; /* Move a page here to make room for the root-page */
|
|
5790 |
MemPage *pPageMove; /* The page to move to. */
|
|
5791 |
|
|
5792 |
/* Creating a new table may probably require moving an existing database
|
|
5793 |
** to make room for the new tables root page. In case this page turns
|
|
5794 |
** out to be an overflow page, delete all overflow page-map caches
|
|
5795 |
** held by open cursors.
|
|
5796 |
*/
|
|
5797 |
invalidateAllOverflowCache(pBt);
|
|
5798 |
|
|
5799 |
/* Read the value of meta[3] from the database to determine where the
|
|
5800 |
** root page of the new table should go. meta[3] is the largest root-page
|
|
5801 |
** created so far, so the new root-page is (meta[3]+1).
|
|
5802 |
*/
|
|
5803 |
rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
|
|
5804 |
if( rc!=SQLITE_OK ){
|
|
5805 |
return rc;
|
|
5806 |
}
|
|
5807 |
pgnoRoot++;
|
|
5808 |
|
|
5809 |
/* The new root-page may not be allocated on a pointer-map page, or the
|
|
5810 |
** PENDING_BYTE page.
|
|
5811 |
*/
|
|
5812 |
if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
|
|
5813 |
pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
|
|
5814 |
pgnoRoot++;
|
|
5815 |
}
|
|
5816 |
assert( pgnoRoot>=3 );
|
|
5817 |
|
|
5818 |
/* Allocate a page. The page that currently resides at pgnoRoot will
|
|
5819 |
** be moved to the allocated page (unless the allocated page happens
|
|
5820 |
** to reside at pgnoRoot).
|
|
5821 |
*/
|
|
5822 |
rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
|
|
5823 |
if( rc!=SQLITE_OK ){
|
|
5824 |
return rc;
|
|
5825 |
}
|
|
5826 |
|
|
5827 |
if( pgnoMove!=pgnoRoot ){
|
|
5828 |
/* pgnoRoot is the page that will be used for the root-page of
|
|
5829 |
** the new table (assuming an error did not occur). But we were
|
|
5830 |
** allocated pgnoMove. If required (i.e. if it was not allocated
|
|
5831 |
** by extending the file), the current page at position pgnoMove
|
|
5832 |
** is already journaled.
|
|
5833 |
*/
|
|
5834 |
u8 eType;
|
|
5835 |
Pgno iPtrPage;
|
|
5836 |
|
|
5837 |
releasePage(pPageMove);
|
|
5838 |
|
|
5839 |
/* Move the page currently at pgnoRoot to pgnoMove. */
|
|
5840 |
rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
|
|
5841 |
if( rc!=SQLITE_OK ){
|
|
5842 |
return rc;
|
|
5843 |
}
|
|
5844 |
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
|
|
5845 |
if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
|
|
5846 |
releasePage(pRoot);
|
|
5847 |
return rc;
|
|
5848 |
}
|
|
5849 |
assert( eType!=PTRMAP_ROOTPAGE );
|
|
5850 |
assert( eType!=PTRMAP_FREEPAGE );
|
|
5851 |
rc = sqlite3PagerWrite(pRoot->pDbPage);
|
|
5852 |
if( rc!=SQLITE_OK ){
|
|
5853 |
releasePage(pRoot);
|
|
5854 |
return rc;
|
|
5855 |
}
|
|
5856 |
rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
|
|
5857 |
releasePage(pRoot);
|
|
5858 |
|
|
5859 |
/* Obtain the page at pgnoRoot */
|
|
5860 |
if( rc!=SQLITE_OK ){
|
|
5861 |
return rc;
|
|
5862 |
}
|
|
5863 |
rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
|
|
5864 |
if( rc!=SQLITE_OK ){
|
|
5865 |
return rc;
|
|
5866 |
}
|
|
5867 |
rc = sqlite3PagerWrite(pRoot->pDbPage);
|
|
5868 |
if( rc!=SQLITE_OK ){
|
|
5869 |
releasePage(pRoot);
|
|
5870 |
return rc;
|
|
5871 |
}
|
|
5872 |
}else{
|
|
5873 |
pRoot = pPageMove;
|
|
5874 |
}
|
|
5875 |
|
|
5876 |
/* Update the pointer-map and meta-data with the new root-page number. */
|
|
5877 |
rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
|
|
5878 |
if( rc ){
|
|
5879 |
releasePage(pRoot);
|
|
5880 |
return rc;
|
|
5881 |
}
|
|
5882 |
rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
|
|
5883 |
if( rc ){
|
|
5884 |
releasePage(pRoot);
|
|
5885 |
return rc;
|
|
5886 |
}
|
|
5887 |
|
|
5888 |
}else{
|
|
5889 |
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
|
|
5890 |
if( rc ) return rc;
|
|
5891 |
}
|
|
5892 |
#endif
|
|
5893 |
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
|
|
5894 |
zeroPage(pRoot, flags | PTF_LEAF);
|
|
5895 |
sqlite3PagerUnref(pRoot->pDbPage);
|
|
5896 |
*piTable = (int)pgnoRoot;
|
|
5897 |
return SQLITE_OK;
|
|
5898 |
}
|
|
5899 |
int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
|
|
5900 |
int rc;
|
|
5901 |
sqlite3BtreeEnter(p);
|
|
5902 |
p->pBt->db = p->db;
|
|
5903 |
rc = btreeCreateTable(p, piTable, flags);
|
|
5904 |
sqlite3BtreeLeave(p);
|
|
5905 |
return rc;
|
|
5906 |
}
|
|
5907 |
|
|
5908 |
/*
|
|
5909 |
** Erase the given database page and all its children. Return
|
|
5910 |
** the page to the freelist.
|
|
5911 |
*/
|
|
5912 |
static int clearDatabasePage(
|
|
5913 |
BtShared *pBt, /* The BTree that contains the table */
|
|
5914 |
Pgno pgno, /* Page number to clear */
|
|
5915 |
MemPage *pParent, /* Parent page. NULL for the root */
|
|
5916 |
int freePageFlag /* Deallocate page if true */
|
|
5917 |
){
|
|
5918 |
MemPage *pPage = 0;
|
|
5919 |
int rc;
|
|
5920 |
unsigned char *pCell;
|
|
5921 |
int i;
|
|
5922 |
|
|
5923 |
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
5924 |
if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
|
|
5925 |
return SQLITE_CORRUPT_BKPT;
|
|
5926 |
}
|
|
5927 |
|
|
5928 |
rc = getAndInitPage(pBt, pgno, &pPage, pParent);
|
|
5929 |
if( rc ) goto cleardatabasepage_out;
|
|
5930 |
for(i=0; i<pPage->nCell; i++){
|
|
5931 |
pCell = findCell(pPage, i);
|
|
5932 |
if( !pPage->leaf ){
|
|
5933 |
rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
|
|
5934 |
if( rc ) goto cleardatabasepage_out;
|
|
5935 |
}
|
|
5936 |
rc = clearCell(pPage, pCell);
|
|
5937 |
if( rc ) goto cleardatabasepage_out;
|
|
5938 |
}
|
|
5939 |
if( !pPage->leaf ){
|
|
5940 |
rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
|
|
5941 |
if( rc ) goto cleardatabasepage_out;
|
|
5942 |
}
|
|
5943 |
if( freePageFlag ){
|
|
5944 |
rc = freePage(pPage);
|
|
5945 |
}else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
|
|
5946 |
zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
|
|
5947 |
}
|
|
5948 |
|
|
5949 |
cleardatabasepage_out:
|
|
5950 |
releasePage(pPage);
|
|
5951 |
return rc;
|
|
5952 |
}
|
|
5953 |
|
|
5954 |
/*
|
|
5955 |
** Delete all information from a single table in the database. iTable is
|
|
5956 |
** the page number of the root of the table. After this routine returns,
|
|
5957 |
** the root page is empty, but still exists.
|
|
5958 |
**
|
|
5959 |
** This routine will fail with SQLITE_LOCKED if there are any open
|
|
5960 |
** read cursors on the table. Open write cursors are moved to the
|
|
5961 |
** root of the table.
|
|
5962 |
*/
|
|
5963 |
int sqlite3BtreeClearTable(Btree *p, int iTable){
|
|
5964 |
int rc;
|
|
5965 |
BtShared *pBt = p->pBt;
|
|
5966 |
sqlite3BtreeEnter(p);
|
|
5967 |
pBt->db = p->db;
|
|
5968 |
if( p->inTrans!=TRANS_WRITE ){
|
|
5969 |
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
5970 |
}else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
|
|
5971 |
/* nothing to do */
|
|
5972 |
}else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
|
|
5973 |
/* nothing to do */
|
|
5974 |
}else{
|
|
5975 |
rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
|
|
5976 |
}
|
|
5977 |
sqlite3BtreeLeave(p);
|
|
5978 |
return rc;
|
|
5979 |
}
|
|
5980 |
|
|
5981 |
/*
|
|
5982 |
** Erase all information in a table and add the root of the table to
|
|
5983 |
** the freelist. Except, the root of the principle table (the one on
|
|
5984 |
** page 1) is never added to the freelist.
|
|
5985 |
**
|
|
5986 |
** This routine will fail with SQLITE_LOCKED if there are any open
|
|
5987 |
** cursors on the table.
|
|
5988 |
**
|
|
5989 |
** If AUTOVACUUM is enabled and the page at iTable is not the last
|
|
5990 |
** root page in the database file, then the last root page
|
|
5991 |
** in the database file is moved into the slot formerly occupied by
|
|
5992 |
** iTable and that last slot formerly occupied by the last root page
|
|
5993 |
** is added to the freelist instead of iTable. In this say, all
|
|
5994 |
** root pages are kept at the beginning of the database file, which
|
|
5995 |
** is necessary for AUTOVACUUM to work right. *piMoved is set to the
|
|
5996 |
** page number that used to be the last root page in the file before
|
|
5997 |
** the move. If no page gets moved, *piMoved is set to 0.
|
|
5998 |
** The last root page is recorded in meta[3] and the value of
|
|
5999 |
** meta[3] is updated by this procedure.
|
|
6000 |
*/
|
|
6001 |
static int btreeDropTable(Btree *p, int iTable, int *piMoved){
|
|
6002 |
int rc;
|
|
6003 |
MemPage *pPage = 0;
|
|
6004 |
BtShared *pBt = p->pBt;
|
|
6005 |
|
|
6006 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
6007 |
if( p->inTrans!=TRANS_WRITE ){
|
|
6008 |
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
6009 |
}
|
|
6010 |
|
|
6011 |
/* It is illegal to drop a table if any cursors are open on the
|
|
6012 |
** database. This is because in auto-vacuum mode the backend may
|
|
6013 |
** need to move another root-page to fill a gap left by the deleted
|
|
6014 |
** root page. If an open cursor was using this page a problem would
|
|
6015 |
** occur.
|
|
6016 |
*/
|
|
6017 |
if( pBt->pCursor ){
|
|
6018 |
return SQLITE_LOCKED;
|
|
6019 |
}
|
|
6020 |
|
|
6021 |
rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
|
|
6022 |
if( rc ) return rc;
|
|
6023 |
rc = sqlite3BtreeClearTable(p, iTable);
|
|
6024 |
if( rc ){
|
|
6025 |
releasePage(pPage);
|
|
6026 |
return rc;
|
|
6027 |
}
|
|
6028 |
|
|
6029 |
*piMoved = 0;
|
|
6030 |
|
|
6031 |
if( iTable>1 ){
|
|
6032 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
6033 |
rc = freePage(pPage);
|
|
6034 |
releasePage(pPage);
|
|
6035 |
#else
|
|
6036 |
if( pBt->autoVacuum ){
|
|
6037 |
Pgno maxRootPgno;
|
|
6038 |
rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
|
|
6039 |
if( rc!=SQLITE_OK ){
|
|
6040 |
releasePage(pPage);
|
|
6041 |
return rc;
|
|
6042 |
}
|
|
6043 |
|
|
6044 |
if( iTable==maxRootPgno ){
|
|
6045 |
/* If the table being dropped is the table with the largest root-page
|
|
6046 |
** number in the database, put the root page on the free list.
|
|
6047 |
*/
|
|
6048 |
rc = freePage(pPage);
|
|
6049 |
releasePage(pPage);
|
|
6050 |
if( rc!=SQLITE_OK ){
|
|
6051 |
return rc;
|
|
6052 |
}
|
|
6053 |
}else{
|
|
6054 |
/* The table being dropped does not have the largest root-page
|
|
6055 |
** number in the database. So move the page that does into the
|
|
6056 |
** gap left by the deleted root-page.
|
|
6057 |
*/
|
|
6058 |
MemPage *pMove;
|
|
6059 |
releasePage(pPage);
|
|
6060 |
rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
|
|
6061 |
if( rc!=SQLITE_OK ){
|
|
6062 |
return rc;
|
|
6063 |
}
|
|
6064 |
rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
|
|
6065 |
releasePage(pMove);
|
|
6066 |
if( rc!=SQLITE_OK ){
|
|
6067 |
return rc;
|
|
6068 |
}
|
|
6069 |
rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
|
|
6070 |
if( rc!=SQLITE_OK ){
|
|
6071 |
return rc;
|
|
6072 |
}
|
|
6073 |
rc = freePage(pMove);
|
|
6074 |
releasePage(pMove);
|
|
6075 |
if( rc!=SQLITE_OK ){
|
|
6076 |
return rc;
|
|
6077 |
}
|
|
6078 |
*piMoved = maxRootPgno;
|
|
6079 |
}
|
|
6080 |
|
|
6081 |
/* Set the new 'max-root-page' value in the database header. This
|
|
6082 |
** is the old value less one, less one more if that happens to
|
|
6083 |
** be a root-page number, less one again if that is the
|
|
6084 |
** PENDING_BYTE_PAGE.
|
|
6085 |
*/
|
|
6086 |
maxRootPgno--;
|
|
6087 |
if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
|
|
6088 |
maxRootPgno--;
|
|
6089 |
}
|
|
6090 |
if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
|
|
6091 |
maxRootPgno--;
|
|
6092 |
}
|
|
6093 |
assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
6094 |
|
|
6095 |
rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
|
|
6096 |
}else{
|
|
6097 |
rc = freePage(pPage);
|
|
6098 |
releasePage(pPage);
|
|
6099 |
}
|
|
6100 |
#endif
|
|
6101 |
}else{
|
|
6102 |
/* If sqlite3BtreeDropTable was called on page 1. */
|
|
6103 |
zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
|
|
6104 |
releasePage(pPage);
|
|
6105 |
}
|
|
6106 |
return rc;
|
|
6107 |
}
|
|
6108 |
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
|
|
6109 |
int rc;
|
|
6110 |
sqlite3BtreeEnter(p);
|
|
6111 |
p->pBt->db = p->db;
|
|
6112 |
rc = btreeDropTable(p, iTable, piMoved);
|
|
6113 |
sqlite3BtreeLeave(p);
|
|
6114 |
return rc;
|
|
6115 |
}
|
|
6116 |
|
|
6117 |
|
|
6118 |
/*
|
|
6119 |
** Read the meta-information out of a database file. Meta[0]
|
|
6120 |
** is the number of free pages currently in the database. Meta[1]
|
|
6121 |
** through meta[15] are available for use by higher layers. Meta[0]
|
|
6122 |
** is read-only, the others are read/write.
|
|
6123 |
**
|
|
6124 |
** The schema layer numbers meta values differently. At the schema
|
|
6125 |
** layer (and the SetCookie and ReadCookie opcodes) the number of
|
|
6126 |
** free pages is not visible. So Cookie[0] is the same as Meta[1].
|
|
6127 |
*/
|
|
6128 |
int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
|
|
6129 |
DbPage *pDbPage;
|
|
6130 |
int rc;
|
|
6131 |
unsigned char *pP1;
|
|
6132 |
BtShared *pBt = p->pBt;
|
|
6133 |
|
|
6134 |
sqlite3BtreeEnter(p);
|
|
6135 |
pBt->db = p->db;
|
|
6136 |
|
|
6137 |
/* Reading a meta-data value requires a read-lock on page 1 (and hence
|
|
6138 |
** the sqlite_master table. We grab this lock regardless of whether or
|
|
6139 |
** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
|
|
6140 |
** 1 is treated as a special case by queryTableLock() and lockTable()).
|
|
6141 |
*/
|
|
6142 |
rc = queryTableLock(p, 1, READ_LOCK);
|
|
6143 |
if( rc!=SQLITE_OK ){
|
|
6144 |
sqlite3BtreeLeave(p);
|
|
6145 |
return rc;
|
|
6146 |
}
|
|
6147 |
|
|
6148 |
assert( idx>=0 && idx<=15 );
|
|
6149 |
rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
|
|
6150 |
if( rc ){
|
|
6151 |
sqlite3BtreeLeave(p);
|
|
6152 |
return rc;
|
|
6153 |
}
|
|
6154 |
pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
|
|
6155 |
*pMeta = get4byte(&pP1[36 + idx*4]);
|
|
6156 |
sqlite3PagerUnref(pDbPage);
|
|
6157 |
|
|
6158 |
/* If autovacuumed is disabled in this build but we are trying to
|
|
6159 |
** access an autovacuumed database, then make the database readonly.
|
|
6160 |
*/
|
|
6161 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
6162 |
if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
|
|
6163 |
#endif
|
|
6164 |
|
|
6165 |
/* Grab the read-lock on page 1. */
|
|
6166 |
rc = lockTable(p, 1, READ_LOCK);
|
|
6167 |
sqlite3BtreeLeave(p);
|
|
6168 |
return rc;
|
|
6169 |
}
|
|
6170 |
|
|
6171 |
/*
|
|
6172 |
** Write meta-information back into the database. Meta[0] is
|
|
6173 |
** read-only and may not be written.
|
|
6174 |
*/
|
|
6175 |
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
|
|
6176 |
BtShared *pBt = p->pBt;
|
|
6177 |
unsigned char *pP1;
|
|
6178 |
int rc;
|
|
6179 |
assert( idx>=1 && idx<=15 );
|
|
6180 |
sqlite3BtreeEnter(p);
|
|
6181 |
pBt->db = p->db;
|
|
6182 |
if( p->inTrans!=TRANS_WRITE ){
|
|
6183 |
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
6184 |
}else{
|
|
6185 |
assert( pBt->pPage1!=0 );
|
|
6186 |
pP1 = pBt->pPage1->aData;
|
|
6187 |
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
6188 |
if( rc==SQLITE_OK ){
|
|
6189 |
put4byte(&pP1[36 + idx*4], iMeta);
|
|
6190 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6191 |
if( idx==7 ){
|
|
6192 |
assert( pBt->autoVacuum || iMeta==0 );
|
|
6193 |
assert( iMeta==0 || iMeta==1 );
|
|
6194 |
pBt->incrVacuum = iMeta;
|
|
6195 |
}
|
|
6196 |
#endif
|
|
6197 |
}
|
|
6198 |
}
|
|
6199 |
sqlite3BtreeLeave(p);
|
|
6200 |
return rc;
|
|
6201 |
}
|
|
6202 |
|
|
6203 |
/*
|
|
6204 |
** Return the flag byte at the beginning of the page that the cursor
|
|
6205 |
** is currently pointing to.
|
|
6206 |
*/
|
|
6207 |
int sqlite3BtreeFlags(BtCursor *pCur){
|
|
6208 |
/* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
|
|
6209 |
** restoreOrClearCursorPosition() here.
|
|
6210 |
*/
|
|
6211 |
MemPage *pPage = pCur->pPage;
|
|
6212 |
assert( cursorHoldsMutex(pCur) );
|
|
6213 |
assert( pPage->pBt==pCur->pBt );
|
|
6214 |
return pPage ? pPage->aData[pPage->hdrOffset] : 0;
|
|
6215 |
}
|
|
6216 |
|
|
6217 |
|
|
6218 |
/*
|
|
6219 |
** Return the pager associated with a BTree. This routine is used for
|
|
6220 |
** testing and debugging only.
|
|
6221 |
*/
|
|
6222 |
Pager *sqlite3BtreePager(Btree *p){
|
|
6223 |
return p->pBt->pPager;
|
|
6224 |
}
|
|
6225 |
|
|
6226 |
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
6227 |
/*
|
|
6228 |
** Append a message to the error message string.
|
|
6229 |
*/
|
|
6230 |
static void checkAppendMsg(
|
|
6231 |
IntegrityCk *pCheck,
|
|
6232 |
char *zMsg1,
|
|
6233 |
const char *zFormat,
|
|
6234 |
...
|
|
6235 |
){
|
|
6236 |
va_list ap;
|
|
6237 |
char *zMsg2;
|
|
6238 |
if( !pCheck->mxErr ) return;
|
|
6239 |
pCheck->mxErr--;
|
|
6240 |
pCheck->nErr++;
|
|
6241 |
va_start(ap, zFormat);
|
|
6242 |
zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
|
|
6243 |
va_end(ap);
|
|
6244 |
if( zMsg1==0 ) zMsg1 = "";
|
|
6245 |
if( pCheck->zErrMsg ){
|
|
6246 |
char *zOld = pCheck->zErrMsg;
|
|
6247 |
pCheck->zErrMsg = 0;
|
|
6248 |
sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
|
|
6249 |
sqlite3_free(zOld);
|
|
6250 |
}else{
|
|
6251 |
sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
|
|
6252 |
}
|
|
6253 |
sqlite3_free(zMsg2);
|
|
6254 |
}
|
|
6255 |
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
6256 |
|
|
6257 |
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
6258 |
/*
|
|
6259 |
** Add 1 to the reference count for page iPage. If this is the second
|
|
6260 |
** reference to the page, add an error message to pCheck->zErrMsg.
|
|
6261 |
** Return 1 if there are 2 ore more references to the page and 0 if
|
|
6262 |
** if this is the first reference to the page.
|
|
6263 |
**
|
|
6264 |
** Also check that the page number is in bounds.
|
|
6265 |
*/
|
|
6266 |
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
|
|
6267 |
if( iPage==0 ) return 1;
|
|
6268 |
if( iPage>pCheck->nPage || iPage<0 ){
|
|
6269 |
checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
|
|
6270 |
return 1;
|
|
6271 |
}
|
|
6272 |
if( pCheck->anRef[iPage]==1 ){
|
|
6273 |
checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
|
|
6274 |
return 1;
|
|
6275 |
}
|
|
6276 |
return (pCheck->anRef[iPage]++)>1;
|
|
6277 |
}
|
|
6278 |
|
|
6279 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6280 |
/*
|
|
6281 |
** Check that the entry in the pointer-map for page iChild maps to
|
|
6282 |
** page iParent, pointer type ptrType. If not, append an error message
|
|
6283 |
** to pCheck.
|
|
6284 |
*/
|
|
6285 |
static void checkPtrmap(
|
|
6286 |
IntegrityCk *pCheck, /* Integrity check context */
|
|
6287 |
Pgno iChild, /* Child page number */
|
|
6288 |
u8 eType, /* Expected pointer map type */
|
|
6289 |
Pgno iParent, /* Expected pointer map parent page number */
|
|
6290 |
char *zContext /* Context description (used for error msg) */
|
|
6291 |
){
|
|
6292 |
int rc;
|
|
6293 |
u8 ePtrmapType;
|
|
6294 |
Pgno iPtrmapParent;
|
|
6295 |
|
|
6296 |
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
|
|
6297 |
if( rc!=SQLITE_OK ){
|
|
6298 |
checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
|
|
6299 |
return;
|
|
6300 |
}
|
|
6301 |
|
|
6302 |
if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
|
|
6303 |
checkAppendMsg(pCheck, zContext,
|
|
6304 |
"Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
|
|
6305 |
iChild, eType, iParent, ePtrmapType, iPtrmapParent);
|
|
6306 |
}
|
|
6307 |
}
|
|
6308 |
#endif
|
|
6309 |
|
|
6310 |
/*
|
|
6311 |
** Check the integrity of the freelist or of an overflow page list.
|
|
6312 |
** Verify that the number of pages on the list is N.
|
|
6313 |
*/
|
|
6314 |
static void checkList(
|
|
6315 |
IntegrityCk *pCheck, /* Integrity checking context */
|
|
6316 |
int isFreeList, /* True for a freelist. False for overflow page list */
|
|
6317 |
int iPage, /* Page number for first page in the list */
|
|
6318 |
int N, /* Expected number of pages in the list */
|
|
6319 |
char *zContext /* Context for error messages */
|
|
6320 |
){
|
|
6321 |
int i;
|
|
6322 |
int expected = N;
|
|
6323 |
int iFirst = iPage;
|
|
6324 |
while( N-- > 0 && pCheck->mxErr ){
|
|
6325 |
DbPage *pOvflPage;
|
|
6326 |
unsigned char *pOvflData;
|
|
6327 |
if( iPage<1 ){
|
|
6328 |
checkAppendMsg(pCheck, zContext,
|
|
6329 |
"%d of %d pages missing from overflow list starting at %d",
|
|
6330 |
N+1, expected, iFirst);
|
|
6331 |
break;
|
|
6332 |
}
|
|
6333 |
if( checkRef(pCheck, iPage, zContext) ) break;
|
|
6334 |
if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
|
|
6335 |
checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
|
|
6336 |
break;
|
|
6337 |
}
|
|
6338 |
pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
|
|
6339 |
if( isFreeList ){
|
|
6340 |
int n = get4byte(&pOvflData[4]);
|
|
6341 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6342 |
if( pCheck->pBt->autoVacuum ){
|
|
6343 |
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
|
|
6344 |
}
|
|
6345 |
#endif
|
|
6346 |
if( n>pCheck->pBt->usableSize/4-8 ){
|
|
6347 |
checkAppendMsg(pCheck, zContext,
|
|
6348 |
"freelist leaf count too big on page %d", iPage);
|
|
6349 |
N--;
|
|
6350 |
}else{
|
|
6351 |
for(i=0; i<n; i++){
|
|
6352 |
Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
|
|
6353 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6354 |
if( pCheck->pBt->autoVacuum ){
|
|
6355 |
checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
|
|
6356 |
}
|
|
6357 |
#endif
|
|
6358 |
checkRef(pCheck, iFreePage, zContext);
|
|
6359 |
}
|
|
6360 |
N -= n;
|
|
6361 |
}
|
|
6362 |
}
|
|
6363 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6364 |
else{
|
|
6365 |
/* If this database supports auto-vacuum and iPage is not the last
|
|
6366 |
** page in this overflow list, check that the pointer-map entry for
|
|
6367 |
** the following page matches iPage.
|
|
6368 |
*/
|
|
6369 |
if( pCheck->pBt->autoVacuum && N>0 ){
|
|
6370 |
i = get4byte(pOvflData);
|
|
6371 |
checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
|
|
6372 |
}
|
|
6373 |
}
|
|
6374 |
#endif
|
|
6375 |
iPage = get4byte(pOvflData);
|
|
6376 |
sqlite3PagerUnref(pOvflPage);
|
|
6377 |
}
|
|
6378 |
}
|
|
6379 |
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
6380 |
|
|
6381 |
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
6382 |
/*
|
|
6383 |
** Do various sanity checks on a single page of a tree. Return
|
|
6384 |
** the tree depth. Root pages return 0. Parents of root pages
|
|
6385 |
** return 1, and so forth.
|
|
6386 |
**
|
|
6387 |
** These checks are done:
|
|
6388 |
**
|
|
6389 |
** 1. Make sure that cells and freeblocks do not overlap
|
|
6390 |
** but combine to completely cover the page.
|
|
6391 |
** NO 2. Make sure cell keys are in order.
|
|
6392 |
** NO 3. Make sure no key is less than or equal to zLowerBound.
|
|
6393 |
** NO 4. Make sure no key is greater than or equal to zUpperBound.
|
|
6394 |
** 5. Check the integrity of overflow pages.
|
|
6395 |
** 6. Recursively call checkTreePage on all children.
|
|
6396 |
** 7. Verify that the depth of all children is the same.
|
|
6397 |
** 8. Make sure this page is at least 33% full or else it is
|
|
6398 |
** the root of the tree.
|
|
6399 |
*/
|
|
6400 |
static int checkTreePage(
|
|
6401 |
IntegrityCk *pCheck, /* Context for the sanity check */
|
|
6402 |
int iPage, /* Page number of the page to check */
|
|
6403 |
MemPage *pParent, /* Parent page */
|
|
6404 |
char *zParentContext /* Parent context */
|
|
6405 |
){
|
|
6406 |
MemPage *pPage;
|
|
6407 |
int i, rc, depth, d2, pgno, cnt;
|
|
6408 |
int hdr, cellStart;
|
|
6409 |
int nCell;
|
|
6410 |
u8 *data;
|
|
6411 |
BtShared *pBt;
|
|
6412 |
int usableSize;
|
|
6413 |
char zContext[100];
|
|
6414 |
char *hit;
|
|
6415 |
|
|
6416 |
sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
|
|
6417 |
|
|
6418 |
/* Check that the page exists
|
|
6419 |
*/
|
|
6420 |
pBt = pCheck->pBt;
|
|
6421 |
usableSize = pBt->usableSize;
|
|
6422 |
if( iPage==0 ) return 0;
|
|
6423 |
if( checkRef(pCheck, iPage, zParentContext) ) return 0;
|
|
6424 |
if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
|
|
6425 |
checkAppendMsg(pCheck, zContext,
|
|
6426 |
"unable to get the page. error code=%d", rc);
|
|
6427 |
return 0;
|
|
6428 |
}
|
|
6429 |
if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
|
|
6430 |
checkAppendMsg(pCheck, zContext,
|
|
6431 |
"sqlite3BtreeInitPage() returns error code %d", rc);
|
|
6432 |
releasePage(pPage);
|
|
6433 |
return 0;
|
|
6434 |
}
|
|
6435 |
|
|
6436 |
/* Check out all the cells.
|
|
6437 |
*/
|
|
6438 |
depth = 0;
|
|
6439 |
for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
|
|
6440 |
u8 *pCell;
|
|
6441 |
int sz;
|
|
6442 |
CellInfo info;
|
|
6443 |
|
|
6444 |
/* Check payload overflow pages
|
|
6445 |
*/
|
|
6446 |
sqlite3_snprintf(sizeof(zContext), zContext,
|
|
6447 |
"On tree page %d cell %d: ", iPage, i);
|
|
6448 |
pCell = findCell(pPage,i);
|
|
6449 |
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
6450 |
sz = info.nData;
|
|
6451 |
if( !pPage->intKey ) sz += info.nKey;
|
|
6452 |
assert( sz==info.nPayload );
|
|
6453 |
if( sz>info.nLocal ){
|
|
6454 |
int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
|
|
6455 |
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
|
|
6456 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6457 |
if( pBt->autoVacuum ){
|
|
6458 |
checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
|
|
6459 |
}
|
|
6460 |
#endif
|
|
6461 |
checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
|
|
6462 |
}
|
|
6463 |
|
|
6464 |
/* Check sanity of left child page.
|
|
6465 |
*/
|
|
6466 |
if( !pPage->leaf ){
|
|
6467 |
pgno = get4byte(pCell);
|
|
6468 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6469 |
if( pBt->autoVacuum ){
|
|
6470 |
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
|
|
6471 |
}
|
|
6472 |
#endif
|
|
6473 |
d2 = checkTreePage(pCheck,pgno,pPage,zContext);
|
|
6474 |
if( i>0 && d2!=depth ){
|
|
6475 |
checkAppendMsg(pCheck, zContext, "Child page depth differs");
|
|
6476 |
}
|
|
6477 |
depth = d2;
|
|
6478 |
}
|
|
6479 |
}
|
|
6480 |
if( !pPage->leaf ){
|
|
6481 |
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
6482 |
sqlite3_snprintf(sizeof(zContext), zContext,
|
|
6483 |
"On page %d at right child: ", iPage);
|
|
6484 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6485 |
if( pBt->autoVacuum ){
|
|
6486 |
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
|
|
6487 |
}
|
|
6488 |
#endif
|
|
6489 |
checkTreePage(pCheck, pgno, pPage, zContext);
|
|
6490 |
}
|
|
6491 |
|
|
6492 |
/* Check for complete coverage of the page
|
|
6493 |
*/
|
|
6494 |
data = pPage->aData;
|
|
6495 |
hdr = pPage->hdrOffset;
|
|
6496 |
hit = (char*)sqlite3MallocZero( usableSize );
|
|
6497 |
if( hit ){
|
|
6498 |
memset(hit, 1, get2byte(&data[hdr+5]));
|
|
6499 |
nCell = get2byte(&data[hdr+3]);
|
|
6500 |
cellStart = hdr + 12 - 4*pPage->leaf;
|
|
6501 |
for(i=0; i<nCell; i++){
|
|
6502 |
int pc = get2byte(&data[cellStart+i*2]);
|
|
6503 |
int size = cellSizePtr(pPage, &data[pc]);
|
|
6504 |
int j;
|
|
6505 |
if( (pc+size-1)>=usableSize || pc<0 ){
|
|
6506 |
checkAppendMsg(pCheck, 0,
|
|
6507 |
"Corruption detected in cell %d on page %d",i,iPage,0);
|
|
6508 |
}else{
|
|
6509 |
for(j=pc+size-1; j>=pc; j--) hit[j]++;
|
|
6510 |
}
|
|
6511 |
}
|
|
6512 |
for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
|
|
6513 |
cnt++){
|
|
6514 |
int size = get2byte(&data[i+2]);
|
|
6515 |
int j;
|
|
6516 |
if( (i+size-1)>=usableSize || i<0 ){
|
|
6517 |
checkAppendMsg(pCheck, 0,
|
|
6518 |
"Corruption detected in cell %d on page %d",i,iPage,0);
|
|
6519 |
}else{
|
|
6520 |
for(j=i+size-1; j>=i; j--) hit[j]++;
|
|
6521 |
}
|
|
6522 |
i = get2byte(&data[i]);
|
|
6523 |
}
|
|
6524 |
for(i=cnt=0; i<usableSize; i++){
|
|
6525 |
if( hit[i]==0 ){
|
|
6526 |
cnt++;
|
|
6527 |
}else if( hit[i]>1 ){
|
|
6528 |
checkAppendMsg(pCheck, 0,
|
|
6529 |
"Multiple uses for byte %d of page %d", i, iPage);
|
|
6530 |
break;
|
|
6531 |
}
|
|
6532 |
}
|
|
6533 |
if( cnt!=data[hdr+7] ){
|
|
6534 |
checkAppendMsg(pCheck, 0,
|
|
6535 |
"Fragmented space is %d byte reported as %d on page %d",
|
|
6536 |
cnt, data[hdr+7], iPage);
|
|
6537 |
}
|
|
6538 |
}
|
|
6539 |
sqlite3_free(hit);
|
|
6540 |
|
|
6541 |
releasePage(pPage);
|
|
6542 |
return depth+1;
|
|
6543 |
}
|
|
6544 |
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
6545 |
|
|
6546 |
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
6547 |
/*
|
|
6548 |
** This routine does a complete check of the given BTree file. aRoot[] is
|
|
6549 |
** an array of pages numbers were each page number is the root page of
|
|
6550 |
** a table. nRoot is the number of entries in aRoot.
|
|
6551 |
**
|
|
6552 |
** If everything checks out, this routine returns NULL. If something is
|
|
6553 |
** amiss, an error message is written into memory obtained from malloc()
|
|
6554 |
** and a pointer to that error message is returned. The calling function
|
|
6555 |
** is responsible for freeing the error message when it is done.
|
|
6556 |
*/
|
|
6557 |
char *sqlite3BtreeIntegrityCheck(
|
|
6558 |
Btree *p, /* The btree to be checked */
|
|
6559 |
int *aRoot, /* An array of root pages numbers for individual trees */
|
|
6560 |
int nRoot, /* Number of entries in aRoot[] */
|
|
6561 |
int mxErr, /* Stop reporting errors after this many */
|
|
6562 |
int *pnErr /* Write number of errors seen to this variable */
|
|
6563 |
){
|
|
6564 |
int i;
|
|
6565 |
int nRef;
|
|
6566 |
IntegrityCk sCheck;
|
|
6567 |
BtShared *pBt = p->pBt;
|
|
6568 |
|
|
6569 |
sqlite3BtreeEnter(p);
|
|
6570 |
pBt->db = p->db;
|
|
6571 |
nRef = sqlite3PagerRefcount(pBt->pPager);
|
|
6572 |
if( lockBtreeWithRetry(p)!=SQLITE_OK ){
|
|
6573 |
sqlite3BtreeLeave(p);
|
|
6574 |
return sqlite3StrDup("Unable to acquire a read lock on the database");
|
|
6575 |
}
|
|
6576 |
sCheck.pBt = pBt;
|
|
6577 |
sCheck.pPager = pBt->pPager;
|
|
6578 |
sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
|
|
6579 |
sCheck.mxErr = mxErr;
|
|
6580 |
sCheck.nErr = 0;
|
|
6581 |
*pnErr = 0;
|
|
6582 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6583 |
if( pBt->nTrunc!=0 ){
|
|
6584 |
sCheck.nPage = pBt->nTrunc;
|
|
6585 |
}
|
|
6586 |
#endif
|
|
6587 |
if( sCheck.nPage==0 ){
|
|
6588 |
unlockBtreeIfUnused(pBt);
|
|
6589 |
sqlite3BtreeLeave(p);
|
|
6590 |
return 0;
|
|
6591 |
}
|
|
6592 |
sCheck.anRef = (int*)sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
|
|
6593 |
if( !sCheck.anRef ){
|
|
6594 |
unlockBtreeIfUnused(pBt);
|
|
6595 |
*pnErr = 1;
|
|
6596 |
sqlite3BtreeLeave(p);
|
|
6597 |
return sqlite3MPrintf(p->db, "Unable to malloc %d bytes",
|
|
6598 |
(sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
|
|
6599 |
}
|
|
6600 |
for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
|
|
6601 |
i = PENDING_BYTE_PAGE(pBt);
|
|
6602 |
if( i<=sCheck.nPage ){
|
|
6603 |
sCheck.anRef[i] = 1;
|
|
6604 |
}
|
|
6605 |
sCheck.zErrMsg = 0;
|
|
6606 |
|
|
6607 |
/* Check the integrity of the freelist
|
|
6608 |
*/
|
|
6609 |
checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
|
|
6610 |
get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
|
|
6611 |
|
|
6612 |
/* Check all the tables.
|
|
6613 |
*/
|
|
6614 |
for(i=0; i<nRoot && sCheck.mxErr; i++){
|
|
6615 |
if( aRoot[i]==0 ) continue;
|
|
6616 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
6617 |
if( pBt->autoVacuum && aRoot[i]>1 ){
|
|
6618 |
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
|
|
6619 |
}
|
|
6620 |
#endif
|
|
6621 |
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
|
|
6622 |
}
|
|
6623 |
|
|
6624 |
/* Make sure every page in the file is referenced
|
|
6625 |
*/
|
|
6626 |
for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
|
|
6627 |
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
6628 |
if( sCheck.anRef[i]==0 ){
|
|
6629 |
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
|
|
6630 |
}
|
|
6631 |
#else
|
|
6632 |
/* If the database supports auto-vacuum, make sure no tables contain
|
|
6633 |
** references to pointer-map pages.
|
|
6634 |
*/
|
|
6635 |
if( sCheck.anRef[i]==0 &&
|
|
6636 |
(PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
|
|
6637 |
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
|
|
6638 |
}
|
|
6639 |
if( sCheck.anRef[i]!=0 &&
|
|
6640 |
(PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
|
|
6641 |
checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
|
|
6642 |
}
|
|
6643 |
#endif
|
|
6644 |
}
|
|
6645 |
|
|
6646 |
/* Make sure this analysis did not leave any unref() pages
|
|
6647 |
*/
|
|
6648 |
unlockBtreeIfUnused(pBt);
|
|
6649 |
if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
|
|
6650 |
checkAppendMsg(&sCheck, 0,
|
|
6651 |
"Outstanding page count goes from %d to %d during this analysis",
|
|
6652 |
nRef, sqlite3PagerRefcount(pBt->pPager)
|
|
6653 |
);
|
|
6654 |
}
|
|
6655 |
|
|
6656 |
/* Clean up and report errors.
|
|
6657 |
*/
|
|
6658 |
sqlite3BtreeLeave(p);
|
|
6659 |
sqlite3_free(sCheck.anRef);
|
|
6660 |
*pnErr = sCheck.nErr;
|
|
6661 |
return sCheck.zErrMsg;
|
|
6662 |
}
|
|
6663 |
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
6664 |
|
|
6665 |
/*
|
|
6666 |
** Return the full pathname of the underlying database file.
|
|
6667 |
**
|
|
6668 |
** The pager filename is invariant as long as the pager is
|
|
6669 |
** open so it is safe to access without the BtShared mutex.
|
|
6670 |
*/
|
|
6671 |
const char *sqlite3BtreeGetFilename(Btree *p){
|
|
6672 |
assert( p->pBt->pPager!=0 );
|
|
6673 |
return sqlite3PagerFilename(p->pBt->pPager);
|
|
6674 |
}
|
|
6675 |
|
|
6676 |
/*
|
|
6677 |
** Return the pathname of the directory that contains the database file.
|
|
6678 |
**
|
|
6679 |
** The pager directory name is invariant as long as the pager is
|
|
6680 |
** open so it is safe to access without the BtShared mutex.
|
|
6681 |
*/
|
|
6682 |
const char *sqlite3BtreeGetDirname(Btree *p){
|
|
6683 |
assert( p->pBt->pPager!=0 );
|
|
6684 |
return sqlite3PagerDirname(p->pBt->pPager);
|
|
6685 |
}
|
|
6686 |
|
|
6687 |
/*
|
|
6688 |
** Return the pathname of the journal file for this database. The return
|
|
6689 |
** value of this routine is the same regardless of whether the journal file
|
|
6690 |
** has been created or not.
|
|
6691 |
**
|
|
6692 |
** The pager journal filename is invariant as long as the pager is
|
|
6693 |
** open so it is safe to access without the BtShared mutex.
|
|
6694 |
*/
|
|
6695 |
const char *sqlite3BtreeGetJournalname(Btree *p){
|
|
6696 |
assert( p->pBt->pPager!=0 );
|
|
6697 |
return sqlite3PagerJournalname(p->pBt->pPager);
|
|
6698 |
}
|
|
6699 |
|
|
6700 |
#ifndef SQLITE_OMIT_VACUUM
|
|
6701 |
/*
|
|
6702 |
** Copy the complete content of pBtFrom into pBtTo. A transaction
|
|
6703 |
** must be active for both files.
|
|
6704 |
**
|
|
6705 |
** The size of file pBtFrom may be reduced by this operation.
|
|
6706 |
** If anything goes wrong, the transaction on pBtFrom is rolled back.
|
|
6707 |
*/
|
|
6708 |
static int btreeCopyFile(Btree *pTo, Btree *pFrom){
|
|
6709 |
int rc = SQLITE_OK;
|
|
6710 |
Pgno i, nPage, nToPage, iSkip;
|
|
6711 |
|
|
6712 |
BtShared *pBtTo = pTo->pBt;
|
|
6713 |
BtShared *pBtFrom = pFrom->pBt;
|
|
6714 |
pBtTo->db = pTo->db;
|
|
6715 |
pBtFrom->db = pFrom->db;
|
|
6716 |
|
|
6717 |
|
|
6718 |
if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
|
|
6719 |
return SQLITE_ERROR;
|
|
6720 |
}
|
|
6721 |
if( pBtTo->pCursor ) return SQLITE_BUSY;
|
|
6722 |
nToPage = sqlite3PagerPagecount(pBtTo->pPager);
|
|
6723 |
nPage = sqlite3PagerPagecount(pBtFrom->pPager);
|
|
6724 |
iSkip = PENDING_BYTE_PAGE(pBtTo);
|
|
6725 |
for(i=1; rc==SQLITE_OK && i<=nPage; i++){
|
|
6726 |
DbPage *pDbPage;
|
|
6727 |
if( i==iSkip ) continue;
|
|
6728 |
rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
|
|
6729 |
if( rc ) break;
|
|
6730 |
rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
|
|
6731 |
sqlite3PagerUnref(pDbPage);
|
|
6732 |
}
|
|
6733 |
|
|
6734 |
/* If the file is shrinking, journal the pages that are being truncated
|
|
6735 |
** so that they can be rolled back if the commit fails.
|
|
6736 |
*/
|
|
6737 |
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
|
|
6738 |
DbPage *pDbPage;
|
|
6739 |
if( i==iSkip ) continue;
|
|
6740 |
rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
|
|
6741 |
if( rc ) break;
|
|
6742 |
rc = sqlite3PagerWrite(pDbPage);
|
|
6743 |
sqlite3PagerDontWrite(pDbPage);
|
|
6744 |
/* Yeah. It seems wierd to call DontWrite() right after Write(). But
|
|
6745 |
** that is because the names of those procedures do not exactly
|
|
6746 |
** represent what they do. Write() really means "put this page in the
|
|
6747 |
** rollback journal and mark it as dirty so that it will be written
|
|
6748 |
** to the database file later." DontWrite() undoes the second part of
|
|
6749 |
** that and prevents the page from being written to the database. The
|
|
6750 |
** page is still on the rollback journal, though. And that is the whole
|
|
6751 |
** point of this loop: to put pages on the rollback journal. */
|
|
6752 |
sqlite3PagerUnref(pDbPage);
|
|
6753 |
}
|
|
6754 |
if( !rc && nPage<nToPage ){
|
|
6755 |
rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
|
|
6756 |
}
|
|
6757 |
|
|
6758 |
if( rc ){
|
|
6759 |
sqlite3BtreeRollback(pTo);
|
|
6760 |
}
|
|
6761 |
return rc;
|
|
6762 |
}
|
|
6763 |
int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
|
|
6764 |
int rc;
|
|
6765 |
sqlite3BtreeEnter(pTo);
|
|
6766 |
sqlite3BtreeEnter(pFrom);
|
|
6767 |
rc = btreeCopyFile(pTo, pFrom);
|
|
6768 |
sqlite3BtreeLeave(pFrom);
|
|
6769 |
sqlite3BtreeLeave(pTo);
|
|
6770 |
return rc;
|
|
6771 |
}
|
|
6772 |
|
|
6773 |
#endif /* SQLITE_OMIT_VACUUM */
|
|
6774 |
|
|
6775 |
/*
|
|
6776 |
** Return non-zero if a transaction is active.
|
|
6777 |
*/
|
|
6778 |
int sqlite3BtreeIsInTrans(Btree *p){
|
|
6779 |
assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
|
|
6780 |
return (p && (p->inTrans==TRANS_WRITE));
|
|
6781 |
}
|
|
6782 |
|
|
6783 |
/*
|
|
6784 |
** Return non-zero if a statement transaction is active.
|
|
6785 |
*/
|
|
6786 |
int sqlite3BtreeIsInStmt(Btree *p){
|
|
6787 |
assert( sqlite3BtreeHoldsMutex(p) );
|
|
6788 |
return (p->pBt && p->pBt->inStmt);
|
|
6789 |
}
|
|
6790 |
|
|
6791 |
/*
|
|
6792 |
** Return non-zero if a read (or write) transaction is active.
|
|
6793 |
*/
|
|
6794 |
int sqlite3BtreeIsInReadTrans(Btree *p){
|
|
6795 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
6796 |
return (p && (p->inTrans!=TRANS_NONE));
|
|
6797 |
}
|
|
6798 |
|
|
6799 |
/*
|
|
6800 |
** This function returns a pointer to a blob of memory associated with
|
|
6801 |
** a single shared-btree. The memory is used by client code for its own
|
|
6802 |
** purposes (for example, to store a high-level schema associated with
|
|
6803 |
** the shared-btree). The btree layer manages reference counting issues.
|
|
6804 |
**
|
|
6805 |
** The first time this is called on a shared-btree, nBytes bytes of memory
|
|
6806 |
** are allocated, zeroed, and returned to the caller. For each subsequent
|
|
6807 |
** call the nBytes parameter is ignored and a pointer to the same blob
|
|
6808 |
** of memory returned.
|
|
6809 |
**
|
|
6810 |
** Just before the shared-btree is closed, the function passed as the
|
|
6811 |
** xFree argument when the memory allocation was made is invoked on the
|
|
6812 |
** blob of allocated memory. This function should not call sqlite3_free()
|
|
6813 |
** on the memory, the btree layer does that.
|
|
6814 |
*/
|
|
6815 |
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
|
|
6816 |
BtShared *pBt = p->pBt;
|
|
6817 |
sqlite3BtreeEnter(p);
|
|
6818 |
if( !pBt->pSchema ){
|
|
6819 |
pBt->pSchema = sqlite3MallocZero(nBytes);
|
|
6820 |
pBt->xFreeSchema = xFree;
|
|
6821 |
}
|
|
6822 |
sqlite3BtreeLeave(p);
|
|
6823 |
return pBt->pSchema;
|
|
6824 |
}
|
|
6825 |
|
|
6826 |
/*
|
|
6827 |
** Return true if another user of the same shared btree as the argument
|
|
6828 |
** handle holds an exclusive lock on the sqlite_master table.
|
|
6829 |
*/
|
|
6830 |
int sqlite3BtreeSchemaLocked(Btree *p){
|
|
6831 |
int rc;
|
|
6832 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
6833 |
sqlite3BtreeEnter(p);
|
|
6834 |
rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
|
|
6835 |
sqlite3BtreeLeave(p);
|
|
6836 |
return rc;
|
|
6837 |
}
|
|
6838 |
|
|
6839 |
|
|
6840 |
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
6841 |
/*
|
|
6842 |
** Obtain a lock on the table whose root page is iTab. The
|
|
6843 |
** lock is a write lock if isWritelock is true or a read lock
|
|
6844 |
** if it is false.
|
|
6845 |
*/
|
|
6846 |
int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
|
|
6847 |
int rc = SQLITE_OK;
|
|
6848 |
u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
|
|
6849 |
sqlite3BtreeEnter(p);
|
|
6850 |
rc = queryTableLock(p, iTab, lockType);
|
|
6851 |
if( rc==SQLITE_OK ){
|
|
6852 |
rc = lockTable(p, iTab, lockType);
|
|
6853 |
}
|
|
6854 |
sqlite3BtreeLeave(p);
|
|
6855 |
return rc;
|
|
6856 |
}
|
|
6857 |
#endif
|
|
6858 |
|
|
6859 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
6860 |
/*
|
|
6861 |
** Argument pCsr must be a cursor opened for writing on an
|
|
6862 |
** INTKEY table currently pointing at a valid table entry.
|
|
6863 |
** This function modifies the data stored as part of that entry.
|
|
6864 |
** Only the data content may only be modified, it is not possible
|
|
6865 |
** to change the length of the data stored.
|
|
6866 |
*/
|
|
6867 |
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
|
|
6868 |
assert( cursorHoldsMutex(pCsr) );
|
|
6869 |
assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
|
|
6870 |
assert(pCsr->isIncrblobHandle);
|
|
6871 |
if( pCsr->eState>=CURSOR_REQUIRESEEK ){
|
|
6872 |
if( pCsr->eState==CURSOR_FAULT ){
|
|
6873 |
return pCsr->skip;
|
|
6874 |
}else{
|
|
6875 |
return SQLITE_ABORT;
|
|
6876 |
}
|
|
6877 |
}
|
|
6878 |
|
|
6879 |
/* Check some preconditions:
|
|
6880 |
** (a) the cursor is open for writing,
|
|
6881 |
** (b) there is no read-lock on the table being modified and
|
|
6882 |
** (c) the cursor points at a valid row of an intKey table.
|
|
6883 |
*/
|
|
6884 |
if( !pCsr->wrFlag ){
|
|
6885 |
return SQLITE_READONLY;
|
|
6886 |
}
|
|
6887 |
assert( !pCsr->pBt->readOnly
|
|
6888 |
&& pCsr->pBt->inTransaction==TRANS_WRITE );
|
|
6889 |
if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
|
|
6890 |
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
6891 |
}
|
|
6892 |
if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
|
|
6893 |
return SQLITE_ERROR;
|
|
6894 |
}
|
|
6895 |
|
|
6896 |
return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
|
|
6897 |
}
|
|
6898 |
|
|
6899 |
/*
|
|
6900 |
** Set a flag on this cursor to cache the locations of pages from the
|
|
6901 |
** overflow list for the current row. This is used by cursors opened
|
|
6902 |
** for incremental blob IO only.
|
|
6903 |
**
|
|
6904 |
** This function sets a flag only. The actual page location cache
|
|
6905 |
** (stored in BtCursor.aOverflow[]) is allocated and used by function
|
|
6906 |
** accessPayload() (the worker function for sqlite3BtreeData() and
|
|
6907 |
** sqlite3BtreePutData()).
|
|
6908 |
*/
|
|
6909 |
void sqlite3BtreeCacheOverflow(BtCursor *pCur){
|
|
6910 |
assert( cursorHoldsMutex(pCur) );
|
|
6911 |
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
6912 |
assert(!pCur->isIncrblobHandle);
|
|
6913 |
assert(!pCur->aOverflow);
|
|
6914 |
pCur->isIncrblobHandle = 1;
|
|
6915 |
}
|
|
6916 |
#endif
|