2
|
1 |
/*
|
|
2 |
** 2001 September 15
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This is the implementation of the page cache subsystem or "pager".
|
|
13 |
**
|
|
14 |
** The pager is used to access a database disk file. It implements
|
|
15 |
** atomic commit and rollback through the use of a journal file that
|
|
16 |
** is separate from the database file. The pager also implements file
|
|
17 |
** locking to prevent two processes from writing the same database
|
|
18 |
** file simultaneously, or one process from reading the database while
|
|
19 |
** another is writing.
|
|
20 |
**
|
|
21 |
** @(#) $Id: pager.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
22 |
*/
|
|
23 |
#ifndef SQLITE_OMIT_DISKIO
|
|
24 |
#include "sqliteInt.h"
|
|
25 |
#include <assert.h>
|
|
26 |
#include <string.h>
|
|
27 |
|
|
28 |
/*
|
|
29 |
** Macros for troubleshooting. Normally turned off
|
|
30 |
*/
|
|
31 |
#if 0
|
|
32 |
#define sqlite3DebugPrintf printf
|
|
33 |
#define PAGERTRACE1(X) sqlite3DebugPrintf(X)
|
|
34 |
#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
|
|
35 |
#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
|
|
36 |
#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
|
|
37 |
#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
|
|
38 |
#else
|
|
39 |
#define PAGERTRACE1(X)
|
|
40 |
#define PAGERTRACE2(X,Y)
|
|
41 |
#define PAGERTRACE3(X,Y,Z)
|
|
42 |
#define PAGERTRACE4(X,Y,Z,W)
|
|
43 |
#define PAGERTRACE5(X,Y,Z,W,V)
|
|
44 |
#endif
|
|
45 |
|
|
46 |
/*
|
|
47 |
** The following two macros are used within the PAGERTRACEX() macros above
|
|
48 |
** to print out file-descriptors.
|
|
49 |
**
|
|
50 |
** PAGERID() takes a pointer to a Pager struct as its argument. The
|
|
51 |
** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
|
|
52 |
** struct as its argument.
|
|
53 |
*/
|
|
54 |
#define PAGERID(p) ((int)(p->fd))
|
|
55 |
#define FILEHANDLEID(fd) ((int)fd)
|
|
56 |
|
|
57 |
/*
|
|
58 |
** The page cache as a whole is always in one of the following
|
|
59 |
** states:
|
|
60 |
**
|
|
61 |
** PAGER_UNLOCK The page cache is not currently reading or
|
|
62 |
** writing the database file. There is no
|
|
63 |
** data held in memory. This is the initial
|
|
64 |
** state.
|
|
65 |
**
|
|
66 |
** PAGER_SHARED The page cache is reading the database.
|
|
67 |
** Writing is not permitted. There can be
|
|
68 |
** multiple readers accessing the same database
|
|
69 |
** file at the same time.
|
|
70 |
**
|
|
71 |
** PAGER_RESERVED This process has reserved the database for writing
|
|
72 |
** but has not yet made any changes. Only one process
|
|
73 |
** at a time can reserve the database. The original
|
|
74 |
** database file has not been modified so other
|
|
75 |
** processes may still be reading the on-disk
|
|
76 |
** database file.
|
|
77 |
**
|
|
78 |
** PAGER_EXCLUSIVE The page cache is writing the database.
|
|
79 |
** Access is exclusive. No other processes or
|
|
80 |
** threads can be reading or writing while one
|
|
81 |
** process is writing.
|
|
82 |
**
|
|
83 |
** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
|
|
84 |
** after all dirty pages have been written to the
|
|
85 |
** database file and the file has been synced to
|
|
86 |
** disk. All that remains to do is to remove or
|
|
87 |
** truncate the journal file and the transaction
|
|
88 |
** will be committed.
|
|
89 |
**
|
|
90 |
** The page cache comes up in PAGER_UNLOCK. The first time a
|
|
91 |
** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
|
|
92 |
** After all pages have been released using sqlite_page_unref(),
|
|
93 |
** the state transitions back to PAGER_UNLOCK. The first time
|
|
94 |
** that sqlite3PagerWrite() is called, the state transitions to
|
|
95 |
** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
|
|
96 |
** called on an outstanding page which means that the pager must
|
|
97 |
** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
|
|
98 |
** PAGER_RESERVED means that there is an open rollback journal.
|
|
99 |
** The transition to PAGER_EXCLUSIVE occurs before any changes
|
|
100 |
** are made to the database file, though writes to the rollback
|
|
101 |
** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
|
|
102 |
** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
|
|
103 |
** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
|
|
104 |
*/
|
|
105 |
#define PAGER_UNLOCK 0
|
|
106 |
#define PAGER_SHARED 1 /* same as SHARED_LOCK */
|
|
107 |
#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
|
|
108 |
#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
|
|
109 |
#define PAGER_SYNCED 5
|
|
110 |
|
|
111 |
/*
|
|
112 |
** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
|
|
113 |
** then failed attempts to get a reserved lock will invoke the busy callback.
|
|
114 |
** This is off by default. To see why, consider the following scenario:
|
|
115 |
**
|
|
116 |
** Suppose thread A already has a shared lock and wants a reserved lock.
|
|
117 |
** Thread B already has a reserved lock and wants an exclusive lock. If
|
|
118 |
** both threads are using their busy callbacks, it might be a long time
|
|
119 |
** be for one of the threads give up and allows the other to proceed.
|
|
120 |
** But if the thread trying to get the reserved lock gives up quickly
|
|
121 |
** (if it never invokes its busy callback) then the contention will be
|
|
122 |
** resolved quickly.
|
|
123 |
*/
|
|
124 |
#ifndef SQLITE_BUSY_RESERVED_LOCK
|
|
125 |
# define SQLITE_BUSY_RESERVED_LOCK 0
|
|
126 |
#endif
|
|
127 |
|
|
128 |
/*
|
|
129 |
** This macro rounds values up so that if the value is an address it
|
|
130 |
** is guaranteed to be an address that is aligned to an 8-byte boundary.
|
|
131 |
*/
|
|
132 |
#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
|
|
133 |
|
|
134 |
typedef struct PgHdr PgHdr;
|
|
135 |
|
|
136 |
/*
|
|
137 |
** Each pager stores all currently unreferenced pages in a list sorted
|
|
138 |
** in least-recently-used (LRU) order (i.e. the first item on the list has
|
|
139 |
** not been referenced in a long time, the last item has been recently
|
|
140 |
** used). An instance of this structure is included as part of each
|
|
141 |
** pager structure for this purpose (variable Pager.lru).
|
|
142 |
**
|
|
143 |
** Additionally, if memory-management is enabled, all unreferenced pages
|
|
144 |
** are stored in a global LRU list (global variable sqlite3LruPageList).
|
|
145 |
**
|
|
146 |
** In both cases, the PagerLruList.pFirstSynced variable points to
|
|
147 |
** the first page in the corresponding list that does not require an
|
|
148 |
** fsync() operation before its memory can be reclaimed. If no such
|
|
149 |
** page exists, PagerLruList.pFirstSynced is set to NULL.
|
|
150 |
*/
|
|
151 |
typedef struct PagerLruList PagerLruList;
|
|
152 |
struct PagerLruList {
|
|
153 |
PgHdr *pFirst; /* First page in LRU list */
|
|
154 |
PgHdr *pLast; /* Last page in LRU list (the most recently used) */
|
|
155 |
PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */
|
|
156 |
};
|
|
157 |
|
|
158 |
/*
|
|
159 |
** The following structure contains the next and previous pointers used
|
|
160 |
** to link a PgHdr structure into a PagerLruList linked list.
|
|
161 |
*/
|
|
162 |
typedef struct PagerLruLink PagerLruLink;
|
|
163 |
struct PagerLruLink {
|
|
164 |
PgHdr *pNext;
|
|
165 |
PgHdr *pPrev;
|
|
166 |
};
|
|
167 |
|
|
168 |
/*
|
|
169 |
** Each in-memory image of a page begins with the following header.
|
|
170 |
** This header is only visible to this pager module. The client
|
|
171 |
** code that calls pager sees only the data that follows the header.
|
|
172 |
**
|
|
173 |
** Client code should call sqlite3PagerWrite() on a page prior to making
|
|
174 |
** any modifications to that page. The first time sqlite3PagerWrite()
|
|
175 |
** is called, the original page contents are written into the rollback
|
|
176 |
** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
|
|
177 |
** the journal page has made it onto the disk surface, PgHdr.needSync
|
|
178 |
** is cleared. The modified page cannot be written back into the original
|
|
179 |
** database file until the journal pages has been synced to disk and the
|
|
180 |
** PgHdr.needSync has been cleared.
|
|
181 |
**
|
|
182 |
** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
|
|
183 |
** is cleared again when the page content is written back to the original
|
|
184 |
** database file.
|
|
185 |
**
|
|
186 |
** Details of important structure elements:
|
|
187 |
**
|
|
188 |
** needSync
|
|
189 |
**
|
|
190 |
** If this is true, this means that it is not safe to write the page
|
|
191 |
** content to the database because the original content needed
|
|
192 |
** for rollback has not by synced to the main rollback journal.
|
|
193 |
** The original content may have been written to the rollback journal
|
|
194 |
** but it has not yet been synced. So we cannot write to the database
|
|
195 |
** file because power failure might cause the page in the journal file
|
|
196 |
** to never reach the disk. It is as if the write to the journal file
|
|
197 |
** does not occur until the journal file is synced.
|
|
198 |
**
|
|
199 |
** This flag is false if the page content exactly matches what
|
|
200 |
** currently exists in the database file. The needSync flag is also
|
|
201 |
** false if the original content has been written to the main rollback
|
|
202 |
** journal and synced. If the page represents a new page that has
|
|
203 |
** been added onto the end of the database during the current
|
|
204 |
** transaction, the needSync flag is true until the original database
|
|
205 |
** size in the journal header has been synced to disk.
|
|
206 |
**
|
|
207 |
** inJournal
|
|
208 |
**
|
|
209 |
** This is true if the original page has been written into the main
|
|
210 |
** rollback journal. This is always false for new pages added to
|
|
211 |
** the end of the database file during the current transaction.
|
|
212 |
** And this flag says nothing about whether or not the journal
|
|
213 |
** has been synced to disk. For pages that are in the original
|
|
214 |
** database file, the following expression should always be true:
|
|
215 |
**
|
|
216 |
** inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0
|
|
217 |
**
|
|
218 |
** The pPager->aInJournal[] array is only valid for the original
|
|
219 |
** pages of the database, not new pages that are added to the end
|
|
220 |
** of the database, so obviously the above expression cannot be
|
|
221 |
** valid for new pages. For new pages inJournal is always 0.
|
|
222 |
**
|
|
223 |
** dirty
|
|
224 |
**
|
|
225 |
** When true, this means that the content of the page has been
|
|
226 |
** modified and needs to be written back to the database file.
|
|
227 |
** If false, it means that either the content of the page is
|
|
228 |
** unchanged or else the content is unimportant and we do not
|
|
229 |
** care whether or not it is preserved.
|
|
230 |
**
|
|
231 |
** alwaysRollback
|
|
232 |
**
|
|
233 |
** This means that the sqlite3PagerDontRollback() API should be
|
|
234 |
** ignored for this page. The DontRollback() API attempts to say
|
|
235 |
** that the content of the page on disk is unimportant (it is an
|
|
236 |
** unused page on the freelist) so that it is unnecessary to
|
|
237 |
** rollback changes to this page because the content of the page
|
|
238 |
** can change without changing the meaning of the database. This
|
|
239 |
** flag overrides any DontRollback() attempt. This flag is set
|
|
240 |
** when a page that originally contained valid data is added to
|
|
241 |
** the freelist. Later in the same transaction, this page might
|
|
242 |
** be pulled from the freelist and reused for something different
|
|
243 |
** and at that point the DontRollback() API will be called because
|
|
244 |
** pages taken from the freelist do not need to be protected by
|
|
245 |
** the rollback journal. But this flag says that the page was
|
|
246 |
** not originally part of the freelist so that it still needs to
|
|
247 |
** be rolled back in spite of any subsequent DontRollback() calls.
|
|
248 |
**
|
|
249 |
** needRead
|
|
250 |
**
|
|
251 |
** This flag means (when true) that the content of the page has
|
|
252 |
** not yet been loaded from disk. The in-memory content is just
|
|
253 |
** garbage. (Actually, we zero the content, but you should not
|
|
254 |
** make any assumptions about the content nevertheless.) If the
|
|
255 |
** content is needed in the future, it should be read from the
|
|
256 |
** original database file.
|
|
257 |
*/
|
|
258 |
struct PgHdr {
|
|
259 |
Pager *pPager; /* The pager to which this page belongs */
|
|
260 |
Pgno pgno; /* The page number for this page */
|
|
261 |
PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
|
|
262 |
PagerLruLink free; /* Next and previous free pages */
|
|
263 |
PgHdr *pNextAll; /* A list of all pages */
|
|
264 |
u8 inJournal; /* TRUE if has been written to journal */
|
|
265 |
u8 dirty; /* TRUE if we need to write back changes */
|
|
266 |
u8 needSync; /* Sync journal before writing this page */
|
|
267 |
u8 alwaysRollback; /* Disable DontRollback() for this page */
|
|
268 |
u8 needRead; /* Read content if PagerWrite() is called */
|
|
269 |
short int nRef; /* Number of users of this page */
|
|
270 |
PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
|
|
271 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
272 |
PagerLruLink gfree; /* Global list of nRef==0 pages */
|
|
273 |
#endif
|
|
274 |
#ifdef SQLITE_CHECK_PAGES
|
|
275 |
u32 pageHash;
|
|
276 |
#endif
|
|
277 |
void *pData; /* Page data */
|
|
278 |
/* Pager.nExtra bytes of local data appended to this header */
|
|
279 |
};
|
|
280 |
|
|
281 |
/*
|
|
282 |
** For an in-memory only database, some extra information is recorded about
|
|
283 |
** each page so that changes can be rolled back. (Journal files are not
|
|
284 |
** used for in-memory databases.) The following information is added to
|
|
285 |
** the end of every EXTRA block for in-memory databases.
|
|
286 |
**
|
|
287 |
** This information could have been added directly to the PgHdr structure.
|
|
288 |
** But then it would take up an extra 8 bytes of storage on every PgHdr
|
|
289 |
** even for disk-based databases. Splitting it out saves 8 bytes. This
|
|
290 |
** is only a savings of 0.8% but those percentages add up.
|
|
291 |
*/
|
|
292 |
typedef struct PgHistory PgHistory;
|
|
293 |
struct PgHistory {
|
|
294 |
u8 *pOrig; /* Original page text. Restore to this on a full rollback */
|
|
295 |
u8 *pStmt; /* Text as it was at the beginning of the current statement */
|
|
296 |
PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
|
|
297 |
u8 inStmt; /* TRUE if in the statement subjournal */
|
|
298 |
};
|
|
299 |
|
|
300 |
/*
|
|
301 |
** A macro used for invoking the codec if there is one
|
|
302 |
*/
|
|
303 |
#ifdef SQLITE_HAS_CODEC
|
|
304 |
# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
|
|
305 |
# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
|
|
306 |
#else
|
|
307 |
# define CODEC1(P,D,N,X) /* NO-OP */
|
|
308 |
# define CODEC2(P,D,N,X) ((char*)D)
|
|
309 |
#endif
|
|
310 |
|
|
311 |
/*
|
|
312 |
** Convert a pointer to a PgHdr into a pointer to its data
|
|
313 |
** and back again.
|
|
314 |
*/
|
|
315 |
#define PGHDR_TO_DATA(P) ((P)->pData)
|
|
316 |
#define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
|
|
317 |
#define PGHDR_TO_HIST(P,PGR) \
|
|
318 |
((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
|
|
319 |
|
|
320 |
/*
|
|
321 |
** A open page cache is an instance of the following structure.
|
|
322 |
**
|
|
323 |
** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
|
|
324 |
** or SQLITE_FULL. Once one of the first three errors occurs, it persists
|
|
325 |
** and is returned as the result of every major pager API call. The
|
|
326 |
** SQLITE_FULL return code is slightly different. It persists only until the
|
|
327 |
** next successful rollback is performed on the pager cache. Also,
|
|
328 |
** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
|
|
329 |
** APIs, they may still be used successfully.
|
|
330 |
*/
|
|
331 |
struct Pager {
|
|
332 |
sqlite3_vfs *pVfs; /* OS functions to use for IO */
|
|
333 |
u8 journalOpen; /* True if journal file descriptors is valid */
|
|
334 |
u8 journalStarted; /* True if header of journal is synced */
|
|
335 |
u8 useJournal; /* Use a rollback journal on this file */
|
|
336 |
u8 noReadlock; /* Do not bother to obtain readlocks */
|
|
337 |
u8 stmtOpen; /* True if the statement subjournal is open */
|
|
338 |
u8 stmtInUse; /* True we are in a statement subtransaction */
|
|
339 |
u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
|
|
340 |
u8 noSync; /* Do not sync the journal if true */
|
|
341 |
u8 fullSync; /* Do extra syncs of the journal for robustness */
|
|
342 |
u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
|
|
343 |
u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
|
|
344 |
u8 tempFile; /* zFilename is a temporary file */
|
|
345 |
u8 readOnly; /* True for a read-only database */
|
|
346 |
u8 needSync; /* True if an fsync() is needed on the journal */
|
|
347 |
u8 dirtyCache; /* True if cached pages have changed */
|
|
348 |
u8 alwaysRollback; /* Disable DontRollback() for all pages */
|
|
349 |
u8 memDb; /* True to inhibit all file I/O */
|
|
350 |
u8 setMaster; /* True if a m-j name has been written to jrnl */
|
|
351 |
u8 doNotSync; /* Boolean. While true, do not spill the cache */
|
|
352 |
u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
|
|
353 |
u8 changeCountDone; /* Set after incrementing the change-counter */
|
|
354 |
u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
|
|
355 |
int errCode; /* One of several kinds of errors */
|
|
356 |
int dbSize; /* Number of pages in the file */
|
|
357 |
int origDbSize; /* dbSize before the current change */
|
|
358 |
int stmtSize; /* Size of database (in pages) at stmt_begin() */
|
|
359 |
int nRec; /* Number of pages written to the journal */
|
|
360 |
u32 cksumInit; /* Quasi-random value added to every checksum */
|
|
361 |
int stmtNRec; /* Number of records in stmt subjournal */
|
|
362 |
int nExtra; /* Add this many bytes to each in-memory page */
|
|
363 |
int pageSize; /* Number of bytes in a page */
|
|
364 |
int nPage; /* Total number of in-memory pages */
|
|
365 |
int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
|
|
366 |
int mxPage; /* Maximum number of pages to hold in cache */
|
|
367 |
Pgno mxPgno; /* Maximum allowed size of the database */
|
|
368 |
u8 *aInJournal; /* One bit for each page in the database file */
|
|
369 |
u8 *aInStmt; /* One bit for each page in the database */
|
|
370 |
char *zFilename; /* Name of the database file */
|
|
371 |
char *zJournal; /* Name of the journal file */
|
|
372 |
char *zDirectory; /* Directory hold database and journal files */
|
|
373 |
char *zStmtJrnl; /* Name of the statement journal file */
|
|
374 |
sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
|
|
375 |
sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
|
|
376 |
BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
|
|
377 |
PagerLruList lru; /* LRU list of free pages */
|
|
378 |
PgHdr *pAll; /* List of all pages */
|
|
379 |
PgHdr *pStmt; /* List of pages in the statement subjournal */
|
|
380 |
PgHdr *pDirty; /* List of all dirty pages */
|
|
381 |
i64 journalOff; /* Current byte offset in the journal file */
|
|
382 |
i64 journalHdr; /* Byte offset to previous journal header */
|
|
383 |
i64 stmtHdrOff; /* First journal header written this statement */
|
|
384 |
i64 stmtCksum; /* cksumInit when statement was started */
|
|
385 |
i64 stmtJSize; /* Size of journal at stmt_begin() */
|
|
386 |
int sectorSize; /* Assumed sector size during rollback */
|
|
387 |
#ifdef SQLITE_TEST
|
|
388 |
int nHit, nMiss; /* Cache hits and missing */
|
|
389 |
int nRead, nWrite; /* Database pages read/written */
|
|
390 |
#endif
|
|
391 |
void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
|
|
392 |
void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */
|
|
393 |
#ifdef SQLITE_HAS_CODEC
|
|
394 |
void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
|
|
395 |
void *pCodecArg; /* First argument to xCodec() */
|
|
396 |
#endif
|
|
397 |
int nHash; /* Size of the pager hash table */
|
|
398 |
PgHdr **aHash; /* Hash table to map page number to PgHdr */
|
|
399 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
400 |
Pager *pNext; /* Doubly linked list of pagers on which */
|
|
401 |
Pager *pPrev; /* sqlite3_release_memory() will work */
|
|
402 |
int iInUseMM; /* Non-zero if unavailable to MM */
|
|
403 |
int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
|
|
404 |
#endif
|
|
405 |
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
|
|
406 |
char dbFileVers[16]; /* Changes whenever database file changes */
|
|
407 |
};
|
|
408 |
|
|
409 |
/*
|
|
410 |
** The following global variables hold counters used for
|
|
411 |
** testing purposes only. These variables do not exist in
|
|
412 |
** a non-testing build. These variables are not thread-safe.
|
|
413 |
*/
|
|
414 |
#ifdef SQLITE_TEST
|
|
415 |
int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
|
|
416 |
int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
|
|
417 |
int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
|
|
418 |
int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
|
|
419 |
# define PAGER_INCR(v) v++
|
|
420 |
#else
|
|
421 |
# define PAGER_INCR(v)
|
|
422 |
#endif
|
|
423 |
|
|
424 |
/*
|
|
425 |
** The following variable points to the head of a double-linked list
|
|
426 |
** of all pagers that are eligible for page stealing by the
|
|
427 |
** sqlite3_release_memory() interface. Access to this list is
|
|
428 |
** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
|
|
429 |
*/
|
|
430 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
431 |
static Pager *sqlite3PagerList = 0;
|
|
432 |
static PagerLruList sqlite3LruPageList = {0, 0, 0};
|
|
433 |
#endif
|
|
434 |
|
|
435 |
|
|
436 |
/*
|
|
437 |
** Journal files begin with the following magic string. The data
|
|
438 |
** was obtained from /dev/random. It is used only as a sanity check.
|
|
439 |
**
|
|
440 |
** Since version 2.8.0, the journal format contains additional sanity
|
|
441 |
** checking information. If the power fails while the journal is begin
|
|
442 |
** written, semi-random garbage data might appear in the journal
|
|
443 |
** file after power is restored. If an attempt is then made
|
|
444 |
** to roll the journal back, the database could be corrupted. The additional
|
|
445 |
** sanity checking data is an attempt to discover the garbage in the
|
|
446 |
** journal and ignore it.
|
|
447 |
**
|
|
448 |
** The sanity checking information for the new journal format consists
|
|
449 |
** of a 32-bit checksum on each page of data. The checksum covers both
|
|
450 |
** the page number and the pPager->pageSize bytes of data for the page.
|
|
451 |
** This cksum is initialized to a 32-bit random value that appears in the
|
|
452 |
** journal file right after the header. The random initializer is important,
|
|
453 |
** because garbage data that appears at the end of a journal is likely
|
|
454 |
** data that was once in other files that have now been deleted. If the
|
|
455 |
** garbage data came from an obsolete journal file, the checksums might
|
|
456 |
** be correct. But by initializing the checksum to random value which
|
|
457 |
** is different for every journal, we minimize that risk.
|
|
458 |
*/
|
|
459 |
static const unsigned char aJournalMagic[] = {
|
|
460 |
0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
|
|
461 |
};
|
|
462 |
|
|
463 |
/*
|
|
464 |
** The size of the header and of each page in the journal is determined
|
|
465 |
** by the following macros.
|
|
466 |
*/
|
|
467 |
#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
|
|
468 |
|
|
469 |
/*
|
|
470 |
** The journal header size for this pager. In the future, this could be
|
|
471 |
** set to some value read from the disk controller. The important
|
|
472 |
** characteristic is that it is the same size as a disk sector.
|
|
473 |
*/
|
|
474 |
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
|
|
475 |
|
|
476 |
/*
|
|
477 |
** The macro MEMDB is true if we are dealing with an in-memory database.
|
|
478 |
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
|
|
479 |
** the value of MEMDB will be a constant and the compiler will optimize
|
|
480 |
** out code that would never execute.
|
|
481 |
*/
|
|
482 |
#ifdef SQLITE_OMIT_MEMORYDB
|
|
483 |
# define MEMDB 0
|
|
484 |
#else
|
|
485 |
# define MEMDB pPager->memDb
|
|
486 |
#endif
|
|
487 |
|
|
488 |
/*
|
|
489 |
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
|
|
490 |
** reserved for working around a windows/posix incompatibility). It is
|
|
491 |
** used in the journal to signify that the remainder of the journal file
|
|
492 |
** is devoted to storing a master journal name - there are no more pages to
|
|
493 |
** roll back. See comments for function writeMasterJournal() for details.
|
|
494 |
*/
|
|
495 |
/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
|
|
496 |
#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
|
|
497 |
|
|
498 |
/*
|
|
499 |
** The maximum legal page number is (2^31 - 1).
|
|
500 |
*/
|
|
501 |
#define PAGER_MAX_PGNO 2147483647
|
|
502 |
|
|
503 |
/*
|
|
504 |
** The pagerEnter() and pagerLeave() routines acquire and release
|
|
505 |
** a mutex on each pager. The mutex is recursive.
|
|
506 |
**
|
|
507 |
** This is a special-purpose mutex. It only provides mutual exclusion
|
|
508 |
** between the Btree and the Memory Management sqlite3_release_memory()
|
|
509 |
** function. It does not prevent, for example, two Btrees from accessing
|
|
510 |
** the same pager at the same time. Other general-purpose mutexes in
|
|
511 |
** the btree layer handle that chore.
|
|
512 |
*/
|
|
513 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
514 |
static void pagerEnter(Pager *p){
|
|
515 |
p->iInUseDB++;
|
|
516 |
if( p->iInUseMM && p->iInUseDB==1 ){
|
|
517 |
sqlite3_mutex *mutex;
|
|
518 |
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
519 |
p->iInUseDB = 0;
|
|
520 |
sqlite3_mutex_enter(mutex);
|
|
521 |
p->iInUseDB = 1;
|
|
522 |
sqlite3_mutex_leave(mutex);
|
|
523 |
}
|
|
524 |
assert( p->iInUseMM==0 );
|
|
525 |
}
|
|
526 |
static void pagerLeave(Pager *p){
|
|
527 |
p->iInUseDB--;
|
|
528 |
assert( p->iInUseDB>=0 );
|
|
529 |
}
|
|
530 |
#else
|
|
531 |
# define pagerEnter(X)
|
|
532 |
# define pagerLeave(X)
|
|
533 |
#endif
|
|
534 |
|
|
535 |
/*
|
|
536 |
** Enable reference count tracking (for debugging) here:
|
|
537 |
*/
|
|
538 |
#ifdef SQLITE_DEBUG
|
|
539 |
int pager3_refinfo_enable = 0;
|
|
540 |
static void pager_refinfo(PgHdr *p){
|
|
541 |
static int cnt = 0;
|
|
542 |
if( !pager3_refinfo_enable ) return;
|
|
543 |
sqlite3DebugPrintf(
|
|
544 |
"REFCNT: %4d addr=%p nRef=%-3d total=%d\n",
|
|
545 |
p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef
|
|
546 |
);
|
|
547 |
cnt++; /* Something to set a breakpoint on */
|
|
548 |
}
|
|
549 |
# define REFINFO(X) pager_refinfo(X)
|
|
550 |
#else
|
|
551 |
# define REFINFO(X)
|
|
552 |
#endif
|
|
553 |
|
|
554 |
/*
|
|
555 |
** Add page pPg to the end of the linked list managed by structure
|
|
556 |
** pList (pPg becomes the last entry in the list - the most recently
|
|
557 |
** used). Argument pLink should point to either pPg->free or pPg->gfree,
|
|
558 |
** depending on whether pPg is being added to the pager-specific or
|
|
559 |
** global LRU list.
|
|
560 |
*/
|
|
561 |
static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
|
|
562 |
pLink->pNext = 0;
|
|
563 |
pLink->pPrev = pList->pLast;
|
|
564 |
|
|
565 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
566 |
assert(pLink==&pPg->free || pLink==&pPg->gfree);
|
|
567 |
assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
|
|
568 |
#endif
|
|
569 |
|
|
570 |
if( pList->pLast ){
|
|
571 |
int iOff = (char *)pLink - (char *)pPg;
|
|
572 |
PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
|
|
573 |
pLastLink->pNext = pPg;
|
|
574 |
}else{
|
|
575 |
assert(!pList->pFirst);
|
|
576 |
pList->pFirst = pPg;
|
|
577 |
}
|
|
578 |
|
|
579 |
pList->pLast = pPg;
|
|
580 |
if( !pList->pFirstSynced && pPg->needSync==0 ){
|
|
581 |
pList->pFirstSynced = pPg;
|
|
582 |
}
|
|
583 |
}
|
|
584 |
|
|
585 |
/*
|
|
586 |
** Remove pPg from the list managed by the structure pointed to by pList.
|
|
587 |
**
|
|
588 |
** Argument pLink should point to either pPg->free or pPg->gfree, depending
|
|
589 |
** on whether pPg is being added to the pager-specific or global LRU list.
|
|
590 |
*/
|
|
591 |
static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
|
|
592 |
int iOff = (char *)pLink - (char *)pPg;
|
|
593 |
|
|
594 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
595 |
assert(pLink==&pPg->free || pLink==&pPg->gfree);
|
|
596 |
assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
|
|
597 |
#endif
|
|
598 |
|
|
599 |
if( pPg==pList->pFirst ){
|
|
600 |
pList->pFirst = pLink->pNext;
|
|
601 |
}
|
|
602 |
if( pPg==pList->pLast ){
|
|
603 |
pList->pLast = pLink->pPrev;
|
|
604 |
}
|
|
605 |
if( pLink->pPrev ){
|
|
606 |
PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
|
|
607 |
pPrevLink->pNext = pLink->pNext;
|
|
608 |
}
|
|
609 |
if( pLink->pNext ){
|
|
610 |
PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
|
|
611 |
pNextLink->pPrev = pLink->pPrev;
|
|
612 |
}
|
|
613 |
if( pPg==pList->pFirstSynced ){
|
|
614 |
PgHdr *p = pLink->pNext;
|
|
615 |
while( p && p->needSync ){
|
|
616 |
PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
|
|
617 |
p = pL->pNext;
|
|
618 |
}
|
|
619 |
pList->pFirstSynced = p;
|
|
620 |
}
|
|
621 |
|
|
622 |
pLink->pNext = pLink->pPrev = 0;
|
|
623 |
}
|
|
624 |
|
|
625 |
/*
|
|
626 |
** Add page pPg to the list of free pages for the pager. If
|
|
627 |
** memory-management is enabled, also add the page to the global
|
|
628 |
** list of free pages.
|
|
629 |
*/
|
|
630 |
static void lruListAdd(PgHdr *pPg){
|
|
631 |
listAdd(&pPg->pPager->lru, &pPg->free, pPg);
|
|
632 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
633 |
if( !pPg->pPager->memDb ){
|
|
634 |
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
635 |
listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
|
|
636 |
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
637 |
}
|
|
638 |
#endif
|
|
639 |
}
|
|
640 |
|
|
641 |
/*
|
|
642 |
** Remove page pPg from the list of free pages for the associated pager.
|
|
643 |
** If memory-management is enabled, also remove pPg from the global list
|
|
644 |
** of free pages.
|
|
645 |
*/
|
|
646 |
static void lruListRemove(PgHdr *pPg){
|
|
647 |
listRemove(&pPg->pPager->lru, &pPg->free, pPg);
|
|
648 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
649 |
if( !pPg->pPager->memDb ){
|
|
650 |
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
651 |
listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
|
|
652 |
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
653 |
}
|
|
654 |
#endif
|
|
655 |
}
|
|
656 |
|
|
657 |
/*
|
|
658 |
** This function is called just after the needSync flag has been cleared
|
|
659 |
** from all pages managed by pPager (usually because the journal file
|
|
660 |
** has just been synced). It updates the pPager->lru.pFirstSynced variable
|
|
661 |
** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
|
|
662 |
** variable also.
|
|
663 |
*/
|
|
664 |
static void lruListSetFirstSynced(Pager *pPager){
|
|
665 |
pPager->lru.pFirstSynced = pPager->lru.pFirst;
|
|
666 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
667 |
if( !pPager->memDb ){
|
|
668 |
PgHdr *p;
|
|
669 |
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
670 |
for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
|
|
671 |
assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
|
|
672 |
sqlite3LruPageList.pFirstSynced = p;
|
|
673 |
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
674 |
}
|
|
675 |
#endif
|
|
676 |
}
|
|
677 |
|
|
678 |
/*
|
|
679 |
** Return true if page *pPg has already been written to the statement
|
|
680 |
** journal (or statement snapshot has been created, if *pPg is part
|
|
681 |
** of an in-memory database).
|
|
682 |
*/
|
|
683 |
static int pageInStatement(PgHdr *pPg){
|
|
684 |
Pager *pPager = pPg->pPager;
|
|
685 |
if( MEMDB ){
|
|
686 |
return PGHDR_TO_HIST(pPg, pPager)->inStmt;
|
|
687 |
}else{
|
|
688 |
Pgno pgno = pPg->pgno;
|
|
689 |
u8 *a = pPager->aInStmt;
|
|
690 |
return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7))));
|
|
691 |
}
|
|
692 |
}
|
|
693 |
|
|
694 |
/*
|
|
695 |
** Change the size of the pager hash table to N. N must be a power
|
|
696 |
** of two.
|
|
697 |
*/
|
|
698 |
static void pager_resize_hash_table(Pager *pPager, int N){
|
|
699 |
PgHdr **aHash, *pPg;
|
|
700 |
assert( N>0 && (N&(N-1))==0 );
|
|
701 |
pagerLeave(pPager);
|
|
702 |
sqlite3MallocBenignFailure((int)pPager->aHash);
|
|
703 |
aHash = (PgHdr**)sqlite3MallocZero( sizeof(aHash[0])*N );
|
|
704 |
pagerEnter(pPager);
|
|
705 |
if( aHash==0 ){
|
|
706 |
/* Failure to rehash is not an error. It is only a performance hit. */
|
|
707 |
return;
|
|
708 |
}
|
|
709 |
sqlite3_free(pPager->aHash);
|
|
710 |
pPager->nHash = N;
|
|
711 |
pPager->aHash = aHash;
|
|
712 |
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
713 |
int h;
|
|
714 |
if( pPg->pgno==0 ){
|
|
715 |
assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
|
|
716 |
continue;
|
|
717 |
}
|
|
718 |
h = pPg->pgno & (N-1);
|
|
719 |
pPg->pNextHash = aHash[h];
|
|
720 |
if( aHash[h] ){
|
|
721 |
aHash[h]->pPrevHash = pPg;
|
|
722 |
}
|
|
723 |
aHash[h] = pPg;
|
|
724 |
pPg->pPrevHash = 0;
|
|
725 |
}
|
|
726 |
}
|
|
727 |
|
|
728 |
/*
|
|
729 |
** Read a 32-bit integer from the given file descriptor. Store the integer
|
|
730 |
** that is read in *pRes. Return SQLITE_OK if everything worked, or an
|
|
731 |
** error code is something goes wrong.
|
|
732 |
**
|
|
733 |
** All values are stored on disk as big-endian.
|
|
734 |
*/
|
|
735 |
static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
|
|
736 |
unsigned char ac[4];
|
|
737 |
int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
|
|
738 |
if( rc==SQLITE_OK ){
|
|
739 |
*pRes = sqlite3Get4byte(ac);
|
|
740 |
}
|
|
741 |
return rc;
|
|
742 |
}
|
|
743 |
|
|
744 |
/*
|
|
745 |
** Write a 32-bit integer into a string buffer in big-endian byte order.
|
|
746 |
*/
|
|
747 |
#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
|
|
748 |
|
|
749 |
/*
|
|
750 |
** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
|
|
751 |
** on success or an error code is something goes wrong.
|
|
752 |
*/
|
|
753 |
static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
|
|
754 |
char ac[4];
|
|
755 |
put32bits(ac, val);
|
|
756 |
return sqlite3OsWrite(fd, ac, 4, offset);
|
|
757 |
}
|
|
758 |
|
|
759 |
/*
|
|
760 |
** If file pFd is open, call sqlite3OsUnlock() on it.
|
|
761 |
*/
|
|
762 |
static int osUnlock(sqlite3_file *pFd, int eLock){
|
|
763 |
if( !pFd->isOpen ){
|
|
764 |
return SQLITE_OK;
|
|
765 |
}
|
|
766 |
return sqlite3OsUnlock(pFd, eLock);
|
|
767 |
}
|
|
768 |
|
|
769 |
/*
|
|
770 |
** This function determines whether or not the atomic-write optimization
|
|
771 |
** can be used with this pager. The optimization can be used if:
|
|
772 |
**
|
|
773 |
** (a) the value returned by OsDeviceCharacteristics() indicates that
|
|
774 |
** a database page may be written atomically, and
|
|
775 |
** (b) the value returned by OsSectorSize() is less than or equal
|
|
776 |
** to the page size.
|
|
777 |
**
|
|
778 |
** If the optimization cannot be used, 0 is returned. If it can be used,
|
|
779 |
** then the value returned is the size of the journal file when it
|
|
780 |
** contains rollback data for exactly one page.
|
|
781 |
*/
|
|
782 |
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
783 |
static int jrnlBufferSize(Pager *pPager){
|
|
784 |
int dc; /* Device characteristics */
|
|
785 |
int nSector; /* Sector size */
|
|
786 |
int nPage; /* Page size */
|
|
787 |
sqlite3_file *fd = pPager->fd;
|
|
788 |
|
|
789 |
if( fd->pMethods ){
|
|
790 |
dc = sqlite3OsDeviceCharacteristics(fd);
|
|
791 |
nSector = sqlite3OsSectorSize(fd);
|
|
792 |
nPage = pPager->pageSize;
|
|
793 |
}
|
|
794 |
|
|
795 |
assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
|
|
796 |
assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
|
|
797 |
|
|
798 |
if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
|
|
799 |
return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
|
|
800 |
}
|
|
801 |
return 0;
|
|
802 |
}
|
|
803 |
#endif
|
|
804 |
|
|
805 |
/*
|
|
806 |
** This function should be called when an error occurs within the pager
|
|
807 |
** code. The first argument is a pointer to the pager structure, the
|
|
808 |
** second the error-code about to be returned by a pager API function.
|
|
809 |
** The value returned is a copy of the second argument to this function.
|
|
810 |
**
|
|
811 |
** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
|
|
812 |
** the error becomes persistent. Until the persisten error is cleared,
|
|
813 |
** subsequent API calls on this Pager will immediately return the same
|
|
814 |
** error code.
|
|
815 |
**
|
|
816 |
** A persistent error indicates that the contents of the pager-cache
|
|
817 |
** cannot be trusted. This state can be cleared by completely discarding
|
|
818 |
** the contents of the pager-cache. If a transaction was active when
|
|
819 |
** the persistent error occured, then the rollback journal may need
|
|
820 |
** to be replayed.
|
|
821 |
*/
|
|
822 |
static void pager_unlock(Pager *pPager);
|
|
823 |
static int pager_error(Pager *pPager, int rc){
|
|
824 |
int rc2 = rc & 0xff;
|
|
825 |
assert(
|
|
826 |
pPager->errCode==SQLITE_FULL ||
|
|
827 |
pPager->errCode==SQLITE_OK ||
|
|
828 |
(pPager->errCode & 0xff)==SQLITE_IOERR
|
|
829 |
);
|
|
830 |
if(
|
|
831 |
rc2==SQLITE_FULL ||
|
|
832 |
rc2==SQLITE_IOERR ||
|
|
833 |
rc2==SQLITE_CORRUPT
|
|
834 |
){
|
|
835 |
pPager->errCode = rc;
|
|
836 |
if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
|
|
837 |
/* If the pager is already unlocked, call pager_unlock() now to
|
|
838 |
** clear the error state and ensure that the pager-cache is
|
|
839 |
** completely empty.
|
|
840 |
*/
|
|
841 |
pager_unlock(pPager);
|
|
842 |
}
|
|
843 |
}
|
|
844 |
return rc;
|
|
845 |
}
|
|
846 |
|
|
847 |
/*
|
|
848 |
** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
|
|
849 |
** on the cache using a hash function. This is used for testing
|
|
850 |
** and debugging only.
|
|
851 |
*/
|
|
852 |
#ifdef SQLITE_CHECK_PAGES
|
|
853 |
/*
|
|
854 |
** Return a 32-bit hash of the page data for pPage.
|
|
855 |
*/
|
|
856 |
static u32 pager_datahash(int nByte, unsigned char *pData){
|
|
857 |
u32 hash = 0;
|
|
858 |
int i;
|
|
859 |
for(i=0; i<nByte; i++){
|
|
860 |
hash = (hash*1039) + pData[i];
|
|
861 |
}
|
|
862 |
return hash;
|
|
863 |
}
|
|
864 |
static u32 pager_pagehash(PgHdr *pPage){
|
|
865 |
return pager_datahash(pPage->pPager->pageSize,
|
|
866 |
(unsigned char *)PGHDR_TO_DATA(pPage));
|
|
867 |
}
|
|
868 |
|
|
869 |
/*
|
|
870 |
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
|
|
871 |
** is defined, and NDEBUG is not defined, an assert() statement checks
|
|
872 |
** that the page is either dirty or still matches the calculated page-hash.
|
|
873 |
*/
|
|
874 |
#define CHECK_PAGE(x) checkPage(x)
|
|
875 |
static void checkPage(PgHdr *pPg){
|
|
876 |
Pager *pPager = pPg->pPager;
|
|
877 |
assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
|
|
878 |
pPg->pageHash==pager_pagehash(pPg) );
|
|
879 |
}
|
|
880 |
|
|
881 |
#else
|
|
882 |
#define pager_datahash(X,Y) 0
|
|
883 |
#define pager_pagehash(X) 0
|
|
884 |
#define CHECK_PAGE(x)
|
|
885 |
#endif
|
|
886 |
|
|
887 |
/*
|
|
888 |
** When this is called the journal file for pager pPager must be open.
|
|
889 |
** The master journal file name is read from the end of the file and
|
|
890 |
** written into memory supplied by the caller.
|
|
891 |
**
|
|
892 |
** zMaster must point to a buffer of at least nMaster bytes allocated by
|
|
893 |
** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
|
|
894 |
** enough space to write the master journal name). If the master journal
|
|
895 |
** name in the journal is longer than nMaster bytes (including a
|
|
896 |
** nul-terminator), then this is handled as if no master journal name
|
|
897 |
** were present in the journal.
|
|
898 |
**
|
|
899 |
** If no master journal file name is present zMaster[0] is set to 0 and
|
|
900 |
** SQLITE_OK returned.
|
|
901 |
*/
|
|
902 |
static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
|
|
903 |
int rc;
|
|
904 |
u32 len;
|
|
905 |
i64 szJ;
|
|
906 |
u32 cksum;
|
|
907 |
int i;
|
|
908 |
unsigned char aMagic[8]; /* A buffer to hold the magic header */
|
|
909 |
|
|
910 |
zMaster[0] = '\0';
|
|
911 |
|
|
912 |
rc = sqlite3OsFileSize(pJrnl, &szJ);
|
|
913 |
if( rc!=SQLITE_OK || szJ<16 ) return rc;
|
|
914 |
|
|
915 |
rc = read32bits(pJrnl, szJ-16, &len);
|
|
916 |
if( rc!=SQLITE_OK ) return rc;
|
|
917 |
|
|
918 |
if( len>=nMaster ){
|
|
919 |
return SQLITE_OK;
|
|
920 |
}
|
|
921 |
|
|
922 |
rc = read32bits(pJrnl, szJ-12, &cksum);
|
|
923 |
if( rc!=SQLITE_OK ) return rc;
|
|
924 |
|
|
925 |
rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
|
|
926 |
if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
|
|
927 |
|
|
928 |
rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
|
|
929 |
if( rc!=SQLITE_OK ){
|
|
930 |
return rc;
|
|
931 |
}
|
|
932 |
zMaster[len] = '\0';
|
|
933 |
|
|
934 |
/* See if the checksum matches the master journal name */
|
|
935 |
for(i=0; i<len; i++){
|
|
936 |
cksum -= zMaster[i];
|
|
937 |
}
|
|
938 |
if( cksum ){
|
|
939 |
/* If the checksum doesn't add up, then one or more of the disk sectors
|
|
940 |
** containing the master journal filename is corrupted. This means
|
|
941 |
** definitely roll back, so just return SQLITE_OK and report a (nul)
|
|
942 |
** master-journal filename.
|
|
943 |
*/
|
|
944 |
zMaster[0] = '\0';
|
|
945 |
}
|
|
946 |
|
|
947 |
return SQLITE_OK;
|
|
948 |
}
|
|
949 |
|
|
950 |
/*
|
|
951 |
** Seek the journal file descriptor to the next sector boundary where a
|
|
952 |
** journal header may be read or written. Pager.journalOff is updated with
|
|
953 |
** the new seek offset.
|
|
954 |
**
|
|
955 |
** i.e for a sector size of 512:
|
|
956 |
**
|
|
957 |
** Input Offset Output Offset
|
|
958 |
** ---------------------------------------
|
|
959 |
** 0 0
|
|
960 |
** 512 512
|
|
961 |
** 100 512
|
|
962 |
** 2000 2048
|
|
963 |
**
|
|
964 |
*/
|
|
965 |
static void seekJournalHdr(Pager *pPager){
|
|
966 |
i64 offset = 0;
|
|
967 |
i64 c = pPager->journalOff;
|
|
968 |
if( c ){
|
|
969 |
offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
|
|
970 |
}
|
|
971 |
assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
|
|
972 |
assert( offset>=c );
|
|
973 |
assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
|
|
974 |
pPager->journalOff = offset;
|
|
975 |
}
|
|
976 |
|
|
977 |
/*
|
|
978 |
** The journal file must be open when this routine is called. A journal
|
|
979 |
** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
|
|
980 |
** current location.
|
|
981 |
**
|
|
982 |
** The format for the journal header is as follows:
|
|
983 |
** - 8 bytes: Magic identifying journal format.
|
|
984 |
** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
|
|
985 |
** - 4 bytes: Random number used for page hash.
|
|
986 |
** - 4 bytes: Initial database page count.
|
|
987 |
** - 4 bytes: Sector size used by the process that wrote this journal.
|
|
988 |
**
|
|
989 |
** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
|
|
990 |
*/
|
|
991 |
static int writeJournalHdr(Pager *pPager){
|
|
992 |
char zHeader[sizeof(aJournalMagic)+16];
|
|
993 |
int rc;
|
|
994 |
|
|
995 |
if( pPager->stmtHdrOff==0 ){
|
|
996 |
pPager->stmtHdrOff = pPager->journalOff;
|
|
997 |
}
|
|
998 |
|
|
999 |
seekJournalHdr(pPager);
|
|
1000 |
pPager->journalHdr = pPager->journalOff;
|
|
1001 |
|
|
1002 |
memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
|
|
1003 |
|
|
1004 |
/*
|
|
1005 |
** Write the nRec Field - the number of page records that follow this
|
|
1006 |
** journal header. Normally, zero is written to this value at this time.
|
|
1007 |
** After the records are added to the journal (and the journal synced,
|
|
1008 |
** if in full-sync mode), the zero is overwritten with the true number
|
|
1009 |
** of records (see syncJournal()).
|
|
1010 |
**
|
|
1011 |
** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
|
|
1012 |
** reading the journal this value tells SQLite to assume that the
|
|
1013 |
** rest of the journal file contains valid page records. This assumption
|
|
1014 |
** is dangerous, as if a failure occured whilst writing to the journal
|
|
1015 |
** file it may contain some garbage data. There are two scenarios
|
|
1016 |
** where this risk can be ignored:
|
|
1017 |
**
|
|
1018 |
** * When the pager is in no-sync mode. Corruption can follow a
|
|
1019 |
** power failure in this case anyway.
|
|
1020 |
**
|
|
1021 |
** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
|
|
1022 |
** that garbage data is never appended to the journal file.
|
|
1023 |
*/
|
|
1024 |
assert(pPager->fd->pMethods||pPager->noSync);
|
|
1025 |
if( (pPager->noSync)
|
|
1026 |
|| (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
|
|
1027 |
){
|
|
1028 |
put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
|
|
1029 |
}else{
|
|
1030 |
put32bits(&zHeader[sizeof(aJournalMagic)], 0);
|
|
1031 |
}
|
|
1032 |
|
|
1033 |
/* The random check-hash initialiser */
|
|
1034 |
sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
|
|
1035 |
put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
|
|
1036 |
/* The initial database size */
|
|
1037 |
put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
|
|
1038 |
/* The assumed sector size for this process */
|
|
1039 |
put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
|
|
1040 |
IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader)))
|
|
1041 |
rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff);
|
|
1042 |
pPager->journalOff += JOURNAL_HDR_SZ(pPager);
|
|
1043 |
|
|
1044 |
/* The journal header has been written successfully. Seek the journal
|
|
1045 |
** file descriptor to the end of the journal header sector.
|
|
1046 |
*/
|
|
1047 |
if( rc==SQLITE_OK ){
|
|
1048 |
IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1))
|
|
1049 |
rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1);
|
|
1050 |
}
|
|
1051 |
return rc;
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
/*
|
|
1055 |
** The journal file must be open when this is called. A journal header file
|
|
1056 |
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
|
|
1057 |
** file. See comments above function writeJournalHdr() for a description of
|
|
1058 |
** the journal header format.
|
|
1059 |
**
|
|
1060 |
** If the header is read successfully, *nRec is set to the number of
|
|
1061 |
** page records following this header and *dbSize is set to the size of the
|
|
1062 |
** database before the transaction began, in pages. Also, pPager->cksumInit
|
|
1063 |
** is set to the value read from the journal header. SQLITE_OK is returned
|
|
1064 |
** in this case.
|
|
1065 |
**
|
|
1066 |
** If the journal header file appears to be corrupted, SQLITE_DONE is
|
|
1067 |
** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
|
|
1068 |
** cannot be read from the journal file an error code is returned.
|
|
1069 |
*/
|
|
1070 |
static int readJournalHdr(
|
|
1071 |
Pager *pPager,
|
|
1072 |
i64 journalSize,
|
|
1073 |
u32 *pNRec,
|
|
1074 |
u32 *pDbSize
|
|
1075 |
){
|
|
1076 |
int rc;
|
|
1077 |
unsigned char aMagic[8]; /* A buffer to hold the magic header */
|
|
1078 |
i64 jrnlOff;
|
|
1079 |
|
|
1080 |
seekJournalHdr(pPager);
|
|
1081 |
if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
|
|
1082 |
return SQLITE_DONE;
|
|
1083 |
}
|
|
1084 |
jrnlOff = pPager->journalOff;
|
|
1085 |
|
|
1086 |
rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
|
|
1087 |
if( rc ) return rc;
|
|
1088 |
jrnlOff += sizeof(aMagic);
|
|
1089 |
|
|
1090 |
if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
|
|
1091 |
return SQLITE_DONE;
|
|
1092 |
}
|
|
1093 |
|
|
1094 |
rc = read32bits(pPager->jfd, jrnlOff, pNRec);
|
|
1095 |
if( rc ) return rc;
|
|
1096 |
|
|
1097 |
rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
|
|
1098 |
if( rc ) return rc;
|
|
1099 |
|
|
1100 |
rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
|
|
1101 |
if( rc ) return rc;
|
|
1102 |
|
|
1103 |
/* Update the assumed sector-size to match the value used by
|
|
1104 |
** the process that created this journal. If this journal was
|
|
1105 |
** created by a process other than this one, then this routine
|
|
1106 |
** is being called from within pager_playback(). The local value
|
|
1107 |
** of Pager.sectorSize is restored at the end of that routine.
|
|
1108 |
*/
|
|
1109 |
rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
|
|
1110 |
if( rc ) return rc;
|
|
1111 |
|
|
1112 |
pPager->journalOff += JOURNAL_HDR_SZ(pPager);
|
|
1113 |
return SQLITE_OK;
|
|
1114 |
}
|
|
1115 |
|
|
1116 |
|
|
1117 |
/*
|
|
1118 |
** Write the supplied master journal name into the journal file for pager
|
|
1119 |
** pPager at the current location. The master journal name must be the last
|
|
1120 |
** thing written to a journal file. If the pager is in full-sync mode, the
|
|
1121 |
** journal file descriptor is advanced to the next sector boundary before
|
|
1122 |
** anything is written. The format is:
|
|
1123 |
**
|
|
1124 |
** + 4 bytes: PAGER_MJ_PGNO.
|
|
1125 |
** + N bytes: length of master journal name.
|
|
1126 |
** + 4 bytes: N
|
|
1127 |
** + 4 bytes: Master journal name checksum.
|
|
1128 |
** + 8 bytes: aJournalMagic[].
|
|
1129 |
**
|
|
1130 |
** The master journal page checksum is the sum of the bytes in the master
|
|
1131 |
** journal name.
|
|
1132 |
**
|
|
1133 |
** If zMaster is a NULL pointer (occurs for a single database transaction),
|
|
1134 |
** this call is a no-op.
|
|
1135 |
*/
|
|
1136 |
static int writeMasterJournal(Pager *pPager, const char *zMaster){
|
|
1137 |
int rc;
|
|
1138 |
int len;
|
|
1139 |
int i;
|
|
1140 |
i64 jrnlOff;
|
|
1141 |
u32 cksum = 0;
|
|
1142 |
char zBuf[sizeof(aJournalMagic)+2*4];
|
|
1143 |
|
|
1144 |
if( !zMaster || pPager->setMaster) return SQLITE_OK;
|
|
1145 |
pPager->setMaster = 1;
|
|
1146 |
|
|
1147 |
len = strlen(zMaster);
|
|
1148 |
for(i=0; i<len; i++){
|
|
1149 |
cksum += zMaster[i];
|
|
1150 |
}
|
|
1151 |
|
|
1152 |
/* If in full-sync mode, advance to the next disk sector before writing
|
|
1153 |
** the master journal name. This is in case the previous page written to
|
|
1154 |
** the journal has already been synced.
|
|
1155 |
*/
|
|
1156 |
if( pPager->fullSync ){
|
|
1157 |
seekJournalHdr(pPager);
|
|
1158 |
}
|
|
1159 |
jrnlOff = pPager->journalOff;
|
|
1160 |
pPager->journalOff += (len+20);
|
|
1161 |
|
|
1162 |
rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
|
|
1163 |
if( rc!=SQLITE_OK ) return rc;
|
|
1164 |
jrnlOff += 4;
|
|
1165 |
|
|
1166 |
rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
|
|
1167 |
if( rc!=SQLITE_OK ) return rc;
|
|
1168 |
jrnlOff += len;
|
|
1169 |
|
|
1170 |
put32bits(zBuf, len);
|
|
1171 |
put32bits(&zBuf[4], cksum);
|
|
1172 |
memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
|
|
1173 |
rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
|
|
1174 |
pPager->needSync = !pPager->noSync;
|
|
1175 |
return rc;
|
|
1176 |
}
|
|
1177 |
|
|
1178 |
/*
|
|
1179 |
** Add or remove a page from the list of all pages that are in the
|
|
1180 |
** statement journal.
|
|
1181 |
**
|
|
1182 |
** The Pager keeps a separate list of pages that are currently in
|
|
1183 |
** the statement journal. This helps the sqlite3PagerStmtCommit()
|
|
1184 |
** routine run MUCH faster for the common case where there are many
|
|
1185 |
** pages in memory but only a few are in the statement journal.
|
|
1186 |
*/
|
|
1187 |
static void page_add_to_stmt_list(PgHdr *pPg){
|
|
1188 |
Pager *pPager = pPg->pPager;
|
|
1189 |
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
1190 |
assert( MEMDB );
|
|
1191 |
if( !pHist->inStmt ){
|
|
1192 |
assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
|
|
1193 |
if( pPager->pStmt ){
|
|
1194 |
PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
|
|
1195 |
}
|
|
1196 |
pHist->pNextStmt = pPager->pStmt;
|
|
1197 |
pPager->pStmt = pPg;
|
|
1198 |
pHist->inStmt = 1;
|
|
1199 |
}
|
|
1200 |
}
|
|
1201 |
|
|
1202 |
/*
|
|
1203 |
** Find a page in the hash table given its page number. Return
|
|
1204 |
** a pointer to the page or NULL if not found.
|
|
1205 |
*/
|
|
1206 |
static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
|
|
1207 |
PgHdr *p;
|
|
1208 |
if( pPager->aHash==0 ) return 0;
|
|
1209 |
p = pPager->aHash[pgno & (pPager->nHash-1)];
|
|
1210 |
while( p && p->pgno!=pgno ){
|
|
1211 |
p = p->pNextHash;
|
|
1212 |
}
|
|
1213 |
return p;
|
|
1214 |
}
|
|
1215 |
|
|
1216 |
/*
|
|
1217 |
** Clear the in-memory cache. This routine
|
|
1218 |
** sets the state of the pager back to what it was when it was first
|
|
1219 |
** opened. Any outstanding pages are invalidated and subsequent attempts
|
|
1220 |
** to access those pages will likely result in a coredump.
|
|
1221 |
*/
|
|
1222 |
static void pager_reset(Pager *pPager){
|
|
1223 |
PgHdr *pPg, *pNext;
|
|
1224 |
if( pPager->errCode ) return;
|
|
1225 |
for(pPg=pPager->pAll; pPg; pPg=pNext){
|
|
1226 |
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
|
|
1227 |
PAGER_INCR(sqlite3_pager_pgfree_count);
|
|
1228 |
pNext = pPg->pNextAll;
|
|
1229 |
lruListRemove(pPg);
|
|
1230 |
sqlite3_free(pPg);
|
|
1231 |
}
|
|
1232 |
assert(pPager->lru.pFirst==0);
|
|
1233 |
assert(pPager->lru.pFirstSynced==0);
|
|
1234 |
assert(pPager->lru.pLast==0);
|
|
1235 |
pPager->pStmt = 0;
|
|
1236 |
pPager->pAll = 0;
|
|
1237 |
pPager->pDirty = 0;
|
|
1238 |
pPager->nHash = 0;
|
|
1239 |
sqlite3_free(pPager->aHash);
|
|
1240 |
pPager->nPage = 0;
|
|
1241 |
pPager->aHash = 0;
|
|
1242 |
pPager->nRef = 0;
|
|
1243 |
}
|
|
1244 |
|
|
1245 |
/*
|
|
1246 |
** Unlock the database file.
|
|
1247 |
**
|
|
1248 |
** If the pager is currently in error state, discard the contents of
|
|
1249 |
** the cache and reset the Pager structure internal state. If there is
|
|
1250 |
** an open journal-file, then the next time a shared-lock is obtained
|
|
1251 |
** on the pager file (by this or any other process), it will be
|
|
1252 |
** treated as a hot-journal and rolled back.
|
|
1253 |
*/
|
|
1254 |
static void pager_unlock(Pager *pPager){
|
|
1255 |
if( !pPager->exclusiveMode ){
|
|
1256 |
if( !MEMDB ){
|
|
1257 |
if( pPager->fd->isOpen ){
|
|
1258 |
osUnlock(pPager->fd, NO_LOCK);
|
|
1259 |
}
|
|
1260 |
pPager->dbSize = -1;
|
|
1261 |
IOTRACE(("UNLOCK %p\n", pPager))
|
|
1262 |
|
|
1263 |
/* If Pager.errCode is set, the contents of the pager cache cannot be
|
|
1264 |
** trusted. Now that the pager file is unlocked, the contents of the
|
|
1265 |
** cache can be discarded and the error code safely cleared.
|
|
1266 |
*/
|
|
1267 |
if( pPager->errCode ){
|
|
1268 |
pPager->errCode = SQLITE_OK;
|
|
1269 |
pager_reset(pPager);
|
|
1270 |
if( pPager->stmtOpen ){
|
|
1271 |
sqlite3OsClose(pPager->stfd);
|
|
1272 |
sqlite3_free(pPager->aInStmt);
|
|
1273 |
pPager->aInStmt = 0;
|
|
1274 |
}
|
|
1275 |
if( pPager->journalOpen ){
|
|
1276 |
sqlite3OsClose(pPager->jfd);
|
|
1277 |
pPager->journalOpen = 0;
|
|
1278 |
sqlite3_free(pPager->aInJournal);
|
|
1279 |
pPager->aInJournal = 0;
|
|
1280 |
}
|
|
1281 |
pPager->stmtOpen = 0;
|
|
1282 |
pPager->stmtInUse = 0;
|
|
1283 |
pPager->journalOff = 0;
|
|
1284 |
pPager->journalStarted = 0;
|
|
1285 |
pPager->stmtAutoopen = 0;
|
|
1286 |
pPager->origDbSize = 0;
|
|
1287 |
}
|
|
1288 |
}
|
|
1289 |
|
|
1290 |
if( !MEMDB || pPager->errCode==SQLITE_OK ){
|
|
1291 |
pPager->state = PAGER_UNLOCK;
|
|
1292 |
pPager->changeCountDone = 0;
|
|
1293 |
}
|
|
1294 |
}
|
|
1295 |
}
|
|
1296 |
|
|
1297 |
/*
|
|
1298 |
** Execute a rollback if a transaction is active and unlock the
|
|
1299 |
** database file. If the pager has already entered the error state,
|
|
1300 |
** do not attempt the rollback.
|
|
1301 |
*/
|
|
1302 |
static void pagerUnlockAndRollback(Pager *p){
|
|
1303 |
assert( p->state>=PAGER_RESERVED || p->journalOpen==0 );
|
|
1304 |
if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
|
|
1305 |
sqlite3PagerRollback(p);
|
|
1306 |
}
|
|
1307 |
pager_unlock(p);
|
|
1308 |
assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
|
|
1309 |
assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
|
|
1310 |
}
|
|
1311 |
|
|
1312 |
/*
|
|
1313 |
** This routine ends a transaction. A transaction is ended by either
|
|
1314 |
** a COMMIT or a ROLLBACK.
|
|
1315 |
**
|
|
1316 |
** When this routine is called, the pager has the journal file open and
|
|
1317 |
** a RESERVED or EXCLUSIVE lock on the database. This routine will release
|
|
1318 |
** the database lock and acquires a SHARED lock in its place if that is
|
|
1319 |
** the appropriate thing to do. Release locks usually is appropriate,
|
|
1320 |
** unless we are in exclusive access mode or unless this is a
|
|
1321 |
** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
|
|
1322 |
**
|
|
1323 |
** The journal file is either deleted or truncated.
|
|
1324 |
**
|
|
1325 |
** TODO: Consider keeping the journal file open for temporary databases.
|
|
1326 |
** This might give a performance improvement on windows where opening
|
|
1327 |
** a file is an expensive operation.
|
|
1328 |
*/
|
|
1329 |
static int pager_end_transaction(Pager *pPager){
|
|
1330 |
PgHdr *pPg;
|
|
1331 |
int rc = SQLITE_OK;
|
|
1332 |
int rc2 = SQLITE_OK;
|
|
1333 |
assert( !MEMDB );
|
|
1334 |
if( pPager->state<PAGER_RESERVED ){
|
|
1335 |
return SQLITE_OK;
|
|
1336 |
}
|
|
1337 |
sqlite3PagerStmtCommit(pPager);
|
|
1338 |
if( pPager->stmtOpen && !pPager->exclusiveMode ){
|
|
1339 |
sqlite3OsClose(pPager->stfd);
|
|
1340 |
pPager->stmtOpen = 0;
|
|
1341 |
}
|
|
1342 |
if( pPager->journalOpen ){
|
|
1343 |
if( pPager->exclusiveMode
|
|
1344 |
&& (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){;
|
|
1345 |
pPager->journalOff = 0;
|
|
1346 |
pPager->journalStarted = 0;
|
|
1347 |
}else{
|
|
1348 |
sqlite3OsClose(pPager->jfd);
|
|
1349 |
pPager->journalOpen = 0;
|
|
1350 |
if( rc==SQLITE_OK ){
|
|
1351 |
rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
|
|
1352 |
}
|
|
1353 |
}
|
|
1354 |
sqlite3_free( pPager->aInJournal );
|
|
1355 |
pPager->aInJournal = 0;
|
|
1356 |
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
1357 |
pPg->inJournal = 0;
|
|
1358 |
pPg->dirty = 0;
|
|
1359 |
pPg->needSync = 0;
|
|
1360 |
pPg->alwaysRollback = 0;
|
|
1361 |
#ifdef SQLITE_CHECK_PAGES
|
|
1362 |
pPg->pageHash = pager_pagehash(pPg);
|
|
1363 |
#endif
|
|
1364 |
}
|
|
1365 |
pPager->pDirty = 0;
|
|
1366 |
pPager->dirtyCache = 0;
|
|
1367 |
pPager->nRec = 0;
|
|
1368 |
}else{
|
|
1369 |
assert( pPager->aInJournal==0 );
|
|
1370 |
assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
|
|
1371 |
}
|
|
1372 |
|
|
1373 |
if( !pPager->exclusiveMode ){
|
|
1374 |
rc2 = osUnlock(pPager->fd, SHARED_LOCK);
|
|
1375 |
pPager->state = PAGER_SHARED;
|
|
1376 |
}else if( pPager->state==PAGER_SYNCED ){
|
|
1377 |
pPager->state = PAGER_EXCLUSIVE;
|
|
1378 |
}
|
|
1379 |
pPager->origDbSize = 0;
|
|
1380 |
pPager->setMaster = 0;
|
|
1381 |
pPager->needSync = 0;
|
|
1382 |
lruListSetFirstSynced(pPager);
|
|
1383 |
pPager->dbSize = -1;
|
|
1384 |
|
|
1385 |
return (rc==SQLITE_OK?rc2:rc);
|
|
1386 |
}
|
|
1387 |
|
|
1388 |
/*
|
|
1389 |
** Compute and return a checksum for the page of data.
|
|
1390 |
**
|
|
1391 |
** This is not a real checksum. It is really just the sum of the
|
|
1392 |
** random initial value and the page number. We experimented with
|
|
1393 |
** a checksum of the entire data, but that was found to be too slow.
|
|
1394 |
**
|
|
1395 |
** Note that the page number is stored at the beginning of data and
|
|
1396 |
** the checksum is stored at the end. This is important. If journal
|
|
1397 |
** corruption occurs due to a power failure, the most likely scenario
|
|
1398 |
** is that one end or the other of the record will be changed. It is
|
|
1399 |
** much less likely that the two ends of the journal record will be
|
|
1400 |
** correct and the middle be corrupt. Thus, this "checksum" scheme,
|
|
1401 |
** though fast and simple, catches the mostly likely kind of corruption.
|
|
1402 |
**
|
|
1403 |
** FIX ME: Consider adding every 200th (or so) byte of the data to the
|
|
1404 |
** checksum. That way if a single page spans 3 or more disk sectors and
|
|
1405 |
** only the middle sector is corrupt, we will still have a reasonable
|
|
1406 |
** chance of failing the checksum and thus detecting the problem.
|
|
1407 |
*/
|
|
1408 |
static u32 pager_cksum(Pager *pPager, const u8 *aData){
|
|
1409 |
u32 cksum = pPager->cksumInit;
|
|
1410 |
int i = pPager->pageSize-200;
|
|
1411 |
while( i>0 ){
|
|
1412 |
cksum += aData[i];
|
|
1413 |
i -= 200;
|
|
1414 |
}
|
|
1415 |
return cksum;
|
|
1416 |
}
|
|
1417 |
|
|
1418 |
/* Forward declaration */
|
|
1419 |
static void makeClean(PgHdr*);
|
|
1420 |
|
|
1421 |
/*
|
|
1422 |
** Read a single page from the journal file opened on file descriptor
|
|
1423 |
** jfd. Playback this one page.
|
|
1424 |
**
|
|
1425 |
** If useCksum==0 it means this journal does not use checksums. Checksums
|
|
1426 |
** are not used in statement journals because statement journals do not
|
|
1427 |
** need to survive power failures.
|
|
1428 |
*/
|
|
1429 |
static int pager_playback_one_page(
|
|
1430 |
Pager *pPager,
|
|
1431 |
sqlite3_file *jfd,
|
|
1432 |
i64 offset,
|
|
1433 |
int useCksum
|
|
1434 |
){
|
|
1435 |
int rc;
|
|
1436 |
PgHdr *pPg; /* An existing page in the cache */
|
|
1437 |
Pgno pgno; /* The page number of a page in journal */
|
|
1438 |
u32 cksum; /* Checksum used for sanity checking */
|
|
1439 |
u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
|
|
1440 |
|
|
1441 |
/* useCksum should be true for the main journal and false for
|
|
1442 |
** statement journals. Verify that this is always the case
|
|
1443 |
*/
|
|
1444 |
assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
|
|
1445 |
assert( aData );
|
|
1446 |
|
|
1447 |
rc = read32bits(jfd, offset, &pgno);
|
|
1448 |
if( rc!=SQLITE_OK ) return rc;
|
|
1449 |
rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
|
|
1450 |
if( rc!=SQLITE_OK ) return rc;
|
|
1451 |
pPager->journalOff += pPager->pageSize + 4;
|
|
1452 |
|
|
1453 |
/* Sanity checking on the page. This is more important that I originally
|
|
1454 |
** thought. If a power failure occurs while the journal is being written,
|
|
1455 |
** it could cause invalid data to be written into the journal. We need to
|
|
1456 |
** detect this invalid data (with high probability) and ignore it.
|
|
1457 |
*/
|
|
1458 |
if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
|
|
1459 |
return SQLITE_DONE;
|
|
1460 |
}
|
|
1461 |
if( pgno>(unsigned)pPager->dbSize ){
|
|
1462 |
return SQLITE_OK;
|
|
1463 |
}
|
|
1464 |
if( useCksum ){
|
|
1465 |
rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
|
|
1466 |
if( rc ) return rc;
|
|
1467 |
pPager->journalOff += 4;
|
|
1468 |
if( pager_cksum(pPager, aData)!=cksum ){
|
|
1469 |
return SQLITE_DONE;
|
|
1470 |
}
|
|
1471 |
}
|
|
1472 |
|
|
1473 |
assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
|
|
1474 |
|
|
1475 |
/* If the pager is in RESERVED state, then there must be a copy of this
|
|
1476 |
** page in the pager cache. In this case just update the pager cache,
|
|
1477 |
** not the database file. The page is left marked dirty in this case.
|
|
1478 |
**
|
|
1479 |
** An exception to the above rule: If the database is in no-sync mode
|
|
1480 |
** and a page is moved during an incremental vacuum then the page may
|
|
1481 |
** not be in the pager cache. Later: if a malloc() or IO error occurs
|
|
1482 |
** during a Movepage() call, then the page may not be in the cache
|
|
1483 |
** either. So the condition described in the above paragraph is not
|
|
1484 |
** assert()able.
|
|
1485 |
**
|
|
1486 |
** If in EXCLUSIVE state, then we update the pager cache if it exists
|
|
1487 |
** and the main file. The page is then marked not dirty.
|
|
1488 |
**
|
|
1489 |
** Ticket #1171: The statement journal might contain page content that is
|
|
1490 |
** different from the page content at the start of the transaction.
|
|
1491 |
** This occurs when a page is changed prior to the start of a statement
|
|
1492 |
** then changed again within the statement. When rolling back such a
|
|
1493 |
** statement we must not write to the original database unless we know
|
|
1494 |
** for certain that original page contents are synced into the main rollback
|
|
1495 |
** journal. Otherwise, a power loss might leave modified data in the
|
|
1496 |
** database file without an entry in the rollback journal that can
|
|
1497 |
** restore the database to its original form. Two conditions must be
|
|
1498 |
** met before writing to the database files. (1) the database must be
|
|
1499 |
** locked. (2) we know that the original page content is fully synced
|
|
1500 |
** in the main journal either because the page is not in cache or else
|
|
1501 |
** the page is marked as needSync==0.
|
|
1502 |
*/
|
|
1503 |
pPg = pager_lookup(pPager, pgno);
|
|
1504 |
PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
|
|
1505 |
PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
|
|
1506 |
if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
|
|
1507 |
i64 offset = (pgno-1)*(i64)pPager->pageSize;
|
|
1508 |
rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
|
|
1509 |
if( pPg ){
|
|
1510 |
makeClean(pPg);
|
|
1511 |
}
|
|
1512 |
}
|
|
1513 |
if( pPg ){
|
|
1514 |
/* No page should ever be explicitly rolled back that is in use, except
|
|
1515 |
** for page 1 which is held in use in order to keep the lock on the
|
|
1516 |
** database active. However such a page may be rolled back as a result
|
|
1517 |
** of an internal error resulting in an automatic call to
|
|
1518 |
** sqlite3PagerRollback().
|
|
1519 |
*/
|
|
1520 |
void *pData;
|
|
1521 |
/* assert( pPg->nRef==0 || pPg->pgno==1 ); */
|
|
1522 |
pData = PGHDR_TO_DATA(pPg);
|
|
1523 |
memcpy(pData, aData, pPager->pageSize);
|
|
1524 |
if( pPager->xReiniter ){
|
|
1525 |
pPager->xReiniter(pPg, pPager->pageSize);
|
|
1526 |
}
|
|
1527 |
#ifdef SQLITE_CHECK_PAGES
|
|
1528 |
pPg->pageHash = pager_pagehash(pPg);
|
|
1529 |
#endif
|
|
1530 |
/* If this was page 1, then restore the value of Pager.dbFileVers.
|
|
1531 |
** Do this before any decoding. */
|
|
1532 |
if( pgno==1 ){
|
|
1533 |
memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
|
|
1534 |
}
|
|
1535 |
|
|
1536 |
/* Decode the page just read from disk */
|
|
1537 |
CODEC1(pPager, pData, pPg->pgno, 3);
|
|
1538 |
}
|
|
1539 |
return rc;
|
|
1540 |
}
|
|
1541 |
|
|
1542 |
/*
|
|
1543 |
** Parameter zMaster is the name of a master journal file. A single journal
|
|
1544 |
** file that referred to the master journal file has just been rolled back.
|
|
1545 |
** This routine checks if it is possible to delete the master journal file,
|
|
1546 |
** and does so if it is.
|
|
1547 |
**
|
|
1548 |
** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
|
|
1549 |
** available for use within this function.
|
|
1550 |
**
|
|
1551 |
**
|
|
1552 |
** The master journal file contains the names of all child journals.
|
|
1553 |
** To tell if a master journal can be deleted, check to each of the
|
|
1554 |
** children. If all children are either missing or do not refer to
|
|
1555 |
** a different master journal, then this master journal can be deleted.
|
|
1556 |
*/
|
|
1557 |
static int pager_delmaster(Pager *pPager, const char *zMaster){
|
|
1558 |
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
1559 |
int rc;
|
|
1560 |
int master_open = 0;
|
|
1561 |
sqlite3_file *pMaster;
|
|
1562 |
sqlite3_file *pJournal;
|
|
1563 |
char *zMasterJournal = 0; /* Contents of master journal file */
|
|
1564 |
i64 nMasterJournal; /* Size of master journal file */
|
|
1565 |
|
|
1566 |
/* Open the master journal file exclusively in case some other process
|
|
1567 |
** is running this routine also. Not that it makes too much difference.
|
|
1568 |
*/
|
|
1569 |
pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
|
|
1570 |
pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
|
|
1571 |
if( !pMaster ){
|
|
1572 |
rc = SQLITE_NOMEM;
|
|
1573 |
}else{
|
|
1574 |
int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
|
|
1575 |
rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
|
|
1576 |
}
|
|
1577 |
if( rc!=SQLITE_OK ) goto delmaster_out;
|
|
1578 |
master_open = 1;
|
|
1579 |
|
|
1580 |
rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
|
|
1581 |
if( rc!=SQLITE_OK ) goto delmaster_out;
|
|
1582 |
|
|
1583 |
if( nMasterJournal>0 ){
|
|
1584 |
char *zJournal;
|
|
1585 |
char *zMasterPtr = 0;
|
|
1586 |
int nMasterPtr = pPager->pVfs->mxPathname+1;
|
|
1587 |
|
|
1588 |
/* Load the entire master journal file into space obtained from
|
|
1589 |
** sqlite3_malloc() and pointed to by zMasterJournal.
|
|
1590 |
*/
|
|
1591 |
zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
|
|
1592 |
if( !zMasterJournal ){
|
|
1593 |
rc = SQLITE_NOMEM;
|
|
1594 |
goto delmaster_out;
|
|
1595 |
}
|
|
1596 |
zMasterPtr = &zMasterJournal[nMasterJournal];
|
|
1597 |
rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
|
|
1598 |
if( rc!=SQLITE_OK ) goto delmaster_out;
|
|
1599 |
|
|
1600 |
zJournal = zMasterJournal;
|
|
1601 |
while( (zJournal-zMasterJournal)<nMasterJournal ){
|
|
1602 |
if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){
|
|
1603 |
/* One of the journals pointed to by the master journal exists.
|
|
1604 |
** Open it and check if it points at the master journal. If
|
|
1605 |
** so, return without deleting the master journal file.
|
|
1606 |
*/
|
|
1607 |
int c;
|
|
1608 |
int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
|
|
1609 |
rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
|
|
1610 |
if( rc!=SQLITE_OK ){
|
|
1611 |
goto delmaster_out;
|
|
1612 |
}
|
|
1613 |
|
|
1614 |
rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
|
|
1615 |
sqlite3OsClose(pJournal);
|
|
1616 |
if( rc!=SQLITE_OK ){
|
|
1617 |
goto delmaster_out;
|
|
1618 |
}
|
|
1619 |
|
|
1620 |
c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
|
|
1621 |
if( c ){
|
|
1622 |
/* We have a match. Do not delete the master journal file. */
|
|
1623 |
goto delmaster_out;
|
|
1624 |
}
|
|
1625 |
}
|
|
1626 |
zJournal += (strlen(zJournal)+1);
|
|
1627 |
}
|
|
1628 |
}
|
|
1629 |
|
|
1630 |
rc = sqlite3OsDelete(pVfs, zMaster, 0);
|
|
1631 |
|
|
1632 |
delmaster_out:
|
|
1633 |
if( zMasterJournal ){
|
|
1634 |
sqlite3_free(zMasterJournal);
|
|
1635 |
}
|
|
1636 |
if( master_open ){
|
|
1637 |
sqlite3OsClose(pMaster);
|
|
1638 |
}
|
|
1639 |
sqlite3_free(pMaster);
|
|
1640 |
return rc;
|
|
1641 |
}
|
|
1642 |
|
|
1643 |
|
|
1644 |
static void pager_truncate_cache(Pager *pPager);
|
|
1645 |
|
|
1646 |
/*
|
|
1647 |
** Truncate the main file of the given pager to the number of pages
|
|
1648 |
** indicated. Also truncate the cached representation of the file.
|
|
1649 |
**
|
|
1650 |
** Might might be the case that the file on disk is smaller than nPage.
|
|
1651 |
** This can happen, for example, if we are in the middle of a transaction
|
|
1652 |
** which has extended the file size and the new pages are still all held
|
|
1653 |
** in cache, then an INSERT or UPDATE does a statement rollback. Some
|
|
1654 |
** operating system implementations can get confused if you try to
|
|
1655 |
** truncate a file to some size that is larger than it currently is,
|
|
1656 |
** so detect this case and do not do the truncation.
|
|
1657 |
*/
|
|
1658 |
static int pager_truncate(Pager *pPager, int nPage){
|
|
1659 |
int rc = SQLITE_OK;
|
|
1660 |
if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->isOpen ){
|
|
1661 |
i64 currentSize, newSize;
|
|
1662 |
rc = sqlite3OsFileSize(pPager->fd, ¤tSize);
|
|
1663 |
newSize = pPager->pageSize*(i64)nPage;
|
|
1664 |
if( rc==SQLITE_OK && currentSize>newSize ){
|
|
1665 |
rc = sqlite3OsTruncate(pPager->fd, newSize);
|
|
1666 |
}
|
|
1667 |
}
|
|
1668 |
if( rc==SQLITE_OK ){
|
|
1669 |
pPager->dbSize = nPage;
|
|
1670 |
pager_truncate_cache(pPager);
|
|
1671 |
}
|
|
1672 |
return rc;
|
|
1673 |
}
|
|
1674 |
|
|
1675 |
/*
|
|
1676 |
** Set the sectorSize for the given pager.
|
|
1677 |
**
|
|
1678 |
** The sector size is the larger of the sector size reported
|
|
1679 |
** by sqlite3OsSectorSize() and the pageSize.
|
|
1680 |
*/
|
|
1681 |
static void setSectorSize(Pager *pPager){
|
|
1682 |
assert(pPager->fd->pMethods||pPager->tempFile);
|
|
1683 |
if( !pPager->tempFile ){
|
|
1684 |
/* Sector size doesn't matter for temporary files. Also, the file
|
|
1685 |
** may not have been opened yet, in whcih case the OsSectorSize()
|
|
1686 |
** call will segfault.
|
|
1687 |
*/
|
|
1688 |
pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
|
|
1689 |
}
|
|
1690 |
if( pPager->sectorSize<pPager->pageSize ){
|
|
1691 |
pPager->sectorSize = pPager->pageSize;
|
|
1692 |
}
|
|
1693 |
}
|
|
1694 |
|
|
1695 |
/*
|
|
1696 |
** Playback the journal and thus restore the database file to
|
|
1697 |
** the state it was in before we started making changes.
|
|
1698 |
**
|
|
1699 |
** The journal file format is as follows:
|
|
1700 |
**
|
|
1701 |
** (1) 8 byte prefix. A copy of aJournalMagic[].
|
|
1702 |
** (2) 4 byte big-endian integer which is the number of valid page records
|
|
1703 |
** in the journal. If this value is 0xffffffff, then compute the
|
|
1704 |
** number of page records from the journal size.
|
|
1705 |
** (3) 4 byte big-endian integer which is the initial value for the
|
|
1706 |
** sanity checksum.
|
|
1707 |
** (4) 4 byte integer which is the number of pages to truncate the
|
|
1708 |
** database to during a rollback.
|
|
1709 |
** (5) 4 byte integer which is the number of bytes in the master journal
|
|
1710 |
** name. The value may be zero (indicate that there is no master
|
|
1711 |
** journal.)
|
|
1712 |
** (6) N bytes of the master journal name. The name will be nul-terminated
|
|
1713 |
** and might be shorter than the value read from (5). If the first byte
|
|
1714 |
** of the name is \000 then there is no master journal. The master
|
|
1715 |
** journal name is stored in UTF-8.
|
|
1716 |
** (7) Zero or more pages instances, each as follows:
|
|
1717 |
** + 4 byte page number.
|
|
1718 |
** + pPager->pageSize bytes of data.
|
|
1719 |
** + 4 byte checksum
|
|
1720 |
**
|
|
1721 |
** When we speak of the journal header, we mean the first 6 items above.
|
|
1722 |
** Each entry in the journal is an instance of the 7th item.
|
|
1723 |
**
|
|
1724 |
** Call the value from the second bullet "nRec". nRec is the number of
|
|
1725 |
** valid page entries in the journal. In most cases, you can compute the
|
|
1726 |
** value of nRec from the size of the journal file. But if a power
|
|
1727 |
** failure occurred while the journal was being written, it could be the
|
|
1728 |
** case that the size of the journal file had already been increased but
|
|
1729 |
** the extra entries had not yet made it safely to disk. In such a case,
|
|
1730 |
** the value of nRec computed from the file size would be too large. For
|
|
1731 |
** that reason, we always use the nRec value in the header.
|
|
1732 |
**
|
|
1733 |
** If the nRec value is 0xffffffff it means that nRec should be computed
|
|
1734 |
** from the file size. This value is used when the user selects the
|
|
1735 |
** no-sync option for the journal. A power failure could lead to corruption
|
|
1736 |
** in this case. But for things like temporary table (which will be
|
|
1737 |
** deleted when the power is restored) we don't care.
|
|
1738 |
**
|
|
1739 |
** If the file opened as the journal file is not a well-formed
|
|
1740 |
** journal file then all pages up to the first corrupted page are rolled
|
|
1741 |
** back (or no pages if the journal header is corrupted). The journal file
|
|
1742 |
** is then deleted and SQLITE_OK returned, just as if no corruption had
|
|
1743 |
** been encountered.
|
|
1744 |
**
|
|
1745 |
** If an I/O or malloc() error occurs, the journal-file is not deleted
|
|
1746 |
** and an error code is returned.
|
|
1747 |
*/
|
|
1748 |
static int pager_playback(Pager *pPager, int isHot){
|
|
1749 |
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
1750 |
i64 szJ; /* Size of the journal file in bytes */
|
|
1751 |
u32 nRec; /* Number of Records in the journal */
|
|
1752 |
int i; /* Loop counter */
|
|
1753 |
Pgno mxPg = 0; /* Size of the original file in pages */
|
|
1754 |
int rc; /* Result code of a subroutine */
|
|
1755 |
char *zMaster = 0; /* Name of master journal file if any */
|
|
1756 |
|
|
1757 |
/* Figure out how many records are in the journal. Abort early if
|
|
1758 |
** the journal is empty.
|
|
1759 |
*/
|
|
1760 |
assert( pPager->journalOpen );
|
|
1761 |
rc = sqlite3OsFileSize(pPager->jfd, &szJ);
|
|
1762 |
if( rc!=SQLITE_OK || szJ==0 ){
|
|
1763 |
goto end_playback;
|
|
1764 |
}
|
|
1765 |
|
|
1766 |
/* Read the master journal name from the journal, if it is present.
|
|
1767 |
** If a master journal file name is specified, but the file is not
|
|
1768 |
** present on disk, then the journal is not hot and does not need to be
|
|
1769 |
** played back.
|
|
1770 |
*/
|
|
1771 |
zMaster = pPager->pTmpSpace;
|
|
1772 |
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
|
|
1773 |
assert( rc!=SQLITE_DONE );
|
|
1774 |
if( rc!=SQLITE_OK
|
|
1775 |
|| (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))
|
|
1776 |
){
|
|
1777 |
zMaster = 0;
|
|
1778 |
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
|
|
1779 |
goto end_playback;
|
|
1780 |
}
|
|
1781 |
pPager->journalOff = 0;
|
|
1782 |
zMaster = 0;
|
|
1783 |
|
|
1784 |
/* This loop terminates either when the readJournalHdr() call returns
|
|
1785 |
** SQLITE_DONE or an IO error occurs. */
|
|
1786 |
while( 1 ){
|
|
1787 |
|
|
1788 |
/* Read the next journal header from the journal file. If there are
|
|
1789 |
** not enough bytes left in the journal file for a complete header, or
|
|
1790 |
** it is corrupted, then a process must of failed while writing it.
|
|
1791 |
** This indicates nothing more needs to be rolled back.
|
|
1792 |
*/
|
|
1793 |
rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
|
|
1794 |
if( rc!=SQLITE_OK ){
|
|
1795 |
if( rc==SQLITE_DONE ){
|
|
1796 |
rc = SQLITE_OK;
|
|
1797 |
}
|
|
1798 |
goto end_playback;
|
|
1799 |
}
|
|
1800 |
|
|
1801 |
/* If nRec is 0xffffffff, then this journal was created by a process
|
|
1802 |
** working in no-sync mode. This means that the rest of the journal
|
|
1803 |
** file consists of pages, there are no more journal headers. Compute
|
|
1804 |
** the value of nRec based on this assumption.
|
|
1805 |
*/
|
|
1806 |
if( nRec==0xffffffff ){
|
|
1807 |
assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
|
|
1808 |
nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
|
|
1809 |
}
|
|
1810 |
|
|
1811 |
/* If nRec is 0 and this rollback is of a transaction created by this
|
|
1812 |
** process and if this is the final header in the journal, then it means
|
|
1813 |
** that this part of the journal was being filled but has not yet been
|
|
1814 |
** synced to disk. Compute the number of pages based on the remaining
|
|
1815 |
** size of the file.
|
|
1816 |
**
|
|
1817 |
** The third term of the test was added to fix ticket #2565.
|
|
1818 |
*/
|
|
1819 |
if( nRec==0 && !isHot &&
|
|
1820 |
pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
|
|
1821 |
nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
|
|
1822 |
}
|
|
1823 |
|
|
1824 |
/* If this is the first header read from the journal, truncate the
|
|
1825 |
** database file back to its original size.
|
|
1826 |
*/
|
|
1827 |
if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
|
|
1828 |
rc = pager_truncate(pPager, mxPg);
|
|
1829 |
if( rc!=SQLITE_OK ){
|
|
1830 |
goto end_playback;
|
|
1831 |
}
|
|
1832 |
}
|
|
1833 |
|
|
1834 |
/* Copy original pages out of the journal and back into the database file.
|
|
1835 |
*/
|
|
1836 |
for(i=0; i<nRec; i++){
|
|
1837 |
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
|
|
1838 |
if( rc!=SQLITE_OK ){
|
|
1839 |
if( rc==SQLITE_DONE ){
|
|
1840 |
rc = SQLITE_OK;
|
|
1841 |
pPager->journalOff = szJ;
|
|
1842 |
break;
|
|
1843 |
}else{
|
|
1844 |
goto end_playback;
|
|
1845 |
}
|
|
1846 |
}
|
|
1847 |
}
|
|
1848 |
}
|
|
1849 |
/*NOTREACHED*/
|
|
1850 |
assert( 0 );
|
|
1851 |
|
|
1852 |
end_playback:
|
|
1853 |
if( rc==SQLITE_OK ){
|
|
1854 |
zMaster = pPager->pTmpSpace;
|
|
1855 |
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
|
|
1856 |
}
|
|
1857 |
if( rc==SQLITE_OK ){
|
|
1858 |
rc = pager_end_transaction(pPager);
|
|
1859 |
}
|
|
1860 |
if( rc==SQLITE_OK && zMaster[0] ){
|
|
1861 |
/* If there was a master journal and this routine will return success,
|
|
1862 |
** see if it is possible to delete the master journal.
|
|
1863 |
*/
|
|
1864 |
rc = pager_delmaster(pPager, zMaster);
|
|
1865 |
}
|
|
1866 |
|
|
1867 |
/* The Pager.sectorSize variable may have been updated while rolling
|
|
1868 |
** back a journal created by a process with a different sector size
|
|
1869 |
** value. Reset it to the correct value for this process.
|
|
1870 |
*/
|
|
1871 |
setSectorSize(pPager);
|
|
1872 |
return rc;
|
|
1873 |
}
|
|
1874 |
|
|
1875 |
/*
|
|
1876 |
** Playback the statement journal.
|
|
1877 |
**
|
|
1878 |
** This is similar to playing back the transaction journal but with
|
|
1879 |
** a few extra twists.
|
|
1880 |
**
|
|
1881 |
** (1) The number of pages in the database file at the start of
|
|
1882 |
** the statement is stored in pPager->stmtSize, not in the
|
|
1883 |
** journal file itself.
|
|
1884 |
**
|
|
1885 |
** (2) In addition to playing back the statement journal, also
|
|
1886 |
** playback all pages of the transaction journal beginning
|
|
1887 |
** at offset pPager->stmtJSize.
|
|
1888 |
*/
|
|
1889 |
static int pager_stmt_playback(Pager *pPager){
|
|
1890 |
i64 szJ; /* Size of the full journal */
|
|
1891 |
i64 hdrOff;
|
|
1892 |
int nRec; /* Number of Records */
|
|
1893 |
int i; /* Loop counter */
|
|
1894 |
int rc;
|
|
1895 |
|
|
1896 |
szJ = pPager->journalOff;
|
|
1897 |
#ifndef NDEBUG
|
|
1898 |
{
|
|
1899 |
i64 os_szJ;
|
|
1900 |
rc = sqlite3OsFileSize(pPager->jfd, &os_szJ);
|
|
1901 |
if( rc!=SQLITE_OK ) return rc;
|
|
1902 |
assert( szJ==os_szJ );
|
|
1903 |
}
|
|
1904 |
#endif
|
|
1905 |
|
|
1906 |
/* Set hdrOff to be the offset just after the end of the last journal
|
|
1907 |
** page written before the first journal-header for this statement
|
|
1908 |
** transaction was written, or the end of the file if no journal
|
|
1909 |
** header was written.
|
|
1910 |
*/
|
|
1911 |
hdrOff = pPager->stmtHdrOff;
|
|
1912 |
assert( pPager->fullSync || !hdrOff );
|
|
1913 |
if( !hdrOff ){
|
|
1914 |
hdrOff = szJ;
|
|
1915 |
}
|
|
1916 |
|
|
1917 |
/* Truncate the database back to its original size.
|
|
1918 |
*/
|
|
1919 |
rc = pager_truncate(pPager, pPager->stmtSize);
|
|
1920 |
assert( pPager->state>=PAGER_SHARED );
|
|
1921 |
|
|
1922 |
/* Figure out how many records are in the statement journal.
|
|
1923 |
*/
|
|
1924 |
assert( pPager->stmtInUse && pPager->journalOpen );
|
|
1925 |
nRec = pPager->stmtNRec;
|
|
1926 |
|
|
1927 |
/* Copy original pages out of the statement journal and back into the
|
|
1928 |
** database file. Note that the statement journal omits checksums from
|
|
1929 |
** each record since power-failure recovery is not important to statement
|
|
1930 |
** journals.
|
|
1931 |
*/
|
|
1932 |
for(i=0; i<nRec; i++){
|
|
1933 |
i64 offset = i*(4+pPager->pageSize);
|
|
1934 |
rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
|
|
1935 |
assert( rc!=SQLITE_DONE );
|
|
1936 |
if( rc!=SQLITE_OK ) goto end_stmt_playback;
|
|
1937 |
}
|
|
1938 |
|
|
1939 |
/* Now roll some pages back from the transaction journal. Pager.stmtJSize
|
|
1940 |
** was the size of the journal file when this statement was started, so
|
|
1941 |
** everything after that needs to be rolled back, either into the
|
|
1942 |
** database, the memory cache, or both.
|
|
1943 |
**
|
|
1944 |
** If it is not zero, then Pager.stmtHdrOff is the offset to the start
|
|
1945 |
** of the first journal header written during this statement transaction.
|
|
1946 |
*/
|
|
1947 |
pPager->journalOff = pPager->stmtJSize;
|
|
1948 |
pPager->cksumInit = pPager->stmtCksum;
|
|
1949 |
while( pPager->journalOff < hdrOff ){
|
|
1950 |
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
|
|
1951 |
assert( rc!=SQLITE_DONE );
|
|
1952 |
if( rc!=SQLITE_OK ) goto end_stmt_playback;
|
|
1953 |
}
|
|
1954 |
|
|
1955 |
while( pPager->journalOff < szJ ){
|
|
1956 |
u32 nJRec; /* Number of Journal Records */
|
|
1957 |
u32 dummy;
|
|
1958 |
rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
|
|
1959 |
if( rc!=SQLITE_OK ){
|
|
1960 |
assert( rc!=SQLITE_DONE );
|
|
1961 |
goto end_stmt_playback;
|
|
1962 |
}
|
|
1963 |
if( nJRec==0 ){
|
|
1964 |
nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
|
|
1965 |
}
|
|
1966 |
for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
|
|
1967 |
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
|
|
1968 |
assert( rc!=SQLITE_DONE );
|
|
1969 |
if( rc!=SQLITE_OK ) goto end_stmt_playback;
|
|
1970 |
}
|
|
1971 |
}
|
|
1972 |
|
|
1973 |
pPager->journalOff = szJ;
|
|
1974 |
|
|
1975 |
end_stmt_playback:
|
|
1976 |
if( rc==SQLITE_OK) {
|
|
1977 |
pPager->journalOff = szJ;
|
|
1978 |
/* pager_reload_cache(pPager); */
|
|
1979 |
}
|
|
1980 |
return rc;
|
|
1981 |
}
|
|
1982 |
|
|
1983 |
/*
|
|
1984 |
** Change the maximum number of in-memory pages that are allowed.
|
|
1985 |
*/
|
|
1986 |
void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
|
|
1987 |
if( mxPage>10 ){
|
|
1988 |
pPager->mxPage = mxPage;
|
|
1989 |
}else{
|
|
1990 |
pPager->mxPage = 10;
|
|
1991 |
}
|
|
1992 |
}
|
|
1993 |
|
|
1994 |
/*
|
|
1995 |
** Adjust the robustness of the database to damage due to OS crashes
|
|
1996 |
** or power failures by changing the number of syncs()s when writing
|
|
1997 |
** the rollback journal. There are three levels:
|
|
1998 |
**
|
|
1999 |
** OFF sqlite3OsSync() is never called. This is the default
|
|
2000 |
** for temporary and transient files.
|
|
2001 |
**
|
|
2002 |
** NORMAL The journal is synced once before writes begin on the
|
|
2003 |
** database. This is normally adequate protection, but
|
|
2004 |
** it is theoretically possible, though very unlikely,
|
|
2005 |
** that an inopertune power failure could leave the journal
|
|
2006 |
** in a state which would cause damage to the database
|
|
2007 |
** when it is rolled back.
|
|
2008 |
**
|
|
2009 |
** FULL The journal is synced twice before writes begin on the
|
|
2010 |
** database (with some additional information - the nRec field
|
|
2011 |
** of the journal header - being written in between the two
|
|
2012 |
** syncs). If we assume that writing a
|
|
2013 |
** single disk sector is atomic, then this mode provides
|
|
2014 |
** assurance that the journal will not be corrupted to the
|
|
2015 |
** point of causing damage to the database during rollback.
|
|
2016 |
**
|
|
2017 |
** Numeric values associated with these states are OFF==1, NORMAL=2,
|
|
2018 |
** and FULL=3.
|
|
2019 |
*/
|
|
2020 |
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
2021 |
void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
|
|
2022 |
pPager->noSync = level==1 || pPager->tempFile;
|
|
2023 |
pPager->fullSync = level==3 && !pPager->tempFile;
|
|
2024 |
pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
|
|
2025 |
if( pPager->noSync ) pPager->needSync = 0;
|
|
2026 |
}
|
|
2027 |
#endif
|
|
2028 |
|
|
2029 |
/*
|
|
2030 |
** The following global variable is incremented whenever the library
|
|
2031 |
** attempts to open a temporary file. This information is used for
|
|
2032 |
** testing and analysis only.
|
|
2033 |
*/
|
|
2034 |
#ifdef SQLITE_TEST
|
|
2035 |
int sqlite3_opentemp_count = 0;
|
|
2036 |
#endif
|
|
2037 |
|
|
2038 |
/*
|
|
2039 |
** Open a temporary file.
|
|
2040 |
**
|
|
2041 |
** Write the file descriptor into *fd. Return SQLITE_OK on success or some
|
|
2042 |
** other error code if we fail. The OS will automatically delete the temporary
|
|
2043 |
** file when it is closed.
|
|
2044 |
*/
|
|
2045 |
static int sqlite3PagerOpentemp(
|
|
2046 |
sqlite3_vfs *pVfs, /* The virtual file system layer */
|
|
2047 |
sqlite3_file *pFile, /* Write the file descriptor here */
|
|
2048 |
char *zFilename, /* Name of the file. Might be NULL */
|
|
2049 |
int vfsFlags /* Flags passed through to the VFS */
|
|
2050 |
){
|
|
2051 |
int rc;
|
|
2052 |
assert( zFilename!=0 );
|
|
2053 |
|
|
2054 |
#ifdef SQLITE_TEST
|
|
2055 |
sqlite3_opentemp_count++; /* Used for testing and analysis only */
|
|
2056 |
#endif
|
|
2057 |
|
|
2058 |
vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
|
|
2059 |
SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
|
|
2060 |
rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
|
|
2061 |
assert( rc!=SQLITE_OK || pFile->pMethods );
|
|
2062 |
return rc;
|
|
2063 |
}
|
|
2064 |
|
|
2065 |
|
|
2066 |
//void fopenTest()
|
|
2067 |
//{
|
|
2068 |
// FILE *fp = fopen("c:\\data\\redfivelabs\\temp\\sqlite.log", "w+");
|
|
2069 |
// if (fp != NULL)
|
|
2070 |
// {
|
|
2071 |
// char tmp[256];
|
|
2072 |
// sprintf(tmp, "Hallo Welt");
|
|
2073 |
// fwrite(tmp, strlen(tmp), 1, fp);
|
|
2074 |
// fclose(fp);
|
|
2075 |
// }
|
|
2076 |
// return 191280;
|
|
2077 |
//}
|
|
2078 |
|
|
2079 |
/*
|
|
2080 |
** Create a new page cache and put a pointer to the page cache in *ppPager.
|
|
2081 |
** The file to be cached need not exist. The file is not locked until
|
|
2082 |
** the first call to sqlite3PagerGet() and is only held open until the
|
|
2083 |
** last page is released using sqlite3PagerUnref().
|
|
2084 |
**
|
|
2085 |
** If zFilename is NULL then a randomly-named temporary file is created
|
|
2086 |
** and used as the file to be cached. The file will be deleted
|
|
2087 |
** automatically when it is closed.
|
|
2088 |
**
|
|
2089 |
** If zFilename is ":memory:" then all information is held in cache.
|
|
2090 |
** It is never written to disk. This can be used to implement an
|
|
2091 |
** in-memory database.
|
|
2092 |
*/
|
|
2093 |
int sqlite3PagerOpen(
|
|
2094 |
sqlite3_vfs *pVfs, /* The virtual file system to use */
|
|
2095 |
Pager **ppPager, /* Return the Pager structure here */
|
|
2096 |
const char *zFilename, /* Name of the database file to open */
|
|
2097 |
int nExtra, /* Extra bytes append to each in-memory page */
|
|
2098 |
int flags, /* flags controlling this file */
|
|
2099 |
int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
|
|
2100 |
){
|
|
2101 |
u8 *pPtr;
|
|
2102 |
Pager *pPager = 0;
|
|
2103 |
int rc = SQLITE_OK;
|
|
2104 |
int i;
|
|
2105 |
int tempFile = 0;
|
|
2106 |
int memDb = 0;
|
|
2107 |
int readOnly = 0;
|
|
2108 |
int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
|
|
2109 |
int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
|
|
2110 |
int journalFileSize = sqlite3JournalSize(pVfs);
|
|
2111 |
int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
|
|
2112 |
char *zPathname;
|
|
2113 |
int nPathname;
|
|
2114 |
|
|
2115 |
|
|
2116 |
/* The default return is a NULL pointer */
|
|
2117 |
*ppPager = 0;
|
|
2118 |
|
|
2119 |
/* Compute the full pathname */
|
|
2120 |
nPathname = pVfs->mxPathname+1;
|
|
2121 |
zPathname = (char*)sqlite3_malloc(nPathname);
|
|
2122 |
if( zPathname==0 ){
|
|
2123 |
return SQLITE_NOMEM;
|
|
2124 |
}
|
|
2125 |
if( zFilename && zFilename[0] ){
|
|
2126 |
#ifndef SQLITE_OMIT_MEMORYDB
|
|
2127 |
if( strcmp(zFilename,":memory:")==0 ){
|
|
2128 |
memDb = 1;
|
|
2129 |
zPathname[0] = 0;
|
|
2130 |
}else
|
|
2131 |
#endif
|
|
2132 |
{
|
|
2133 |
|
|
2134 |
rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
|
|
2135 |
}
|
|
2136 |
}else{
|
|
2137 |
rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
|
|
2138 |
}
|
|
2139 |
if( rc!=SQLITE_OK ){
|
|
2140 |
sqlite3_free(zPathname);
|
|
2141 |
return rc;
|
|
2142 |
}
|
|
2143 |
|
|
2144 |
nPathname = strlen(zPathname);
|
|
2145 |
|
|
2146 |
/* Allocate memory for the pager structure */
|
|
2147 |
pPager = (Pager*)sqlite3MallocZero(
|
|
2148 |
sizeof(*pPager) + /* Pager structure */
|
|
2149 |
journalFileSize + /* The journal file structure */
|
|
2150 |
pVfs->szOsFile * 2 + /* The db and stmt journal files */
|
|
2151 |
4*nPathname + 40 /* zFilename, zDirectory, zJournal, zStmtJrnl */
|
|
2152 |
);
|
|
2153 |
if( !pPager ){
|
|
2154 |
sqlite3_free(zPathname);
|
|
2155 |
return SQLITE_NOMEM;
|
|
2156 |
}
|
|
2157 |
pPtr = (u8 *)&pPager[1];
|
|
2158 |
pPager->vfsFlags = vfsFlags;
|
|
2159 |
pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
|
|
2160 |
pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
|
|
2161 |
pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
|
|
2162 |
pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
|
|
2163 |
pPager->zDirectory = &pPager->zFilename[nPathname+1];
|
|
2164 |
pPager->zJournal = &pPager->zDirectory[nPathname+1];
|
|
2165 |
pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
|
|
2166 |
pPager->pVfs = pVfs;
|
|
2167 |
memcpy(pPager->zFilename, zPathname, nPathname+1);
|
|
2168 |
sqlite3_free(zPathname);
|
|
2169 |
|
|
2170 |
|
|
2171 |
/* Open the pager file.
|
|
2172 |
*/
|
|
2173 |
if( zFilename && zFilename[0] && !memDb ){
|
|
2174 |
if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
|
|
2175 |
rc = SQLITE_CANTOPEN;
|
|
2176 |
}else{
|
|
2177 |
int fout = 0;
|
|
2178 |
|
|
2179 |
rc = winOpen(pVfs, pPager->zFilename, pPager->fd,
|
|
2180 |
pPager->vfsFlags, &fout);
|
|
2181 |
readOnly = (fout&SQLITE_OPEN_READONLY);
|
|
2182 |
|
|
2183 |
/* If the file was successfully opened for read/write access,
|
|
2184 |
** choose a default page size in case we have to create the
|
|
2185 |
** database file. The default page size is the maximum of:
|
|
2186 |
**
|
|
2187 |
** + SQLITE_DEFAULT_PAGE_SIZE,
|
|
2188 |
** + The value returned by sqlite3OsSectorSize()
|
|
2189 |
** + The largest page size that can be written atomically.
|
|
2190 |
*/
|
|
2191 |
if( rc==SQLITE_OK && !readOnly ){
|
|
2192 |
int iSectorSize = sqlite3OsSectorSize(pPager->fd);
|
|
2193 |
if( nDefaultPage<iSectorSize ){
|
|
2194 |
nDefaultPage = iSectorSize;
|
|
2195 |
}
|
|
2196 |
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
2197 |
{
|
|
2198 |
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
|
|
2199 |
int ii;
|
|
2200 |
assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
|
|
2201 |
assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
|
|
2202 |
assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
|
|
2203 |
for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
|
|
2204 |
if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
|
|
2205 |
}
|
|
2206 |
}
|
|
2207 |
#endif
|
|
2208 |
if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
|
|
2209 |
nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
|
|
2210 |
}
|
|
2211 |
}
|
|
2212 |
}
|
|
2213 |
}else if( !memDb ){
|
|
2214 |
/* If a temporary file is requested, it is not opened immediately.
|
|
2215 |
** In this case we accept the default page size and delay actually
|
|
2216 |
** opening the file until the first call to OsWrite().
|
|
2217 |
*/
|
|
2218 |
tempFile = 1;
|
|
2219 |
pPager->state = PAGER_EXCLUSIVE;
|
|
2220 |
}
|
|
2221 |
|
|
2222 |
if( pPager && rc==SQLITE_OK ){
|
|
2223 |
pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage);
|
|
2224 |
}
|
|
2225 |
|
|
2226 |
/* If an error occured in either of the blocks above.
|
|
2227 |
** Free the Pager structure and close the file.
|
|
2228 |
** Since the pager is not allocated there is no need to set
|
|
2229 |
** any Pager.errMask variables.
|
|
2230 |
*/
|
|
2231 |
if( !pPager || !pPager->pTmpSpace ){
|
|
2232 |
sqlite3OsClose(pPager->fd);
|
|
2233 |
sqlite3_free(pPager);
|
|
2234 |
return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
|
|
2235 |
}
|
|
2236 |
|
|
2237 |
PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
|
|
2238 |
IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
|
|
2239 |
|
|
2240 |
/* Fill in Pager.zDirectory[] */
|
|
2241 |
memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
|
|
2242 |
for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
|
|
2243 |
if( i>0 ) pPager->zDirectory[i-1] = 0;
|
|
2244 |
|
|
2245 |
/* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */
|
|
2246 |
memcpy(pPager->zJournal, pPager->zFilename, nPathname);
|
|
2247 |
memcpy(&pPager->zJournal[nPathname], "-journal", 9);
|
|
2248 |
memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname);
|
|
2249 |
memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10);
|
|
2250 |
|
|
2251 |
/* pPager->journalOpen = 0; */
|
|
2252 |
pPager->useJournal = useJournal && !memDb;
|
|
2253 |
pPager->noReadlock = noReadlock && readOnly;
|
|
2254 |
/* pPager->stmtOpen = 0; */
|
|
2255 |
/* pPager->stmtInUse = 0; */
|
|
2256 |
/* pPager->nRef = 0; */
|
|
2257 |
pPager->dbSize = memDb-1;
|
|
2258 |
pPager->pageSize = nDefaultPage;
|
|
2259 |
/* pPager->stmtSize = 0; */
|
|
2260 |
/* pPager->stmtJSize = 0; */
|
|
2261 |
/* pPager->nPage = 0; */
|
|
2262 |
pPager->mxPage = 100;
|
|
2263 |
pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
|
|
2264 |
/* pPager->state = PAGER_UNLOCK; */
|
|
2265 |
assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
|
|
2266 |
/* pPager->errMask = 0; */
|
|
2267 |
pPager->tempFile = tempFile;
|
|
2268 |
assert( tempFile==PAGER_LOCKINGMODE_NORMAL
|
|
2269 |
|| tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
|
|
2270 |
assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
|
|
2271 |
pPager->exclusiveMode = tempFile;
|
|
2272 |
pPager->memDb = memDb;
|
|
2273 |
pPager->readOnly = readOnly;
|
|
2274 |
/* pPager->needSync = 0; */
|
|
2275 |
pPager->noSync = pPager->tempFile || !useJournal;
|
|
2276 |
pPager->fullSync = (pPager->noSync?0:1);
|
|
2277 |
pPager->sync_flags = SQLITE_SYNC_NORMAL;
|
|
2278 |
/* pPager->pFirst = 0; */
|
|
2279 |
/* pPager->pFirstSynced = 0; */
|
|
2280 |
/* pPager->pLast = 0; */
|
|
2281 |
pPager->nExtra = FORCE_ALIGNMENT(nExtra);
|
|
2282 |
assert(pPager->fd->pMethods||memDb||tempFile);
|
|
2283 |
if( !memDb ){
|
|
2284 |
setSectorSize(pPager);
|
|
2285 |
}
|
|
2286 |
/* pPager->pBusyHandler = 0; */
|
|
2287 |
/* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
|
|
2288 |
*ppPager = pPager;
|
|
2289 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
2290 |
pPager->iInUseMM = 0;
|
|
2291 |
pPager->iInUseDB = 0;
|
|
2292 |
if( !memDb ){
|
|
2293 |
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
2294 |
sqlite3_mutex_enter(mutex);
|
|
2295 |
pPager->pNext = sqlite3PagerList;
|
|
2296 |
if( sqlite3PagerList ){
|
|
2297 |
assert( sqlite3PagerList->pPrev==0 );
|
|
2298 |
sqlite3PagerList->pPrev = pPager;
|
|
2299 |
}
|
|
2300 |
pPager->pPrev = 0;
|
|
2301 |
sqlite3PagerList = pPager;
|
|
2302 |
sqlite3_mutex_leave(mutex);
|
|
2303 |
}
|
|
2304 |
#endif
|
|
2305 |
return SQLITE_OK;
|
|
2306 |
}
|
|
2307 |
|
|
2308 |
/*
|
|
2309 |
** Set the busy handler function.
|
|
2310 |
*/
|
|
2311 |
void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
|
|
2312 |
pPager->pBusyHandler = pBusyHandler;
|
|
2313 |
}
|
|
2314 |
|
|
2315 |
/*
|
|
2316 |
** Set the destructor for this pager. If not NULL, the destructor is called
|
|
2317 |
** when the reference count on each page reaches zero. The destructor can
|
|
2318 |
** be used to clean up information in the extra segment appended to each page.
|
|
2319 |
**
|
|
2320 |
** The destructor is not called as a result sqlite3PagerClose().
|
|
2321 |
** Destructors are only called by sqlite3PagerUnref().
|
|
2322 |
*/
|
|
2323 |
void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
|
|
2324 |
pPager->xDestructor = xDesc;
|
|
2325 |
}
|
|
2326 |
|
|
2327 |
/*
|
|
2328 |
** Set the reinitializer for this pager. If not NULL, the reinitializer
|
|
2329 |
** is called when the content of a page in cache is restored to its original
|
|
2330 |
** value as a result of a rollback. The callback gives higher-level code
|
|
2331 |
** an opportunity to restore the EXTRA section to agree with the restored
|
|
2332 |
** page data.
|
|
2333 |
*/
|
|
2334 |
void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
|
|
2335 |
pPager->xReiniter = xReinit;
|
|
2336 |
}
|
|
2337 |
|
|
2338 |
/*
|
|
2339 |
** Set the page size to *pPageSize. If the suggest new page size is
|
|
2340 |
** inappropriate, then an alternative page size is set to that
|
|
2341 |
** value before returning.
|
|
2342 |
*/
|
|
2343 |
int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
|
|
2344 |
int rc = SQLITE_OK;
|
|
2345 |
u16 pageSize = *pPageSize;
|
|
2346 |
assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
|
|
2347 |
if( pageSize && pageSize!=pPager->pageSize
|
|
2348 |
&& !pPager->memDb && pPager->nRef==0
|
|
2349 |
){
|
|
2350 |
char *pNew = (char *)sqlite3_malloc(pageSize);
|
|
2351 |
if( !pNew ){
|
|
2352 |
rc = SQLITE_NOMEM;
|
|
2353 |
}else{
|
|
2354 |
pagerEnter(pPager);
|
|
2355 |
pager_reset(pPager);
|
|
2356 |
pPager->pageSize = pageSize;
|
|
2357 |
setSectorSize(pPager);
|
|
2358 |
sqlite3_free(pPager->pTmpSpace);
|
|
2359 |
pPager->pTmpSpace = pNew;
|
|
2360 |
pagerLeave(pPager);
|
|
2361 |
}
|
|
2362 |
}
|
|
2363 |
*pPageSize = pPager->pageSize;
|
|
2364 |
return rc;
|
|
2365 |
}
|
|
2366 |
|
|
2367 |
/*
|
|
2368 |
** Return a pointer to the "temporary page" buffer held internally
|
|
2369 |
** by the pager. This is a buffer that is big enough to hold the
|
|
2370 |
** entire content of a database page. This buffer is used internally
|
|
2371 |
** during rollback and will be overwritten whenever a rollback
|
|
2372 |
** occurs. But other modules are free to use it too, as long as
|
|
2373 |
** no rollbacks are happening.
|
|
2374 |
*/
|
|
2375 |
void *sqlite3PagerTempSpace(Pager *pPager){
|
|
2376 |
return pPager->pTmpSpace;
|
|
2377 |
}
|
|
2378 |
|
|
2379 |
/*
|
|
2380 |
** Attempt to set the maximum database page count if mxPage is positive.
|
|
2381 |
** Make no changes if mxPage is zero or negative. And never reduce the
|
|
2382 |
** maximum page count below the current size of the database.
|
|
2383 |
**
|
|
2384 |
** Regardless of mxPage, return the current maximum page count.
|
|
2385 |
*/
|
|
2386 |
int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
|
|
2387 |
if( mxPage>0 ){
|
|
2388 |
pPager->mxPgno = mxPage;
|
|
2389 |
}
|
|
2390 |
sqlite3PagerPagecount(pPager);
|
|
2391 |
return pPager->mxPgno;
|
|
2392 |
}
|
|
2393 |
|
|
2394 |
/*
|
|
2395 |
** The following set of routines are used to disable the simulated
|
|
2396 |
** I/O error mechanism. These routines are used to avoid simulated
|
|
2397 |
** errors in places where we do not care about errors.
|
|
2398 |
**
|
|
2399 |
** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
|
|
2400 |
** and generate no code.
|
|
2401 |
*/
|
|
2402 |
#ifdef SQLITE_TEST
|
|
2403 |
extern int sqlite3_io_error_pending;
|
|
2404 |
extern int sqlite3_io_error_hit;
|
|
2405 |
static int saved_cnt;
|
|
2406 |
void disable_simulated_io_errors(void){
|
|
2407 |
saved_cnt = sqlite3_io_error_pending;
|
|
2408 |
sqlite3_io_error_pending = -1;
|
|
2409 |
}
|
|
2410 |
void enable_simulated_io_errors(void){
|
|
2411 |
sqlite3_io_error_pending = saved_cnt;
|
|
2412 |
}
|
|
2413 |
#else
|
|
2414 |
# define disable_simulated_io_errors()
|
|
2415 |
# define enable_simulated_io_errors()
|
|
2416 |
#endif
|
|
2417 |
|
|
2418 |
/*
|
|
2419 |
** Read the first N bytes from the beginning of the file into memory
|
|
2420 |
** that pDest points to.
|
|
2421 |
**
|
|
2422 |
** No error checking is done. The rational for this is that this function
|
|
2423 |
** may be called even if the file does not exist or contain a header. In
|
|
2424 |
** these cases sqlite3OsRead() will return an error, to which the correct
|
|
2425 |
** response is to zero the memory at pDest and continue. A real IO error
|
|
2426 |
** will presumably recur and be picked up later (Todo: Think about this).
|
|
2427 |
*/
|
|
2428 |
int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
|
|
2429 |
int rc = SQLITE_OK;
|
|
2430 |
memset(pDest, 0, N);
|
|
2431 |
assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
|
|
2432 |
if( pPager->fd->isOpen ){
|
|
2433 |
IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
|
|
2434 |
rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
|
|
2435 |
if( rc==SQLITE_IOERR_SHORT_READ ){
|
|
2436 |
rc = SQLITE_OK;
|
|
2437 |
}
|
|
2438 |
}
|
|
2439 |
return rc;
|
|
2440 |
}
|
|
2441 |
|
|
2442 |
/*
|
|
2443 |
** Return the total number of pages in the disk file associated with
|
|
2444 |
** pPager.
|
|
2445 |
**
|
|
2446 |
** If the PENDING_BYTE lies on the page directly after the end of the
|
|
2447 |
** file, then consider this page part of the file too. For example, if
|
|
2448 |
** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
|
|
2449 |
** file is 4096 bytes, 5 is returned instead of 4.
|
|
2450 |
*/
|
|
2451 |
int sqlite3PagerPagecount(Pager *pPager){
|
|
2452 |
i64 n = 0;
|
|
2453 |
int rc;
|
|
2454 |
assert( pPager!=0 );
|
|
2455 |
if( pPager->errCode ){
|
|
2456 |
return 0;
|
|
2457 |
}
|
|
2458 |
if( pPager->dbSize>=0 ){
|
|
2459 |
n = pPager->dbSize;
|
|
2460 |
} else {
|
|
2461 |
assert(pPager->fd->pMethods||pPager->tempFile);
|
|
2462 |
if( (pPager->fd->isOpen)
|
|
2463 |
&& (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
|
|
2464 |
pPager->nRef++;
|
|
2465 |
pager_error(pPager, rc);
|
|
2466 |
pPager->nRef--;
|
|
2467 |
return 0;
|
|
2468 |
}
|
|
2469 |
if( n>0 && n<pPager->pageSize ){
|
|
2470 |
n = 1;
|
|
2471 |
}else{
|
|
2472 |
n /= pPager->pageSize;
|
|
2473 |
}
|
|
2474 |
if( pPager->state!=PAGER_UNLOCK ){
|
|
2475 |
pPager->dbSize = n;
|
|
2476 |
}
|
|
2477 |
}
|
|
2478 |
if( n==(PENDING_BYTE/pPager->pageSize) ){
|
|
2479 |
n++;
|
|
2480 |
}
|
|
2481 |
if( n>pPager->mxPgno ){
|
|
2482 |
pPager->mxPgno = n;
|
|
2483 |
}
|
|
2484 |
return n;
|
|
2485 |
}
|
|
2486 |
|
|
2487 |
|
|
2488 |
#ifndef SQLITE_OMIT_MEMORYDB
|
|
2489 |
/*
|
|
2490 |
** Clear a PgHistory block
|
|
2491 |
*/
|
|
2492 |
static void clearHistory(PgHistory *pHist){
|
|
2493 |
sqlite3_free(pHist->pOrig);
|
|
2494 |
sqlite3_free(pHist->pStmt);
|
|
2495 |
pHist->pOrig = 0;
|
|
2496 |
pHist->pStmt = 0;
|
|
2497 |
}
|
|
2498 |
#else
|
|
2499 |
#define clearHistory(x)
|
|
2500 |
#endif
|
|
2501 |
|
|
2502 |
/*
|
|
2503 |
** Forward declaration
|
|
2504 |
*/
|
|
2505 |
static int syncJournal(Pager*);
|
|
2506 |
|
|
2507 |
/*
|
|
2508 |
** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
|
|
2509 |
** that the page is not part of any hash chain. This is required because the
|
|
2510 |
** sqlite3PagerMovepage() routine can leave a page in the
|
|
2511 |
** pNextFree/pPrevFree list that is not a part of any hash-chain.
|
|
2512 |
*/
|
|
2513 |
static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
|
|
2514 |
if( pPg->pgno==0 ){
|
|
2515 |
assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
|
|
2516 |
return;
|
|
2517 |
}
|
|
2518 |
if( pPg->pNextHash ){
|
|
2519 |
pPg->pNextHash->pPrevHash = pPg->pPrevHash;
|
|
2520 |
}
|
|
2521 |
if( pPg->pPrevHash ){
|
|
2522 |
assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
|
|
2523 |
pPg->pPrevHash->pNextHash = pPg->pNextHash;
|
|
2524 |
}else{
|
|
2525 |
int h = pPg->pgno & (pPager->nHash-1);
|
|
2526 |
pPager->aHash[h] = pPg->pNextHash;
|
|
2527 |
}
|
|
2528 |
if( MEMDB ){
|
|
2529 |
clearHistory(PGHDR_TO_HIST(pPg, pPager));
|
|
2530 |
}
|
|
2531 |
pPg->pgno = 0;
|
|
2532 |
pPg->pNextHash = pPg->pPrevHash = 0;
|
|
2533 |
}
|
|
2534 |
|
|
2535 |
/*
|
|
2536 |
** Unlink a page from the free list (the list of all pages where nRef==0)
|
|
2537 |
** and from its hash collision chain.
|
|
2538 |
*/
|
|
2539 |
static void unlinkPage(PgHdr *pPg){
|
|
2540 |
Pager *pPager = pPg->pPager;
|
|
2541 |
|
|
2542 |
/* Unlink from free page list */
|
|
2543 |
lruListRemove(pPg);
|
|
2544 |
|
|
2545 |
/* Unlink from the pgno hash table */
|
|
2546 |
unlinkHashChain(pPager, pPg);
|
|
2547 |
}
|
|
2548 |
|
|
2549 |
/*
|
|
2550 |
** This routine is used to truncate the cache when a database
|
|
2551 |
** is truncated. Drop from the cache all pages whose pgno is
|
|
2552 |
** larger than pPager->dbSize and is unreferenced.
|
|
2553 |
**
|
|
2554 |
** Referenced pages larger than pPager->dbSize are zeroed.
|
|
2555 |
**
|
|
2556 |
** Actually, at the point this routine is called, it would be
|
|
2557 |
** an error to have a referenced page. But rather than delete
|
|
2558 |
** that page and guarantee a subsequent segfault, it seems better
|
|
2559 |
** to zero it and hope that we error out sanely.
|
|
2560 |
*/
|
|
2561 |
static void pager_truncate_cache(Pager *pPager){
|
|
2562 |
PgHdr *pPg;
|
|
2563 |
PgHdr **ppPg;
|
|
2564 |
int dbSize = pPager->dbSize;
|
|
2565 |
|
|
2566 |
ppPg = &pPager->pAll;
|
|
2567 |
while( (pPg = *ppPg)!=0 ){
|
|
2568 |
if( pPg->pgno<=dbSize ){
|
|
2569 |
ppPg = &pPg->pNextAll;
|
|
2570 |
}else if( pPg->nRef>0 ){
|
|
2571 |
memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
|
|
2572 |
ppPg = &pPg->pNextAll;
|
|
2573 |
}else{
|
|
2574 |
*ppPg = pPg->pNextAll;
|
|
2575 |
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
|
|
2576 |
PAGER_INCR(sqlite3_pager_pgfree_count);
|
|
2577 |
unlinkPage(pPg);
|
|
2578 |
makeClean(pPg);
|
|
2579 |
sqlite3_free(pPg);
|
|
2580 |
pPager->nPage--;
|
|
2581 |
}
|
|
2582 |
}
|
|
2583 |
}
|
|
2584 |
|
|
2585 |
/*
|
|
2586 |
** Try to obtain a lock on a file. Invoke the busy callback if the lock
|
|
2587 |
** is currently not available. Repeat until the busy callback returns
|
|
2588 |
** false or until the lock succeeds.
|
|
2589 |
**
|
|
2590 |
** Return SQLITE_OK on success and an error code if we cannot obtain
|
|
2591 |
** the lock.
|
|
2592 |
*/
|
|
2593 |
static int pager_wait_on_lock(Pager *pPager, int locktype){
|
|
2594 |
int rc;
|
|
2595 |
|
|
2596 |
/* The OS lock values must be the same as the Pager lock values */
|
|
2597 |
assert( PAGER_SHARED==SHARED_LOCK );
|
|
2598 |
assert( PAGER_RESERVED==RESERVED_LOCK );
|
|
2599 |
assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
|
|
2600 |
|
|
2601 |
/* If the file is currently unlocked then the size must be unknown */
|
|
2602 |
assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
|
|
2603 |
|
|
2604 |
if( pPager->state>=locktype ){
|
|
2605 |
rc = SQLITE_OK;
|
|
2606 |
}else{
|
|
2607 |
do {
|
|
2608 |
rc = sqlite3OsLock(pPager->fd, locktype);
|
|
2609 |
}while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
|
|
2610 |
if( rc==SQLITE_OK ){
|
|
2611 |
pPager->state = locktype;
|
|
2612 |
IOTRACE(("LOCK %p %d\n", pPager, locktype))
|
|
2613 |
}
|
|
2614 |
}
|
|
2615 |
return rc;
|
|
2616 |
}
|
|
2617 |
|
|
2618 |
/*
|
|
2619 |
** Truncate the file to the number of pages specified.
|
|
2620 |
*/
|
|
2621 |
int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
|
|
2622 |
int rc;
|
|
2623 |
assert( pPager->state>=PAGER_SHARED || MEMDB );
|
|
2624 |
sqlite3PagerPagecount(pPager);
|
|
2625 |
if( pPager->errCode ){
|
|
2626 |
rc = pPager->errCode;
|
|
2627 |
return rc;
|
|
2628 |
}
|
|
2629 |
if( nPage>=(unsigned)pPager->dbSize ){
|
|
2630 |
return SQLITE_OK;
|
|
2631 |
}
|
|
2632 |
if( MEMDB ){
|
|
2633 |
pPager->dbSize = nPage;
|
|
2634 |
pager_truncate_cache(pPager);
|
|
2635 |
return SQLITE_OK;
|
|
2636 |
}
|
|
2637 |
pagerEnter(pPager);
|
|
2638 |
rc = syncJournal(pPager);
|
|
2639 |
pagerLeave(pPager);
|
|
2640 |
if( rc!=SQLITE_OK ){
|
|
2641 |
return rc;
|
|
2642 |
}
|
|
2643 |
|
|
2644 |
/* Get an exclusive lock on the database before truncating. */
|
|
2645 |
pagerEnter(pPager);
|
|
2646 |
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
|
|
2647 |
pagerLeave(pPager);
|
|
2648 |
if( rc!=SQLITE_OK ){
|
|
2649 |
return rc;
|
|
2650 |
}
|
|
2651 |
|
|
2652 |
rc = pager_truncate(pPager, nPage);
|
|
2653 |
return rc;
|
|
2654 |
}
|
|
2655 |
|
|
2656 |
/*
|
|
2657 |
** Shutdown the page cache. Free all memory and close all files.
|
|
2658 |
**
|
|
2659 |
** If a transaction was in progress when this routine is called, that
|
|
2660 |
** transaction is rolled back. All outstanding pages are invalidated
|
|
2661 |
** and their memory is freed. Any attempt to use a page associated
|
|
2662 |
** with this page cache after this function returns will likely
|
|
2663 |
** result in a coredump.
|
|
2664 |
**
|
|
2665 |
** This function always succeeds. If a transaction is active an attempt
|
|
2666 |
** is made to roll it back. If an error occurs during the rollback
|
|
2667 |
** a hot journal may be left in the filesystem but no error is returned
|
|
2668 |
** to the caller.
|
|
2669 |
*/
|
|
2670 |
int sqlite3PagerClose(Pager *pPager){
|
|
2671 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
2672 |
if( !MEMDB ){
|
|
2673 |
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
2674 |
sqlite3_mutex_enter(mutex);
|
|
2675 |
if( pPager->pPrev ){
|
|
2676 |
pPager->pPrev->pNext = pPager->pNext;
|
|
2677 |
}else{
|
|
2678 |
sqlite3PagerList = pPager->pNext;
|
|
2679 |
}
|
|
2680 |
if( pPager->pNext ){
|
|
2681 |
pPager->pNext->pPrev = pPager->pPrev;
|
|
2682 |
}
|
|
2683 |
sqlite3_mutex_leave(mutex);
|
|
2684 |
}
|
|
2685 |
#endif
|
|
2686 |
|
|
2687 |
disable_simulated_io_errors();
|
|
2688 |
pPager->errCode = 0;
|
|
2689 |
pPager->exclusiveMode = 0;
|
|
2690 |
pager_reset(pPager);
|
|
2691 |
pagerUnlockAndRollback(pPager);
|
|
2692 |
enable_simulated_io_errors();
|
|
2693 |
PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
|
|
2694 |
IOTRACE(("CLOSE %p\n", pPager))
|
|
2695 |
assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
|
|
2696 |
if( pPager->journalOpen ){
|
|
2697 |
sqlite3OsClose(pPager->jfd);
|
|
2698 |
}
|
|
2699 |
sqlite3_free(pPager->aInJournal);
|
|
2700 |
if( pPager->stmtOpen ){
|
|
2701 |
sqlite3OsClose(pPager->stfd);
|
|
2702 |
}
|
|
2703 |
sqlite3OsClose(pPager->fd);
|
|
2704 |
/* Temp files are automatically deleted by the OS
|
|
2705 |
** if( pPager->tempFile ){
|
|
2706 |
** sqlite3OsDelete(pPager->zFilename);
|
|
2707 |
** }
|
|
2708 |
*/
|
|
2709 |
|
|
2710 |
sqlite3_free(pPager->aHash);
|
|
2711 |
sqlite3_free(pPager->pTmpSpace);
|
|
2712 |
sqlite3_free(pPager);
|
|
2713 |
return SQLITE_OK;
|
|
2714 |
}
|
|
2715 |
|
|
2716 |
#if !defined(NDEBUG) || defined(SQLITE_TEST)
|
|
2717 |
/*
|
|
2718 |
** Return the page number for the given page data.
|
|
2719 |
*/
|
|
2720 |
Pgno sqlite3PagerPagenumber(DbPage *p){
|
|
2721 |
return p->pgno;
|
|
2722 |
}
|
|
2723 |
#endif
|
|
2724 |
|
|
2725 |
/*
|
|
2726 |
** The page_ref() function increments the reference count for a page.
|
|
2727 |
** If the page is currently on the freelist (the reference count is zero) then
|
|
2728 |
** remove it from the freelist.
|
|
2729 |
**
|
|
2730 |
** For non-test systems, page_ref() is a macro that calls _page_ref()
|
|
2731 |
** online of the reference count is zero. For test systems, page_ref()
|
|
2732 |
** is a real function so that we can set breakpoints and trace it.
|
|
2733 |
*/
|
|
2734 |
static void _page_ref(PgHdr *pPg){
|
|
2735 |
if( pPg->nRef==0 ){
|
|
2736 |
/* The page is currently on the freelist. Remove it. */
|
|
2737 |
lruListRemove(pPg);
|
|
2738 |
pPg->pPager->nRef++;
|
|
2739 |
}
|
|
2740 |
pPg->nRef++;
|
|
2741 |
REFINFO(pPg);
|
|
2742 |
}
|
|
2743 |
#ifdef SQLITE_DEBUG
|
|
2744 |
static void page_ref(PgHdr *pPg){
|
|
2745 |
if( pPg->nRef==0 ){
|
|
2746 |
_page_ref(pPg);
|
|
2747 |
}else{
|
|
2748 |
pPg->nRef++;
|
|
2749 |
REFINFO(pPg);
|
|
2750 |
}
|
|
2751 |
}
|
|
2752 |
#else
|
|
2753 |
# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
|
|
2754 |
#endif
|
|
2755 |
|
|
2756 |
/*
|
|
2757 |
** Increment the reference count for a page. The input pointer is
|
|
2758 |
** a reference to the page data.
|
|
2759 |
*/
|
|
2760 |
int sqlite3PagerRef(DbPage *pPg){
|
|
2761 |
pagerEnter(pPg->pPager);
|
|
2762 |
page_ref(pPg);
|
|
2763 |
pagerLeave(pPg->pPager);
|
|
2764 |
return SQLITE_OK;
|
|
2765 |
}
|
|
2766 |
|
|
2767 |
/*
|
|
2768 |
** Sync the journal. In other words, make sure all the pages that have
|
|
2769 |
** been written to the journal have actually reached the surface of the
|
|
2770 |
** disk. It is not safe to modify the original database file until after
|
|
2771 |
** the journal has been synced. If the original database is modified before
|
|
2772 |
** the journal is synced and a power failure occurs, the unsynced journal
|
|
2773 |
** data would be lost and we would be unable to completely rollback the
|
|
2774 |
** database changes. Database corruption would occur.
|
|
2775 |
**
|
|
2776 |
** This routine also updates the nRec field in the header of the journal.
|
|
2777 |
** (See comments on the pager_playback() routine for additional information.)
|
|
2778 |
** If the sync mode is FULL, two syncs will occur. First the whole journal
|
|
2779 |
** is synced, then the nRec field is updated, then a second sync occurs.
|
|
2780 |
**
|
|
2781 |
** For temporary databases, we do not care if we are able to rollback
|
|
2782 |
** after a power failure, so no sync occurs.
|
|
2783 |
**
|
|
2784 |
** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
|
|
2785 |
** the database is stored, then OsSync() is never called on the journal
|
|
2786 |
** file. In this case all that is required is to update the nRec field in
|
|
2787 |
** the journal header.
|
|
2788 |
**
|
|
2789 |
** This routine clears the needSync field of every page current held in
|
|
2790 |
** memory.
|
|
2791 |
*/
|
|
2792 |
static int syncJournal(Pager *pPager){
|
|
2793 |
PgHdr *pPg;
|
|
2794 |
int rc = SQLITE_OK;
|
|
2795 |
|
|
2796 |
|
|
2797 |
/* Sync the journal before modifying the main database
|
|
2798 |
** (assuming there is a journal and it needs to be synced.)
|
|
2799 |
*/
|
|
2800 |
if( pPager->needSync ){
|
|
2801 |
if( !pPager->tempFile ){
|
|
2802 |
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
|
|
2803 |
assert( pPager->journalOpen );
|
|
2804 |
|
|
2805 |
/* assert( !pPager->noSync ); // noSync might be set if synchronous
|
|
2806 |
** was turned off after the transaction was started. Ticket #615 */
|
|
2807 |
#ifndef NDEBUG
|
|
2808 |
{
|
|
2809 |
/* Make sure the pPager->nRec counter we are keeping agrees
|
|
2810 |
** with the nRec computed from the size of the journal file.
|
|
2811 |
*/
|
|
2812 |
i64 jSz;
|
|
2813 |
rc = sqlite3OsFileSize(pPager->jfd, &jSz);
|
|
2814 |
if( rc!=0 ) return rc;
|
|
2815 |
assert( pPager->journalOff==jSz );
|
|
2816 |
}
|
|
2817 |
#endif
|
|
2818 |
if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
|
|
2819 |
/* Write the nRec value into the journal file header. If in
|
|
2820 |
** full-synchronous mode, sync the journal first. This ensures that
|
|
2821 |
** all data has really hit the disk before nRec is updated to mark
|
|
2822 |
** it as a candidate for rollback.
|
|
2823 |
**
|
|
2824 |
** This is not required if the persistent media supports the
|
|
2825 |
** SAFE_APPEND property. Because in this case it is not possible
|
|
2826 |
** for garbage data to be appended to the file, the nRec field
|
|
2827 |
** is populated with 0xFFFFFFFF when the journal header is written
|
|
2828 |
** and never needs to be updated.
|
|
2829 |
*/
|
|
2830 |
i64 jrnlOff;
|
|
2831 |
if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
|
|
2832 |
PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
|
|
2833 |
IOTRACE(("JSYNC %p\n", pPager))
|
|
2834 |
rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
|
|
2835 |
if( rc!=0 ) return rc;
|
|
2836 |
}
|
|
2837 |
|
|
2838 |
jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
|
|
2839 |
IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
|
|
2840 |
rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
|
|
2841 |
if( rc ) return rc;
|
|
2842 |
}
|
|
2843 |
if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
|
|
2844 |
PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
|
|
2845 |
IOTRACE(("JSYNC %p\n", pPager))
|
|
2846 |
rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
|
|
2847 |
(pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
|
|
2848 |
);
|
|
2849 |
if( rc!=0 ) return rc;
|
|
2850 |
}
|
|
2851 |
pPager->journalStarted = 1;
|
|
2852 |
}
|
|
2853 |
pPager->needSync = 0;
|
|
2854 |
|
|
2855 |
/* Erase the needSync flag from every page.
|
|
2856 |
*/
|
|
2857 |
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
2858 |
pPg->needSync = 0;
|
|
2859 |
}
|
|
2860 |
lruListSetFirstSynced(pPager);
|
|
2861 |
}
|
|
2862 |
|
|
2863 |
#ifndef NDEBUG
|
|
2864 |
/* If the Pager.needSync flag is clear then the PgHdr.needSync
|
|
2865 |
** flag must also be clear for all pages. Verify that this
|
|
2866 |
** invariant is true.
|
|
2867 |
*/
|
|
2868 |
else{
|
|
2869 |
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
2870 |
assert( pPg->needSync==0 );
|
|
2871 |
}
|
|
2872 |
assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
|
|
2873 |
}
|
|
2874 |
#endif
|
|
2875 |
|
|
2876 |
return rc;
|
|
2877 |
}
|
|
2878 |
|
|
2879 |
/*
|
|
2880 |
** Merge two lists of pages connected by pDirty and in pgno order.
|
|
2881 |
** Do not both fixing the pPrevDirty pointers.
|
|
2882 |
*/
|
|
2883 |
static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
|
|
2884 |
PgHdr result, *pTail;
|
|
2885 |
pTail = &result;
|
|
2886 |
while( pA && pB ){
|
|
2887 |
if( pA->pgno<pB->pgno ){
|
|
2888 |
pTail->pDirty = pA;
|
|
2889 |
pTail = pA;
|
|
2890 |
pA = pA->pDirty;
|
|
2891 |
}else{
|
|
2892 |
pTail->pDirty = pB;
|
|
2893 |
pTail = pB;
|
|
2894 |
pB = pB->pDirty;
|
|
2895 |
}
|
|
2896 |
}
|
|
2897 |
if( pA ){
|
|
2898 |
pTail->pDirty = pA;
|
|
2899 |
}else if( pB ){
|
|
2900 |
pTail->pDirty = pB;
|
|
2901 |
}else{
|
|
2902 |
pTail->pDirty = 0;
|
|
2903 |
}
|
|
2904 |
return result.pDirty;
|
|
2905 |
}
|
|
2906 |
|
|
2907 |
/*
|
|
2908 |
** Sort the list of pages in accending order by pgno. Pages are
|
|
2909 |
** connected by pDirty pointers. The pPrevDirty pointers are
|
|
2910 |
** corrupted by this sort.
|
|
2911 |
*/
|
|
2912 |
#define N_SORT_BUCKET_ALLOC 25
|
|
2913 |
#define N_SORT_BUCKET 25
|
|
2914 |
#ifdef SQLITE_TEST
|
|
2915 |
int sqlite3_pager_n_sort_bucket = 0;
|
|
2916 |
#undef N_SORT_BUCKET
|
|
2917 |
#define N_SORT_BUCKET \
|
|
2918 |
(sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
|
|
2919 |
#endif
|
|
2920 |
static PgHdr *sort_pagelist(PgHdr *pIn){
|
|
2921 |
PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
|
|
2922 |
int i;
|
|
2923 |
memset(a, 0, sizeof(a));
|
|
2924 |
while( pIn ){
|
|
2925 |
p = pIn;
|
|
2926 |
pIn = p->pDirty;
|
|
2927 |
p->pDirty = 0;
|
|
2928 |
for(i=0; i<N_SORT_BUCKET-1; i++){
|
|
2929 |
if( a[i]==0 ){
|
|
2930 |
a[i] = p;
|
|
2931 |
break;
|
|
2932 |
}else{
|
|
2933 |
p = merge_pagelist(a[i], p);
|
|
2934 |
a[i] = 0;
|
|
2935 |
}
|
|
2936 |
}
|
|
2937 |
if( i==N_SORT_BUCKET-1 ){
|
|
2938 |
/* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
|
|
2939 |
** elements in the input list. This is possible, but impractical.
|
|
2940 |
** Testing this line is the point of global variable
|
|
2941 |
** sqlite3_pager_n_sort_bucket.
|
|
2942 |
*/
|
|
2943 |
a[i] = merge_pagelist(a[i], p);
|
|
2944 |
}
|
|
2945 |
}
|
|
2946 |
p = a[0];
|
|
2947 |
for(i=1; i<N_SORT_BUCKET; i++){
|
|
2948 |
p = merge_pagelist(p, a[i]);
|
|
2949 |
}
|
|
2950 |
return p;
|
|
2951 |
}
|
|
2952 |
|
|
2953 |
/*
|
|
2954 |
** Given a list of pages (connected by the PgHdr.pDirty pointer) write
|
|
2955 |
** every one of those pages out to the database file and mark them all
|
|
2956 |
** as clean.
|
|
2957 |
*/
|
|
2958 |
static int pager_write_pagelist(PgHdr *pList){
|
|
2959 |
Pager *pPager;
|
|
2960 |
PgHdr *p;
|
|
2961 |
int rc;
|
|
2962 |
|
|
2963 |
if( pList==0 ) return SQLITE_OK;
|
|
2964 |
pPager = pList->pPager;
|
|
2965 |
|
|
2966 |
/* At this point there may be either a RESERVED or EXCLUSIVE lock on the
|
|
2967 |
** database file. If there is already an EXCLUSIVE lock, the following
|
|
2968 |
** calls to sqlite3OsLock() are no-ops.
|
|
2969 |
**
|
|
2970 |
** Moving the lock from RESERVED to EXCLUSIVE actually involves going
|
|
2971 |
** through an intermediate state PENDING. A PENDING lock prevents new
|
|
2972 |
** readers from attaching to the database but is unsufficient for us to
|
|
2973 |
** write. The idea of a PENDING lock is to prevent new readers from
|
|
2974 |
** coming in while we wait for existing readers to clear.
|
|
2975 |
**
|
|
2976 |
** While the pager is in the RESERVED state, the original database file
|
|
2977 |
** is unchanged and we can rollback without having to playback the
|
|
2978 |
** journal into the original database file. Once we transition to
|
|
2979 |
** EXCLUSIVE, it means the database file has been changed and any rollback
|
|
2980 |
** will require a journal playback.
|
|
2981 |
*/
|
|
2982 |
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
|
|
2983 |
if( rc!=SQLITE_OK ){
|
|
2984 |
return rc;
|
|
2985 |
}
|
|
2986 |
|
|
2987 |
pList = sort_pagelist(pList);
|
|
2988 |
for(p=pList; p; p=p->pDirty){
|
|
2989 |
assert( p->dirty );
|
|
2990 |
p->dirty = 0;
|
|
2991 |
}
|
|
2992 |
while( pList ){
|
|
2993 |
|
|
2994 |
/* If the file has not yet been opened, open it now. */
|
|
2995 |
if( !pPager->fd->isOpen ){
|
|
2996 |
assert(pPager->tempFile);
|
|
2997 |
rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
|
|
2998 |
pPager->vfsFlags);
|
|
2999 |
if( rc ) return rc;
|
|
3000 |
}
|
|
3001 |
|
|
3002 |
/* If there are dirty pages in the page cache with page numbers greater
|
|
3003 |
** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
|
|
3004 |
** make the file smaller (presumably by auto-vacuum code). Do not write
|
|
3005 |
** any such pages to the file.
|
|
3006 |
*/
|
|
3007 |
if( pList->pgno<=pPager->dbSize ){
|
|
3008 |
i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
|
|
3009 |
char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
|
|
3010 |
PAGERTRACE4("STORE %d page %d hash(%08x)\n",
|
|
3011 |
PAGERID(pPager), pList->pgno, pager_pagehash(pList));
|
|
3012 |
IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
|
|
3013 |
rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
|
|
3014 |
PAGER_INCR(sqlite3_pager_writedb_count);
|
|
3015 |
PAGER_INCR(pPager->nWrite);
|
|
3016 |
if( pList->pgno==1 ){
|
|
3017 |
memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
|
|
3018 |
}
|
|
3019 |
}
|
|
3020 |
#ifndef NDEBUG
|
|
3021 |
else{
|
|
3022 |
PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
|
|
3023 |
}
|
|
3024 |
#endif
|
|
3025 |
if( rc ) return rc;
|
|
3026 |
#ifdef SQLITE_CHECK_PAGES
|
|
3027 |
pList->pageHash = pager_pagehash(pList);
|
|
3028 |
#endif
|
|
3029 |
pList = pList->pDirty;
|
|
3030 |
}
|
|
3031 |
return SQLITE_OK;
|
|
3032 |
}
|
|
3033 |
|
|
3034 |
/*
|
|
3035 |
** Collect every dirty page into a dirty list and
|
|
3036 |
** return a pointer to the head of that list. All pages are
|
|
3037 |
** collected even if they are still in use.
|
|
3038 |
*/
|
|
3039 |
static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
|
|
3040 |
return pPager->pDirty;
|
|
3041 |
}
|
|
3042 |
|
|
3043 |
/*
|
|
3044 |
** Return TRUE if there is a hot journal on the given pager.
|
|
3045 |
** A hot journal is one that needs to be played back.
|
|
3046 |
**
|
|
3047 |
** If the current size of the database file is 0 but a journal file
|
|
3048 |
** exists, that is probably an old journal left over from a prior
|
|
3049 |
** database with the same name. Just delete the journal.
|
|
3050 |
*/
|
|
3051 |
static int hasHotJournal(Pager *pPager){
|
|
3052 |
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
3053 |
if( !pPager->useJournal ) return 0;
|
|
3054 |
if( !pPager->fd->isOpen ) return 0;
|
|
3055 |
if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
|
|
3056 |
return 0;
|
|
3057 |
}
|
|
3058 |
if( sqlite3OsCheckReservedLock(pPager->fd) ){
|
|
3059 |
return 0;
|
|
3060 |
}
|
|
3061 |
if( sqlite3PagerPagecount(pPager)==0 ){
|
|
3062 |
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
|
|
3063 |
return 0;
|
|
3064 |
}else{
|
|
3065 |
return 1;
|
|
3066 |
}
|
|
3067 |
}
|
|
3068 |
|
|
3069 |
/*
|
|
3070 |
** Try to find a page in the cache that can be recycled.
|
|
3071 |
**
|
|
3072 |
** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
|
|
3073 |
** does not set the pPager->errCode variable.
|
|
3074 |
*/
|
|
3075 |
static int pager_recycle(Pager *pPager, PgHdr **ppPg){
|
|
3076 |
PgHdr *pPg;
|
|
3077 |
*ppPg = 0;
|
|
3078 |
|
|
3079 |
/* It is illegal to call this function unless the pager object
|
|
3080 |
** pointed to by pPager has at least one free page (page with nRef==0).
|
|
3081 |
*/
|
|
3082 |
assert(!MEMDB);
|
|
3083 |
assert(pPager->lru.pFirst);
|
|
3084 |
|
|
3085 |
/* Find a page to recycle. Try to locate a page that does not
|
|
3086 |
** require us to do an fsync() on the journal.
|
|
3087 |
*/
|
|
3088 |
pPg = pPager->lru.pFirstSynced;
|
|
3089 |
|
|
3090 |
/* If we could not find a page that does not require an fsync()
|
|
3091 |
** on the journal file then fsync the journal file. This is a
|
|
3092 |
** very slow operation, so we work hard to avoid it. But sometimes
|
|
3093 |
** it can't be helped.
|
|
3094 |
*/
|
|
3095 |
if( pPg==0 && pPager->lru.pFirst){
|
|
3096 |
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
|
|
3097 |
int rc = syncJournal(pPager);
|
|
3098 |
if( rc!=0 ){
|
|
3099 |
return rc;
|
|
3100 |
}
|
|
3101 |
if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
|
|
3102 |
/* If in full-sync mode, write a new journal header into the
|
|
3103 |
** journal file. This is done to avoid ever modifying a journal
|
|
3104 |
** header that is involved in the rollback of pages that have
|
|
3105 |
** already been written to the database (in case the header is
|
|
3106 |
** trashed when the nRec field is updated).
|
|
3107 |
*/
|
|
3108 |
pPager->nRec = 0;
|
|
3109 |
assert( pPager->journalOff > 0 );
|
|
3110 |
assert( pPager->doNotSync==0 );
|
|
3111 |
rc = writeJournalHdr(pPager);
|
|
3112 |
if( rc!=0 ){
|
|
3113 |
return rc;
|
|
3114 |
}
|
|
3115 |
}
|
|
3116 |
pPg = pPager->lru.pFirst;
|
|
3117 |
}
|
|
3118 |
|
|
3119 |
assert( pPg->nRef==0 );
|
|
3120 |
|
|
3121 |
/* Write the page to the database file if it is dirty.
|
|
3122 |
*/
|
|
3123 |
if( pPg->dirty ){
|
|
3124 |
int rc;
|
|
3125 |
assert( pPg->needSync==0 );
|
|
3126 |
makeClean(pPg);
|
|
3127 |
pPg->dirty = 1;
|
|
3128 |
pPg->pDirty = 0;
|
|
3129 |
rc = pager_write_pagelist( pPg );
|
|
3130 |
pPg->dirty = 0;
|
|
3131 |
if( rc!=SQLITE_OK ){
|
|
3132 |
return rc;
|
|
3133 |
}
|
|
3134 |
}
|
|
3135 |
assert( pPg->dirty==0 );
|
|
3136 |
|
|
3137 |
/* If the page we are recycling is marked as alwaysRollback, then
|
|
3138 |
** set the global alwaysRollback flag, thus disabling the
|
|
3139 |
** sqlite3PagerDontRollback() optimization for the rest of this transaction.
|
|
3140 |
** It is necessary to do this because the page marked alwaysRollback
|
|
3141 |
** might be reloaded at a later time but at that point we won't remember
|
|
3142 |
** that is was marked alwaysRollback. This means that all pages must
|
|
3143 |
** be marked as alwaysRollback from here on out.
|
|
3144 |
*/
|
|
3145 |
if( pPg->alwaysRollback ){
|
|
3146 |
IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
|
|
3147 |
pPager->alwaysRollback = 1;
|
|
3148 |
}
|
|
3149 |
|
|
3150 |
/* Unlink the old page from the free list and the hash table
|
|
3151 |
*/
|
|
3152 |
unlinkPage(pPg);
|
|
3153 |
assert( pPg->pgno==0 );
|
|
3154 |
|
|
3155 |
*ppPg = pPg;
|
|
3156 |
return SQLITE_OK;
|
|
3157 |
}
|
|
3158 |
|
|
3159 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
3160 |
/*
|
|
3161 |
** This function is called to free superfluous dynamically allocated memory
|
|
3162 |
** held by the pager system. Memory in use by any SQLite pager allocated
|
|
3163 |
** by the current thread may be sqlite3_free()ed.
|
|
3164 |
**
|
|
3165 |
** nReq is the number of bytes of memory required. Once this much has
|
|
3166 |
** been released, the function returns. The return value is the total number
|
|
3167 |
** of bytes of memory released.
|
|
3168 |
*/
|
|
3169 |
int sqlite3PagerReleaseMemory(int nReq){
|
|
3170 |
int nReleased = 0; /* Bytes of memory released so far */
|
|
3171 |
sqlite3_mutex *mutex; /* The MEM2 mutex */
|
|
3172 |
Pager *pPager; /* For looping over pagers */
|
|
3173 |
BusyHandler *savedBusy; /* Saved copy of the busy handler */
|
|
3174 |
int rc = SQLITE_OK;
|
|
3175 |
|
|
3176 |
/* Acquire the memory-management mutex
|
|
3177 |
*/
|
|
3178 |
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
3179 |
sqlite3_mutex_enter(mutex);
|
|
3180 |
|
|
3181 |
/* Signal all database connections that memory management wants
|
|
3182 |
** to have access to the pagers.
|
|
3183 |
*/
|
|
3184 |
for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
|
|
3185 |
pPager->iInUseMM = 1;
|
|
3186 |
}
|
|
3187 |
|
|
3188 |
while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
|
|
3189 |
PgHdr *pPg;
|
|
3190 |
PgHdr *pRecycled;
|
|
3191 |
|
|
3192 |
/* Try to find a page to recycle that does not require a sync(). If
|
|
3193 |
** this is not possible, find one that does require a sync().
|
|
3194 |
*/
|
|
3195 |
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
3196 |
pPg = sqlite3LruPageList.pFirstSynced;
|
|
3197 |
while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
|
|
3198 |
pPg = pPg->gfree.pNext;
|
|
3199 |
}
|
|
3200 |
if( !pPg ){
|
|
3201 |
pPg = sqlite3LruPageList.pFirst;
|
|
3202 |
while( pPg && pPg->pPager->iInUseDB ){
|
|
3203 |
pPg = pPg->gfree.pNext;
|
|
3204 |
}
|
|
3205 |
}
|
|
3206 |
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
3207 |
|
|
3208 |
/* If pPg==0, then the block above has failed to find a page to
|
|
3209 |
** recycle. In this case return early - no further memory will
|
|
3210 |
** be released.
|
|
3211 |
*/
|
|
3212 |
if( !pPg ) break;
|
|
3213 |
|
|
3214 |
pPager = pPg->pPager;
|
|
3215 |
assert(!pPg->needSync || pPg==pPager->lru.pFirst);
|
|
3216 |
assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
|
|
3217 |
|
|
3218 |
savedBusy = pPager->pBusyHandler;
|
|
3219 |
pPager->pBusyHandler = 0;
|
|
3220 |
rc = pager_recycle(pPager, &pRecycled);
|
|
3221 |
pPager->pBusyHandler = savedBusy;
|
|
3222 |
assert(pRecycled==pPg || rc!=SQLITE_OK);
|
|
3223 |
if( rc==SQLITE_OK ){
|
|
3224 |
/* We've found a page to free. At this point the page has been
|
|
3225 |
** removed from the page hash-table, free-list and synced-list
|
|
3226 |
** (pFirstSynced). It is still in the all pages (pAll) list.
|
|
3227 |
** Remove it from this list before freeing.
|
|
3228 |
**
|
|
3229 |
** Todo: Check the Pager.pStmt list to make sure this is Ok. It
|
|
3230 |
** probably is though.
|
|
3231 |
*/
|
|
3232 |
PgHdr *pTmp;
|
|
3233 |
assert( pPg );
|
|
3234 |
if( pPg==pPager->pAll ){
|
|
3235 |
pPager->pAll = pPg->pNextAll;
|
|
3236 |
}else{
|
|
3237 |
for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
|
|
3238 |
pTmp->pNextAll = pPg->pNextAll;
|
|
3239 |
}
|
|
3240 |
nReleased += (
|
|
3241 |
sizeof(*pPg) + pPager->pageSize
|
|
3242 |
+ sizeof(u32) + pPager->nExtra
|
|
3243 |
+ MEMDB*sizeof(PgHistory)
|
|
3244 |
);
|
|
3245 |
IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
|
|
3246 |
PAGER_INCR(sqlite3_pager_pgfree_count);
|
|
3247 |
sqlite3_free(pPg);
|
|
3248 |
pPager->nPage--;
|
|
3249 |
}else{
|
|
3250 |
/* An error occured whilst writing to the database file or
|
|
3251 |
** journal in pager_recycle(). The error is not returned to the
|
|
3252 |
** caller of this function. Instead, set the Pager.errCode variable.
|
|
3253 |
** The error will be returned to the user (or users, in the case
|
|
3254 |
** of a shared pager cache) of the pager for which the error occured.
|
|
3255 |
*/
|
|
3256 |
assert(
|
|
3257 |
(rc&0xff)==SQLITE_IOERR ||
|
|
3258 |
rc==SQLITE_FULL ||
|
|
3259 |
rc==SQLITE_BUSY
|
|
3260 |
);
|
|
3261 |
assert( pPager->state>=PAGER_RESERVED );
|
|
3262 |
pager_error(pPager, rc);
|
|
3263 |
}
|
|
3264 |
}
|
|
3265 |
|
|
3266 |
/* Clear the memory management flags and release the mutex
|
|
3267 |
*/
|
|
3268 |
for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
|
|
3269 |
pPager->iInUseMM = 0;
|
|
3270 |
}
|
|
3271 |
sqlite3_mutex_leave(mutex);
|
|
3272 |
|
|
3273 |
/* Return the number of bytes released
|
|
3274 |
*/
|
|
3275 |
return nReleased;
|
|
3276 |
}
|
|
3277 |
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
|
|
3278 |
|
|
3279 |
/*
|
|
3280 |
** Read the content of page pPg out of the database file.
|
|
3281 |
*/
|
|
3282 |
static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
|
|
3283 |
int rc;
|
|
3284 |
i64 offset;
|
|
3285 |
assert( MEMDB==0 );
|
|
3286 |
assert(pPager->fd->pMethods||pPager->tempFile);
|
|
3287 |
if( !pPager->fd->isOpen ){
|
|
3288 |
return SQLITE_IOERR_SHORT_READ;
|
|
3289 |
}
|
|
3290 |
offset = (pgno-1)*(i64)pPager->pageSize;
|
|
3291 |
rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
|
|
3292 |
PAGER_INCR(sqlite3_pager_readdb_count);
|
|
3293 |
PAGER_INCR(pPager->nRead);
|
|
3294 |
IOTRACE(("PGIN %p %d\n", pPager, pgno));
|
|
3295 |
if( pgno==1 ){
|
|
3296 |
memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
|
|
3297 |
sizeof(pPager->dbFileVers));
|
|
3298 |
}
|
|
3299 |
CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
|
|
3300 |
PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
|
|
3301 |
PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
|
|
3302 |
return rc;
|
|
3303 |
}
|
|
3304 |
|
|
3305 |
|
|
3306 |
/*
|
|
3307 |
** This function is called to obtain the shared lock required before
|
|
3308 |
** data may be read from the pager cache. If the shared lock has already
|
|
3309 |
** been obtained, this function is a no-op.
|
|
3310 |
**
|
|
3311 |
** Immediately after obtaining the shared lock (if required), this function
|
|
3312 |
** checks for a hot-journal file. If one is found, an emergency rollback
|
|
3313 |
** is performed immediately.
|
|
3314 |
*/
|
|
3315 |
static int pagerSharedLock(Pager *pPager){
|
|
3316 |
int rc = SQLITE_OK;
|
|
3317 |
int isHot = 0;
|
|
3318 |
|
|
3319 |
/* If this database is opened for exclusive access, has no outstanding
|
|
3320 |
** page references and is in an error-state, now is the chance to clear
|
|
3321 |
** the error. Discard the contents of the pager-cache and treat any
|
|
3322 |
** open journal file as a hot-journal.
|
|
3323 |
*/
|
|
3324 |
if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
|
|
3325 |
if( pPager->journalOpen ){
|
|
3326 |
isHot = 1;
|
|
3327 |
}
|
|
3328 |
pager_reset(pPager);
|
|
3329 |
pPager->errCode = SQLITE_OK;
|
|
3330 |
}
|
|
3331 |
|
|
3332 |
/* If the pager is still in an error state, do not proceed. The error
|
|
3333 |
** state will be cleared at some point in the future when all page
|
|
3334 |
** references are dropped and the cache can be discarded.
|
|
3335 |
*/
|
|
3336 |
if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
|
|
3337 |
return pPager->errCode;
|
|
3338 |
}
|
|
3339 |
|
|
3340 |
if( pPager->state==PAGER_UNLOCK || isHot ){
|
|
3341 |
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
3342 |
if( !MEMDB ){
|
|
3343 |
assert( pPager->nRef==0 );
|
|
3344 |
if( !pPager->noReadlock ){
|
|
3345 |
rc = pager_wait_on_lock(pPager, SHARED_LOCK);
|
|
3346 |
if( rc!=SQLITE_OK ){
|
|
3347 |
return pager_error(pPager, rc);
|
|
3348 |
}
|
|
3349 |
assert( pPager->state>=SHARED_LOCK );
|
|
3350 |
}
|
|
3351 |
|
|
3352 |
/* If a journal file exists, and there is no RESERVED lock on the
|
|
3353 |
** database file, then it either needs to be played back or deleted.
|
|
3354 |
*/
|
|
3355 |
if( hasHotJournal(pPager) || isHot ){
|
|
3356 |
/* Get an EXCLUSIVE lock on the database file. At this point it is
|
|
3357 |
** important that a RESERVED lock is not obtained on the way to the
|
|
3358 |
** EXCLUSIVE lock. If it were, another process might open the
|
|
3359 |
** database file, detect the RESERVED lock, and conclude that the
|
|
3360 |
** database is safe to read while this process is still rolling it
|
|
3361 |
** back.
|
|
3362 |
**
|
|
3363 |
** Because the intermediate RESERVED lock is not requested, the
|
|
3364 |
** second process will get to this point in the code and fail to
|
|
3365 |
** obtain its own EXCLUSIVE lock on the database file.
|
|
3366 |
*/
|
|
3367 |
if( pPager->state<EXCLUSIVE_LOCK ){
|
|
3368 |
rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
|
|
3369 |
if( rc!=SQLITE_OK ){
|
|
3370 |
pager_unlock(pPager);
|
|
3371 |
return pager_error(pPager, rc);
|
|
3372 |
}
|
|
3373 |
pPager->state = PAGER_EXCLUSIVE;
|
|
3374 |
}
|
|
3375 |
|
|
3376 |
/* Open the journal for reading only. Return SQLITE_BUSY if
|
|
3377 |
** we are unable to open the journal file.
|
|
3378 |
**
|
|
3379 |
** The journal file does not need to be locked itself. The
|
|
3380 |
** journal file is never open unless the main database file holds
|
|
3381 |
** a write lock, so there is never any chance of two or more
|
|
3382 |
** processes opening the journal at the same time.
|
|
3383 |
**
|
|
3384 |
** Open the journal for read/write access. This is because in
|
|
3385 |
** exclusive-access mode the file descriptor will be kept open and
|
|
3386 |
** possibly used for a transaction later on. On some systems, the
|
|
3387 |
** OsTruncate() call used in exclusive-access mode also requires
|
|
3388 |
** a read/write file handle.
|
|
3389 |
*/
|
|
3390 |
if( !isHot ){
|
|
3391 |
rc = SQLITE_BUSY;
|
|
3392 |
if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
|
|
3393 |
int fout = 0;
|
|
3394 |
int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
|
|
3395 |
assert( !pPager->tempFile );
|
|
3396 |
rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
|
|
3397 |
assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
|
|
3398 |
if( fout&SQLITE_OPEN_READONLY ){
|
|
3399 |
rc = SQLITE_BUSY;
|
|
3400 |
sqlite3OsClose(pPager->jfd);
|
|
3401 |
}
|
|
3402 |
}
|
|
3403 |
}
|
|
3404 |
if( rc!=SQLITE_OK ){
|
|
3405 |
pager_unlock(pPager);
|
|
3406 |
return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY);
|
|
3407 |
}
|
|
3408 |
pPager->journalOpen = 1;
|
|
3409 |
pPager->journalStarted = 0;
|
|
3410 |
pPager->journalOff = 0;
|
|
3411 |
pPager->setMaster = 0;
|
|
3412 |
pPager->journalHdr = 0;
|
|
3413 |
|
|
3414 |
/* Playback and delete the journal. Drop the database write
|
|
3415 |
** lock and reacquire the read lock.
|
|
3416 |
*/
|
|
3417 |
rc = pager_playback(pPager, 1);
|
|
3418 |
if( rc!=SQLITE_OK ){
|
|
3419 |
return pager_error(pPager, rc);
|
|
3420 |
}
|
|
3421 |
assert(pPager->state==PAGER_SHARED ||
|
|
3422 |
(pPager->exclusiveMode && pPager->state>PAGER_SHARED)
|
|
3423 |
);
|
|
3424 |
}
|
|
3425 |
|
|
3426 |
if( pPager->pAll ){
|
|
3427 |
/* The shared-lock has just been acquired on the database file
|
|
3428 |
** and there are already pages in the cache (from a previous
|
|
3429 |
** read or write transaction). Check to see if the database
|
|
3430 |
** has been modified. If the database has changed, flush the
|
|
3431 |
** cache.
|
|
3432 |
**
|
|
3433 |
** Database changes is detected by looking at 15 bytes beginning
|
|
3434 |
** at offset 24 into the file. The first 4 of these 16 bytes are
|
|
3435 |
** a 32-bit counter that is incremented with each change. The
|
|
3436 |
** other bytes change randomly with each file change when
|
|
3437 |
** a codec is in use.
|
|
3438 |
**
|
|
3439 |
** There is a vanishingly small chance that a change will not be
|
|
3440 |
** detected. The chance of an undetected change is so small that
|
|
3441 |
** it can be neglected.
|
|
3442 |
*/
|
|
3443 |
char dbFileVers[sizeof(pPager->dbFileVers)];
|
|
3444 |
sqlite3PagerPagecount(pPager);
|
|
3445 |
|
|
3446 |
if( pPager->errCode ){
|
|
3447 |
return pPager->errCode;
|
|
3448 |
}
|
|
3449 |
|
|
3450 |
if( pPager->dbSize>0 ){
|
|
3451 |
IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
|
|
3452 |
rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
|
|
3453 |
if( rc!=SQLITE_OK ){
|
|
3454 |
return rc;
|
|
3455 |
}
|
|
3456 |
}else{
|
|
3457 |
memset(dbFileVers, 0, sizeof(dbFileVers));
|
|
3458 |
}
|
|
3459 |
|
|
3460 |
if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
|
|
3461 |
pager_reset(pPager);
|
|
3462 |
}
|
|
3463 |
}
|
|
3464 |
}
|
|
3465 |
assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
|
|
3466 |
if( pPager->state==PAGER_UNLOCK ){
|
|
3467 |
pPager->state = PAGER_SHARED;
|
|
3468 |
}
|
|
3469 |
}
|
|
3470 |
|
|
3471 |
return rc;
|
|
3472 |
}
|
|
3473 |
|
|
3474 |
/*
|
|
3475 |
** Allocate a PgHdr object. Either create a new one or reuse
|
|
3476 |
** an existing one that is not otherwise in use.
|
|
3477 |
**
|
|
3478 |
** A new PgHdr structure is created if any of the following are
|
|
3479 |
** true:
|
|
3480 |
**
|
|
3481 |
** (1) We have not exceeded our maximum allocated cache size
|
|
3482 |
** as set by the "PRAGMA cache_size" command.
|
|
3483 |
**
|
|
3484 |
** (2) There are no unused PgHdr objects available at this time.
|
|
3485 |
**
|
|
3486 |
** (3) This is an in-memory database.
|
|
3487 |
**
|
|
3488 |
** (4) There are no PgHdr objects that do not require a journal
|
|
3489 |
** file sync and a sync of the journal file is currently
|
|
3490 |
** prohibited.
|
|
3491 |
**
|
|
3492 |
** Otherwise, reuse an existing PgHdr. In other words, reuse an
|
|
3493 |
** existing PgHdr if all of the following are true:
|
|
3494 |
**
|
|
3495 |
** (1) We have reached or exceeded the maximum cache size
|
|
3496 |
** allowed by "PRAGMA cache_size".
|
|
3497 |
**
|
|
3498 |
** (2) There is a PgHdr available with PgHdr->nRef==0
|
|
3499 |
**
|
|
3500 |
** (3) We are not in an in-memory database
|
|
3501 |
**
|
|
3502 |
** (4) Either there is an available PgHdr that does not need
|
|
3503 |
** to be synced to disk or else disk syncing is currently
|
|
3504 |
** allowed.
|
|
3505 |
*/
|
|
3506 |
static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
|
|
3507 |
int rc = SQLITE_OK;
|
|
3508 |
PgHdr *pPg;
|
|
3509 |
int nByteHdr;
|
|
3510 |
|
|
3511 |
/* Create a new PgHdr if any of the four conditions defined
|
|
3512 |
** above are met: */
|
|
3513 |
if( pPager->nPage<pPager->mxPage
|
|
3514 |
|| pPager->lru.pFirst==0
|
|
3515 |
|| MEMDB
|
|
3516 |
|| (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
|
|
3517 |
){
|
|
3518 |
if( pPager->nPage>=pPager->nHash ){
|
|
3519 |
pager_resize_hash_table(pPager,
|
|
3520 |
pPager->nHash<256 ? 256 : pPager->nHash*2);
|
|
3521 |
if( pPager->nHash==0 ){
|
|
3522 |
rc = SQLITE_NOMEM;
|
|
3523 |
goto pager_allocate_out;
|
|
3524 |
}
|
|
3525 |
}
|
|
3526 |
pagerLeave(pPager);
|
|
3527 |
nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
|
|
3528 |
+ MEMDB*sizeof(PgHistory);
|
|
3529 |
pPg = (PgHdr*)sqlite3_malloc( nByteHdr + pPager->pageSize );
|
|
3530 |
pagerEnter(pPager);
|
|
3531 |
if( pPg==0 ){
|
|
3532 |
rc = SQLITE_NOMEM;
|
|
3533 |
goto pager_allocate_out;
|
|
3534 |
}
|
|
3535 |
memset(pPg, 0, nByteHdr);
|
|
3536 |
pPg->pData = (void*)(nByteHdr + (char*)pPg);
|
|
3537 |
pPg->pPager = pPager;
|
|
3538 |
pPg->pNextAll = pPager->pAll;
|
|
3539 |
pPager->pAll = pPg;
|
|
3540 |
pPager->nPage++;
|
|
3541 |
}else{
|
|
3542 |
/* Recycle an existing page with a zero ref-count. */
|
|
3543 |
rc = pager_recycle(pPager, &pPg);
|
|
3544 |
if( rc==SQLITE_BUSY ){
|
|
3545 |
rc = SQLITE_IOERR_BLOCKED;
|
|
3546 |
}
|
|
3547 |
if( rc!=SQLITE_OK ){
|
|
3548 |
goto pager_allocate_out;
|
|
3549 |
}
|
|
3550 |
assert( pPager->state>=SHARED_LOCK );
|
|
3551 |
assert(pPg);
|
|
3552 |
}
|
|
3553 |
*ppPg = pPg;
|
|
3554 |
|
|
3555 |
pager_allocate_out:
|
|
3556 |
return rc;
|
|
3557 |
}
|
|
3558 |
|
|
3559 |
/*
|
|
3560 |
** Make sure we have the content for a page. If the page was
|
|
3561 |
** previously acquired with noContent==1, then the content was
|
|
3562 |
** just initialized to zeros instead of being read from disk.
|
|
3563 |
** But now we need the real data off of disk. So make sure we
|
|
3564 |
** have it. Read it in if we do not have it already.
|
|
3565 |
*/
|
|
3566 |
static int pager_get_content(PgHdr *pPg){
|
|
3567 |
if( pPg->needRead ){
|
|
3568 |
int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
|
|
3569 |
if( rc==SQLITE_OK ){
|
|
3570 |
pPg->needRead = 0;
|
|
3571 |
}else{
|
|
3572 |
return rc;
|
|
3573 |
}
|
|
3574 |
}
|
|
3575 |
return SQLITE_OK;
|
|
3576 |
}
|
|
3577 |
|
|
3578 |
/*
|
|
3579 |
** Acquire a page.
|
|
3580 |
**
|
|
3581 |
** A read lock on the disk file is obtained when the first page is acquired.
|
|
3582 |
** This read lock is dropped when the last page is released.
|
|
3583 |
**
|
|
3584 |
** This routine works for any page number greater than 0. If the database
|
|
3585 |
** file is smaller than the requested page, then no actual disk
|
|
3586 |
** read occurs and the memory image of the page is initialized to
|
|
3587 |
** all zeros. The extra data appended to a page is always initialized
|
|
3588 |
** to zeros the first time a page is loaded into memory.
|
|
3589 |
**
|
|
3590 |
** The acquisition might fail for several reasons. In all cases,
|
|
3591 |
** an appropriate error code is returned and *ppPage is set to NULL.
|
|
3592 |
**
|
|
3593 |
** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
|
|
3594 |
** to find a page in the in-memory cache first. If the page is not already
|
|
3595 |
** in memory, this routine goes to disk to read it in whereas Lookup()
|
|
3596 |
** just returns 0. This routine acquires a read-lock the first time it
|
|
3597 |
** has to go to disk, and could also playback an old journal if necessary.
|
|
3598 |
** Since Lookup() never goes to disk, it never has to deal with locks
|
|
3599 |
** or journal files.
|
|
3600 |
**
|
|
3601 |
** If noContent is false, the page contents are actually read from disk.
|
|
3602 |
** If noContent is true, it means that we do not care about the contents
|
|
3603 |
** of the page at this time, so do not do a disk read. Just fill in the
|
|
3604 |
** page content with zeros. But mark the fact that we have not read the
|
|
3605 |
** content by setting the PgHdr.needRead flag. Later on, if
|
|
3606 |
** sqlite3PagerWrite() is called on this page or if this routine is
|
|
3607 |
** called again with noContent==0, that means that the content is needed
|
|
3608 |
** and the disk read should occur at that point.
|
|
3609 |
*/
|
|
3610 |
static int pagerAcquire(
|
|
3611 |
Pager *pPager, /* The pager open on the database file */
|
|
3612 |
Pgno pgno, /* Page number to fetch */
|
|
3613 |
DbPage **ppPage, /* Write a pointer to the page here */
|
|
3614 |
int noContent /* Do not bother reading content from disk if true */
|
|
3615 |
){
|
|
3616 |
PgHdr *pPg;
|
|
3617 |
int rc;
|
|
3618 |
|
|
3619 |
assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
|
|
3620 |
|
|
3621 |
/* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
|
|
3622 |
** number greater than this, or zero, is requested.
|
|
3623 |
*/
|
|
3624 |
if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
|
|
3625 |
return SQLITE_CORRUPT_BKPT;
|
|
3626 |
}
|
|
3627 |
|
|
3628 |
/* Make sure we have not hit any critical errors.
|
|
3629 |
*/
|
|
3630 |
assert( pPager!=0 );
|
|
3631 |
*ppPage = 0;
|
|
3632 |
|
|
3633 |
/* If this is the first page accessed, then get a SHARED lock
|
|
3634 |
** on the database file. pagerSharedLock() is a no-op if
|
|
3635 |
** a database lock is already held.
|
|
3636 |
*/
|
|
3637 |
rc = pagerSharedLock(pPager);
|
|
3638 |
if( rc!=SQLITE_OK ){
|
|
3639 |
return rc;
|
|
3640 |
}
|
|
3641 |
assert( pPager->state!=PAGER_UNLOCK );
|
|
3642 |
|
|
3643 |
pPg = pager_lookup(pPager, pgno);
|
|
3644 |
if( pPg==0 ){
|
|
3645 |
/* The requested page is not in the page cache. */
|
|
3646 |
int nMax;
|
|
3647 |
int h;
|
|
3648 |
PAGER_INCR(pPager->nMiss);
|
|
3649 |
rc = pagerAllocatePage(pPager, &pPg);
|
|
3650 |
if( rc!=SQLITE_OK ){
|
|
3651 |
return rc;
|
|
3652 |
}
|
|
3653 |
|
|
3654 |
pPg->pgno = pgno;
|
|
3655 |
assert( !MEMDB || pgno>pPager->stmtSize );
|
|
3656 |
if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
|
|
3657 |
#if 0
|
|
3658 |
sqlite3CheckMemory(pPager->aInJournal, pgno/8);
|
|
3659 |
#endif
|
|
3660 |
assert( pPager->journalOpen );
|
|
3661 |
pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
|
|
3662 |
pPg->needSync = 0;
|
|
3663 |
}else{
|
|
3664 |
pPg->inJournal = 0;
|
|
3665 |
pPg->needSync = 0;
|
|
3666 |
}
|
|
3667 |
|
|
3668 |
makeClean(pPg);
|
|
3669 |
pPg->nRef = 1;
|
|
3670 |
REFINFO(pPg);
|
|
3671 |
|
|
3672 |
pPager->nRef++;
|
|
3673 |
if( pPager->nExtra>0 ){
|
|
3674 |
memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
|
|
3675 |
}
|
|
3676 |
nMax = sqlite3PagerPagecount(pPager);
|
|
3677 |
if( pPager->errCode ){
|
|
3678 |
rc = pPager->errCode;
|
|
3679 |
sqlite3PagerUnref(pPg);
|
|
3680 |
return rc;
|
|
3681 |
}
|
|
3682 |
|
|
3683 |
/* Populate the page with data, either by reading from the database
|
|
3684 |
** file, or by setting the entire page to zero.
|
|
3685 |
*/
|
|
3686 |
if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
|
|
3687 |
if( pgno>pPager->mxPgno ){
|
|
3688 |
sqlite3PagerUnref(pPg);
|
|
3689 |
return SQLITE_FULL;
|
|
3690 |
}
|
|
3691 |
memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
|
|
3692 |
pPg->needRead = noContent && !pPager->alwaysRollback;
|
|
3693 |
IOTRACE(("ZERO %p %d\n", pPager, pgno));
|
|
3694 |
}else{
|
|
3695 |
rc = readDbPage(pPager, pPg, pgno);
|
|
3696 |
if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
|
|
3697 |
pPg->pgno = 0;
|
|
3698 |
sqlite3PagerUnref(pPg);
|
|
3699 |
return rc;
|
|
3700 |
}
|
|
3701 |
pPg->needRead = 0;
|
|
3702 |
}
|
|
3703 |
|
|
3704 |
/* Link the page into the page hash table */
|
|
3705 |
h = pgno & (pPager->nHash-1);
|
|
3706 |
assert( pgno!=0 );
|
|
3707 |
pPg->pNextHash = pPager->aHash[h];
|
|
3708 |
pPager->aHash[h] = pPg;
|
|
3709 |
if( pPg->pNextHash ){
|
|
3710 |
assert( pPg->pNextHash->pPrevHash==0 );
|
|
3711 |
pPg->pNextHash->pPrevHash = pPg;
|
|
3712 |
}
|
|
3713 |
|
|
3714 |
#ifdef SQLITE_CHECK_PAGES
|
|
3715 |
pPg->pageHash = pager_pagehash(pPg);
|
|
3716 |
#endif
|
|
3717 |
}else{
|
|
3718 |
/* The requested page is in the page cache. */
|
|
3719 |
assert(pPager->nRef>0 || pgno==1);
|
|
3720 |
PAGER_INCR(pPager->nHit);
|
|
3721 |
if( !noContent ){
|
|
3722 |
rc = pager_get_content(pPg);
|
|
3723 |
if( rc ){
|
|
3724 |
return rc;
|
|
3725 |
}
|
|
3726 |
}
|
|
3727 |
page_ref(pPg);
|
|
3728 |
}
|
|
3729 |
*ppPage = pPg;
|
|
3730 |
return SQLITE_OK;
|
|
3731 |
}
|
|
3732 |
int sqlite3PagerAcquire(
|
|
3733 |
Pager *pPager, /* The pager open on the database file */
|
|
3734 |
Pgno pgno, /* Page number to fetch */
|
|
3735 |
DbPage **ppPage, /* Write a pointer to the page here */
|
|
3736 |
int noContent /* Do not bother reading content from disk if true */
|
|
3737 |
){
|
|
3738 |
int rc;
|
|
3739 |
pagerEnter(pPager);
|
|
3740 |
rc = pagerAcquire(pPager, pgno, ppPage, noContent);
|
|
3741 |
pagerLeave(pPager);
|
|
3742 |
return rc;
|
|
3743 |
}
|
|
3744 |
|
|
3745 |
|
|
3746 |
/*
|
|
3747 |
** Acquire a page if it is already in the in-memory cache. Do
|
|
3748 |
** not read the page from disk. Return a pointer to the page,
|
|
3749 |
** or 0 if the page is not in cache.
|
|
3750 |
**
|
|
3751 |
** See also sqlite3PagerGet(). The difference between this routine
|
|
3752 |
** and sqlite3PagerGet() is that _get() will go to the disk and read
|
|
3753 |
** in the page if the page is not already in cache. This routine
|
|
3754 |
** returns NULL if the page is not in cache or if a disk I/O error
|
|
3755 |
** has ever happened.
|
|
3756 |
*/
|
|
3757 |
DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
|
|
3758 |
PgHdr *pPg = 0;
|
|
3759 |
|
|
3760 |
assert( pPager!=0 );
|
|
3761 |
assert( pgno!=0 );
|
|
3762 |
|
|
3763 |
pagerEnter(pPager);
|
|
3764 |
if( pPager->state==PAGER_UNLOCK ){
|
|
3765 |
assert( !pPager->pAll || pPager->exclusiveMode );
|
|
3766 |
}else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
|
|
3767 |
/* Do nothing */
|
|
3768 |
}else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
|
|
3769 |
page_ref(pPg);
|
|
3770 |
}
|
|
3771 |
pagerLeave(pPager);
|
|
3772 |
return pPg;
|
|
3773 |
}
|
|
3774 |
|
|
3775 |
/*
|
|
3776 |
** Release a page.
|
|
3777 |
**
|
|
3778 |
** If the number of references to the page drop to zero, then the
|
|
3779 |
** page is added to the LRU list. When all references to all pages
|
|
3780 |
** are released, a rollback occurs and the lock on the database is
|
|
3781 |
** removed.
|
|
3782 |
*/
|
|
3783 |
int sqlite3PagerUnref(DbPage *pPg){
|
|
3784 |
Pager *pPager = pPg->pPager;
|
|
3785 |
|
|
3786 |
/* Decrement the reference count for this page
|
|
3787 |
*/
|
|
3788 |
assert( pPg->nRef>0 );
|
|
3789 |
pagerEnter(pPg->pPager);
|
|
3790 |
pPg->nRef--;
|
|
3791 |
REFINFO(pPg);
|
|
3792 |
|
|
3793 |
CHECK_PAGE(pPg);
|
|
3794 |
|
|
3795 |
/* When the number of references to a page reach 0, call the
|
|
3796 |
** destructor and add the page to the freelist.
|
|
3797 |
*/
|
|
3798 |
if( pPg->nRef==0 ){
|
|
3799 |
|
|
3800 |
lruListAdd(pPg);
|
|
3801 |
if( pPager->xDestructor ){
|
|
3802 |
pPager->xDestructor(pPg, pPager->pageSize);
|
|
3803 |
}
|
|
3804 |
|
|
3805 |
/* When all pages reach the freelist, drop the read lock from
|
|
3806 |
** the database file.
|
|
3807 |
*/
|
|
3808 |
pPager->nRef--;
|
|
3809 |
assert( pPager->nRef>=0 );
|
|
3810 |
if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
|
|
3811 |
pagerUnlockAndRollback(pPager);
|
|
3812 |
}
|
|
3813 |
}
|
|
3814 |
pagerLeave(pPager);
|
|
3815 |
return SQLITE_OK;
|
|
3816 |
}
|
|
3817 |
|
|
3818 |
/*
|
|
3819 |
** Create a journal file for pPager. There should already be a RESERVED
|
|
3820 |
** or EXCLUSIVE lock on the database file when this routine is called.
|
|
3821 |
**
|
|
3822 |
** Return SQLITE_OK if everything. Return an error code and release the
|
|
3823 |
** write lock if anything goes wrong.
|
|
3824 |
*/
|
|
3825 |
static int pager_open_journal(Pager *pPager){
|
|
3826 |
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
3827 |
int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
|
|
3828 |
|
|
3829 |
int rc;
|
|
3830 |
assert( !MEMDB );
|
|
3831 |
assert( pPager->state>=PAGER_RESERVED );
|
|
3832 |
assert( pPager->journalOpen==0 );
|
|
3833 |
assert( pPager->useJournal );
|
|
3834 |
assert( pPager->aInJournal==0 );
|
|
3835 |
sqlite3PagerPagecount(pPager);
|
|
3836 |
pagerLeave(pPager);
|
|
3837 |
pPager->aInJournal = (u8*)sqlite3MallocZero( pPager->dbSize/8 + 1 );
|
|
3838 |
pagerEnter(pPager);
|
|
3839 |
if( pPager->aInJournal==0 ){
|
|
3840 |
rc = SQLITE_NOMEM;
|
|
3841 |
goto failed_to_open_journal;
|
|
3842 |
}
|
|
3843 |
|
|
3844 |
if( pPager->tempFile ){
|
|
3845 |
flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
|
|
3846 |
}else{
|
|
3847 |
flags |= (SQLITE_OPEN_MAIN_JOURNAL);
|
|
3848 |
}
|
|
3849 |
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
3850 |
rc = sqlite3JournalOpen(
|
|
3851 |
pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
|
|
3852 |
);
|
|
3853 |
#else
|
|
3854 |
rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
|
|
3855 |
#endif
|
|
3856 |
assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
|
|
3857 |
pPager->journalOff = 0;
|
|
3858 |
pPager->setMaster = 0;
|
|
3859 |
pPager->journalHdr = 0;
|
|
3860 |
if( rc!=SQLITE_OK ){
|
|
3861 |
if( rc==SQLITE_NOMEM ){
|
|
3862 |
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
|
|
3863 |
}
|
|
3864 |
goto failed_to_open_journal;
|
|
3865 |
}
|
|
3866 |
pPager->journalOpen = 1;
|
|
3867 |
pPager->journalStarted = 0;
|
|
3868 |
pPager->needSync = 0;
|
|
3869 |
pPager->alwaysRollback = 0;
|
|
3870 |
pPager->nRec = 0;
|
|
3871 |
if( pPager->errCode ){
|
|
3872 |
rc = pPager->errCode;
|
|
3873 |
goto failed_to_open_journal;
|
|
3874 |
}
|
|
3875 |
pPager->origDbSize = pPager->dbSize;
|
|
3876 |
|
|
3877 |
rc = writeJournalHdr(pPager);
|
|
3878 |
|
|
3879 |
if( pPager->stmtAutoopen && rc==SQLITE_OK ){
|
|
3880 |
rc = sqlite3PagerStmtBegin(pPager);
|
|
3881 |
}
|
|
3882 |
if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
|
|
3883 |
rc = pager_end_transaction(pPager);
|
|
3884 |
if( rc==SQLITE_OK ){
|
|
3885 |
rc = SQLITE_FULL;
|
|
3886 |
}
|
|
3887 |
}
|
|
3888 |
return rc;
|
|
3889 |
|
|
3890 |
failed_to_open_journal:
|
|
3891 |
sqlite3_free(pPager->aInJournal);
|
|
3892 |
pPager->aInJournal = 0;
|
|
3893 |
return rc;
|
|
3894 |
}
|
|
3895 |
|
|
3896 |
/*
|
|
3897 |
** Acquire a write-lock on the database. The lock is removed when
|
|
3898 |
** the any of the following happen:
|
|
3899 |
**
|
|
3900 |
** * sqlite3PagerCommitPhaseTwo() is called.
|
|
3901 |
** * sqlite3PagerRollback() is called.
|
|
3902 |
** * sqlite3PagerClose() is called.
|
|
3903 |
** * sqlite3PagerUnref() is called to on every outstanding page.
|
|
3904 |
**
|
|
3905 |
** The first parameter to this routine is a pointer to any open page of the
|
|
3906 |
** database file. Nothing changes about the page - it is used merely to
|
|
3907 |
** acquire a pointer to the Pager structure and as proof that there is
|
|
3908 |
** already a read-lock on the database.
|
|
3909 |
**
|
|
3910 |
** The second parameter indicates how much space in bytes to reserve for a
|
|
3911 |
** master journal file-name at the start of the journal when it is created.
|
|
3912 |
**
|
|
3913 |
** A journal file is opened if this is not a temporary file. For temporary
|
|
3914 |
** files, the opening of the journal file is deferred until there is an
|
|
3915 |
** actual need to write to the journal.
|
|
3916 |
**
|
|
3917 |
** If the database is already reserved for writing, this routine is a no-op.
|
|
3918 |
**
|
|
3919 |
** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
|
|
3920 |
** immediately instead of waiting until we try to flush the cache. The
|
|
3921 |
** exFlag is ignored if a transaction is already active.
|
|
3922 |
*/
|
|
3923 |
int sqlite3PagerBegin(DbPage *pPg, int exFlag){
|
|
3924 |
Pager *pPager = pPg->pPager;
|
|
3925 |
int rc = SQLITE_OK;
|
|
3926 |
pagerEnter(pPager);
|
|
3927 |
assert( pPg->nRef>0 );
|
|
3928 |
assert( pPager->state!=PAGER_UNLOCK );
|
|
3929 |
if( pPager->state==PAGER_SHARED ){
|
|
3930 |
assert( pPager->aInJournal==0 );
|
|
3931 |
if( MEMDB ){
|
|
3932 |
pPager->state = PAGER_EXCLUSIVE;
|
|
3933 |
pPager->origDbSize = pPager->dbSize;
|
|
3934 |
}else{
|
|
3935 |
rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
|
|
3936 |
if( rc==SQLITE_OK ){
|
|
3937 |
pPager->state = PAGER_RESERVED;
|
|
3938 |
if( exFlag ){
|
|
3939 |
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
|
|
3940 |
}
|
|
3941 |
}
|
|
3942 |
if( rc!=SQLITE_OK ){
|
|
3943 |
pagerLeave(pPager);
|
|
3944 |
return rc;
|
|
3945 |
}
|
|
3946 |
pPager->dirtyCache = 0;
|
|
3947 |
PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
|
|
3948 |
if( pPager->useJournal && !pPager->tempFile ){
|
|
3949 |
rc = pager_open_journal(pPager);
|
|
3950 |
}
|
|
3951 |
}
|
|
3952 |
}else if( pPager->journalOpen && pPager->journalOff==0 ){
|
|
3953 |
/* This happens when the pager was in exclusive-access mode last
|
|
3954 |
** time a (read or write) transaction was successfully concluded
|
|
3955 |
** by this connection. Instead of deleting the journal file it was
|
|
3956 |
** kept open and truncated to 0 bytes.
|
|
3957 |
*/
|
|
3958 |
assert( pPager->nRec==0 );
|
|
3959 |
assert( pPager->origDbSize==0 );
|
|
3960 |
assert( pPager->aInJournal==0 );
|
|
3961 |
sqlite3PagerPagecount(pPager);
|
|
3962 |
pagerLeave(pPager);
|
|
3963 |
pPager->aInJournal = (u8*)sqlite3MallocZero( pPager->dbSize/8 + 1 );
|
|
3964 |
pagerEnter(pPager);
|
|
3965 |
if( !pPager->aInJournal ){
|
|
3966 |
rc = SQLITE_NOMEM;
|
|
3967 |
}else{
|
|
3968 |
pPager->origDbSize = pPager->dbSize;
|
|
3969 |
rc = writeJournalHdr(pPager);
|
|
3970 |
}
|
|
3971 |
}
|
|
3972 |
assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
|
|
3973 |
pagerLeave(pPager);
|
|
3974 |
return rc;
|
|
3975 |
}
|
|
3976 |
|
|
3977 |
/*
|
|
3978 |
** Make a page dirty. Set its dirty flag and add it to the dirty
|
|
3979 |
** page list.
|
|
3980 |
*/
|
|
3981 |
static void makeDirty(PgHdr *pPg){
|
|
3982 |
if( pPg->dirty==0 ){
|
|
3983 |
Pager *pPager = pPg->pPager;
|
|
3984 |
pPg->dirty = 1;
|
|
3985 |
pPg->pDirty = pPager->pDirty;
|
|
3986 |
if( pPager->pDirty ){
|
|
3987 |
pPager->pDirty->pPrevDirty = pPg;
|
|
3988 |
}
|
|
3989 |
pPg->pPrevDirty = 0;
|
|
3990 |
pPager->pDirty = pPg;
|
|
3991 |
}
|
|
3992 |
}
|
|
3993 |
|
|
3994 |
/*
|
|
3995 |
** Make a page clean. Clear its dirty bit and remove it from the
|
|
3996 |
** dirty page list.
|
|
3997 |
*/
|
|
3998 |
static void makeClean(PgHdr *pPg){
|
|
3999 |
if( pPg->dirty ){
|
|
4000 |
pPg->dirty = 0;
|
|
4001 |
if( pPg->pDirty ){
|
|
4002 |
assert( pPg->pDirty->pPrevDirty==pPg );
|
|
4003 |
pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
|
|
4004 |
}
|
|
4005 |
if( pPg->pPrevDirty ){
|
|
4006 |
assert( pPg->pPrevDirty->pDirty==pPg );
|
|
4007 |
pPg->pPrevDirty->pDirty = pPg->pDirty;
|
|
4008 |
}else{
|
|
4009 |
assert( pPg->pPager->pDirty==pPg );
|
|
4010 |
pPg->pPager->pDirty = pPg->pDirty;
|
|
4011 |
}
|
|
4012 |
}
|
|
4013 |
}
|
|
4014 |
|
|
4015 |
|
|
4016 |
/*
|
|
4017 |
** Mark a data page as writeable. The page is written into the journal
|
|
4018 |
** if it is not there already. This routine must be called before making
|
|
4019 |
** changes to a page.
|
|
4020 |
**
|
|
4021 |
** The first time this routine is called, the pager creates a new
|
|
4022 |
** journal and acquires a RESERVED lock on the database. If the RESERVED
|
|
4023 |
** lock could not be acquired, this routine returns SQLITE_BUSY. The
|
|
4024 |
** calling routine must check for that return value and be careful not to
|
|
4025 |
** change any page data until this routine returns SQLITE_OK.
|
|
4026 |
**
|
|
4027 |
** If the journal file could not be written because the disk is full,
|
|
4028 |
** then this routine returns SQLITE_FULL and does an immediate rollback.
|
|
4029 |
** All subsequent write attempts also return SQLITE_FULL until there
|
|
4030 |
** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
|
|
4031 |
** reset.
|
|
4032 |
*/
|
|
4033 |
static int pager_write(PgHdr *pPg){
|
|
4034 |
void *pData = PGHDR_TO_DATA(pPg);
|
|
4035 |
Pager *pPager = pPg->pPager;
|
|
4036 |
int rc = SQLITE_OK;
|
|
4037 |
|
|
4038 |
/* Check for errors
|
|
4039 |
*/
|
|
4040 |
if( pPager->errCode ){
|
|
4041 |
return pPager->errCode;
|
|
4042 |
}
|
|
4043 |
if( pPager->readOnly ){
|
|
4044 |
return SQLITE_PERM;
|
|
4045 |
}
|
|
4046 |
|
|
4047 |
assert( !pPager->setMaster );
|
|
4048 |
|
|
4049 |
CHECK_PAGE(pPg);
|
|
4050 |
|
|
4051 |
/* If this page was previously acquired with noContent==1, that means
|
|
4052 |
** we didn't really read in the content of the page. This can happen
|
|
4053 |
** (for example) when the page is being moved to the freelist. But
|
|
4054 |
** now we are (perhaps) moving the page off of the freelist for
|
|
4055 |
** reuse and we need to know its original content so that content
|
|
4056 |
** can be stored in the rollback journal. So do the read at this
|
|
4057 |
** time.
|
|
4058 |
*/
|
|
4059 |
rc = pager_get_content(pPg);
|
|
4060 |
if( rc ){
|
|
4061 |
return rc;
|
|
4062 |
}
|
|
4063 |
|
|
4064 |
/* Mark the page as dirty. If the page has already been written
|
|
4065 |
** to the journal then we can return right away.
|
|
4066 |
*/
|
|
4067 |
makeDirty(pPg);
|
|
4068 |
if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
|
|
4069 |
pPager->dirtyCache = 1;
|
|
4070 |
}else{
|
|
4071 |
|
|
4072 |
/* If we get this far, it means that the page needs to be
|
|
4073 |
** written to the transaction journal or the ckeckpoint journal
|
|
4074 |
** or both.
|
|
4075 |
**
|
|
4076 |
** First check to see that the transaction journal exists and
|
|
4077 |
** create it if it does not.
|
|
4078 |
*/
|
|
4079 |
assert( pPager->state!=PAGER_UNLOCK );
|
|
4080 |
rc = sqlite3PagerBegin(pPg, 0);
|
|
4081 |
if( rc!=SQLITE_OK ){
|
|
4082 |
return rc;
|
|
4083 |
}
|
|
4084 |
assert( pPager->state>=PAGER_RESERVED );
|
|
4085 |
if( !pPager->journalOpen && pPager->useJournal ){
|
|
4086 |
rc = pager_open_journal(pPager);
|
|
4087 |
if( rc!=SQLITE_OK ) return rc;
|
|
4088 |
}
|
|
4089 |
assert( pPager->journalOpen || !pPager->useJournal );
|
|
4090 |
pPager->dirtyCache = 1;
|
|
4091 |
|
|
4092 |
/* The transaction journal now exists and we have a RESERVED or an
|
|
4093 |
** EXCLUSIVE lock on the main database file. Write the current page to
|
|
4094 |
** the transaction journal if it is not there already.
|
|
4095 |
*/
|
|
4096 |
if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
|
|
4097 |
if( (int)pPg->pgno <= pPager->origDbSize ){
|
|
4098 |
if( MEMDB ){
|
|
4099 |
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
4100 |
PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
|
|
4101 |
assert( pHist->pOrig==0 );
|
|
4102 |
pHist->pOrig = (u8*)sqlite3_malloc( pPager->pageSize );
|
|
4103 |
if( !pHist->pOrig ){
|
|
4104 |
return SQLITE_NOMEM;
|
|
4105 |
}
|
|
4106 |
memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
|
|
4107 |
}else{
|
|
4108 |
u32 cksum;
|
|
4109 |
char *pData2;
|
|
4110 |
|
|
4111 |
/* We should never write to the journal file the page that
|
|
4112 |
** contains the database locks. The following assert verifies
|
|
4113 |
** that we do not. */
|
|
4114 |
assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
|
|
4115 |
pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
|
|
4116 |
cksum = pager_cksum(pPager, (u8*)pData2);
|
|
4117 |
rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
|
|
4118 |
if( rc==SQLITE_OK ){
|
|
4119 |
rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
|
|
4120 |
pPager->journalOff + 4);
|
|
4121 |
pPager->journalOff += pPager->pageSize+4;
|
|
4122 |
}
|
|
4123 |
if( rc==SQLITE_OK ){
|
|
4124 |
rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
|
|
4125 |
pPager->journalOff += 4;
|
|
4126 |
}
|
|
4127 |
IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
|
|
4128 |
pPager->journalOff, pPager->pageSize));
|
|
4129 |
PAGER_INCR(sqlite3_pager_writej_count);
|
|
4130 |
PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
|
|
4131 |
PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
|
|
4132 |
|
|
4133 |
/* An error has occured writing to the journal file. The
|
|
4134 |
** transaction will be rolled back by the layer above.
|
|
4135 |
*/
|
|
4136 |
if( rc!=SQLITE_OK ){
|
|
4137 |
return rc;
|
|
4138 |
}
|
|
4139 |
|
|
4140 |
pPager->nRec++;
|
|
4141 |
assert( pPager->aInJournal!=0 );
|
|
4142 |
pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
4143 |
pPg->needSync = !pPager->noSync;
|
|
4144 |
if( pPager->stmtInUse ){
|
|
4145 |
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
4146 |
}
|
|
4147 |
}
|
|
4148 |
}else{
|
|
4149 |
pPg->needSync = !pPager->journalStarted && !pPager->noSync;
|
|
4150 |
PAGERTRACE4("APPEND %d page %d needSync=%d\n",
|
|
4151 |
PAGERID(pPager), pPg->pgno, pPg->needSync);
|
|
4152 |
}
|
|
4153 |
if( pPg->needSync ){
|
|
4154 |
pPager->needSync = 1;
|
|
4155 |
}
|
|
4156 |
pPg->inJournal = 1;
|
|
4157 |
}
|
|
4158 |
|
|
4159 |
/* If the statement journal is open and the page is not in it,
|
|
4160 |
** then write the current page to the statement journal. Note that
|
|
4161 |
** the statement journal format differs from the standard journal format
|
|
4162 |
** in that it omits the checksums and the header.
|
|
4163 |
*/
|
|
4164 |
if( pPager->stmtInUse
|
|
4165 |
&& !pageInStatement(pPg)
|
|
4166 |
&& (int)pPg->pgno<=pPager->stmtSize
|
|
4167 |
){
|
|
4168 |
assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
|
|
4169 |
if( MEMDB ){
|
|
4170 |
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
4171 |
assert( pHist->pStmt==0 );
|
|
4172 |
pHist->pStmt = (u8*)sqlite3_malloc( pPager->pageSize );
|
|
4173 |
if( pHist->pStmt ){
|
|
4174 |
memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
|
|
4175 |
}
|
|
4176 |
PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
|
|
4177 |
page_add_to_stmt_list(pPg);
|
|
4178 |
}else{
|
|
4179 |
i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
|
|
4180 |
char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
|
|
4181 |
rc = write32bits(pPager->stfd, offset, pPg->pgno);
|
|
4182 |
if( rc==SQLITE_OK ){
|
|
4183 |
rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
|
|
4184 |
}
|
|
4185 |
PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
|
|
4186 |
if( rc!=SQLITE_OK ){
|
|
4187 |
return rc;
|
|
4188 |
}
|
|
4189 |
pPager->stmtNRec++;
|
|
4190 |
assert( pPager->aInStmt!=0 );
|
|
4191 |
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
4192 |
}
|
|
4193 |
}
|
|
4194 |
}
|
|
4195 |
|
|
4196 |
/* Update the database size and return.
|
|
4197 |
*/
|
|
4198 |
assert( pPager->state>=PAGER_SHARED );
|
|
4199 |
if( pPager->dbSize<(int)pPg->pgno ){
|
|
4200 |
pPager->dbSize = pPg->pgno;
|
|
4201 |
if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
|
|
4202 |
pPager->dbSize++;
|
|
4203 |
}
|
|
4204 |
}
|
|
4205 |
return rc;
|
|
4206 |
}
|
|
4207 |
|
|
4208 |
/*
|
|
4209 |
** This function is used to mark a data-page as writable. It uses
|
|
4210 |
** pager_write() to open a journal file (if it is not already open)
|
|
4211 |
** and write the page *pData to the journal.
|
|
4212 |
**
|
|
4213 |
** The difference between this function and pager_write() is that this
|
|
4214 |
** function also deals with the special case where 2 or more pages
|
|
4215 |
** fit on a single disk sector. In this case all co-resident pages
|
|
4216 |
** must have been written to the journal file before returning.
|
|
4217 |
*/
|
|
4218 |
int sqlite3PagerWrite(DbPage *pDbPage){
|
|
4219 |
int rc = SQLITE_OK;
|
|
4220 |
|
|
4221 |
PgHdr *pPg = pDbPage;
|
|
4222 |
Pager *pPager = pPg->pPager;
|
|
4223 |
Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
|
|
4224 |
|
|
4225 |
pagerEnter(pPager);
|
|
4226 |
if( !MEMDB && nPagePerSector>1 ){
|
|
4227 |
Pgno nPageCount; /* Total number of pages in database file */
|
|
4228 |
Pgno pg1; /* First page of the sector pPg is located on. */
|
|
4229 |
int nPage; /* Number of pages starting at pg1 to journal */
|
|
4230 |
int ii;
|
|
4231 |
int needSync = 0;
|
|
4232 |
|
|
4233 |
/* Set the doNotSync flag to 1. This is because we cannot allow a journal
|
|
4234 |
** header to be written between the pages journaled by this function.
|
|
4235 |
*/
|
|
4236 |
assert( pPager->doNotSync==0 );
|
|
4237 |
pPager->doNotSync = 1;
|
|
4238 |
|
|
4239 |
/* This trick assumes that both the page-size and sector-size are
|
|
4240 |
** an integer power of 2. It sets variable pg1 to the identifier
|
|
4241 |
** of the first page of the sector pPg is located on.
|
|
4242 |
*/
|
|
4243 |
pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
|
|
4244 |
|
|
4245 |
nPageCount = sqlite3PagerPagecount(pPager);
|
|
4246 |
if( pPg->pgno>nPageCount ){
|
|
4247 |
nPage = (pPg->pgno - pg1)+1;
|
|
4248 |
}else if( (pg1+nPagePerSector-1)>nPageCount ){
|
|
4249 |
nPage = nPageCount+1-pg1;
|
|
4250 |
}else{
|
|
4251 |
nPage = nPagePerSector;
|
|
4252 |
}
|
|
4253 |
assert(nPage>0);
|
|
4254 |
assert(pg1<=pPg->pgno);
|
|
4255 |
assert((pg1+nPage)>pPg->pgno);
|
|
4256 |
|
|
4257 |
for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
|
|
4258 |
Pgno pg = pg1+ii;
|
|
4259 |
PgHdr *pPage;
|
|
4260 |
if( !pPager->aInJournal || pg==pPg->pgno ||
|
|
4261 |
pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7)))
|
|
4262 |
) {
|
|
4263 |
if( pg!=PAGER_MJ_PGNO(pPager) ){
|
|
4264 |
rc = sqlite3PagerGet(pPager, pg, &pPage);
|
|
4265 |
if( rc==SQLITE_OK ){
|
|
4266 |
rc = pager_write(pPage);
|
|
4267 |
if( pPage->needSync ){
|
|
4268 |
needSync = 1;
|
|
4269 |
}
|
|
4270 |
sqlite3PagerUnref(pPage);
|
|
4271 |
}
|
|
4272 |
}
|
|
4273 |
}else if( (pPage = pager_lookup(pPager, pg)) ){
|
|
4274 |
if( pPage->needSync ){
|
|
4275 |
needSync = 1;
|
|
4276 |
}
|
|
4277 |
}
|
|
4278 |
}
|
|
4279 |
|
|
4280 |
/* If the PgHdr.needSync flag is set for any of the nPage pages
|
|
4281 |
** starting at pg1, then it needs to be set for all of them. Because
|
|
4282 |
** writing to any of these nPage pages may damage the others, the
|
|
4283 |
** journal file must contain sync()ed copies of all of them
|
|
4284 |
** before any of them can be written out to the database file.
|
|
4285 |
*/
|
|
4286 |
if( needSync ){
|
|
4287 |
for(ii=0; ii<nPage && needSync; ii++){
|
|
4288 |
PgHdr *pPage = pager_lookup(pPager, pg1+ii);
|
|
4289 |
if( pPage ) pPage->needSync = 1;
|
|
4290 |
}
|
|
4291 |
assert(pPager->needSync);
|
|
4292 |
}
|
|
4293 |
|
|
4294 |
assert( pPager->doNotSync==1 );
|
|
4295 |
pPager->doNotSync = 0;
|
|
4296 |
}else{
|
|
4297 |
rc = pager_write(pDbPage);
|
|
4298 |
}
|
|
4299 |
pagerLeave(pPager);
|
|
4300 |
return rc;
|
|
4301 |
}
|
|
4302 |
|
|
4303 |
/*
|
|
4304 |
** Return TRUE if the page given in the argument was previously passed
|
|
4305 |
** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
|
|
4306 |
** to change the content of the page.
|
|
4307 |
*/
|
|
4308 |
#ifndef NDEBUG
|
|
4309 |
int sqlite3PagerIswriteable(DbPage *pPg){
|
|
4310 |
return pPg->dirty;
|
|
4311 |
}
|
|
4312 |
#endif
|
|
4313 |
|
|
4314 |
#ifndef SQLITE_OMIT_VACUUM
|
|
4315 |
/*
|
|
4316 |
** Replace the content of a single page with the information in the third
|
|
4317 |
** argument.
|
|
4318 |
*/
|
|
4319 |
int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){
|
|
4320 |
PgHdr *pPg;
|
|
4321 |
int rc;
|
|
4322 |
|
|
4323 |
pagerEnter(pPager);
|
|
4324 |
rc = sqlite3PagerGet(pPager, pgno, &pPg);
|
|
4325 |
if( rc==SQLITE_OK ){
|
|
4326 |
rc = sqlite3PagerWrite(pPg);
|
|
4327 |
if( rc==SQLITE_OK ){
|
|
4328 |
memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize);
|
|
4329 |
}
|
|
4330 |
sqlite3PagerUnref(pPg);
|
|
4331 |
}
|
|
4332 |
pagerLeave(pPager);
|
|
4333 |
return rc;
|
|
4334 |
}
|
|
4335 |
#endif
|
|
4336 |
|
|
4337 |
/*
|
|
4338 |
** A call to this routine tells the pager that it is not necessary to
|
|
4339 |
** write the information on page pPg back to the disk, even though
|
|
4340 |
** that page might be marked as dirty.
|
|
4341 |
**
|
|
4342 |
** The overlying software layer calls this routine when all of the data
|
|
4343 |
** on the given page is unused. The pager marks the page as clean so
|
|
4344 |
** that it does not get written to disk.
|
|
4345 |
**
|
|
4346 |
** Tests show that this optimization, together with the
|
|
4347 |
** sqlite3PagerDontRollback() below, more than double the speed
|
|
4348 |
** of large INSERT operations and quadruple the speed of large DELETEs.
|
|
4349 |
**
|
|
4350 |
** When this routine is called, set the alwaysRollback flag to true.
|
|
4351 |
** Subsequent calls to sqlite3PagerDontRollback() for the same page
|
|
4352 |
** will thereafter be ignored. This is necessary to avoid a problem
|
|
4353 |
** where a page with data is added to the freelist during one part of
|
|
4354 |
** a transaction then removed from the freelist during a later part
|
|
4355 |
** of the same transaction and reused for some other purpose. When it
|
|
4356 |
** is first added to the freelist, this routine is called. When reused,
|
|
4357 |
** the sqlite3PagerDontRollback() routine is called. But because the
|
|
4358 |
** page contains critical data, we still need to be sure it gets
|
|
4359 |
** rolled back in spite of the sqlite3PagerDontRollback() call.
|
|
4360 |
*/
|
|
4361 |
void sqlite3PagerDontWrite(DbPage *pDbPage){
|
|
4362 |
PgHdr *pPg = pDbPage;
|
|
4363 |
Pager *pPager = pPg->pPager;
|
|
4364 |
|
|
4365 |
if( MEMDB ) return;
|
|
4366 |
pagerEnter(pPager);
|
|
4367 |
pPg->alwaysRollback = 1;
|
|
4368 |
if( pPg->dirty && !pPager->stmtInUse ){
|
|
4369 |
assert( pPager->state>=PAGER_SHARED );
|
|
4370 |
if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
|
|
4371 |
/* If this pages is the last page in the file and the file has grown
|
|
4372 |
** during the current transaction, then do NOT mark the page as clean.
|
|
4373 |
** When the database file grows, we must make sure that the last page
|
|
4374 |
** gets written at least once so that the disk file will be the correct
|
|
4375 |
** size. If you do not write this page and the size of the file
|
|
4376 |
** on the disk ends up being too small, that can lead to database
|
|
4377 |
** corruption during the next transaction.
|
|
4378 |
*/
|
|
4379 |
}else{
|
|
4380 |
PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
|
|
4381 |
IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
|
|
4382 |
makeClean(pPg);
|
|
4383 |
#ifdef SQLITE_CHECK_PAGES
|
|
4384 |
pPg->pageHash = pager_pagehash(pPg);
|
|
4385 |
#endif
|
|
4386 |
}
|
|
4387 |
}
|
|
4388 |
pagerLeave(pPager);
|
|
4389 |
}
|
|
4390 |
|
|
4391 |
/*
|
|
4392 |
** A call to this routine tells the pager that if a rollback occurs,
|
|
4393 |
** it is not necessary to restore the data on the given page. This
|
|
4394 |
** means that the pager does not have to record the given page in the
|
|
4395 |
** rollback journal.
|
|
4396 |
**
|
|
4397 |
** If we have not yet actually read the content of this page (if
|
|
4398 |
** the PgHdr.needRead flag is set) then this routine acts as a promise
|
|
4399 |
** that we will never need to read the page content in the future.
|
|
4400 |
** so the needRead flag can be cleared at this point.
|
|
4401 |
*/
|
|
4402 |
void sqlite3PagerDontRollback(DbPage *pPg){
|
|
4403 |
Pager *pPager = pPg->pPager;
|
|
4404 |
|
|
4405 |
pagerEnter(pPager);
|
|
4406 |
assert( pPager->state>=PAGER_RESERVED );
|
|
4407 |
if( pPager->journalOpen==0 ) return;
|
|
4408 |
if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return;
|
|
4409 |
if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
|
|
4410 |
assert( pPager->aInJournal!=0 );
|
|
4411 |
pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
4412 |
pPg->inJournal = 1;
|
|
4413 |
pPg->needRead = 0;
|
|
4414 |
if( pPager->stmtInUse ){
|
|
4415 |
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
4416 |
}
|
|
4417 |
PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
|
|
4418 |
IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
|
|
4419 |
}
|
|
4420 |
if( pPager->stmtInUse
|
|
4421 |
&& !pageInStatement(pPg)
|
|
4422 |
&& (int)pPg->pgno<=pPager->stmtSize
|
|
4423 |
){
|
|
4424 |
assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
|
|
4425 |
assert( pPager->aInStmt!=0 );
|
|
4426 |
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
4427 |
}
|
|
4428 |
pagerLeave(pPager);
|
|
4429 |
}
|
|
4430 |
|
|
4431 |
|
|
4432 |
/*
|
|
4433 |
** This routine is called to increment the database file change-counter,
|
|
4434 |
** stored at byte 24 of the pager file.
|
|
4435 |
*/
|
|
4436 |
static int pager_incr_changecounter(Pager *pPager, int isDirect){
|
|
4437 |
PgHdr *pPgHdr;
|
|
4438 |
u32 change_counter;
|
|
4439 |
int rc = SQLITE_OK;
|
|
4440 |
|
|
4441 |
if( !pPager->changeCountDone ){
|
|
4442 |
/* Open page 1 of the file for writing. */
|
|
4443 |
rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
|
|
4444 |
if( rc!=SQLITE_OK ) return rc;
|
|
4445 |
|
|
4446 |
if( !isDirect ){
|
|
4447 |
rc = sqlite3PagerWrite(pPgHdr);
|
|
4448 |
if( rc!=SQLITE_OK ){
|
|
4449 |
sqlite3PagerUnref(pPgHdr);
|
|
4450 |
return rc;
|
|
4451 |
}
|
|
4452 |
}
|
|
4453 |
|
|
4454 |
/* Increment the value just read and write it back to byte 24. */
|
|
4455 |
change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
|
|
4456 |
change_counter++;
|
|
4457 |
put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
|
|
4458 |
|
|
4459 |
if( isDirect && pPager->fd->isOpen ){
|
|
4460 |
const void *zBuf = PGHDR_TO_DATA(pPgHdr);
|
|
4461 |
rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
|
|
4462 |
}
|
|
4463 |
|
|
4464 |
/* Release the page reference. */
|
|
4465 |
sqlite3PagerUnref(pPgHdr);
|
|
4466 |
pPager->changeCountDone = 1;
|
|
4467 |
}
|
|
4468 |
return rc;
|
|
4469 |
}
|
|
4470 |
|
|
4471 |
/*
|
|
4472 |
** Sync the database file for the pager pPager. zMaster points to the name
|
|
4473 |
** of a master journal file that should be written into the individual
|
|
4474 |
** journal file. zMaster may be NULL, which is interpreted as no master
|
|
4475 |
** journal (a single database transaction).
|
|
4476 |
**
|
|
4477 |
** This routine ensures that the journal is synced, all dirty pages written
|
|
4478 |
** to the database file and the database file synced. The only thing that
|
|
4479 |
** remains to commit the transaction is to delete the journal file (or
|
|
4480 |
** master journal file if specified).
|
|
4481 |
**
|
|
4482 |
** Note that if zMaster==NULL, this does not overwrite a previous value
|
|
4483 |
** passed to an sqlite3PagerCommitPhaseOne() call.
|
|
4484 |
**
|
|
4485 |
** If parameter nTrunc is non-zero, then the pager file is truncated to
|
|
4486 |
** nTrunc pages (this is used by auto-vacuum databases).
|
|
4487 |
*/
|
|
4488 |
int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){
|
|
4489 |
int rc = SQLITE_OK;
|
|
4490 |
|
|
4491 |
PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
|
|
4492 |
pPager->zFilename, zMaster, nTrunc);
|
|
4493 |
pagerEnter(pPager);
|
|
4494 |
|
|
4495 |
/* If this is an in-memory db, or no pages have been written to, or this
|
|
4496 |
** function has already been called, it is a no-op.
|
|
4497 |
*/
|
|
4498 |
if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
|
|
4499 |
PgHdr *pPg;
|
|
4500 |
|
|
4501 |
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
4502 |
/* The atomic-write optimization can be used if all of the
|
|
4503 |
** following are true:
|
|
4504 |
**
|
|
4505 |
** + The file-system supports the atomic-write property for
|
|
4506 |
** blocks of size page-size, and
|
|
4507 |
** + This commit is not part of a multi-file transaction, and
|
|
4508 |
** + Exactly one page has been modified and store in the journal file.
|
|
4509 |
**
|
|
4510 |
** If the optimization can be used, then the journal file will never
|
|
4511 |
** be created for this transaction.
|
|
4512 |
*/
|
|
4513 |
int useAtomicWrite = (
|
|
4514 |
!zMaster &&
|
|
4515 |
pPager->journalOff==jrnlBufferSize(pPager) &&
|
|
4516 |
nTrunc==0 &&
|
|
4517 |
(0==pPager->pDirty || 0==pPager->pDirty->pDirty)
|
|
4518 |
);
|
|
4519 |
if( useAtomicWrite ){
|
|
4520 |
/* Update the nRec field in the journal file. */
|
|
4521 |
int offset = pPager->journalHdr + sizeof(aJournalMagic);
|
|
4522 |
assert(pPager->nRec==1);
|
|
4523 |
rc = write32bits(pPager->jfd, offset, pPager->nRec);
|
|
4524 |
|
|
4525 |
/* Update the db file change counter. The following call will modify
|
|
4526 |
** the in-memory representation of page 1 to include the updated
|
|
4527 |
** change counter and then write page 1 directly to the database
|
|
4528 |
** file. Because of the atomic-write property of the host file-system,
|
|
4529 |
** this is safe.
|
|
4530 |
*/
|
|
4531 |
if( rc==SQLITE_OK ){
|
|
4532 |
rc = pager_incr_changecounter(pPager, 1);
|
|
4533 |
}
|
|
4534 |
}else{
|
|
4535 |
rc = sqlite3JournalCreate(pPager->jfd);
|
|
4536 |
}
|
|
4537 |
|
|
4538 |
if( !useAtomicWrite && rc==SQLITE_OK )
|
|
4539 |
#endif
|
|
4540 |
|
|
4541 |
/* If a master journal file name has already been written to the
|
|
4542 |
** journal file, then no sync is required. This happens when it is
|
|
4543 |
** written, then the process fails to upgrade from a RESERVED to an
|
|
4544 |
** EXCLUSIVE lock. The next time the process tries to commit the
|
|
4545 |
** transaction the m-j name will have already been written.
|
|
4546 |
*/
|
|
4547 |
if( !pPager->setMaster ){
|
|
4548 |
assert( pPager->journalOpen );
|
|
4549 |
rc = pager_incr_changecounter(pPager, 0);
|
|
4550 |
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
4551 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4552 |
if( nTrunc!=0 ){
|
|
4553 |
/* If this transaction has made the database smaller, then all pages
|
|
4554 |
** being discarded by the truncation must be written to the journal
|
|
4555 |
** file.
|
|
4556 |
*/
|
|
4557 |
Pgno i;
|
|
4558 |
int iSkip = PAGER_MJ_PGNO(pPager);
|
|
4559 |
for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
|
|
4560 |
if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){
|
|
4561 |
rc = sqlite3PagerGet(pPager, i, &pPg);
|
|
4562 |
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
4563 |
rc = sqlite3PagerWrite(pPg);
|
|
4564 |
sqlite3PagerUnref(pPg);
|
|
4565 |
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
4566 |
}
|
|
4567 |
}
|
|
4568 |
}
|
|
4569 |
#endif
|
|
4570 |
rc = writeMasterJournal(pPager, zMaster);
|
|
4571 |
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
4572 |
rc = syncJournal(pPager);
|
|
4573 |
}
|
|
4574 |
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
4575 |
|
|
4576 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4577 |
if( nTrunc!=0 ){
|
|
4578 |
rc = sqlite3PagerTruncate(pPager, nTrunc);
|
|
4579 |
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
4580 |
}
|
|
4581 |
#endif
|
|
4582 |
|
|
4583 |
/* Write all dirty pages to the database file */
|
|
4584 |
pPg = pager_get_all_dirty_pages(pPager);
|
|
4585 |
rc = pager_write_pagelist(pPg);
|
|
4586 |
if( rc!=SQLITE_OK ){
|
|
4587 |
while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; }
|
|
4588 |
pPager->pDirty = pPg;
|
|
4589 |
goto sync_exit;
|
|
4590 |
}
|
|
4591 |
pPager->pDirty = 0;
|
|
4592 |
|
|
4593 |
/* Sync the database file. */
|
|
4594 |
if( !pPager->noSync ){
|
|
4595 |
rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
|
|
4596 |
}
|
|
4597 |
IOTRACE(("DBSYNC %p\n", pPager))
|
|
4598 |
|
|
4599 |
pPager->state = PAGER_SYNCED;
|
|
4600 |
}else if( MEMDB && nTrunc!=0 ){
|
|
4601 |
rc = sqlite3PagerTruncate(pPager, nTrunc);
|
|
4602 |
}
|
|
4603 |
|
|
4604 |
sync_exit:
|
|
4605 |
if( rc==SQLITE_IOERR_BLOCKED ){
|
|
4606 |
/* pager_incr_changecounter() may attempt to obtain an exclusive
|
|
4607 |
* lock to spill the cache and return IOERR_BLOCKED. But since
|
|
4608 |
* there is no chance the cache is inconsistent, it is
|
|
4609 |
* better to return SQLITE_BUSY.
|
|
4610 |
*/
|
|
4611 |
rc = SQLITE_BUSY;
|
|
4612 |
}
|
|
4613 |
pagerLeave(pPager);
|
|
4614 |
return rc;
|
|
4615 |
}
|
|
4616 |
|
|
4617 |
|
|
4618 |
/*
|
|
4619 |
** Commit all changes to the database and release the write lock.
|
|
4620 |
**
|
|
4621 |
** If the commit fails for any reason, a rollback attempt is made
|
|
4622 |
** and an error code is returned. If the commit worked, SQLITE_OK
|
|
4623 |
** is returned.
|
|
4624 |
*/
|
|
4625 |
int sqlite3PagerCommitPhaseTwo(Pager *pPager){
|
|
4626 |
int rc;
|
|
4627 |
PgHdr *pPg;
|
|
4628 |
|
|
4629 |
if( pPager->errCode ){
|
|
4630 |
return pPager->errCode;
|
|
4631 |
}
|
|
4632 |
if( pPager->state<PAGER_RESERVED ){
|
|
4633 |
return SQLITE_ERROR;
|
|
4634 |
}
|
|
4635 |
pagerEnter(pPager);
|
|
4636 |
PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
|
|
4637 |
if( MEMDB ){
|
|
4638 |
pPg = pager_get_all_dirty_pages(pPager);
|
|
4639 |
while( pPg ){
|
|
4640 |
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
4641 |
clearHistory(pHist);
|
|
4642 |
pPg->dirty = 0;
|
|
4643 |
pPg->inJournal = 0;
|
|
4644 |
pHist->inStmt = 0;
|
|
4645 |
pPg->needSync = 0;
|
|
4646 |
pHist->pPrevStmt = pHist->pNextStmt = 0;
|
|
4647 |
pPg = pPg->pDirty;
|
|
4648 |
}
|
|
4649 |
pPager->pDirty = 0;
|
|
4650 |
#ifndef NDEBUG
|
|
4651 |
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
4652 |
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
4653 |
assert( !pPg->alwaysRollback );
|
|
4654 |
assert( !pHist->pOrig );
|
|
4655 |
assert( !pHist->pStmt );
|
|
4656 |
}
|
|
4657 |
#endif
|
|
4658 |
pPager->pStmt = 0;
|
|
4659 |
pPager->state = PAGER_SHARED;
|
|
4660 |
return SQLITE_OK;
|
|
4661 |
}
|
|
4662 |
assert( pPager->journalOpen || !pPager->dirtyCache );
|
|
4663 |
assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
|
|
4664 |
rc = pager_end_transaction(pPager);
|
|
4665 |
rc = pager_error(pPager, rc);
|
|
4666 |
pagerLeave(pPager);
|
|
4667 |
return rc;
|
|
4668 |
}
|
|
4669 |
|
|
4670 |
/*
|
|
4671 |
** Rollback all changes. The database falls back to PAGER_SHARED mode.
|
|
4672 |
** All in-memory cache pages revert to their original data contents.
|
|
4673 |
** The journal is deleted.
|
|
4674 |
**
|
|
4675 |
** This routine cannot fail unless some other process is not following
|
|
4676 |
** the correct locking protocol or unless some other
|
|
4677 |
** process is writing trash into the journal file (SQLITE_CORRUPT) or
|
|
4678 |
** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
|
|
4679 |
** codes are returned for all these occasions. Otherwise,
|
|
4680 |
** SQLITE_OK is returned.
|
|
4681 |
*/
|
|
4682 |
int sqlite3PagerRollback(Pager *pPager){
|
|
4683 |
int rc;
|
|
4684 |
PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
|
|
4685 |
if( MEMDB ){
|
|
4686 |
PgHdr *p;
|
|
4687 |
for(p=pPager->pAll; p; p=p->pNextAll){
|
|
4688 |
PgHistory *pHist;
|
|
4689 |
assert( !p->alwaysRollback );
|
|
4690 |
if( !p->dirty ){
|
|
4691 |
assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
|
|
4692 |
assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
|
|
4693 |
continue;
|
|
4694 |
}
|
|
4695 |
|
|
4696 |
pHist = PGHDR_TO_HIST(p, pPager);
|
|
4697 |
if( pHist->pOrig ){
|
|
4698 |
memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
|
|
4699 |
PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
|
|
4700 |
}else{
|
|
4701 |
PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
|
|
4702 |
}
|
|
4703 |
clearHistory(pHist);
|
|
4704 |
p->dirty = 0;
|
|
4705 |
p->inJournal = 0;
|
|
4706 |
pHist->inStmt = 0;
|
|
4707 |
pHist->pPrevStmt = pHist->pNextStmt = 0;
|
|
4708 |
if( pPager->xReiniter ){
|
|
4709 |
pPager->xReiniter(p, pPager->pageSize);
|
|
4710 |
}
|
|
4711 |
}
|
|
4712 |
pPager->pDirty = 0;
|
|
4713 |
pPager->pStmt = 0;
|
|
4714 |
pPager->dbSize = pPager->origDbSize;
|
|
4715 |
pager_truncate_cache(pPager);
|
|
4716 |
pPager->stmtInUse = 0;
|
|
4717 |
pPager->state = PAGER_SHARED;
|
|
4718 |
return SQLITE_OK;
|
|
4719 |
}
|
|
4720 |
|
|
4721 |
pagerEnter(pPager);
|
|
4722 |
if( !pPager->dirtyCache || !pPager->journalOpen ){
|
|
4723 |
rc = pager_end_transaction(pPager);
|
|
4724 |
pagerLeave(pPager);
|
|
4725 |
return rc;
|
|
4726 |
}
|
|
4727 |
|
|
4728 |
if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
|
|
4729 |
if( pPager->state>=PAGER_EXCLUSIVE ){
|
|
4730 |
pager_playback(pPager, 0);
|
|
4731 |
}
|
|
4732 |
pagerLeave(pPager);
|
|
4733 |
return pPager->errCode;
|
|
4734 |
}
|
|
4735 |
if( pPager->state==PAGER_RESERVED ){
|
|
4736 |
int rc2;
|
|
4737 |
rc = pager_playback(pPager, 0);
|
|
4738 |
rc2 = pager_end_transaction(pPager);
|
|
4739 |
if( rc==SQLITE_OK ){
|
|
4740 |
rc = rc2;
|
|
4741 |
}
|
|
4742 |
}else{
|
|
4743 |
rc = pager_playback(pPager, 0);
|
|
4744 |
}
|
|
4745 |
/* pager_reset(pPager); */
|
|
4746 |
pPager->dbSize = -1;
|
|
4747 |
|
|
4748 |
/* If an error occurs during a ROLLBACK, we can no longer trust the pager
|
|
4749 |
** cache. So call pager_error() on the way out to make any error
|
|
4750 |
** persistent.
|
|
4751 |
*/
|
|
4752 |
rc = pager_error(pPager, rc);
|
|
4753 |
pagerLeave(pPager);
|
|
4754 |
return rc;
|
|
4755 |
}
|
|
4756 |
|
|
4757 |
/*
|
|
4758 |
** Return TRUE if the database file is opened read-only. Return FALSE
|
|
4759 |
** if the database is (in theory) writable.
|
|
4760 |
*/
|
|
4761 |
int sqlite3PagerIsreadonly(Pager *pPager){
|
|
4762 |
return pPager->readOnly;
|
|
4763 |
}
|
|
4764 |
|
|
4765 |
/*
|
|
4766 |
** Return the number of references to the pager.
|
|
4767 |
*/
|
|
4768 |
int sqlite3PagerRefcount(Pager *pPager){
|
|
4769 |
return pPager->nRef;
|
|
4770 |
}
|
|
4771 |
|
|
4772 |
#ifdef SQLITE_TEST
|
|
4773 |
/*
|
|
4774 |
** This routine is used for testing and analysis only.
|
|
4775 |
*/
|
|
4776 |
int *sqlite3PagerStats(Pager *pPager){
|
|
4777 |
static int a[11];
|
|
4778 |
a[0] = pPager->nRef;
|
|
4779 |
a[1] = pPager->nPage;
|
|
4780 |
a[2] = pPager->mxPage;
|
|
4781 |
a[3] = pPager->dbSize;
|
|
4782 |
a[4] = pPager->state;
|
|
4783 |
a[5] = pPager->errCode;
|
|
4784 |
a[6] = pPager->nHit;
|
|
4785 |
a[7] = pPager->nMiss;
|
|
4786 |
a[8] = 0; /* Used to be pPager->nOvfl */
|
|
4787 |
a[9] = pPager->nRead;
|
|
4788 |
a[10] = pPager->nWrite;
|
|
4789 |
return a;
|
|
4790 |
}
|
|
4791 |
#endif
|
|
4792 |
|
|
4793 |
/*
|
|
4794 |
** Set the statement rollback point.
|
|
4795 |
**
|
|
4796 |
** This routine should be called with the transaction journal already
|
|
4797 |
** open. A new statement journal is created that can be used to rollback
|
|
4798 |
** changes of a single SQL command within a larger transaction.
|
|
4799 |
*/
|
|
4800 |
static int pagerStmtBegin(Pager *pPager){
|
|
4801 |
int rc;
|
|
4802 |
assert( !pPager->stmtInUse );
|
|
4803 |
assert( pPager->state>=PAGER_SHARED );
|
|
4804 |
assert( pPager->dbSize>=0 );
|
|
4805 |
PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
|
|
4806 |
if( MEMDB ){
|
|
4807 |
pPager->stmtInUse = 1;
|
|
4808 |
pPager->stmtSize = pPager->dbSize;
|
|
4809 |
return SQLITE_OK;
|
|
4810 |
}
|
|
4811 |
if( !pPager->journalOpen ){
|
|
4812 |
pPager->stmtAutoopen = 1;
|
|
4813 |
return SQLITE_OK;
|
|
4814 |
}
|
|
4815 |
assert( pPager->journalOpen );
|
|
4816 |
pagerLeave(pPager);
|
|
4817 |
assert( pPager->aInStmt==0 );
|
|
4818 |
pPager->aInStmt = (u8*)sqlite3MallocZero( pPager->dbSize/8 + 1 );
|
|
4819 |
pagerEnter(pPager);
|
|
4820 |
if( pPager->aInStmt==0 ){
|
|
4821 |
/* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
|
|
4822 |
return SQLITE_NOMEM;
|
|
4823 |
}
|
|
4824 |
#ifndef NDEBUG
|
|
4825 |
rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize);
|
|
4826 |
if( rc ) goto stmt_begin_failed;
|
|
4827 |
assert( pPager->stmtJSize == pPager->journalOff );
|
|
4828 |
#endif
|
|
4829 |
pPager->stmtJSize = pPager->journalOff;
|
|
4830 |
pPager->stmtSize = pPager->dbSize;
|
|
4831 |
pPager->stmtHdrOff = 0;
|
|
4832 |
pPager->stmtCksum = pPager->cksumInit;
|
|
4833 |
if( !pPager->stmtOpen ){
|
|
4834 |
rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
|
|
4835 |
SQLITE_OPEN_SUBJOURNAL);
|
|
4836 |
if( rc ){
|
|
4837 |
goto stmt_begin_failed;
|
|
4838 |
}
|
|
4839 |
pPager->stmtOpen = 1;
|
|
4840 |
pPager->stmtNRec = 0;
|
|
4841 |
}
|
|
4842 |
pPager->stmtInUse = 1;
|
|
4843 |
return SQLITE_OK;
|
|
4844 |
|
|
4845 |
stmt_begin_failed:
|
|
4846 |
if( pPager->aInStmt ){
|
|
4847 |
sqlite3_free(pPager->aInStmt);
|
|
4848 |
pPager->aInStmt = 0;
|
|
4849 |
}
|
|
4850 |
return rc;
|
|
4851 |
}
|
|
4852 |
int sqlite3PagerStmtBegin(Pager *pPager){
|
|
4853 |
int rc;
|
|
4854 |
pagerEnter(pPager);
|
|
4855 |
rc = pagerStmtBegin(pPager);
|
|
4856 |
pagerLeave(pPager);
|
|
4857 |
return rc;
|
|
4858 |
}
|
|
4859 |
|
|
4860 |
/*
|
|
4861 |
** Commit a statement.
|
|
4862 |
*/
|
|
4863 |
int sqlite3PagerStmtCommit(Pager *pPager){
|
|
4864 |
pagerEnter(pPager);
|
|
4865 |
if( pPager->stmtInUse ){
|
|
4866 |
PgHdr *pPg, *pNext;
|
|
4867 |
PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
|
|
4868 |
if( !MEMDB ){
|
|
4869 |
/* sqlite3OsTruncate(pPager->stfd, 0); */
|
|
4870 |
sqlite3_free( pPager->aInStmt );
|
|
4871 |
pPager->aInStmt = 0;
|
|
4872 |
}else{
|
|
4873 |
for(pPg=pPager->pStmt; pPg; pPg=pNext){
|
|
4874 |
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
4875 |
pNext = pHist->pNextStmt;
|
|
4876 |
assert( pHist->inStmt );
|
|
4877 |
pHist->inStmt = 0;
|
|
4878 |
pHist->pPrevStmt = pHist->pNextStmt = 0;
|
|
4879 |
sqlite3_free(pHist->pStmt);
|
|
4880 |
pHist->pStmt = 0;
|
|
4881 |
}
|
|
4882 |
}
|
|
4883 |
pPager->stmtNRec = 0;
|
|
4884 |
pPager->stmtInUse = 0;
|
|
4885 |
pPager->pStmt = 0;
|
|
4886 |
}
|
|
4887 |
pPager->stmtAutoopen = 0;
|
|
4888 |
pagerLeave(pPager);
|
|
4889 |
return SQLITE_OK;
|
|
4890 |
}
|
|
4891 |
|
|
4892 |
/*
|
|
4893 |
** Rollback a statement.
|
|
4894 |
*/
|
|
4895 |
int sqlite3PagerStmtRollback(Pager *pPager){
|
|
4896 |
int rc;
|
|
4897 |
pagerEnter(pPager);
|
|
4898 |
if( pPager->stmtInUse ){
|
|
4899 |
PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
|
|
4900 |
if( MEMDB ){
|
|
4901 |
PgHdr *pPg;
|
|
4902 |
PgHistory *pHist;
|
|
4903 |
for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
|
|
4904 |
pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
4905 |
if( pHist->pStmt ){
|
|
4906 |
memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
|
|
4907 |
sqlite3_free(pHist->pStmt);
|
|
4908 |
pHist->pStmt = 0;
|
|
4909 |
}
|
|
4910 |
}
|
|
4911 |
pPager->dbSize = pPager->stmtSize;
|
|
4912 |
pager_truncate_cache(pPager);
|
|
4913 |
rc = SQLITE_OK;
|
|
4914 |
}else{
|
|
4915 |
rc = pager_stmt_playback(pPager);
|
|
4916 |
}
|
|
4917 |
sqlite3PagerStmtCommit(pPager);
|
|
4918 |
}else{
|
|
4919 |
rc = SQLITE_OK;
|
|
4920 |
}
|
|
4921 |
pPager->stmtAutoopen = 0;
|
|
4922 |
pagerLeave(pPager);
|
|
4923 |
return rc;
|
|
4924 |
}
|
|
4925 |
|
|
4926 |
/*
|
|
4927 |
** Return the full pathname of the database file.
|
|
4928 |
*/
|
|
4929 |
const char *sqlite3PagerFilename(Pager *pPager){
|
|
4930 |
return pPager->zFilename;
|
|
4931 |
}
|
|
4932 |
|
|
4933 |
/*
|
|
4934 |
** Return the VFS structure for the pager.
|
|
4935 |
*/
|
|
4936 |
const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
|
|
4937 |
return pPager->pVfs;
|
|
4938 |
}
|
|
4939 |
|
|
4940 |
/*
|
|
4941 |
** Return the file handle for the database file associated
|
|
4942 |
** with the pager. This might return NULL if the file has
|
|
4943 |
** not yet been opened.
|
|
4944 |
*/
|
|
4945 |
sqlite3_file *sqlite3PagerFile(Pager *pPager){
|
|
4946 |
return pPager->fd;
|
|
4947 |
}
|
|
4948 |
|
|
4949 |
/*
|
|
4950 |
** Return the directory of the database file.
|
|
4951 |
*/
|
|
4952 |
const char *sqlite3PagerDirname(Pager *pPager){
|
|
4953 |
return pPager->zDirectory;
|
|
4954 |
}
|
|
4955 |
|
|
4956 |
/*
|
|
4957 |
** Return the full pathname of the journal file.
|
|
4958 |
*/
|
|
4959 |
const char *sqlite3PagerJournalname(Pager *pPager){
|
|
4960 |
return pPager->zJournal;
|
|
4961 |
}
|
|
4962 |
|
|
4963 |
/*
|
|
4964 |
** Return true if fsync() calls are disabled for this pager. Return FALSE
|
|
4965 |
** if fsync()s are executed normally.
|
|
4966 |
*/
|
|
4967 |
int sqlite3PagerNosync(Pager *pPager){
|
|
4968 |
return pPager->noSync;
|
|
4969 |
}
|
|
4970 |
|
|
4971 |
#ifdef SQLITE_HAS_CODEC
|
|
4972 |
/*
|
|
4973 |
** Set the codec for this pager
|
|
4974 |
*/
|
|
4975 |
void sqlite3PagerSetCodec(
|
|
4976 |
Pager *pPager,
|
|
4977 |
void *(*xCodec)(void*,void*,Pgno,int),
|
|
4978 |
void *pCodecArg
|
|
4979 |
){
|
|
4980 |
pPager->xCodec = xCodec;
|
|
4981 |
pPager->pCodecArg = pCodecArg;
|
|
4982 |
}
|
|
4983 |
#endif
|
|
4984 |
|
|
4985 |
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
4986 |
/*
|
|
4987 |
** Move the page pPg to location pgno in the file.
|
|
4988 |
**
|
|
4989 |
** There must be no references to the page previously located at
|
|
4990 |
** pgno (which we call pPgOld) though that page is allowed to be
|
|
4991 |
** in cache. If the page previous located at pgno is not already
|
|
4992 |
** in the rollback journal, it is not put there by by this routine.
|
|
4993 |
**
|
|
4994 |
** References to the page pPg remain valid. Updating any
|
|
4995 |
** meta-data associated with pPg (i.e. data stored in the nExtra bytes
|
|
4996 |
** allocated along with the page) is the responsibility of the caller.
|
|
4997 |
**
|
|
4998 |
** A transaction must be active when this routine is called. It used to be
|
|
4999 |
** required that a statement transaction was not active, but this restriction
|
|
5000 |
** has been removed (CREATE INDEX needs to move a page when a statement
|
|
5001 |
** transaction is active).
|
|
5002 |
*/
|
|
5003 |
int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
|
|
5004 |
PgHdr *pPgOld; /* The page being overwritten. */
|
|
5005 |
int h;
|
|
5006 |
Pgno needSyncPgno = 0;
|
|
5007 |
|
|
5008 |
pagerEnter(pPager);
|
|
5009 |
assert( pPg->nRef>0 );
|
|
5010 |
|
|
5011 |
PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
|
|
5012 |
PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
|
|
5013 |
IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
|
|
5014 |
|
|
5015 |
pager_get_content(pPg);
|
|
5016 |
if( pPg->needSync ){
|
|
5017 |
needSyncPgno = pPg->pgno;
|
|
5018 |
assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
|
|
5019 |
assert( pPg->dirty );
|
|
5020 |
assert( pPager->needSync );
|
|
5021 |
}
|
|
5022 |
|
|
5023 |
/* Unlink pPg from its hash-chain */
|
|
5024 |
unlinkHashChain(pPager, pPg);
|
|
5025 |
|
|
5026 |
/* If the cache contains a page with page-number pgno, remove it
|
|
5027 |
** from its hash chain. Also, if the PgHdr.needSync was set for
|
|
5028 |
** page pgno before the 'move' operation, it needs to be retained
|
|
5029 |
** for the page moved there.
|
|
5030 |
*/
|
|
5031 |
pPg->needSync = 0;
|
|
5032 |
pPgOld = pager_lookup(pPager, pgno);
|
|
5033 |
if( pPgOld ){
|
|
5034 |
assert( pPgOld->nRef==0 );
|
|
5035 |
unlinkHashChain(pPager, pPgOld);
|
|
5036 |
makeClean(pPgOld);
|
|
5037 |
pPg->needSync = pPgOld->needSync;
|
|
5038 |
}else{
|
|
5039 |
pPg->needSync = 0;
|
|
5040 |
}
|
|
5041 |
if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
|
|
5042 |
pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
|
|
5043 |
}else{
|
|
5044 |
pPg->inJournal = 0;
|
|
5045 |
assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize );
|
|
5046 |
}
|
|
5047 |
|
|
5048 |
/* Change the page number for pPg and insert it into the new hash-chain. */
|
|
5049 |
assert( pgno!=0 );
|
|
5050 |
pPg->pgno = pgno;
|
|
5051 |
h = pgno & (pPager->nHash-1);
|
|
5052 |
if( pPager->aHash[h] ){
|
|
5053 |
assert( pPager->aHash[h]->pPrevHash==0 );
|
|
5054 |
pPager->aHash[h]->pPrevHash = pPg;
|
|
5055 |
}
|
|
5056 |
pPg->pNextHash = pPager->aHash[h];
|
|
5057 |
pPager->aHash[h] = pPg;
|
|
5058 |
pPg->pPrevHash = 0;
|
|
5059 |
|
|
5060 |
makeDirty(pPg);
|
|
5061 |
pPager->dirtyCache = 1;
|
|
5062 |
|
|
5063 |
if( needSyncPgno ){
|
|
5064 |
/* If needSyncPgno is non-zero, then the journal file needs to be
|
|
5065 |
** sync()ed before any data is written to database file page needSyncPgno.
|
|
5066 |
** Currently, no such page exists in the page-cache and the
|
|
5067 |
** Pager.aInJournal bit has been set. This needs to be remedied by loading
|
|
5068 |
** the page into the pager-cache and setting the PgHdr.needSync flag.
|
|
5069 |
**
|
|
5070 |
** The sqlite3PagerGet() call may cause the journal to sync. So make
|
|
5071 |
** sure the Pager.needSync flag is set too.
|
|
5072 |
*/
|
|
5073 |
int rc;
|
|
5074 |
PgHdr *pPgHdr;
|
|
5075 |
assert( pPager->needSync );
|
|
5076 |
rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
|
|
5077 |
if( rc!=SQLITE_OK ) return rc;
|
|
5078 |
pPager->needSync = 1;
|
|
5079 |
pPgHdr->needSync = 1;
|
|
5080 |
pPgHdr->inJournal = 1;
|
|
5081 |
makeDirty(pPgHdr);
|
|
5082 |
sqlite3PagerUnref(pPgHdr);
|
|
5083 |
}
|
|
5084 |
|
|
5085 |
pagerLeave(pPager);
|
|
5086 |
return SQLITE_OK;
|
|
5087 |
}
|
|
5088 |
#endif
|
|
5089 |
|
|
5090 |
/*
|
|
5091 |
** Return a pointer to the data for the specified page.
|
|
5092 |
*/
|
|
5093 |
void *sqlite3PagerGetData(DbPage *pPg){
|
|
5094 |
return PGHDR_TO_DATA(pPg);
|
|
5095 |
}
|
|
5096 |
|
|
5097 |
/*
|
|
5098 |
** Return a pointer to the Pager.nExtra bytes of "extra" space
|
|
5099 |
** allocated along with the specified page.
|
|
5100 |
*/
|
|
5101 |
void *sqlite3PagerGetExtra(DbPage *pPg){
|
|
5102 |
Pager *pPager = pPg->pPager;
|
|
5103 |
return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
|
|
5104 |
}
|
|
5105 |
|
|
5106 |
/*
|
|
5107 |
** Get/set the locking-mode for this pager. Parameter eMode must be one
|
|
5108 |
** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
|
|
5109 |
** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
|
|
5110 |
** the locking-mode is set to the value specified.
|
|
5111 |
**
|
|
5112 |
** The returned value is either PAGER_LOCKINGMODE_NORMAL or
|
|
5113 |
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
|
|
5114 |
** locking-mode.
|
|
5115 |
*/
|
|
5116 |
int sqlite3PagerLockingMode(Pager *pPager, int eMode){
|
|
5117 |
assert( eMode==PAGER_LOCKINGMODE_QUERY
|
|
5118 |
|| eMode==PAGER_LOCKINGMODE_NORMAL
|
|
5119 |
|| eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
|
|
5120 |
assert( PAGER_LOCKINGMODE_QUERY<0 );
|
|
5121 |
assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
|
|
5122 |
if( eMode>=0 && !pPager->tempFile ){
|
|
5123 |
pPager->exclusiveMode = eMode;
|
|
5124 |
}
|
|
5125 |
return (int)pPager->exclusiveMode;
|
|
5126 |
}
|
|
5127 |
|
|
5128 |
#ifdef SQLITE_TEST
|
|
5129 |
/*
|
|
5130 |
** Print a listing of all referenced pages and their ref count.
|
|
5131 |
*/
|
|
5132 |
void sqlite3PagerRefdump(Pager *pPager){
|
|
5133 |
PgHdr *pPg;
|
|
5134 |
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
5135 |
if( pPg->nRef<=0 ) continue;
|
|
5136 |
sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
|
|
5137 |
pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
|
|
5138 |
}
|
|
5139 |
}
|
|
5140 |
#endif
|
|
5141 |
|
|
5142 |
#endif /* SQLITE_OMIT_DISKIO */
|