2
|
1 |
/*
|
|
2 |
** 2001 September 15
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This module contains C code that generates VDBE code used to process
|
|
13 |
** the WHERE clause of SQL statements. This module is reponsible for
|
|
14 |
** generating the code that loops through a table looking for applicable
|
|
15 |
** rows. Indices are selected and used to speed the search when doing
|
|
16 |
** so is applicable. Because this module is responsible for selecting
|
|
17 |
** indices, you might also think of this module as the "query optimizer".
|
|
18 |
**
|
|
19 |
** $Id: where.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
20 |
*/
|
|
21 |
#include "sqliteInt.h"
|
|
22 |
|
|
23 |
/*
|
|
24 |
** The number of bits in a Bitmask. "BMS" means "BitMask Size".
|
|
25 |
*/
|
|
26 |
#define BMS (sizeof(Bitmask)*8)
|
|
27 |
|
|
28 |
/*
|
|
29 |
** Trace output macros
|
|
30 |
*/
|
|
31 |
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
|
32 |
int sqlite3_where_trace = 0;
|
|
33 |
# define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X
|
|
34 |
#else
|
|
35 |
# define WHERETRACE(X)
|
|
36 |
#endif
|
|
37 |
|
|
38 |
/* Forward reference
|
|
39 |
*/
|
|
40 |
typedef struct WhereClause WhereClause;
|
|
41 |
typedef struct ExprMaskSet ExprMaskSet;
|
|
42 |
|
|
43 |
/*
|
|
44 |
** The query generator uses an array of instances of this structure to
|
|
45 |
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
46 |
** clause subexpression is separated from the others by an AND operator.
|
|
47 |
**
|
|
48 |
** All WhereTerms are collected into a single WhereClause structure.
|
|
49 |
** The following identity holds:
|
|
50 |
**
|
|
51 |
** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
|
|
52 |
**
|
|
53 |
** When a term is of the form:
|
|
54 |
**
|
|
55 |
** X <op> <expr>
|
|
56 |
**
|
|
57 |
** where X is a column name and <op> is one of certain operators,
|
|
58 |
** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
|
|
59 |
** cursor number and column number for X. WhereTerm.operator records
|
|
60 |
** the <op> using a bitmask encoding defined by WO_xxx below. The
|
|
61 |
** use of a bitmask encoding for the operator allows us to search
|
|
62 |
** quickly for terms that match any of several different operators.
|
|
63 |
**
|
|
64 |
** prereqRight and prereqAll record sets of cursor numbers,
|
|
65 |
** but they do so indirectly. A single ExprMaskSet structure translates
|
|
66 |
** cursor number into bits and the translated bit is stored in the prereq
|
|
67 |
** fields. The translation is used in order to maximize the number of
|
|
68 |
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
|
|
69 |
** spread out over the non-negative integers. For example, the cursor
|
|
70 |
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
|
|
71 |
** translates these sparse cursor numbers into consecutive integers
|
|
72 |
** beginning with 0 in order to make the best possible use of the available
|
|
73 |
** bits in the Bitmask. So, in the example above, the cursor numbers
|
|
74 |
** would be mapped into integers 0 through 7.
|
|
75 |
*/
|
|
76 |
typedef struct WhereTerm WhereTerm;
|
|
77 |
struct WhereTerm {
|
|
78 |
Expr *pExpr; /* Pointer to the subexpression */
|
|
79 |
i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
|
|
80 |
i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
|
|
81 |
i16 leftColumn; /* Column number of X in "X <op> <expr>" */
|
|
82 |
u16 eOperator; /* A WO_xx value describing <op> */
|
|
83 |
u8 flags; /* Bit flags. See below */
|
|
84 |
u8 nChild; /* Number of children that must disable us */
|
|
85 |
WhereClause *pWC; /* The clause this term is part of */
|
|
86 |
Bitmask prereqRight; /* Bitmask of tables used by pRight */
|
|
87 |
Bitmask prereqAll; /* Bitmask of tables referenced by p */
|
|
88 |
};
|
|
89 |
|
|
90 |
/*
|
|
91 |
** Allowed values of WhereTerm.flags
|
|
92 |
*/
|
|
93 |
#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
|
|
94 |
#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
|
|
95 |
#define TERM_CODED 0x04 /* This term is already coded */
|
|
96 |
#define TERM_COPIED 0x08 /* Has a child */
|
|
97 |
#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
|
|
98 |
|
|
99 |
/*
|
|
100 |
** An instance of the following structure holds all information about a
|
|
101 |
** WHERE clause. Mostly this is a container for one or more WhereTerms.
|
|
102 |
*/
|
|
103 |
struct WhereClause {
|
|
104 |
Parse *pParse; /* The parser context */
|
|
105 |
ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
|
|
106 |
int nTerm; /* Number of terms */
|
|
107 |
int nSlot; /* Number of entries in a[] */
|
|
108 |
WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
|
|
109 |
WhereTerm aStatic[10]; /* Initial static space for a[] */
|
|
110 |
};
|
|
111 |
|
|
112 |
/*
|
|
113 |
** An instance of the following structure keeps track of a mapping
|
|
114 |
** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
|
|
115 |
**
|
|
116 |
** The VDBE cursor numbers are small integers contained in
|
|
117 |
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
|
|
118 |
** clause, the cursor numbers might not begin with 0 and they might
|
|
119 |
** contain gaps in the numbering sequence. But we want to make maximum
|
|
120 |
** use of the bits in our bitmasks. This structure provides a mapping
|
|
121 |
** from the sparse cursor numbers into consecutive integers beginning
|
|
122 |
** with 0.
|
|
123 |
**
|
|
124 |
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
|
|
125 |
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
|
|
126 |
**
|
|
127 |
** For example, if the WHERE clause expression used these VDBE
|
|
128 |
** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
|
|
129 |
** would map those cursor numbers into bits 0 through 5.
|
|
130 |
**
|
|
131 |
** Note that the mapping is not necessarily ordered. In the example
|
|
132 |
** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
|
|
133 |
** 57->5, 73->4. Or one of 719 other combinations might be used. It
|
|
134 |
** does not really matter. What is important is that sparse cursor
|
|
135 |
** numbers all get mapped into bit numbers that begin with 0 and contain
|
|
136 |
** no gaps.
|
|
137 |
*/
|
|
138 |
struct ExprMaskSet {
|
|
139 |
int n; /* Number of assigned cursor values */
|
|
140 |
int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
|
|
141 |
};
|
|
142 |
|
|
143 |
|
|
144 |
/*
|
|
145 |
** Bitmasks for the operators that indices are able to exploit. An
|
|
146 |
** OR-ed combination of these values can be used when searching for
|
|
147 |
** terms in the where clause.
|
|
148 |
*/
|
|
149 |
#define WO_IN 1
|
|
150 |
#define WO_EQ 2
|
|
151 |
#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
|
|
152 |
#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
|
|
153 |
#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
|
|
154 |
#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
|
|
155 |
#define WO_MATCH 64
|
|
156 |
#define WO_ISNULL 128
|
|
157 |
|
|
158 |
/*
|
|
159 |
** Value for flags returned by bestIndex().
|
|
160 |
**
|
|
161 |
** The least significant byte is reserved as a mask for WO_ values above.
|
|
162 |
** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
|
|
163 |
** But if the table is the right table of a left join, WhereLevel.flags
|
|
164 |
** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
|
|
165 |
** the "op" parameter to findTerm when we are resolving equality constraints.
|
|
166 |
** ISNULL constraints will then not be used on the right table of a left
|
|
167 |
** join. Tickets #2177 and #2189.
|
|
168 |
*/
|
|
169 |
#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
|
|
170 |
#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
|
|
171 |
#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
|
|
172 |
#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
|
|
173 |
#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
|
|
174 |
#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
|
|
175 |
#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
|
|
176 |
#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
|
|
177 |
#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
|
|
178 |
#define WHERE_REVERSE 0x200000 /* Scan in reverse order */
|
|
179 |
#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
|
|
180 |
#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
|
|
181 |
|
|
182 |
/*
|
|
183 |
** Initialize a preallocated WhereClause structure.
|
|
184 |
*/
|
|
185 |
static void whereClauseInit(
|
|
186 |
WhereClause *pWC, /* The WhereClause to be initialized */
|
|
187 |
Parse *pParse, /* The parsing context */
|
|
188 |
ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
|
|
189 |
){
|
|
190 |
pWC->pParse = pParse;
|
|
191 |
pWC->pMaskSet = pMaskSet;
|
|
192 |
pWC->nTerm = 0;
|
|
193 |
pWC->nSlot = ArraySize(pWC->aStatic);
|
|
194 |
pWC->a = pWC->aStatic;
|
|
195 |
}
|
|
196 |
|
|
197 |
/*
|
|
198 |
** Deallocate a WhereClause structure. The WhereClause structure
|
|
199 |
** itself is not freed. This routine is the inverse of whereClauseInit().
|
|
200 |
*/
|
|
201 |
static void whereClauseClear(WhereClause *pWC){
|
|
202 |
int i;
|
|
203 |
WhereTerm *a;
|
|
204 |
for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
|
|
205 |
if( a->flags & TERM_DYNAMIC ){
|
|
206 |
sqlite3ExprDelete(a->pExpr);
|
|
207 |
}
|
|
208 |
}
|
|
209 |
if( pWC->a!=pWC->aStatic ){
|
|
210 |
sqlite3_free(pWC->a);
|
|
211 |
}
|
|
212 |
}
|
|
213 |
|
|
214 |
/*
|
|
215 |
** Add a new entries to the WhereClause structure. Increase the allocated
|
|
216 |
** space as necessary.
|
|
217 |
**
|
|
218 |
** If the flags argument includes TERM_DYNAMIC, then responsibility
|
|
219 |
** for freeing the expression p is assumed by the WhereClause object.
|
|
220 |
**
|
|
221 |
** WARNING: This routine might reallocate the space used to store
|
|
222 |
** WhereTerms. All pointers to WhereTerms should be invalided after
|
|
223 |
** calling this routine. Such pointers may be reinitialized by referencing
|
|
224 |
** the pWC->a[] array.
|
|
225 |
*/
|
|
226 |
static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
|
|
227 |
WhereTerm *pTerm;
|
|
228 |
int idx;
|
|
229 |
if( pWC->nTerm>=pWC->nSlot ){
|
|
230 |
WhereTerm *pOld = pWC->a;
|
|
231 |
pWC->a = (WhereTerm*)sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
|
|
232 |
if( pWC->a==0 ){
|
|
233 |
pWC->pParse->db->mallocFailed = 1;
|
|
234 |
if( flags & TERM_DYNAMIC ){
|
|
235 |
sqlite3ExprDelete(p);
|
|
236 |
}
|
|
237 |
pWC->a = pOld;
|
|
238 |
return 0;
|
|
239 |
}
|
|
240 |
memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
|
|
241 |
if( pOld!=pWC->aStatic ){
|
|
242 |
sqlite3_free(pOld);
|
|
243 |
}
|
|
244 |
pWC->nSlot *= 2;
|
|
245 |
}
|
|
246 |
pTerm = &pWC->a[idx = pWC->nTerm];
|
|
247 |
pWC->nTerm++;
|
|
248 |
pTerm->pExpr = p;
|
|
249 |
pTerm->flags = flags;
|
|
250 |
pTerm->pWC = pWC;
|
|
251 |
pTerm->iParent = -1;
|
|
252 |
return idx;
|
|
253 |
}
|
|
254 |
|
|
255 |
/*
|
|
256 |
** This routine identifies subexpressions in the WHERE clause where
|
|
257 |
** each subexpression is separated by the AND operator or some other
|
|
258 |
** operator specified in the op parameter. The WhereClause structure
|
|
259 |
** is filled with pointers to subexpressions. For example:
|
|
260 |
**
|
|
261 |
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
|
|
262 |
** \________/ \_______________/ \________________/
|
|
263 |
** slot[0] slot[1] slot[2]
|
|
264 |
**
|
|
265 |
** The original WHERE clause in pExpr is unaltered. All this routine
|
|
266 |
** does is make slot[] entries point to substructure within pExpr.
|
|
267 |
**
|
|
268 |
** In the previous sentence and in the diagram, "slot[]" refers to
|
|
269 |
** the WhereClause.a[] array. This array grows as needed to contain
|
|
270 |
** all terms of the WHERE clause.
|
|
271 |
*/
|
|
272 |
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
|
|
273 |
if( pExpr==0 ) return;
|
|
274 |
if( pExpr->op!=op ){
|
|
275 |
whereClauseInsert(pWC, pExpr, 0);
|
|
276 |
}else{
|
|
277 |
whereSplit(pWC, pExpr->pLeft, op);
|
|
278 |
whereSplit(pWC, pExpr->pRight, op);
|
|
279 |
}
|
|
280 |
}
|
|
281 |
|
|
282 |
/*
|
|
283 |
** Initialize an expression mask set
|
|
284 |
*/
|
|
285 |
#define initMaskSet(P) memset(P, 0, sizeof(*P))
|
|
286 |
|
|
287 |
/*
|
|
288 |
** Return the bitmask for the given cursor number. Return 0 if
|
|
289 |
** iCursor is not in the set.
|
|
290 |
*/
|
|
291 |
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
292 |
int i;
|
|
293 |
for(i=0; i<pMaskSet->n; i++){
|
|
294 |
if( pMaskSet->ix[i]==iCursor ){
|
|
295 |
return ((Bitmask)1)<<i;
|
|
296 |
}
|
|
297 |
}
|
|
298 |
return 0;
|
|
299 |
}
|
|
300 |
|
|
301 |
/*
|
|
302 |
** Create a new mask for cursor iCursor.
|
|
303 |
**
|
|
304 |
** There is one cursor per table in the FROM clause. The number of
|
|
305 |
** tables in the FROM clause is limited by a test early in the
|
|
306 |
** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
|
|
307 |
** array will never overflow.
|
|
308 |
*/
|
|
309 |
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
310 |
assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
|
|
311 |
pMaskSet->ix[pMaskSet->n++] = iCursor;
|
|
312 |
}
|
|
313 |
|
|
314 |
/*
|
|
315 |
** This routine walks (recursively) an expression tree and generates
|
|
316 |
** a bitmask indicating which tables are used in that expression
|
|
317 |
** tree.
|
|
318 |
**
|
|
319 |
** In order for this routine to work, the calling function must have
|
|
320 |
** previously invoked sqlite3ExprResolveNames() on the expression. See
|
|
321 |
** the header comment on that routine for additional information.
|
|
322 |
** The sqlite3ExprResolveNames() routines looks for column names and
|
|
323 |
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
|
324 |
** the VDBE cursor number of the table. This routine just has to
|
|
325 |
** translate the cursor numbers into bitmask values and OR all
|
|
326 |
** the bitmasks together.
|
|
327 |
*/
|
|
328 |
static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
|
|
329 |
static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
|
|
330 |
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
|
331 |
Bitmask mask = 0;
|
|
332 |
if( p==0 ) return 0;
|
|
333 |
if( p->op==TK_COLUMN ){
|
|
334 |
mask = getMask(pMaskSet, p->iTable);
|
|
335 |
return mask;
|
|
336 |
}
|
|
337 |
mask = exprTableUsage(pMaskSet, p->pRight);
|
|
338 |
mask |= exprTableUsage(pMaskSet, p->pLeft);
|
|
339 |
mask |= exprListTableUsage(pMaskSet, p->pList);
|
|
340 |
mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
|
|
341 |
return mask;
|
|
342 |
}
|
|
343 |
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
|
|
344 |
int i;
|
|
345 |
Bitmask mask = 0;
|
|
346 |
if( pList ){
|
|
347 |
for(i=0; i<pList->nExpr; i++){
|
|
348 |
mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
|
|
349 |
}
|
|
350 |
}
|
|
351 |
return mask;
|
|
352 |
}
|
|
353 |
static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
|
|
354 |
Bitmask mask = 0;
|
|
355 |
while( pS ){
|
|
356 |
mask |= exprListTableUsage(pMaskSet, pS->pEList);
|
|
357 |
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
|
|
358 |
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
|
|
359 |
mask |= exprTableUsage(pMaskSet, pS->pWhere);
|
|
360 |
mask |= exprTableUsage(pMaskSet, pS->pHaving);
|
|
361 |
pS = pS->pPrior;
|
|
362 |
}
|
|
363 |
return mask;
|
|
364 |
}
|
|
365 |
|
|
366 |
/*
|
|
367 |
** Return TRUE if the given operator is one of the operators that is
|
|
368 |
** allowed for an indexable WHERE clause term. The allowed operators are
|
|
369 |
** "=", "<", ">", "<=", ">=", and "IN".
|
|
370 |
*/
|
|
371 |
static int allowedOp(int op){
|
|
372 |
assert( TK_GT>TK_EQ && TK_GT<TK_GE );
|
|
373 |
assert( TK_LT>TK_EQ && TK_LT<TK_GE );
|
|
374 |
assert( TK_LE>TK_EQ && TK_LE<TK_GE );
|
|
375 |
assert( TK_GE==TK_EQ+4 );
|
|
376 |
return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
|
|
377 |
}
|
|
378 |
|
|
379 |
/*
|
|
380 |
** Swap two objects of type T.
|
|
381 |
*/
|
|
382 |
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
|
|
383 |
|
|
384 |
/*
|
|
385 |
** Commute a comparision operator. Expressions of the form "X op Y"
|
|
386 |
** are converted into "Y op X".
|
|
387 |
**
|
|
388 |
** If a collation sequence is associated with either the left or right
|
|
389 |
** side of the comparison, it remains associated with the same side after
|
|
390 |
** the commutation. So "Y collate NOCASE op X" becomes
|
|
391 |
** "X collate NOCASE op Y". This is because any collation sequence on
|
|
392 |
** the left hand side of a comparison overrides any collation sequence
|
|
393 |
** attached to the right. For the same reason the EP_ExpCollate flag
|
|
394 |
** is not commuted.
|
|
395 |
*/
|
|
396 |
static void exprCommute(Expr *pExpr){
|
|
397 |
u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
|
|
398 |
u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
|
|
399 |
assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
|
|
400 |
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
|
|
401 |
pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
|
|
402 |
pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
|
|
403 |
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
|
404 |
if( pExpr->op>=TK_GT ){
|
|
405 |
assert( TK_LT==TK_GT+2 );
|
|
406 |
assert( TK_GE==TK_LE+2 );
|
|
407 |
assert( TK_GT>TK_EQ );
|
|
408 |
assert( TK_GT<TK_LE );
|
|
409 |
assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
|
|
410 |
pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
|
|
411 |
}
|
|
412 |
}
|
|
413 |
|
|
414 |
/*
|
|
415 |
** Translate from TK_xx operator to WO_xx bitmask.
|
|
416 |
*/
|
|
417 |
static int operatorMask(int op){
|
|
418 |
int c;
|
|
419 |
assert( allowedOp(op) );
|
|
420 |
if( op==TK_IN ){
|
|
421 |
c = WO_IN;
|
|
422 |
}else if( op==TK_ISNULL ){
|
|
423 |
c = WO_ISNULL;
|
|
424 |
}else{
|
|
425 |
c = WO_EQ<<(op-TK_EQ);
|
|
426 |
}
|
|
427 |
assert( op!=TK_ISNULL || c==WO_ISNULL );
|
|
428 |
assert( op!=TK_IN || c==WO_IN );
|
|
429 |
assert( op!=TK_EQ || c==WO_EQ );
|
|
430 |
assert( op!=TK_LT || c==WO_LT );
|
|
431 |
assert( op!=TK_LE || c==WO_LE );
|
|
432 |
assert( op!=TK_GT || c==WO_GT );
|
|
433 |
assert( op!=TK_GE || c==WO_GE );
|
|
434 |
return c;
|
|
435 |
}
|
|
436 |
|
|
437 |
/*
|
|
438 |
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
|
|
439 |
** where X is a reference to the iColumn of table iCur and <op> is one of
|
|
440 |
** the WO_xx operator codes specified by the op parameter.
|
|
441 |
** Return a pointer to the term. Return 0 if not found.
|
|
442 |
*/
|
|
443 |
static WhereTerm *findTerm(
|
|
444 |
WhereClause *pWC, /* The WHERE clause to be searched */
|
|
445 |
int iCur, /* Cursor number of LHS */
|
|
446 |
int iColumn, /* Column number of LHS */
|
|
447 |
Bitmask notReady, /* RHS must not overlap with this mask */
|
|
448 |
u16 op, /* Mask of WO_xx values describing operator */
|
|
449 |
Index *pIdx /* Must be compatible with this index, if not NULL */
|
|
450 |
){
|
|
451 |
WhereTerm *pTerm;
|
|
452 |
int k;
|
|
453 |
for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
|
|
454 |
if( pTerm->leftCursor==iCur
|
|
455 |
&& (pTerm->prereqRight & notReady)==0
|
|
456 |
&& pTerm->leftColumn==iColumn
|
|
457 |
&& (pTerm->eOperator & op)!=0
|
|
458 |
){
|
|
459 |
if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
|
|
460 |
Expr *pX = pTerm->pExpr;
|
|
461 |
CollSeq *pColl;
|
|
462 |
char idxaff;
|
|
463 |
int j;
|
|
464 |
Parse *pParse = pWC->pParse;
|
|
465 |
|
|
466 |
idxaff = pIdx->pTable->aCol[iColumn].affinity;
|
|
467 |
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
|
|
468 |
|
|
469 |
/* Figure out the collation sequence required from an index for
|
|
470 |
** it to be useful for optimising expression pX. Store this
|
|
471 |
** value in variable pColl.
|
|
472 |
*/
|
|
473 |
assert(pX->pLeft);
|
|
474 |
pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
|
|
475 |
if( !pColl ){
|
|
476 |
pColl = pParse->db->pDfltColl;
|
|
477 |
}
|
|
478 |
|
|
479 |
for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
|
|
480 |
assert( j<pIdx->nColumn );
|
|
481 |
if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
|
|
482 |
}
|
|
483 |
return pTerm;
|
|
484 |
}
|
|
485 |
}
|
|
486 |
return 0;
|
|
487 |
}
|
|
488 |
|
|
489 |
/* Forward reference */
|
|
490 |
static void exprAnalyze(SrcList*, WhereClause*, int);
|
|
491 |
|
|
492 |
/*
|
|
493 |
** Call exprAnalyze on all terms in a WHERE clause.
|
|
494 |
**
|
|
495 |
**
|
|
496 |
*/
|
|
497 |
static void exprAnalyzeAll(
|
|
498 |
SrcList *pTabList, /* the FROM clause */
|
|
499 |
WhereClause *pWC /* the WHERE clause to be analyzed */
|
|
500 |
){
|
|
501 |
int i;
|
|
502 |
for(i=pWC->nTerm-1; i>=0; i--){
|
|
503 |
exprAnalyze(pTabList, pWC, i);
|
|
504 |
}
|
|
505 |
}
|
|
506 |
|
|
507 |
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
|
508 |
/*
|
|
509 |
** Check to see if the given expression is a LIKE or GLOB operator that
|
|
510 |
** can be optimized using inequality constraints. Return TRUE if it is
|
|
511 |
** so and false if not.
|
|
512 |
**
|
|
513 |
** In order for the operator to be optimizible, the RHS must be a string
|
|
514 |
** literal that does not begin with a wildcard.
|
|
515 |
*/
|
|
516 |
static int isLikeOrGlob(
|
|
517 |
sqlite3 *db, /* The database */
|
|
518 |
Expr *pExpr, /* Test this expression */
|
|
519 |
int *pnPattern, /* Number of non-wildcard prefix characters */
|
|
520 |
int *pisComplete /* True if the only wildcard is % in the last character */
|
|
521 |
){
|
|
522 |
const char *z;
|
|
523 |
Expr *pRight, *pLeft;
|
|
524 |
ExprList *pList;
|
|
525 |
int c, cnt;
|
|
526 |
int noCase;
|
|
527 |
char wc[3];
|
|
528 |
CollSeq *pColl;
|
|
529 |
|
|
530 |
if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
|
|
531 |
return 0;
|
|
532 |
}
|
|
533 |
pList = pExpr->pList;
|
|
534 |
pRight = pList->a[0].pExpr;
|
|
535 |
if( pRight->op!=TK_STRING ){
|
|
536 |
return 0;
|
|
537 |
}
|
|
538 |
pLeft = pList->a[1].pExpr;
|
|
539 |
if( pLeft->op!=TK_COLUMN ){
|
|
540 |
return 0;
|
|
541 |
}
|
|
542 |
pColl = pLeft->pColl;
|
|
543 |
if( pColl==0 ){
|
|
544 |
/* TODO: Coverage testing doesn't get this case. Is it actually possible
|
|
545 |
** for an expression of type TK_COLUMN to not have an assigned collation
|
|
546 |
** sequence at this point?
|
|
547 |
*/
|
|
548 |
pColl = db->pDfltColl;
|
|
549 |
}
|
|
550 |
if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
|
|
551 |
(pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
|
|
552 |
return 0;
|
|
553 |
}
|
|
554 |
sqlite3DequoteExpr(db, pRight);
|
|
555 |
z = (char *)pRight->token.z;
|
|
556 |
cnt = 0;
|
|
557 |
if( z ){
|
|
558 |
while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
|
|
559 |
}
|
|
560 |
if( cnt==0 || 255==(u8)z[cnt] ){
|
|
561 |
return 0;
|
|
562 |
}
|
|
563 |
*pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
|
|
564 |
*pnPattern = cnt;
|
|
565 |
return 1;
|
|
566 |
}
|
|
567 |
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
|
568 |
|
|
569 |
|
|
570 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
571 |
/*
|
|
572 |
** Check to see if the given expression is of the form
|
|
573 |
**
|
|
574 |
** column MATCH expr
|
|
575 |
**
|
|
576 |
** If it is then return TRUE. If not, return FALSE.
|
|
577 |
*/
|
|
578 |
static int isMatchOfColumn(
|
|
579 |
Expr *pExpr /* Test this expression */
|
|
580 |
){
|
|
581 |
ExprList *pList;
|
|
582 |
|
|
583 |
if( pExpr->op!=TK_FUNCTION ){
|
|
584 |
return 0;
|
|
585 |
}
|
|
586 |
if( pExpr->token.n!=5 ||
|
|
587 |
sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
|
|
588 |
return 0;
|
|
589 |
}
|
|
590 |
pList = pExpr->pList;
|
|
591 |
if( pList->nExpr!=2 ){
|
|
592 |
return 0;
|
|
593 |
}
|
|
594 |
if( pList->a[1].pExpr->op != TK_COLUMN ){
|
|
595 |
return 0;
|
|
596 |
}
|
|
597 |
return 1;
|
|
598 |
}
|
|
599 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
600 |
|
|
601 |
/*
|
|
602 |
** If the pBase expression originated in the ON or USING clause of
|
|
603 |
** a join, then transfer the appropriate markings over to derived.
|
|
604 |
*/
|
|
605 |
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
|
|
606 |
pDerived->flags |= pBase->flags & EP_FromJoin;
|
|
607 |
pDerived->iRightJoinTable = pBase->iRightJoinTable;
|
|
608 |
}
|
|
609 |
|
|
610 |
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
611 |
/*
|
|
612 |
** Return TRUE if the given term of an OR clause can be converted
|
|
613 |
** into an IN clause. The iCursor and iColumn define the left-hand
|
|
614 |
** side of the IN clause.
|
|
615 |
**
|
|
616 |
** The context is that we have multiple OR-connected equality terms
|
|
617 |
** like this:
|
|
618 |
**
|
|
619 |
** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
|
|
620 |
**
|
|
621 |
** The pOrTerm input to this routine corresponds to a single term of
|
|
622 |
** this OR clause. In order for the term to be a condidate for
|
|
623 |
** conversion to an IN operator, the following must be true:
|
|
624 |
**
|
|
625 |
** * The left-hand side of the term must be the column which
|
|
626 |
** is identified by iCursor and iColumn.
|
|
627 |
**
|
|
628 |
** * If the right-hand side is also a column, then the affinities
|
|
629 |
** of both right and left sides must be such that no type
|
|
630 |
** conversions are required on the right. (Ticket #2249)
|
|
631 |
**
|
|
632 |
** If both of these conditions are true, then return true. Otherwise
|
|
633 |
** return false.
|
|
634 |
*/
|
|
635 |
static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
|
|
636 |
int affLeft, affRight;
|
|
637 |
assert( pOrTerm->eOperator==WO_EQ );
|
|
638 |
if( pOrTerm->leftCursor!=iCursor ){
|
|
639 |
return 0;
|
|
640 |
}
|
|
641 |
if( pOrTerm->leftColumn!=iColumn ){
|
|
642 |
return 0;
|
|
643 |
}
|
|
644 |
affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
|
|
645 |
if( affRight==0 ){
|
|
646 |
return 1;
|
|
647 |
}
|
|
648 |
affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
|
|
649 |
if( affRight!=affLeft ){
|
|
650 |
return 0;
|
|
651 |
}
|
|
652 |
return 1;
|
|
653 |
}
|
|
654 |
|
|
655 |
/*
|
|
656 |
** Return true if the given term of an OR clause can be ignored during
|
|
657 |
** a check to make sure all OR terms are candidates for optimization.
|
|
658 |
** In other words, return true if a call to the orTermIsOptCandidate()
|
|
659 |
** above returned false but it is not necessary to disqualify the
|
|
660 |
** optimization.
|
|
661 |
**
|
|
662 |
** Suppose the original OR phrase was this:
|
|
663 |
**
|
|
664 |
** a=4 OR a=11 OR a=b
|
|
665 |
**
|
|
666 |
** During analysis, the third term gets flipped around and duplicate
|
|
667 |
** so that we are left with this:
|
|
668 |
**
|
|
669 |
** a=4 OR a=11 OR a=b OR b=a
|
|
670 |
**
|
|
671 |
** Since the last two terms are duplicates, only one of them
|
|
672 |
** has to qualify in order for the whole phrase to qualify. When
|
|
673 |
** this routine is called, we know that pOrTerm did not qualify.
|
|
674 |
** This routine merely checks to see if pOrTerm has a duplicate that
|
|
675 |
** might qualify. If there is a duplicate that has not yet been
|
|
676 |
** disqualified, then return true. If there are no duplicates, or
|
|
677 |
** the duplicate has also been disqualifed, return false.
|
|
678 |
*/
|
|
679 |
static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
|
|
680 |
if( pOrTerm->flags & TERM_COPIED ){
|
|
681 |
/* This is the original term. The duplicate is to the left had
|
|
682 |
** has not yet been analyzed and thus has not yet been disqualified. */
|
|
683 |
return 1;
|
|
684 |
}
|
|
685 |
if( (pOrTerm->flags & TERM_VIRTUAL)!=0
|
|
686 |
&& (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
|
|
687 |
/* This is a duplicate term. The original qualified so this one
|
|
688 |
** does not have to. */
|
|
689 |
return 1;
|
|
690 |
}
|
|
691 |
/* This is either a singleton term or else it is a duplicate for
|
|
692 |
** which the original did not qualify. Either way we are done for. */
|
|
693 |
return 0;
|
|
694 |
}
|
|
695 |
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
|
|
696 |
|
|
697 |
/*
|
|
698 |
** The input to this routine is an WhereTerm structure with only the
|
|
699 |
** "pExpr" field filled in. The job of this routine is to analyze the
|
|
700 |
** subexpression and populate all the other fields of the WhereTerm
|
|
701 |
** structure.
|
|
702 |
**
|
|
703 |
** If the expression is of the form "<expr> <op> X" it gets commuted
|
|
704 |
** to the standard form of "X <op> <expr>". If the expression is of
|
|
705 |
** the form "X <op> Y" where both X and Y are columns, then the original
|
|
706 |
** expression is unchanged and a new virtual expression of the form
|
|
707 |
** "Y <op> X" is added to the WHERE clause and analyzed separately.
|
|
708 |
*/
|
|
709 |
static void exprAnalyze(
|
|
710 |
SrcList *pSrc, /* the FROM clause */
|
|
711 |
WhereClause *pWC, /* the WHERE clause */
|
|
712 |
int idxTerm /* Index of the term to be analyzed */
|
|
713 |
){
|
|
714 |
WhereTerm *pTerm;
|
|
715 |
ExprMaskSet *pMaskSet;
|
|
716 |
Expr *pExpr;
|
|
717 |
Bitmask prereqLeft;
|
|
718 |
Bitmask prereqAll;
|
|
719 |
int nPattern;
|
|
720 |
int isComplete;
|
|
721 |
int op;
|
|
722 |
Parse *pParse = pWC->pParse;
|
|
723 |
sqlite3 *db = pParse->db;
|
|
724 |
|
|
725 |
if( db->mallocFailed ){
|
|
726 |
return;
|
|
727 |
}
|
|
728 |
pTerm = &pWC->a[idxTerm];
|
|
729 |
pMaskSet = pWC->pMaskSet;
|
|
730 |
pExpr = pTerm->pExpr;
|
|
731 |
prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
|
732 |
op = pExpr->op;
|
|
733 |
if( op==TK_IN ){
|
|
734 |
assert( pExpr->pRight==0 );
|
|
735 |
pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
|
|
736 |
| exprSelectTableUsage(pMaskSet, pExpr->pSelect);
|
|
737 |
}else if( op==TK_ISNULL ){
|
|
738 |
pTerm->prereqRight = 0;
|
|
739 |
}else{
|
|
740 |
pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
|
741 |
}
|
|
742 |
prereqAll = exprTableUsage(pMaskSet, pExpr);
|
|
743 |
if( ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
744 |
prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
|
|
745 |
}
|
|
746 |
pTerm->prereqAll = prereqAll;
|
|
747 |
pTerm->leftCursor = -1;
|
|
748 |
pTerm->iParent = -1;
|
|
749 |
pTerm->eOperator = 0;
|
|
750 |
if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
|
|
751 |
Expr *pLeft = pExpr->pLeft;
|
|
752 |
Expr *pRight = pExpr->pRight;
|
|
753 |
if( pLeft->op==TK_COLUMN ){
|
|
754 |
pTerm->leftCursor = pLeft->iTable;
|
|
755 |
pTerm->leftColumn = pLeft->iColumn;
|
|
756 |
pTerm->eOperator = operatorMask(op);
|
|
757 |
}
|
|
758 |
if( pRight && pRight->op==TK_COLUMN ){
|
|
759 |
WhereTerm *pNew;
|
|
760 |
Expr *pDup;
|
|
761 |
if( pTerm->leftCursor>=0 ){
|
|
762 |
int idxNew;
|
|
763 |
pDup = sqlite3ExprDup(db, pExpr);
|
|
764 |
if( db->mallocFailed ){
|
|
765 |
sqlite3ExprDelete(pDup);
|
|
766 |
return;
|
|
767 |
}
|
|
768 |
idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
769 |
if( idxNew==0 ) return;
|
|
770 |
pNew = &pWC->a[idxNew];
|
|
771 |
pNew->iParent = idxTerm;
|
|
772 |
pTerm = &pWC->a[idxTerm];
|
|
773 |
pTerm->nChild = 1;
|
|
774 |
pTerm->flags |= TERM_COPIED;
|
|
775 |
}else{
|
|
776 |
pDup = pExpr;
|
|
777 |
pNew = pTerm;
|
|
778 |
}
|
|
779 |
exprCommute(pDup);
|
|
780 |
pLeft = pDup->pLeft;
|
|
781 |
pNew->leftCursor = pLeft->iTable;
|
|
782 |
pNew->leftColumn = pLeft->iColumn;
|
|
783 |
pNew->prereqRight = prereqLeft;
|
|
784 |
pNew->prereqAll = prereqAll;
|
|
785 |
pNew->eOperator = operatorMask(pDup->op);
|
|
786 |
}
|
|
787 |
}
|
|
788 |
|
|
789 |
#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
|
|
790 |
/* If a term is the BETWEEN operator, create two new virtual terms
|
|
791 |
** that define the range that the BETWEEN implements.
|
|
792 |
*/
|
|
793 |
else if( pExpr->op==TK_BETWEEN ){
|
|
794 |
ExprList *pList = pExpr->pList;
|
|
795 |
int i;
|
|
796 |
static const u8 ops[] = {TK_GE, TK_LE};
|
|
797 |
assert( pList!=0 );
|
|
798 |
assert( pList->nExpr==2 );
|
|
799 |
for(i=0; i<2; i++){
|
|
800 |
Expr *pNewExpr;
|
|
801 |
int idxNew;
|
|
802 |
pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
|
|
803 |
sqlite3ExprDup(db, pList->a[i].pExpr), 0);
|
|
804 |
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
805 |
exprAnalyze(pSrc, pWC, idxNew);
|
|
806 |
pTerm = &pWC->a[idxTerm];
|
|
807 |
pWC->a[idxNew].iParent = idxTerm;
|
|
808 |
}
|
|
809 |
pTerm->nChild = 2;
|
|
810 |
}
|
|
811 |
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
|
|
812 |
|
|
813 |
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
814 |
/* Attempt to convert OR-connected terms into an IN operator so that
|
|
815 |
** they can make use of indices. Example:
|
|
816 |
**
|
|
817 |
** x = expr1 OR expr2 = x OR x = expr3
|
|
818 |
**
|
|
819 |
** is converted into
|
|
820 |
**
|
|
821 |
** x IN (expr1,expr2,expr3)
|
|
822 |
**
|
|
823 |
** This optimization must be omitted if OMIT_SUBQUERY is defined because
|
|
824 |
** the compiler for the the IN operator is part of sub-queries.
|
|
825 |
*/
|
|
826 |
else if( pExpr->op==TK_OR ){
|
|
827 |
int ok;
|
|
828 |
int i, j;
|
|
829 |
int iColumn, iCursor;
|
|
830 |
WhereClause sOr;
|
|
831 |
WhereTerm *pOrTerm;
|
|
832 |
|
|
833 |
assert( (pTerm->flags & TERM_DYNAMIC)==0 );
|
|
834 |
whereClauseInit(&sOr, pWC->pParse, pMaskSet);
|
|
835 |
whereSplit(&sOr, pExpr, TK_OR);
|
|
836 |
exprAnalyzeAll(pSrc, &sOr);
|
|
837 |
assert( sOr.nTerm>=2 );
|
|
838 |
j = 0;
|
|
839 |
do{
|
|
840 |
assert( j<sOr.nTerm );
|
|
841 |
iColumn = sOr.a[j].leftColumn;
|
|
842 |
iCursor = sOr.a[j].leftCursor;
|
|
843 |
ok = iCursor>=0;
|
|
844 |
for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
|
|
845 |
if( pOrTerm->eOperator!=WO_EQ ){
|
|
846 |
goto or_not_possible;
|
|
847 |
}
|
|
848 |
if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
|
|
849 |
pOrTerm->flags |= TERM_OR_OK;
|
|
850 |
}else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
|
|
851 |
pOrTerm->flags &= ~TERM_OR_OK;
|
|
852 |
}else{
|
|
853 |
ok = 0;
|
|
854 |
}
|
|
855 |
}
|
|
856 |
}while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
|
|
857 |
if( ok ){
|
|
858 |
ExprList *pList = 0;
|
|
859 |
Expr *pNew, *pDup;
|
|
860 |
Expr *pLeft = 0;
|
|
861 |
for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
|
|
862 |
if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
|
|
863 |
pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
|
|
864 |
pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
|
|
865 |
pLeft = pOrTerm->pExpr->pLeft;
|
|
866 |
}
|
|
867 |
assert( pLeft!=0 );
|
|
868 |
pDup = sqlite3ExprDup(db, pLeft);
|
|
869 |
pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
|
|
870 |
if( pNew ){
|
|
871 |
int idxNew;
|
|
872 |
transferJoinMarkings(pNew, pExpr);
|
|
873 |
pNew->pList = pList;
|
|
874 |
idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
875 |
exprAnalyze(pSrc, pWC, idxNew);
|
|
876 |
pTerm = &pWC->a[idxTerm];
|
|
877 |
pWC->a[idxNew].iParent = idxTerm;
|
|
878 |
pTerm->nChild = 1;
|
|
879 |
}else{
|
|
880 |
sqlite3ExprListDelete(pList);
|
|
881 |
}
|
|
882 |
}
|
|
883 |
or_not_possible:
|
|
884 |
whereClauseClear(&sOr);
|
|
885 |
}
|
|
886 |
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
|
|
887 |
|
|
888 |
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
|
889 |
/* Add constraints to reduce the search space on a LIKE or GLOB
|
|
890 |
** operator.
|
|
891 |
*/
|
|
892 |
if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){
|
|
893 |
Expr *pLeft, *pRight;
|
|
894 |
Expr *pStr1, *pStr2;
|
|
895 |
Expr *pNewExpr1, *pNewExpr2;
|
|
896 |
int idxNew1, idxNew2;
|
|
897 |
|
|
898 |
pLeft = pExpr->pList->a[1].pExpr;
|
|
899 |
pRight = pExpr->pList->a[0].pExpr;
|
|
900 |
pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
|
|
901 |
if( pStr1 ){
|
|
902 |
sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
|
|
903 |
pStr1->token.n = nPattern;
|
|
904 |
pStr1->flags = EP_Dequoted;
|
|
905 |
}
|
|
906 |
pStr2 = sqlite3ExprDup(db, pStr1);
|
|
907 |
if( !db->mallocFailed ){
|
|
908 |
assert( pStr2->token.dyn );
|
|
909 |
++*(u8*)&pStr2->token.z[nPattern-1];
|
|
910 |
}
|
|
911 |
pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
|
|
912 |
idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
913 |
exprAnalyze(pSrc, pWC, idxNew1);
|
|
914 |
pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
|
|
915 |
idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
916 |
exprAnalyze(pSrc, pWC, idxNew2);
|
|
917 |
pTerm = &pWC->a[idxTerm];
|
|
918 |
if( isComplete ){
|
|
919 |
pWC->a[idxNew1].iParent = idxTerm;
|
|
920 |
pWC->a[idxNew2].iParent = idxTerm;
|
|
921 |
pTerm->nChild = 2;
|
|
922 |
}
|
|
923 |
}
|
|
924 |
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
|
925 |
|
|
926 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
927 |
/* Add a WO_MATCH auxiliary term to the constraint set if the
|
|
928 |
** current expression is of the form: column MATCH expr.
|
|
929 |
** This information is used by the xBestIndex methods of
|
|
930 |
** virtual tables. The native query optimizer does not attempt
|
|
931 |
** to do anything with MATCH functions.
|
|
932 |
*/
|
|
933 |
if( isMatchOfColumn(pExpr) ){
|
|
934 |
int idxNew;
|
|
935 |
Expr *pRight, *pLeft;
|
|
936 |
WhereTerm *pNewTerm;
|
|
937 |
Bitmask prereqColumn, prereqExpr;
|
|
938 |
|
|
939 |
pRight = pExpr->pList->a[0].pExpr;
|
|
940 |
pLeft = pExpr->pList->a[1].pExpr;
|
|
941 |
prereqExpr = exprTableUsage(pMaskSet, pRight);
|
|
942 |
prereqColumn = exprTableUsage(pMaskSet, pLeft);
|
|
943 |
if( (prereqExpr & prereqColumn)==0 ){
|
|
944 |
Expr *pNewExpr;
|
|
945 |
pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
|
|
946 |
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
947 |
pNewTerm = &pWC->a[idxNew];
|
|
948 |
pNewTerm->prereqRight = prereqExpr;
|
|
949 |
pNewTerm->leftCursor = pLeft->iTable;
|
|
950 |
pNewTerm->leftColumn = pLeft->iColumn;
|
|
951 |
pNewTerm->eOperator = WO_MATCH;
|
|
952 |
pNewTerm->iParent = idxTerm;
|
|
953 |
pTerm = &pWC->a[idxTerm];
|
|
954 |
pTerm->nChild = 1;
|
|
955 |
pTerm->flags |= TERM_COPIED;
|
|
956 |
pNewTerm->prereqAll = pTerm->prereqAll;
|
|
957 |
}
|
|
958 |
}
|
|
959 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
960 |
}
|
|
961 |
|
|
962 |
/*
|
|
963 |
** Return TRUE if any of the expressions in pList->a[iFirst...] contain
|
|
964 |
** a reference to any table other than the iBase table.
|
|
965 |
*/
|
|
966 |
static int referencesOtherTables(
|
|
967 |
ExprList *pList, /* Search expressions in ths list */
|
|
968 |
ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
|
|
969 |
int iFirst, /* Be searching with the iFirst-th expression */
|
|
970 |
int iBase /* Ignore references to this table */
|
|
971 |
){
|
|
972 |
Bitmask allowed = ~getMask(pMaskSet, iBase);
|
|
973 |
while( iFirst<pList->nExpr ){
|
|
974 |
if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
|
|
975 |
return 1;
|
|
976 |
}
|
|
977 |
}
|
|
978 |
return 0;
|
|
979 |
}
|
|
980 |
|
|
981 |
|
|
982 |
/*
|
|
983 |
** This routine decides if pIdx can be used to satisfy the ORDER BY
|
|
984 |
** clause. If it can, it returns 1. If pIdx cannot satisfy the
|
|
985 |
** ORDER BY clause, this routine returns 0.
|
|
986 |
**
|
|
987 |
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
|
988 |
** left-most table in the FROM clause of that same SELECT statement and
|
|
989 |
** the table has a cursor number of "base". pIdx is an index on pTab.
|
|
990 |
**
|
|
991 |
** nEqCol is the number of columns of pIdx that are used as equality
|
|
992 |
** constraints. Any of these columns may be missing from the ORDER BY
|
|
993 |
** clause and the match can still be a success.
|
|
994 |
**
|
|
995 |
** All terms of the ORDER BY that match against the index must be either
|
|
996 |
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
|
|
997 |
** index do not need to satisfy this constraint.) The *pbRev value is
|
|
998 |
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
|
|
999 |
** the ORDER BY clause is all ASC.
|
|
1000 |
*/
|
|
1001 |
static int isSortingIndex(
|
|
1002 |
Parse *pParse, /* Parsing context */
|
|
1003 |
ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
|
|
1004 |
Index *pIdx, /* The index we are testing */
|
|
1005 |
int base, /* Cursor number for the table to be sorted */
|
|
1006 |
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
1007 |
int nEqCol, /* Number of index columns with == constraints */
|
|
1008 |
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
1009 |
){
|
|
1010 |
int i, j; /* Loop counters */
|
|
1011 |
int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
|
|
1012 |
int nTerm; /* Number of ORDER BY terms */
|
|
1013 |
ExprList::ExprList_item *pTerm; /* A term of the ORDER BY clause */
|
|
1014 |
sqlite3 *db = pParse->db;
|
|
1015 |
|
|
1016 |
assert( pOrderBy!=0 );
|
|
1017 |
nTerm = pOrderBy->nExpr;
|
|
1018 |
assert( nTerm>0 );
|
|
1019 |
|
|
1020 |
/* Match terms of the ORDER BY clause against columns of
|
|
1021 |
** the index.
|
|
1022 |
**
|
|
1023 |
** Note that indices have pIdx->nColumn regular columns plus
|
|
1024 |
** one additional column containing the rowid. The rowid column
|
|
1025 |
** of the index is also allowed to match against the ORDER BY
|
|
1026 |
** clause.
|
|
1027 |
*/
|
|
1028 |
for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
|
|
1029 |
Expr *pExpr; /* The expression of the ORDER BY pTerm */
|
|
1030 |
CollSeq *pColl; /* The collating sequence of pExpr */
|
|
1031 |
int termSortOrder; /* Sort order for this term */
|
|
1032 |
int iColumn; /* The i-th column of the index. -1 for rowid */
|
|
1033 |
int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
|
|
1034 |
const char *zColl; /* Name of the collating sequence for i-th index term */
|
|
1035 |
|
|
1036 |
pExpr = pTerm->pExpr;
|
|
1037 |
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
|
|
1038 |
/* Can not use an index sort on anything that is not a column in the
|
|
1039 |
** left-most table of the FROM clause */
|
|
1040 |
break;
|
|
1041 |
}
|
|
1042 |
pColl = sqlite3ExprCollSeq(pParse, pExpr);
|
|
1043 |
if( !pColl ){
|
|
1044 |
pColl = db->pDfltColl;
|
|
1045 |
}
|
|
1046 |
if( i<pIdx->nColumn ){
|
|
1047 |
iColumn = pIdx->aiColumn[i];
|
|
1048 |
if( iColumn==pIdx->pTable->iPKey ){
|
|
1049 |
iColumn = -1;
|
|
1050 |
}
|
|
1051 |
iSortOrder = pIdx->aSortOrder[i];
|
|
1052 |
zColl = pIdx->azColl[i];
|
|
1053 |
}else{
|
|
1054 |
iColumn = -1;
|
|
1055 |
iSortOrder = 0;
|
|
1056 |
zColl = pColl->zName;
|
|
1057 |
}
|
|
1058 |
if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
|
|
1059 |
/* Term j of the ORDER BY clause does not match column i of the index */
|
|
1060 |
if( i<nEqCol ){
|
|
1061 |
/* If an index column that is constrained by == fails to match an
|
|
1062 |
** ORDER BY term, that is OK. Just ignore that column of the index
|
|
1063 |
*/
|
|
1064 |
continue;
|
|
1065 |
}else{
|
|
1066 |
/* If an index column fails to match and is not constrained by ==
|
|
1067 |
** then the index cannot satisfy the ORDER BY constraint.
|
|
1068 |
*/
|
|
1069 |
return 0;
|
|
1070 |
}
|
|
1071 |
}
|
|
1072 |
assert( pIdx->aSortOrder!=0 );
|
|
1073 |
assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
|
|
1074 |
assert( iSortOrder==0 || iSortOrder==1 );
|
|
1075 |
termSortOrder = iSortOrder ^ pTerm->sortOrder;
|
|
1076 |
if( i>nEqCol ){
|
|
1077 |
if( termSortOrder!=sortOrder ){
|
|
1078 |
/* Indices can only be used if all ORDER BY terms past the
|
|
1079 |
** equality constraints are all either DESC or ASC. */
|
|
1080 |
return 0;
|
|
1081 |
}
|
|
1082 |
}else{
|
|
1083 |
sortOrder = termSortOrder;
|
|
1084 |
}
|
|
1085 |
j++;
|
|
1086 |
pTerm++;
|
|
1087 |
if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
|
|
1088 |
/* If the indexed column is the primary key and everything matches
|
|
1089 |
** so far and none of the ORDER BY terms to the right reference other
|
|
1090 |
** tables in the join, then we are assured that the index can be used
|
|
1091 |
** to sort because the primary key is unique and so none of the other
|
|
1092 |
** columns will make any difference
|
|
1093 |
*/
|
|
1094 |
j = nTerm;
|
|
1095 |
}
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
*pbRev = sortOrder!=0;
|
|
1099 |
if( j>=nTerm ){
|
|
1100 |
/* All terms of the ORDER BY clause are covered by this index so
|
|
1101 |
** this index can be used for sorting. */
|
|
1102 |
return 1;
|
|
1103 |
}
|
|
1104 |
if( pIdx->onError!=OE_None && i==pIdx->nColumn
|
|
1105 |
&& !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
|
|
1106 |
/* All terms of this index match some prefix of the ORDER BY clause
|
|
1107 |
** and the index is UNIQUE and no terms on the tail of the ORDER BY
|
|
1108 |
** clause reference other tables in a join. If this is all true then
|
|
1109 |
** the order by clause is superfluous. */
|
|
1110 |
return 1;
|
|
1111 |
}
|
|
1112 |
return 0;
|
|
1113 |
}
|
|
1114 |
|
|
1115 |
/*
|
|
1116 |
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
|
|
1117 |
** by sorting in order of ROWID. Return true if so and set *pbRev to be
|
|
1118 |
** true for reverse ROWID and false for forward ROWID order.
|
|
1119 |
*/
|
|
1120 |
static int sortableByRowid(
|
|
1121 |
int base, /* Cursor number for table to be sorted */
|
|
1122 |
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
1123 |
ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
|
|
1124 |
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
1125 |
){
|
|
1126 |
Expr *p;
|
|
1127 |
|
|
1128 |
assert( pOrderBy!=0 );
|
|
1129 |
assert( pOrderBy->nExpr>0 );
|
|
1130 |
p = pOrderBy->a[0].pExpr;
|
|
1131 |
if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
|
|
1132 |
&& !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
|
|
1133 |
*pbRev = pOrderBy->a[0].sortOrder;
|
|
1134 |
return 1;
|
|
1135 |
}
|
|
1136 |
return 0;
|
|
1137 |
}
|
|
1138 |
|
|
1139 |
/*
|
|
1140 |
** Prepare a crude estimate of the logarithm of the input value.
|
|
1141 |
** The results need not be exact. This is only used for estimating
|
|
1142 |
** the total cost of performing operatings with O(logN) or O(NlogN)
|
|
1143 |
** complexity. Because N is just a guess, it is no great tragedy if
|
|
1144 |
** logN is a little off.
|
|
1145 |
*/
|
|
1146 |
static double estLog(double N){
|
|
1147 |
double logN = 1;
|
|
1148 |
double x = 10;
|
|
1149 |
while( N>x ){
|
|
1150 |
logN += 1;
|
|
1151 |
x *= 10;
|
|
1152 |
}
|
|
1153 |
return logN;
|
|
1154 |
}
|
|
1155 |
|
|
1156 |
/*
|
|
1157 |
** Two routines for printing the content of an sqlite3_index_info
|
|
1158 |
** structure. Used for testing and debugging only. If neither
|
|
1159 |
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
|
|
1160 |
** are no-ops.
|
|
1161 |
*/
|
|
1162 |
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
|
|
1163 |
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
|
|
1164 |
int i;
|
|
1165 |
if( !sqlite3_where_trace ) return;
|
|
1166 |
for(i=0; i<p->nConstraint; i++){
|
|
1167 |
sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
|
|
1168 |
i,
|
|
1169 |
p->aConstraint[i].iColumn,
|
|
1170 |
p->aConstraint[i].iTermOffset,
|
|
1171 |
p->aConstraint[i].op,
|
|
1172 |
p->aConstraint[i].usable);
|
|
1173 |
}
|
|
1174 |
for(i=0; i<p->nOrderBy; i++){
|
|
1175 |
sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
|
|
1176 |
i,
|
|
1177 |
p->aOrderBy[i].iColumn,
|
|
1178 |
p->aOrderBy[i].desc);
|
|
1179 |
}
|
|
1180 |
}
|
|
1181 |
static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
|
|
1182 |
int i;
|
|
1183 |
if( !sqlite3_where_trace ) return;
|
|
1184 |
for(i=0; i<p->nConstraint; i++){
|
|
1185 |
sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
|
|
1186 |
i,
|
|
1187 |
p->aConstraintUsage[i].argvIndex,
|
|
1188 |
p->aConstraintUsage[i].omit);
|
|
1189 |
}
|
|
1190 |
sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
|
|
1191 |
sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
|
|
1192 |
sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
|
|
1193 |
sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
|
|
1194 |
}
|
|
1195 |
#else
|
|
1196 |
#define TRACE_IDX_INPUTS(A)
|
|
1197 |
#define TRACE_IDX_OUTPUTS(A)
|
|
1198 |
#endif
|
|
1199 |
|
|
1200 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
1201 |
/*
|
|
1202 |
** Compute the best index for a virtual table.
|
|
1203 |
**
|
|
1204 |
** The best index is computed by the xBestIndex method of the virtual
|
|
1205 |
** table module. This routine is really just a wrapper that sets up
|
|
1206 |
** the sqlite3_index_info structure that is used to communicate with
|
|
1207 |
** xBestIndex.
|
|
1208 |
**
|
|
1209 |
** In a join, this routine might be called multiple times for the
|
|
1210 |
** same virtual table. The sqlite3_index_info structure is created
|
|
1211 |
** and initialized on the first invocation and reused on all subsequent
|
|
1212 |
** invocations. The sqlite3_index_info structure is also used when
|
|
1213 |
** code is generated to access the virtual table. The whereInfoDelete()
|
|
1214 |
** routine takes care of freeing the sqlite3_index_info structure after
|
|
1215 |
** everybody has finished with it.
|
|
1216 |
*/
|
|
1217 |
static double bestVirtualIndex(
|
|
1218 |
Parse *pParse, /* The parsing context */
|
|
1219 |
WhereClause *pWC, /* The WHERE clause */
|
|
1220 |
SrcList::SrcList_item *pSrc, /* The FROM clause term to search */
|
|
1221 |
Bitmask notReady, /* Mask of cursors that are not available */
|
|
1222 |
ExprList *pOrderBy, /* The order by clause */
|
|
1223 |
int orderByUsable, /* True if we can potential sort */
|
|
1224 |
sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
|
|
1225 |
){
|
|
1226 |
Table *pTab = pSrc->pTab;
|
|
1227 |
sqlite3_index_info *pIdxInfo;
|
|
1228 |
sqlite3_index_info::sqlite3_index_constraint *pIdxCons;
|
|
1229 |
sqlite3_index_info::sqlite3_index_orderby *pIdxOrderBy;
|
|
1230 |
sqlite3_index_info::sqlite3_index_constraint_usage *pUsage;
|
|
1231 |
WhereTerm *pTerm;
|
|
1232 |
int i, j;
|
|
1233 |
int nOrderBy;
|
|
1234 |
int rc;
|
|
1235 |
|
|
1236 |
/* If the sqlite3_index_info structure has not been previously
|
|
1237 |
** allocated and initialized for this virtual table, then allocate
|
|
1238 |
** and initialize it now
|
|
1239 |
*/
|
|
1240 |
pIdxInfo = *ppIdxInfo;
|
|
1241 |
if( pIdxInfo==0 ){
|
|
1242 |
WhereTerm *pTerm;
|
|
1243 |
int nTerm;
|
|
1244 |
WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
|
|
1245 |
|
|
1246 |
/* Count the number of possible WHERE clause constraints referring
|
|
1247 |
** to this virtual table */
|
|
1248 |
for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
|
1249 |
if( pTerm->leftCursor != pSrc->iCursor ) continue;
|
|
1250 |
if( pTerm->eOperator==WO_IN ) continue;
|
|
1251 |
if( pTerm->eOperator==WO_ISNULL ) continue;
|
|
1252 |
nTerm++;
|
|
1253 |
}
|
|
1254 |
|
|
1255 |
/* If the ORDER BY clause contains only columns in the current
|
|
1256 |
** virtual table then allocate space for the aOrderBy part of
|
|
1257 |
** the sqlite3_index_info structure.
|
|
1258 |
*/
|
|
1259 |
nOrderBy = 0;
|
|
1260 |
if( pOrderBy ){
|
|
1261 |
for(i=0; i<pOrderBy->nExpr; i++){
|
|
1262 |
Expr *pExpr = pOrderBy->a[i].pExpr;
|
|
1263 |
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
|
|
1264 |
}
|
|
1265 |
if( i==pOrderBy->nExpr ){
|
|
1266 |
nOrderBy = pOrderBy->nExpr;
|
|
1267 |
}
|
|
1268 |
}
|
|
1269 |
|
|
1270 |
/* Allocate the sqlite3_index_info structure
|
|
1271 |
*/
|
|
1272 |
pIdxInfo = (sqlite3_index_info*)sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
|
|
1273 |
+ (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
|
|
1274 |
+ sizeof(*pIdxOrderBy)*nOrderBy );
|
|
1275 |
if( pIdxInfo==0 ){
|
|
1276 |
sqlite3ErrorMsg(pParse, "out of memory");
|
|
1277 |
return 0.0;
|
|
1278 |
}
|
|
1279 |
*ppIdxInfo = pIdxInfo;
|
|
1280 |
|
|
1281 |
/* Initialize the structure. The sqlite3_index_info structure contains
|
|
1282 |
** many fields that are declared "const" to prevent xBestIndex from
|
|
1283 |
** changing them. We have to do some funky casting in order to
|
|
1284 |
** initialize those fields.
|
|
1285 |
*/
|
|
1286 |
pIdxCons = (sqlite3_index_info::sqlite3_index_constraint*)&pIdxInfo[1];
|
|
1287 |
pIdxOrderBy = (sqlite3_index_info::sqlite3_index_orderby*)&pIdxCons[nTerm];
|
|
1288 |
pUsage = (sqlite3_index_info::sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
|
|
1289 |
*(int*)&pIdxInfo->nConstraint = nTerm;
|
|
1290 |
*(int*)&pIdxInfo->nOrderBy = nOrderBy;
|
|
1291 |
*(sqlite3_index_info::sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
|
|
1292 |
*(sqlite3_index_info::sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
|
|
1293 |
*(sqlite3_index_info::sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
|
|
1294 |
pUsage;
|
|
1295 |
|
|
1296 |
for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
|
1297 |
if( pTerm->leftCursor != pSrc->iCursor ) continue;
|
|
1298 |
if( pTerm->eOperator==WO_IN ) continue;
|
|
1299 |
if( pTerm->eOperator==WO_ISNULL ) continue;
|
|
1300 |
pIdxCons[j].iColumn = pTerm->leftColumn;
|
|
1301 |
pIdxCons[j].iTermOffset = i;
|
|
1302 |
pIdxCons[j].op = pTerm->eOperator;
|
|
1303 |
/* The direct assignment in the previous line is possible only because
|
|
1304 |
** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
|
|
1305 |
** following asserts verify this fact. */
|
|
1306 |
assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
|
|
1307 |
assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
|
|
1308 |
assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
|
|
1309 |
assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
|
|
1310 |
assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
|
|
1311 |
assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
|
|
1312 |
assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
|
|
1313 |
j++;
|
|
1314 |
}
|
|
1315 |
for(i=0; i<nOrderBy; i++){
|
|
1316 |
Expr *pExpr = pOrderBy->a[i].pExpr;
|
|
1317 |
pIdxOrderBy[i].iColumn = pExpr->iColumn;
|
|
1318 |
pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
|
|
1319 |
}
|
|
1320 |
}
|
|
1321 |
|
|
1322 |
/* At this point, the sqlite3_index_info structure that pIdxInfo points
|
|
1323 |
** to will have been initialized, either during the current invocation or
|
|
1324 |
** during some prior invocation. Now we just have to customize the
|
|
1325 |
** details of pIdxInfo for the current invocation and pass it to
|
|
1326 |
** xBestIndex.
|
|
1327 |
*/
|
|
1328 |
|
|
1329 |
/* The module name must be defined. Also, by this point there must
|
|
1330 |
** be a pointer to an sqlite3_vtab structure. Otherwise
|
|
1331 |
** sqlite3ViewGetColumnNames() would have picked up the error.
|
|
1332 |
*/
|
|
1333 |
assert( pTab->azModuleArg && pTab->azModuleArg[0] );
|
|
1334 |
assert( pTab->pVtab );
|
|
1335 |
#if 0
|
|
1336 |
if( pTab->pVtab==0 ){
|
|
1337 |
sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
|
|
1338 |
pTab->azModuleArg[0], pTab->zName);
|
|
1339 |
return 0.0;
|
|
1340 |
}
|
|
1341 |
#endif
|
|
1342 |
|
|
1343 |
/* Set the aConstraint[].usable fields and initialize all
|
|
1344 |
** output variables to zero.
|
|
1345 |
**
|
|
1346 |
** aConstraint[].usable is true for constraints where the right-hand
|
|
1347 |
** side contains only references to tables to the left of the current
|
|
1348 |
** table. In other words, if the constraint is of the form:
|
|
1349 |
**
|
|
1350 |
** column = expr
|
|
1351 |
**
|
|
1352 |
** and we are evaluating a join, then the constraint on column is
|
|
1353 |
** only valid if all tables referenced in expr occur to the left
|
|
1354 |
** of the table containing column.
|
|
1355 |
**
|
|
1356 |
** The aConstraints[] array contains entries for all constraints
|
|
1357 |
** on the current table. That way we only have to compute it once
|
|
1358 |
** even though we might try to pick the best index multiple times.
|
|
1359 |
** For each attempt at picking an index, the order of tables in the
|
|
1360 |
** join might be different so we have to recompute the usable flag
|
|
1361 |
** each time.
|
|
1362 |
*/
|
|
1363 |
pIdxCons = *(sqlite3_index_info::sqlite3_index_constraint**)&pIdxInfo->aConstraint;
|
|
1364 |
pUsage = pIdxInfo->aConstraintUsage;
|
|
1365 |
for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
|
|
1366 |
j = pIdxCons->iTermOffset;
|
|
1367 |
pTerm = &pWC->a[j];
|
|
1368 |
pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
|
|
1369 |
}
|
|
1370 |
memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
|
|
1371 |
if( pIdxInfo->needToFreeIdxStr ){
|
|
1372 |
sqlite3_free(pIdxInfo->idxStr);
|
|
1373 |
}
|
|
1374 |
pIdxInfo->idxStr = 0;
|
|
1375 |
pIdxInfo->idxNum = 0;
|
|
1376 |
pIdxInfo->needToFreeIdxStr = 0;
|
|
1377 |
pIdxInfo->orderByConsumed = 0;
|
|
1378 |
pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
|
|
1379 |
nOrderBy = pIdxInfo->nOrderBy;
|
|
1380 |
if( pIdxInfo->nOrderBy && !orderByUsable ){
|
|
1381 |
*(int*)&pIdxInfo->nOrderBy = 0;
|
|
1382 |
}
|
|
1383 |
|
|
1384 |
sqlite3SafetyOff(pParse->db);
|
|
1385 |
WHERETRACE(("xBestIndex for %s\n", pTab->zName));
|
|
1386 |
TRACE_IDX_INPUTS(pIdxInfo);
|
|
1387 |
rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
|
|
1388 |
TRACE_IDX_OUTPUTS(pIdxInfo);
|
|
1389 |
if( rc!=SQLITE_OK ){
|
|
1390 |
if( rc==SQLITE_NOMEM ){
|
|
1391 |
pParse->db->mallocFailed = 1;
|
|
1392 |
}else {
|
|
1393 |
sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
|
|
1394 |
}
|
|
1395 |
sqlite3SafetyOn(pParse->db);
|
|
1396 |
}else{
|
|
1397 |
rc = sqlite3SafetyOn(pParse->db);
|
|
1398 |
}
|
|
1399 |
*(int*)&pIdxInfo->nOrderBy = nOrderBy;
|
|
1400 |
|
|
1401 |
return pIdxInfo->estimatedCost;
|
|
1402 |
}
|
|
1403 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
1404 |
|
|
1405 |
/*
|
|
1406 |
** Find the best index for accessing a particular table. Return a pointer
|
|
1407 |
** to the index, flags that describe how the index should be used, the
|
|
1408 |
** number of equality constraints, and the "cost" for this index.
|
|
1409 |
**
|
|
1410 |
** The lowest cost index wins. The cost is an estimate of the amount of
|
|
1411 |
** CPU and disk I/O need to process the request using the selected index.
|
|
1412 |
** Factors that influence cost include:
|
|
1413 |
**
|
|
1414 |
** * The estimated number of rows that will be retrieved. (The
|
|
1415 |
** fewer the better.)
|
|
1416 |
**
|
|
1417 |
** * Whether or not sorting must occur.
|
|
1418 |
**
|
|
1419 |
** * Whether or not there must be separate lookups in the
|
|
1420 |
** index and in the main table.
|
|
1421 |
**
|
|
1422 |
*/
|
|
1423 |
static double bestIndex(
|
|
1424 |
Parse *pParse, /* The parsing context */
|
|
1425 |
WhereClause *pWC, /* The WHERE clause */
|
|
1426 |
SrcList::SrcList_item *pSrc, /* The FROM clause term to search */
|
|
1427 |
Bitmask notReady, /* Mask of cursors that are not available */
|
|
1428 |
ExprList *pOrderBy, /* The order by clause */
|
|
1429 |
Index **ppIndex, /* Make *ppIndex point to the best index */
|
|
1430 |
int *pFlags, /* Put flags describing this choice in *pFlags */
|
|
1431 |
int *pnEq /* Put the number of == or IN constraints here */
|
|
1432 |
){
|
|
1433 |
WhereTerm *pTerm;
|
|
1434 |
Index *bestIdx = 0; /* Index that gives the lowest cost */
|
|
1435 |
double lowestCost; /* The cost of using bestIdx */
|
|
1436 |
int bestFlags = 0; /* Flags associated with bestIdx */
|
|
1437 |
int bestNEq = 0; /* Best value for nEq */
|
|
1438 |
int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
|
|
1439 |
Index *pProbe; /* An index we are evaluating */
|
|
1440 |
int rev; /* True to scan in reverse order */
|
|
1441 |
int flags; /* Flags associated with pProbe */
|
|
1442 |
int nEq; /* Number of == or IN constraints */
|
|
1443 |
int eqTermMask; /* Mask of valid equality operators */
|
|
1444 |
double cost; /* Cost of using pProbe */
|
|
1445 |
|
|
1446 |
WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
|
|
1447 |
lowestCost = SQLITE_BIG_DBL;
|
|
1448 |
pProbe = pSrc->pTab->pIndex;
|
|
1449 |
|
|
1450 |
/* If the table has no indices and there are no terms in the where
|
|
1451 |
** clause that refer to the ROWID, then we will never be able to do
|
|
1452 |
** anything other than a full table scan on this table. We might as
|
|
1453 |
** well put it first in the join order. That way, perhaps it can be
|
|
1454 |
** referenced by other tables in the join.
|
|
1455 |
*/
|
|
1456 |
if( pProbe==0 &&
|
|
1457 |
findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
|
|
1458 |
(pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
|
|
1459 |
*pFlags = 0;
|
|
1460 |
*ppIndex = 0;
|
|
1461 |
*pnEq = 0;
|
|
1462 |
return 0.0;
|
|
1463 |
}
|
|
1464 |
|
|
1465 |
/* Check for a rowid=EXPR or rowid IN (...) constraints
|
|
1466 |
*/
|
|
1467 |
pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
|
|
1468 |
if( pTerm ){
|
|
1469 |
Expr *pExpr;
|
|
1470 |
*ppIndex = 0;
|
|
1471 |
bestFlags = WHERE_ROWID_EQ;
|
|
1472 |
if( pTerm->eOperator & WO_EQ ){
|
|
1473 |
/* Rowid== is always the best pick. Look no further. Because only
|
|
1474 |
** a single row is generated, output is always in sorted order */
|
|
1475 |
*pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
|
|
1476 |
*pnEq = 1;
|
|
1477 |
WHERETRACE(("... best is rowid\n"));
|
|
1478 |
return 0.0;
|
|
1479 |
}else if( (pExpr = pTerm->pExpr)->pList!=0 ){
|
|
1480 |
/* Rowid IN (LIST): cost is NlogN where N is the number of list
|
|
1481 |
** elements. */
|
|
1482 |
lowestCost = pExpr->pList->nExpr;
|
|
1483 |
lowestCost *= estLog(lowestCost);
|
|
1484 |
}else{
|
|
1485 |
/* Rowid IN (SELECT): cost is NlogN where N is the number of rows
|
|
1486 |
** in the result of the inner select. We have no way to estimate
|
|
1487 |
** that value so make a wild guess. */
|
|
1488 |
lowestCost = 200;
|
|
1489 |
}
|
|
1490 |
WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
|
|
1491 |
}
|
|
1492 |
|
|
1493 |
/* Estimate the cost of a table scan. If we do not know how many
|
|
1494 |
** entries are in the table, use 1 million as a guess.
|
|
1495 |
*/
|
|
1496 |
cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
|
|
1497 |
WHERETRACE(("... table scan base cost: %.9g\n", cost));
|
|
1498 |
flags = WHERE_ROWID_RANGE;
|
|
1499 |
|
|
1500 |
/* Check for constraints on a range of rowids in a table scan.
|
|
1501 |
*/
|
|
1502 |
pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
|
|
1503 |
if( pTerm ){
|
|
1504 |
if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
|
|
1505 |
flags |= WHERE_TOP_LIMIT;
|
|
1506 |
cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
|
|
1507 |
}
|
|
1508 |
if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
|
|
1509 |
flags |= WHERE_BTM_LIMIT;
|
|
1510 |
cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
|
|
1511 |
}
|
|
1512 |
WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
|
|
1513 |
}else{
|
|
1514 |
flags = 0;
|
|
1515 |
}
|
|
1516 |
|
|
1517 |
/* If the table scan does not satisfy the ORDER BY clause, increase
|
|
1518 |
** the cost by NlogN to cover the expense of sorting. */
|
|
1519 |
if( pOrderBy ){
|
|
1520 |
if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
|
|
1521 |
flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
|
|
1522 |
if( rev ){
|
|
1523 |
flags |= WHERE_REVERSE;
|
|
1524 |
}
|
|
1525 |
}else{
|
|
1526 |
cost += cost*estLog(cost);
|
|
1527 |
WHERETRACE(("... sorting increases cost to %.9g\n", cost));
|
|
1528 |
}
|
|
1529 |
}
|
|
1530 |
if( cost<lowestCost ){
|
|
1531 |
lowestCost = cost;
|
|
1532 |
bestFlags = flags;
|
|
1533 |
}
|
|
1534 |
|
|
1535 |
/* If the pSrc table is the right table of a LEFT JOIN then we may not
|
|
1536 |
** use an index to satisfy IS NULL constraints on that table. This is
|
|
1537 |
** because columns might end up being NULL if the table does not match -
|
|
1538 |
** a circumstance which the index cannot help us discover. Ticket #2177.
|
|
1539 |
*/
|
|
1540 |
if( (pSrc->jointype & JT_LEFT)!=0 ){
|
|
1541 |
eqTermMask = WO_EQ|WO_IN;
|
|
1542 |
}else{
|
|
1543 |
eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
|
|
1544 |
}
|
|
1545 |
|
|
1546 |
/* Look at each index.
|
|
1547 |
*/
|
|
1548 |
for(; pProbe; pProbe=pProbe->pNext){
|
|
1549 |
int i; /* Loop counter */
|
|
1550 |
double inMultiplier = 1;
|
|
1551 |
|
|
1552 |
WHERETRACE(("... index %s:\n", pProbe->zName));
|
|
1553 |
|
|
1554 |
/* Count the number of columns in the index that are satisfied
|
|
1555 |
** by x=EXPR constraints or x IN (...) constraints.
|
|
1556 |
*/
|
|
1557 |
flags = 0;
|
|
1558 |
for(i=0; i<pProbe->nColumn; i++){
|
|
1559 |
int j = pProbe->aiColumn[i];
|
|
1560 |
pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
|
|
1561 |
if( pTerm==0 ) break;
|
|
1562 |
flags |= WHERE_COLUMN_EQ;
|
|
1563 |
if( pTerm->eOperator & WO_IN ){
|
|
1564 |
Expr *pExpr = pTerm->pExpr;
|
|
1565 |
flags |= WHERE_COLUMN_IN;
|
|
1566 |
if( pExpr->pSelect!=0 ){
|
|
1567 |
inMultiplier *= 25;
|
|
1568 |
}else if( pExpr->pList!=0 ){
|
|
1569 |
inMultiplier *= pExpr->pList->nExpr + 1;
|
|
1570 |
}
|
|
1571 |
}
|
|
1572 |
}
|
|
1573 |
cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
|
|
1574 |
nEq = i;
|
|
1575 |
if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
|
|
1576 |
&& nEq==pProbe->nColumn ){
|
|
1577 |
flags |= WHERE_UNIQUE;
|
|
1578 |
}
|
|
1579 |
WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
|
|
1580 |
|
|
1581 |
/* Look for range constraints
|
|
1582 |
*/
|
|
1583 |
if( nEq<pProbe->nColumn ){
|
|
1584 |
int j = pProbe->aiColumn[nEq];
|
|
1585 |
pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
|
|
1586 |
if( pTerm ){
|
|
1587 |
flags |= WHERE_COLUMN_RANGE;
|
|
1588 |
if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
|
|
1589 |
flags |= WHERE_TOP_LIMIT;
|
|
1590 |
cost /= 3;
|
|
1591 |
}
|
|
1592 |
if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
|
|
1593 |
flags |= WHERE_BTM_LIMIT;
|
|
1594 |
cost /= 3;
|
|
1595 |
}
|
|
1596 |
WHERETRACE(("...... range reduces cost to %.9g\n", cost));
|
|
1597 |
}
|
|
1598 |
}
|
|
1599 |
|
|
1600 |
/* Add the additional cost of sorting if that is a factor.
|
|
1601 |
*/
|
|
1602 |
if( pOrderBy ){
|
|
1603 |
if( (flags & WHERE_COLUMN_IN)==0 &&
|
|
1604 |
isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
|
|
1605 |
if( flags==0 ){
|
|
1606 |
flags = WHERE_COLUMN_RANGE;
|
|
1607 |
}
|
|
1608 |
flags |= WHERE_ORDERBY;
|
|
1609 |
if( rev ){
|
|
1610 |
flags |= WHERE_REVERSE;
|
|
1611 |
}
|
|
1612 |
}else{
|
|
1613 |
cost += cost*estLog(cost);
|
|
1614 |
WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
|
|
1615 |
}
|
|
1616 |
}
|
|
1617 |
|
|
1618 |
/* Check to see if we can get away with using just the index without
|
|
1619 |
** ever reading the table. If that is the case, then halve the
|
|
1620 |
** cost of this index.
|
|
1621 |
*/
|
|
1622 |
if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
|
|
1623 |
Bitmask m = pSrc->colUsed;
|
|
1624 |
int j;
|
|
1625 |
for(j=0; j<pProbe->nColumn; j++){
|
|
1626 |
int x = pProbe->aiColumn[j];
|
|
1627 |
if( x<BMS-1 ){
|
|
1628 |
m &= ~(((Bitmask)1)<<x);
|
|
1629 |
}
|
|
1630 |
}
|
|
1631 |
if( m==0 ){
|
|
1632 |
flags |= WHERE_IDX_ONLY;
|
|
1633 |
cost /= 2;
|
|
1634 |
WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
|
|
1635 |
}
|
|
1636 |
}
|
|
1637 |
|
|
1638 |
/* If this index has achieved the lowest cost so far, then use it.
|
|
1639 |
*/
|
|
1640 |
if( flags && cost < lowestCost ){
|
|
1641 |
bestIdx = pProbe;
|
|
1642 |
lowestCost = cost;
|
|
1643 |
bestFlags = flags;
|
|
1644 |
bestNEq = nEq;
|
|
1645 |
}
|
|
1646 |
}
|
|
1647 |
|
|
1648 |
/* Report the best result
|
|
1649 |
*/
|
|
1650 |
*ppIndex = bestIdx;
|
|
1651 |
WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
|
|
1652 |
bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
|
|
1653 |
*pFlags = bestFlags | eqTermMask;
|
|
1654 |
*pnEq = bestNEq;
|
|
1655 |
return lowestCost;
|
|
1656 |
}
|
|
1657 |
|
|
1658 |
|
|
1659 |
/*
|
|
1660 |
** Disable a term in the WHERE clause. Except, do not disable the term
|
|
1661 |
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
|
1662 |
** or USING clause of that join.
|
|
1663 |
**
|
|
1664 |
** Consider the term t2.z='ok' in the following queries:
|
|
1665 |
**
|
|
1666 |
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
|
1667 |
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
|
1668 |
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
|
1669 |
**
|
|
1670 |
** The t2.z='ok' is disabled in the in (2) because it originates
|
|
1671 |
** in the ON clause. The term is disabled in (3) because it is not part
|
|
1672 |
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
|
1673 |
**
|
|
1674 |
** Disabling a term causes that term to not be tested in the inner loop
|
|
1675 |
** of the join. Disabling is an optimization. When terms are satisfied
|
|
1676 |
** by indices, we disable them to prevent redundant tests in the inner
|
|
1677 |
** loop. We would get the correct results if nothing were ever disabled,
|
|
1678 |
** but joins might run a little slower. The trick is to disable as much
|
|
1679 |
** as we can without disabling too much. If we disabled in (1), we'd get
|
|
1680 |
** the wrong answer. See ticket #813.
|
|
1681 |
*/
|
|
1682 |
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
|
|
1683 |
if( pTerm
|
|
1684 |
&& (pTerm->flags & TERM_CODED)==0
|
|
1685 |
&& (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
|
|
1686 |
){
|
|
1687 |
pTerm->flags |= TERM_CODED;
|
|
1688 |
if( pTerm->iParent>=0 ){
|
|
1689 |
WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
|
|
1690 |
if( (--pOther->nChild)==0 ){
|
|
1691 |
disableTerm(pLevel, pOther);
|
|
1692 |
}
|
|
1693 |
}
|
|
1694 |
}
|
|
1695 |
}
|
|
1696 |
|
|
1697 |
/*
|
|
1698 |
** Generate code that builds a probe for an index.
|
|
1699 |
**
|
|
1700 |
** There should be nColumn values on the stack. The index
|
|
1701 |
** to be probed is pIdx. Pop the values from the stack and
|
|
1702 |
** replace them all with a single record that is the index
|
|
1703 |
** problem.
|
|
1704 |
*/
|
|
1705 |
static void buildIndexProbe(
|
|
1706 |
Vdbe *v, /* Generate code into this VM */
|
|
1707 |
int nColumn, /* The number of columns to check for NULL */
|
|
1708 |
Index *pIdx /* Index that we will be searching */
|
|
1709 |
){
|
|
1710 |
sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
1711 |
sqlite3IndexAffinityStr(v, pIdx);
|
|
1712 |
}
|
|
1713 |
|
|
1714 |
|
|
1715 |
/*
|
|
1716 |
** Generate code for a single equality term of the WHERE clause. An equality
|
|
1717 |
** term can be either X=expr or X IN (...). pTerm is the term to be
|
|
1718 |
** coded.
|
|
1719 |
**
|
|
1720 |
** The current value for the constraint is left on the top of the stack.
|
|
1721 |
**
|
|
1722 |
** For a constraint of the form X=expr, the expression is evaluated and its
|
|
1723 |
** result is left on the stack. For constraints of the form X IN (...)
|
|
1724 |
** this routine sets up a loop that will iterate over all values of X.
|
|
1725 |
*/
|
|
1726 |
static void codeEqualityTerm(
|
|
1727 |
Parse *pParse, /* The parsing context */
|
|
1728 |
WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
|
|
1729 |
WhereLevel *pLevel /* When level of the FROM clause we are working on */
|
|
1730 |
){
|
|
1731 |
Expr *pX = pTerm->pExpr;
|
|
1732 |
Vdbe *v = pParse->pVdbe;
|
|
1733 |
if( pX->op==TK_EQ ){
|
|
1734 |
sqlite3ExprCode(pParse, pX->pRight);
|
|
1735 |
}else if( pX->op==TK_ISNULL ){
|
|
1736 |
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
1737 |
#ifndef SQLITE_OMIT_SUBQUERY
|
|
1738 |
}else{
|
|
1739 |
int eType;
|
|
1740 |
int iTab;
|
|
1741 |
WhereLevel::InLoop *pIn;
|
|
1742 |
|
|
1743 |
assert( pX->op==TK_IN );
|
|
1744 |
eType = sqlite3FindInIndex(pParse, pX, 1);
|
|
1745 |
iTab = pX->iTable;
|
|
1746 |
sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
|
|
1747 |
VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
|
|
1748 |
if( pLevel->nIn==0 ){
|
|
1749 |
pLevel->nxt = sqlite3VdbeMakeLabel(v);
|
|
1750 |
}
|
|
1751 |
pLevel->nIn++;
|
|
1752 |
pLevel->aInLoop = (WhereLevel::InLoop*)sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
|
|
1753 |
sizeof(pLevel->aInLoop[0])*pLevel->nIn);
|
|
1754 |
pIn = (WhereLevel::InLoop*)pLevel->aInLoop;
|
|
1755 |
if( pIn ){
|
|
1756 |
int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
|
|
1757 |
pIn += pLevel->nIn - 1;
|
|
1758 |
pIn->iCur = iTab;
|
|
1759 |
pIn->topAddr = sqlite3VdbeAddOp(v, op, iTab, 0);
|
|
1760 |
sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
|
|
1761 |
}else{
|
|
1762 |
pLevel->nIn = 0;
|
|
1763 |
}
|
|
1764 |
#endif
|
|
1765 |
}
|
|
1766 |
disableTerm(pLevel, pTerm);
|
|
1767 |
}
|
|
1768 |
|
|
1769 |
/*
|
|
1770 |
** Generate code that will evaluate all == and IN constraints for an
|
|
1771 |
** index. The values for all constraints are left on the stack.
|
|
1772 |
**
|
|
1773 |
** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
|
|
1774 |
** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
|
|
1775 |
** The index has as many as three equality constraints, but in this
|
|
1776 |
** example, the third "c" value is an inequality. So only two
|
|
1777 |
** constraints are coded. This routine will generate code to evaluate
|
|
1778 |
** a==5 and b IN (1,2,3). The current values for a and b will be left
|
|
1779 |
** on the stack - a is the deepest and b the shallowest.
|
|
1780 |
**
|
|
1781 |
** In the example above nEq==2. But this subroutine works for any value
|
|
1782 |
** of nEq including 0. If nEq==0, this routine is nearly a no-op.
|
|
1783 |
** The only thing it does is allocate the pLevel->iMem memory cell.
|
|
1784 |
**
|
|
1785 |
** This routine always allocates at least one memory cell and puts
|
|
1786 |
** the address of that memory cell in pLevel->iMem. The code that
|
|
1787 |
** calls this routine will use pLevel->iMem to store the termination
|
|
1788 |
** key value of the loop. If one or more IN operators appear, then
|
|
1789 |
** this routine allocates an additional nEq memory cells for internal
|
|
1790 |
** use.
|
|
1791 |
*/
|
|
1792 |
static void codeAllEqualityTerms(
|
|
1793 |
Parse *pParse, /* Parsing context */
|
|
1794 |
WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
|
|
1795 |
WhereClause *pWC, /* The WHERE clause */
|
|
1796 |
Bitmask notReady /* Which parts of FROM have not yet been coded */
|
|
1797 |
){
|
|
1798 |
int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
|
|
1799 |
int termsInMem = 0; /* If true, store value in mem[] cells */
|
|
1800 |
Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
|
|
1801 |
Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
|
|
1802 |
int iCur = pLevel->iTabCur; /* The cursor of the table */
|
|
1803 |
WhereTerm *pTerm; /* A single constraint term */
|
|
1804 |
int j; /* Loop counter */
|
|
1805 |
|
|
1806 |
/* Figure out how many memory cells we will need then allocate them.
|
|
1807 |
** We always need at least one used to store the loop terminator
|
|
1808 |
** value. If there are IN operators we'll need one for each == or
|
|
1809 |
** IN constraint.
|
|
1810 |
*/
|
|
1811 |
pLevel->iMem = pParse->nMem++;
|
|
1812 |
if( pLevel->flags & WHERE_COLUMN_IN ){
|
|
1813 |
pParse->nMem += pLevel->nEq;
|
|
1814 |
termsInMem = 1;
|
|
1815 |
}
|
|
1816 |
|
|
1817 |
/* Evaluate the equality constraints
|
|
1818 |
*/
|
|
1819 |
assert( pIdx->nColumn>=nEq );
|
|
1820 |
for(j=0; j<nEq; j++){
|
|
1821 |
int k = pIdx->aiColumn[j];
|
|
1822 |
pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
|
|
1823 |
if( pTerm==0 ) break;
|
|
1824 |
assert( (pTerm->flags & TERM_CODED)==0 );
|
|
1825 |
codeEqualityTerm(pParse, pTerm, pLevel);
|
|
1826 |
if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
|
|
1827 |
sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
|
|
1828 |
}
|
|
1829 |
if( termsInMem ){
|
|
1830 |
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
|
|
1831 |
}
|
|
1832 |
}
|
|
1833 |
|
|
1834 |
/* Make sure all the constraint values are on the top of the stack
|
|
1835 |
*/
|
|
1836 |
if( termsInMem ){
|
|
1837 |
for(j=0; j<nEq; j++){
|
|
1838 |
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
|
|
1839 |
}
|
|
1840 |
}
|
|
1841 |
}
|
|
1842 |
|
|
1843 |
#if defined(SQLITE_TEST)
|
|
1844 |
/*
|
|
1845 |
** The following variable holds a text description of query plan generated
|
|
1846 |
** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
|
|
1847 |
** overwrites the previous. This information is used for testing and
|
|
1848 |
** analysis only.
|
|
1849 |
*/
|
|
1850 |
char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
|
|
1851 |
static int nQPlan = 0; /* Next free slow in _query_plan[] */
|
|
1852 |
|
|
1853 |
#endif /* SQLITE_TEST */
|
|
1854 |
|
|
1855 |
|
|
1856 |
/*
|
|
1857 |
** Free a WhereInfo structure
|
|
1858 |
*/
|
|
1859 |
static void whereInfoFree(WhereInfo *pWInfo){
|
|
1860 |
if( pWInfo ){
|
|
1861 |
int i;
|
|
1862 |
for(i=0; i<pWInfo->nLevel; i++){
|
|
1863 |
sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
|
|
1864 |
if( pInfo ){
|
|
1865 |
if( pInfo->needToFreeIdxStr ){
|
|
1866 |
/* Coverage: Don't think this can be reached. By the time this
|
|
1867 |
** function is called, the index-strings have been passed
|
|
1868 |
** to the vdbe layer for deletion.
|
|
1869 |
*/
|
|
1870 |
sqlite3_free(pInfo->idxStr);
|
|
1871 |
}
|
|
1872 |
sqlite3_free(pInfo);
|
|
1873 |
}
|
|
1874 |
}
|
|
1875 |
sqlite3_free(pWInfo);
|
|
1876 |
}
|
|
1877 |
}
|
|
1878 |
|
|
1879 |
|
|
1880 |
/*
|
|
1881 |
** Generate the beginning of the loop used for WHERE clause processing.
|
|
1882 |
** The return value is a pointer to an opaque structure that contains
|
|
1883 |
** information needed to terminate the loop. Later, the calling routine
|
|
1884 |
** should invoke sqlite3WhereEnd() with the return value of this function
|
|
1885 |
** in order to complete the WHERE clause processing.
|
|
1886 |
**
|
|
1887 |
** If an error occurs, this routine returns NULL.
|
|
1888 |
**
|
|
1889 |
** The basic idea is to do a nested loop, one loop for each table in
|
|
1890 |
** the FROM clause of a select. (INSERT and UPDATE statements are the
|
|
1891 |
** same as a SELECT with only a single table in the FROM clause.) For
|
|
1892 |
** example, if the SQL is this:
|
|
1893 |
**
|
|
1894 |
** SELECT * FROM t1, t2, t3 WHERE ...;
|
|
1895 |
**
|
|
1896 |
** Then the code generated is conceptually like the following:
|
|
1897 |
**
|
|
1898 |
** foreach row1 in t1 do \ Code generated
|
|
1899 |
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
|
|
1900 |
** foreach row3 in t3 do /
|
|
1901 |
** ...
|
|
1902 |
** end \ Code generated
|
|
1903 |
** end |-- by sqlite3WhereEnd()
|
|
1904 |
** end /
|
|
1905 |
**
|
|
1906 |
** Note that the loops might not be nested in the order in which they
|
|
1907 |
** appear in the FROM clause if a different order is better able to make
|
|
1908 |
** use of indices. Note also that when the IN operator appears in
|
|
1909 |
** the WHERE clause, it might result in additional nested loops for
|
|
1910 |
** scanning through all values on the right-hand side of the IN.
|
|
1911 |
**
|
|
1912 |
** There are Btree cursors associated with each table. t1 uses cursor
|
|
1913 |
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
|
1914 |
** And so forth. This routine generates code to open those VDBE cursors
|
|
1915 |
** and sqlite3WhereEnd() generates the code to close them.
|
|
1916 |
**
|
|
1917 |
** The code that sqlite3WhereBegin() generates leaves the cursors named
|
|
1918 |
** in pTabList pointing at their appropriate entries. The [...] code
|
|
1919 |
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
|
|
1920 |
** data from the various tables of the loop.
|
|
1921 |
**
|
|
1922 |
** If the WHERE clause is empty, the foreach loops must each scan their
|
|
1923 |
** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
|
1924 |
** the tables have indices and there are terms in the WHERE clause that
|
|
1925 |
** refer to those indices, a complete table scan can be avoided and the
|
|
1926 |
** code will run much faster. Most of the work of this routine is checking
|
|
1927 |
** to see if there are indices that can be used to speed up the loop.
|
|
1928 |
**
|
|
1929 |
** Terms of the WHERE clause are also used to limit which rows actually
|
|
1930 |
** make it to the "..." in the middle of the loop. After each "foreach",
|
|
1931 |
** terms of the WHERE clause that use only terms in that loop and outer
|
|
1932 |
** loops are evaluated and if false a jump is made around all subsequent
|
|
1933 |
** inner loops (or around the "..." if the test occurs within the inner-
|
|
1934 |
** most loop)
|
|
1935 |
**
|
|
1936 |
** OUTER JOINS
|
|
1937 |
**
|
|
1938 |
** An outer join of tables t1 and t2 is conceptally coded as follows:
|
|
1939 |
**
|
|
1940 |
** foreach row1 in t1 do
|
|
1941 |
** flag = 0
|
|
1942 |
** foreach row2 in t2 do
|
|
1943 |
** start:
|
|
1944 |
** ...
|
|
1945 |
** flag = 1
|
|
1946 |
** end
|
|
1947 |
** if flag==0 then
|
|
1948 |
** move the row2 cursor to a null row
|
|
1949 |
** goto start
|
|
1950 |
** fi
|
|
1951 |
** end
|
|
1952 |
**
|
|
1953 |
** ORDER BY CLAUSE PROCESSING
|
|
1954 |
**
|
|
1955 |
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
|
1956 |
** if there is one. If there is no ORDER BY clause or if this routine
|
|
1957 |
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
|
1958 |
**
|
|
1959 |
** If an index can be used so that the natural output order of the table
|
|
1960 |
** scan is correct for the ORDER BY clause, then that index is used and
|
|
1961 |
** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
|
1962 |
** unnecessary sort of the result set if an index appropriate for the
|
|
1963 |
** ORDER BY clause already exists.
|
|
1964 |
**
|
|
1965 |
** If the where clause loops cannot be arranged to provide the correct
|
|
1966 |
** output order, then the *ppOrderBy is unchanged.
|
|
1967 |
*/
|
|
1968 |
WhereInfo *sqlite3WhereBegin(
|
|
1969 |
Parse *pParse, /* The parser context */
|
|
1970 |
SrcList *pTabList, /* A list of all tables to be scanned */
|
|
1971 |
Expr *pWhere, /* The WHERE clause */
|
|
1972 |
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
|
1973 |
){
|
|
1974 |
int i; /* Loop counter */
|
|
1975 |
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
1976 |
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
1977 |
int brk, cont = 0; /* Addresses used during code generation */
|
|
1978 |
Bitmask notReady; /* Cursors that are not yet positioned */
|
|
1979 |
WhereTerm *pTerm; /* A single term in the WHERE clause */
|
|
1980 |
ExprMaskSet maskSet; /* The expression mask set */
|
|
1981 |
WhereClause wc; /* The WHERE clause is divided into these terms */
|
|
1982 |
SrcList::SrcList_item *pTabItem; /* A single entry from pTabList */
|
|
1983 |
WhereLevel *pLevel; /* A single level in the pWInfo list */
|
|
1984 |
int iFrom; /* First unused FROM clause element */
|
|
1985 |
int andFlags; /* AND-ed combination of all wc.a[].flags */
|
|
1986 |
sqlite3 *db; /* Database connection */
|
|
1987 |
|
|
1988 |
/* The number of tables in the FROM clause is limited by the number of
|
|
1989 |
** bits in a Bitmask
|
|
1990 |
*/
|
|
1991 |
if( pTabList->nSrc>BMS ){
|
|
1992 |
sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
|
|
1993 |
return 0;
|
|
1994 |
}
|
|
1995 |
|
|
1996 |
/* Split the WHERE clause into separate subexpressions where each
|
|
1997 |
** subexpression is separated by an AND operator.
|
|
1998 |
*/
|
|
1999 |
initMaskSet(&maskSet);
|
|
2000 |
whereClauseInit(&wc, pParse, &maskSet);
|
|
2001 |
whereSplit(&wc, pWhere, TK_AND);
|
|
2002 |
|
|
2003 |
/* Allocate and initialize the WhereInfo structure that will become the
|
|
2004 |
** return value.
|
|
2005 |
*/
|
|
2006 |
db = pParse->db;
|
|
2007 |
pWInfo = (WhereInfo*)sqlite3DbMallocZero(db,
|
|
2008 |
sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
|
2009 |
if( db->mallocFailed ){
|
|
2010 |
goto whereBeginNoMem;
|
|
2011 |
}
|
|
2012 |
pWInfo->nLevel = pTabList->nSrc;
|
|
2013 |
pWInfo->pParse = pParse;
|
|
2014 |
pWInfo->pTabList = pTabList;
|
|
2015 |
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
|
|
2016 |
|
|
2017 |
/* Special case: a WHERE clause that is constant. Evaluate the
|
|
2018 |
** expression and either jump over all of the code or fall thru.
|
|
2019 |
*/
|
|
2020 |
if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
|
|
2021 |
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
|
2022 |
pWhere = 0;
|
|
2023 |
}
|
|
2024 |
|
|
2025 |
/* Analyze all of the subexpressions. Note that exprAnalyze() might
|
|
2026 |
** add new virtual terms onto the end of the WHERE clause. We do not
|
|
2027 |
** want to analyze these virtual terms, so start analyzing at the end
|
|
2028 |
** and work forward so that the added virtual terms are never processed.
|
|
2029 |
*/
|
|
2030 |
for(i=0; i<pTabList->nSrc; i++){
|
|
2031 |
createMask(&maskSet, pTabList->a[i].iCursor);
|
|
2032 |
}
|
|
2033 |
exprAnalyzeAll(pTabList, &wc);
|
|
2034 |
if( db->mallocFailed ){
|
|
2035 |
goto whereBeginNoMem;
|
|
2036 |
}
|
|
2037 |
|
|
2038 |
/* Chose the best index to use for each table in the FROM clause.
|
|
2039 |
**
|
|
2040 |
** This loop fills in the following fields:
|
|
2041 |
**
|
|
2042 |
** pWInfo->a[].pIdx The index to use for this level of the loop.
|
|
2043 |
** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
|
|
2044 |
** pWInfo->a[].nEq The number of == and IN constraints
|
|
2045 |
** pWInfo->a[].iFrom When term of the FROM clause is being coded
|
|
2046 |
** pWInfo->a[].iTabCur The VDBE cursor for the database table
|
|
2047 |
** pWInfo->a[].iIdxCur The VDBE cursor for the index
|
|
2048 |
**
|
|
2049 |
** This loop also figures out the nesting order of tables in the FROM
|
|
2050 |
** clause.
|
|
2051 |
*/
|
|
2052 |
notReady = ~(Bitmask)0;
|
|
2053 |
pTabItem = pTabList->a;
|
|
2054 |
pLevel = pWInfo->a;
|
|
2055 |
andFlags = ~0;
|
|
2056 |
WHERETRACE(("*** Optimizer Start ***\n"));
|
|
2057 |
for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
2058 |
Index *pIdx; /* Index for FROM table at pTabItem */
|
|
2059 |
int flags; /* Flags asssociated with pIdx */
|
|
2060 |
int nEq; /* Number of == or IN constraints */
|
|
2061 |
double cost; /* The cost for pIdx */
|
|
2062 |
int j; /* For looping over FROM tables */
|
|
2063 |
Index *pBest = 0; /* The best index seen so far */
|
|
2064 |
int bestFlags = 0; /* Flags associated with pBest */
|
|
2065 |
int bestNEq = 0; /* nEq associated with pBest */
|
|
2066 |
double lowestCost; /* Cost of the pBest */
|
|
2067 |
int bestJ = 0; /* The value of j */
|
|
2068 |
Bitmask m; /* Bitmask value for j or bestJ */
|
|
2069 |
int once = 0; /* True when first table is seen */
|
|
2070 |
sqlite3_index_info *pIndex; /* Current virtual index */
|
|
2071 |
|
|
2072 |
lowestCost = SQLITE_BIG_DBL;
|
|
2073 |
for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
|
|
2074 |
int doNotReorder; /* True if this table should not be reordered */
|
|
2075 |
|
|
2076 |
doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
|
|
2077 |
if( once && doNotReorder ) break;
|
|
2078 |
m = getMask(&maskSet, pTabItem->iCursor);
|
|
2079 |
if( (m & notReady)==0 ){
|
|
2080 |
if( j==iFrom ) iFrom++;
|
|
2081 |
continue;
|
|
2082 |
}
|
|
2083 |
assert( pTabItem->pTab );
|
|
2084 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2085 |
if( IsVirtual(pTabItem->pTab) ){
|
|
2086 |
sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
|
|
2087 |
cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
|
|
2088 |
ppOrderBy ? *ppOrderBy : 0, i==0,
|
|
2089 |
ppIdxInfo);
|
|
2090 |
flags = WHERE_VIRTUALTABLE;
|
|
2091 |
pIndex = *ppIdxInfo;
|
|
2092 |
if( pIndex && pIndex->orderByConsumed ){
|
|
2093 |
flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
|
|
2094 |
}
|
|
2095 |
pIdx = 0;
|
|
2096 |
nEq = 0;
|
|
2097 |
if( (SQLITE_BIG_DBL/2.0)<cost ){
|
|
2098 |
/* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
|
|
2099 |
** inital value of lowestCost in this loop. If it is, then
|
|
2100 |
** the (cost<lowestCost) test below will never be true and
|
|
2101 |
** pLevel->pBestIdx never set.
|
|
2102 |
*/
|
|
2103 |
cost = (SQLITE_BIG_DBL/2.0);
|
|
2104 |
}
|
|
2105 |
}else
|
|
2106 |
#endif
|
|
2107 |
{
|
|
2108 |
cost = bestIndex(pParse, &wc, pTabItem, notReady,
|
|
2109 |
(i==0 && ppOrderBy) ? *ppOrderBy : 0,
|
|
2110 |
&pIdx, &flags, &nEq);
|
|
2111 |
pIndex = 0;
|
|
2112 |
}
|
|
2113 |
if( cost<lowestCost ){
|
|
2114 |
once = 1;
|
|
2115 |
lowestCost = cost;
|
|
2116 |
pBest = pIdx;
|
|
2117 |
bestFlags = flags;
|
|
2118 |
bestNEq = nEq;
|
|
2119 |
bestJ = j;
|
|
2120 |
pLevel->pBestIdx = pIndex;
|
|
2121 |
}
|
|
2122 |
if( doNotReorder ) break;
|
|
2123 |
}
|
|
2124 |
WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
|
|
2125 |
pLevel-pWInfo->a));
|
|
2126 |
if( (bestFlags & WHERE_ORDERBY)!=0 ){
|
|
2127 |
*ppOrderBy = 0;
|
|
2128 |
}
|
|
2129 |
andFlags &= bestFlags;
|
|
2130 |
pLevel->flags = bestFlags;
|
|
2131 |
pLevel->pIdx = pBest;
|
|
2132 |
pLevel->nEq = bestNEq;
|
|
2133 |
pLevel->aInLoop = 0;
|
|
2134 |
pLevel->nIn = 0;
|
|
2135 |
if( pBest ){
|
|
2136 |
pLevel->iIdxCur = pParse->nTab++;
|
|
2137 |
}else{
|
|
2138 |
pLevel->iIdxCur = -1;
|
|
2139 |
}
|
|
2140 |
notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
|
|
2141 |
pLevel->iFrom = bestJ;
|
|
2142 |
}
|
|
2143 |
WHERETRACE(("*** Optimizer Finished ***\n"));
|
|
2144 |
|
|
2145 |
/* If the total query only selects a single row, then the ORDER BY
|
|
2146 |
** clause is irrelevant.
|
|
2147 |
*/
|
|
2148 |
if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
|
|
2149 |
*ppOrderBy = 0;
|
|
2150 |
}
|
|
2151 |
|
|
2152 |
/* Open all tables in the pTabList and any indices selected for
|
|
2153 |
** searching those tables.
|
|
2154 |
*/
|
|
2155 |
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
|
|
2156 |
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
2157 |
Table *pTab; /* Table to open */
|
|
2158 |
Index *pIx; /* Index used to access pTab (if any) */
|
|
2159 |
int iDb; /* Index of database containing table/index */
|
|
2160 |
int iIdxCur = pLevel->iIdxCur;
|
|
2161 |
|
|
2162 |
#ifndef SQLITE_OMIT_EXPLAIN
|
|
2163 |
if( pParse->explain==2 ){
|
|
2164 |
char *zMsg;
|
|
2165 |
SrcList::SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
|
|
2166 |
zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
|
|
2167 |
if( pItem->zAlias ){
|
|
2168 |
zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
|
|
2169 |
}
|
|
2170 |
if( (pIx = pLevel->pIdx)!=0 ){
|
|
2171 |
zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
|
|
2172 |
}else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
|
|
2173 |
zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
|
|
2174 |
}
|
|
2175 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2176 |
else if( pLevel->pBestIdx ){
|
|
2177 |
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
|
|
2178 |
zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
|
|
2179 |
pBestIdx->idxNum, pBestIdx->idxStr);
|
|
2180 |
}
|
|
2181 |
#endif
|
|
2182 |
if( pLevel->flags & WHERE_ORDERBY ){
|
|
2183 |
zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
|
|
2184 |
}
|
|
2185 |
sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
|
|
2186 |
}
|
|
2187 |
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
2188 |
pTabItem = &pTabList->a[pLevel->iFrom];
|
|
2189 |
pTab = pTabItem->pTab;
|
|
2190 |
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
2191 |
if( pTab->isEphem || pTab->pSelect ) continue;
|
|
2192 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2193 |
if( pLevel->pBestIdx ){
|
|
2194 |
int iCur = pTabItem->iCursor;
|
|
2195 |
sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
|
|
2196 |
}else
|
|
2197 |
#endif
|
|
2198 |
if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
|
|
2199 |
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
|
|
2200 |
if( pTab->nCol<(sizeof(Bitmask)*8) ){
|
|
2201 |
Bitmask b = pTabItem->colUsed;
|
|
2202 |
int n = 0;
|
|
2203 |
for(; b; b=b>>1, n++){}
|
|
2204 |
sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
|
|
2205 |
assert( n<=pTab->nCol );
|
|
2206 |
}
|
|
2207 |
}else{
|
|
2208 |
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
2209 |
}
|
|
2210 |
pLevel->iTabCur = pTabItem->iCursor;
|
|
2211 |
if( (pIx = pLevel->pIdx)!=0 ){
|
|
2212 |
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
|
|
2213 |
assert( pIx->pSchema==pTab->pSchema );
|
|
2214 |
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
2215 |
VdbeComment((v, "# %s", pIx->zName));
|
|
2216 |
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
|
|
2217 |
(char*)pKey, P3_KEYINFO_HANDOFF);
|
|
2218 |
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
|
|
2219 |
}
|
|
2220 |
sqlite3CodeVerifySchema(pParse, iDb);
|
|
2221 |
}
|
|
2222 |
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
|
|
2223 |
|
|
2224 |
/* Generate the code to do the search. Each iteration of the for
|
|
2225 |
** loop below generates code for a single nested loop of the VM
|
|
2226 |
** program.
|
|
2227 |
*/
|
|
2228 |
notReady = ~(Bitmask)0;
|
|
2229 |
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
2230 |
int j;
|
|
2231 |
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
|
|
2232 |
Index *pIdx; /* The index we will be using */
|
|
2233 |
int nxt; /* Where to jump to continue with the next IN case */
|
|
2234 |
int iIdxCur; /* The VDBE cursor for the index */
|
|
2235 |
int omitTable; /* True if we use the index only */
|
|
2236 |
int bRev; /* True if we need to scan in reverse order */
|
|
2237 |
|
|
2238 |
pTabItem = &pTabList->a[pLevel->iFrom];
|
|
2239 |
iCur = pTabItem->iCursor;
|
|
2240 |
pIdx = pLevel->pIdx;
|
|
2241 |
iIdxCur = pLevel->iIdxCur;
|
|
2242 |
bRev = (pLevel->flags & WHERE_REVERSE)!=0;
|
|
2243 |
omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
|
|
2244 |
|
|
2245 |
/* Create labels for the "break" and "continue" instructions
|
|
2246 |
** for the current loop. Jump to brk to break out of a loop.
|
|
2247 |
** Jump to cont to go immediately to the next iteration of the
|
|
2248 |
** loop.
|
|
2249 |
**
|
|
2250 |
** When there is an IN operator, we also have a "nxt" label that
|
|
2251 |
** means to continue with the next IN value combination. When
|
|
2252 |
** there are no IN operators in the constraints, the "nxt" label
|
|
2253 |
** is the same as "brk".
|
|
2254 |
*/
|
|
2255 |
brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
|
|
2256 |
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
2257 |
|
|
2258 |
/* If this is the right table of a LEFT OUTER JOIN, allocate and
|
|
2259 |
** initialize a memory cell that records if this table matches any
|
|
2260 |
** row of the left table of the join.
|
|
2261 |
*/
|
|
2262 |
if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
|
|
2263 |
if( !pParse->nMem ) pParse->nMem++;
|
|
2264 |
pLevel->iLeftJoin = pParse->nMem++;
|
|
2265 |
sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
|
|
2266 |
VdbeComment((v, "# init LEFT JOIN no-match flag"));
|
|
2267 |
}
|
|
2268 |
|
|
2269 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
2270 |
if( pLevel->pBestIdx ){
|
|
2271 |
/* Case 0: The table is a virtual-table. Use the VFilter and VNext
|
|
2272 |
** to access the data.
|
|
2273 |
*/
|
|
2274 |
int j;
|
|
2275 |
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
|
|
2276 |
int nConstraint = pBestIdx->nConstraint;
|
|
2277 |
sqlite3_index_info::sqlite3_index_constraint_usage *aUsage =
|
|
2278 |
pBestIdx->aConstraintUsage;
|
|
2279 |
const sqlite3_index_info::sqlite3_index_constraint *aConstraint =
|
|
2280 |
pBestIdx->aConstraint;
|
|
2281 |
|
|
2282 |
for(j=1; j<=nConstraint; j++){
|
|
2283 |
int k;
|
|
2284 |
for(k=0; k<nConstraint; k++){
|
|
2285 |
if( aUsage[k].argvIndex==j ){
|
|
2286 |
int iTerm = aConstraint[k].iTermOffset;
|
|
2287 |
sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
|
|
2288 |
break;
|
|
2289 |
}
|
|
2290 |
}
|
|
2291 |
if( k==nConstraint ) break;
|
|
2292 |
}
|
|
2293 |
sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
|
|
2294 |
sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
|
|
2295 |
sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
|
|
2296 |
pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
|
|
2297 |
pBestIdx->needToFreeIdxStr = 0;
|
|
2298 |
for(j=0; j<pBestIdx->nConstraint; j++){
|
|
2299 |
if( aUsage[j].omit ){
|
|
2300 |
int iTerm = aConstraint[j].iTermOffset;
|
|
2301 |
disableTerm(pLevel, &wc.a[iTerm]);
|
|
2302 |
}
|
|
2303 |
}
|
|
2304 |
pLevel->op = OP_VNext;
|
|
2305 |
pLevel->p1 = iCur;
|
|
2306 |
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
|
|
2307 |
}else
|
|
2308 |
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
2309 |
|
|
2310 |
if( pLevel->flags & WHERE_ROWID_EQ ){
|
|
2311 |
/* Case 1: We can directly reference a single row using an
|
|
2312 |
** equality comparison against the ROWID field. Or
|
|
2313 |
** we reference multiple rows using a "rowid IN (...)"
|
|
2314 |
** construct.
|
|
2315 |
*/
|
|
2316 |
pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
|
|
2317 |
assert( pTerm!=0 );
|
|
2318 |
assert( pTerm->pExpr!=0 );
|
|
2319 |
assert( pTerm->leftCursor==iCur );
|
|
2320 |
assert( omitTable==0 );
|
|
2321 |
codeEqualityTerm(pParse, pTerm, pLevel);
|
|
2322 |
nxt = pLevel->nxt;
|
|
2323 |
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
|
|
2324 |
sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
|
|
2325 |
VdbeComment((v, "pk"));
|
|
2326 |
pLevel->op = OP_Noop;
|
|
2327 |
}else if( pLevel->flags & WHERE_ROWID_RANGE ){
|
|
2328 |
/* Case 2: We have an inequality comparison against the ROWID field.
|
|
2329 |
*/
|
|
2330 |
int testOp = OP_Noop;
|
|
2331 |
int start;
|
|
2332 |
WhereTerm *pStart, *pEnd;
|
|
2333 |
|
|
2334 |
assert( omitTable==0 );
|
|
2335 |
pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
|
|
2336 |
pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
|
|
2337 |
if( bRev ){
|
|
2338 |
pTerm = pStart;
|
|
2339 |
pStart = pEnd;
|
|
2340 |
pEnd = pTerm;
|
|
2341 |
}
|
|
2342 |
if( pStart ){
|
|
2343 |
Expr *pX;
|
|
2344 |
pX = pStart->pExpr;
|
|
2345 |
assert( pX!=0 );
|
|
2346 |
assert( pStart->leftCursor==iCur );
|
|
2347 |
sqlite3ExprCode(pParse, pX->pRight);
|
|
2348 |
sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
|
|
2349 |
sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
|
|
2350 |
VdbeComment((v, "pk"));
|
|
2351 |
disableTerm(pLevel, pStart);
|
|
2352 |
}else{
|
|
2353 |
sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
|
|
2354 |
}
|
|
2355 |
if( pEnd ){
|
|
2356 |
Expr *pX;
|
|
2357 |
pX = pEnd->pExpr;
|
|
2358 |
assert( pX!=0 );
|
|
2359 |
assert( pEnd->leftCursor==iCur );
|
|
2360 |
sqlite3ExprCode(pParse, pX->pRight);
|
|
2361 |
pLevel->iMem = pParse->nMem++;
|
|
2362 |
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
2363 |
if( pX->op==TK_LT || pX->op==TK_GT ){
|
|
2364 |
testOp = bRev ? OP_Le : OP_Ge;
|
|
2365 |
}else{
|
|
2366 |
testOp = bRev ? OP_Lt : OP_Gt;
|
|
2367 |
}
|
|
2368 |
disableTerm(pLevel, pEnd);
|
|
2369 |
}
|
|
2370 |
start = sqlite3VdbeCurrentAddr(v);
|
|
2371 |
pLevel->op = bRev ? OP_Prev : OP_Next;
|
|
2372 |
pLevel->p1 = iCur;
|
|
2373 |
pLevel->p2 = start;
|
|
2374 |
if( testOp!=OP_Noop ){
|
|
2375 |
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
|
2376 |
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
2377 |
sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
|
|
2378 |
}
|
|
2379 |
}else if( pLevel->flags & WHERE_COLUMN_RANGE ){
|
|
2380 |
/* Case 3: The WHERE clause term that refers to the right-most
|
|
2381 |
** column of the index is an inequality. For example, if
|
|
2382 |
** the index is on (x,y,z) and the WHERE clause is of the
|
|
2383 |
** form "x=5 AND y<10" then this case is used. Only the
|
|
2384 |
** right-most column can be an inequality - the rest must
|
|
2385 |
** use the "==" and "IN" operators.
|
|
2386 |
**
|
|
2387 |
** This case is also used when there are no WHERE clause
|
|
2388 |
** constraints but an index is selected anyway, in order
|
|
2389 |
** to force the output order to conform to an ORDER BY.
|
|
2390 |
*/
|
|
2391 |
int start;
|
|
2392 |
int nEq = pLevel->nEq;
|
|
2393 |
int topEq=0; /* True if top limit uses ==. False is strictly < */
|
|
2394 |
int btmEq=0; /* True if btm limit uses ==. False if strictly > */
|
|
2395 |
int topOp, btmOp; /* Operators for the top and bottom search bounds */
|
|
2396 |
int testOp;
|
|
2397 |
int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
|
|
2398 |
int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
|
|
2399 |
|
|
2400 |
/* Generate code to evaluate all constraint terms using == or IN
|
|
2401 |
** and level the values of those terms on the stack.
|
|
2402 |
*/
|
|
2403 |
codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
|
|
2404 |
|
|
2405 |
/* Duplicate the equality term values because they will all be
|
|
2406 |
** used twice: once to make the termination key and once to make the
|
|
2407 |
** start key.
|
|
2408 |
*/
|
|
2409 |
for(j=0; j<nEq; j++){
|
|
2410 |
sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
|
|
2411 |
}
|
|
2412 |
|
|
2413 |
/* Figure out what comparison operators to use for top and bottom
|
|
2414 |
** search bounds. For an ascending index, the bottom bound is a > or >=
|
|
2415 |
** operator and the top bound is a < or <= operator. For a descending
|
|
2416 |
** index the operators are reversed.
|
|
2417 |
*/
|
|
2418 |
if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
|
|
2419 |
topOp = WO_LT|WO_LE;
|
|
2420 |
btmOp = WO_GT|WO_GE;
|
|
2421 |
}else{
|
|
2422 |
topOp = WO_GT|WO_GE;
|
|
2423 |
btmOp = WO_LT|WO_LE;
|
|
2424 |
SWAP(int, topLimit, btmLimit);
|
|
2425 |
}
|
|
2426 |
|
|
2427 |
/* Generate the termination key. This is the key value that
|
|
2428 |
** will end the search. There is no termination key if there
|
|
2429 |
** are no equality terms and no "X<..." term.
|
|
2430 |
**
|
|
2431 |
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
|
2432 |
** key computed here really ends up being the start key.
|
|
2433 |
*/
|
|
2434 |
nxt = pLevel->nxt;
|
|
2435 |
if( topLimit ){
|
|
2436 |
Expr *pX;
|
|
2437 |
int k = pIdx->aiColumn[j];
|
|
2438 |
pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
|
|
2439 |
assert( pTerm!=0 );
|
|
2440 |
pX = pTerm->pExpr;
|
|
2441 |
assert( (pTerm->flags & TERM_CODED)==0 );
|
|
2442 |
sqlite3ExprCode(pParse, pX->pRight);
|
|
2443 |
sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
|
|
2444 |
topEq = pTerm->eOperator & (WO_LE|WO_GE);
|
|
2445 |
disableTerm(pLevel, pTerm);
|
|
2446 |
testOp = OP_IdxGE;
|
|
2447 |
}else{
|
|
2448 |
testOp = nEq>0 ? OP_IdxGE : OP_Noop;
|
|
2449 |
topEq = 1;
|
|
2450 |
}
|
|
2451 |
if( testOp!=OP_Noop ){
|
|
2452 |
int nCol = nEq + topLimit;
|
|
2453 |
pLevel->iMem = pParse->nMem++;
|
|
2454 |
buildIndexProbe(v, nCol, pIdx);
|
|
2455 |
if( bRev ){
|
|
2456 |
int op = topEq ? OP_MoveLe : OP_MoveLt;
|
|
2457 |
sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
|
|
2458 |
}else{
|
|
2459 |
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
2460 |
}
|
|
2461 |
}else if( bRev ){
|
|
2462 |
sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
|
|
2463 |
}
|
|
2464 |
|
|
2465 |
/* Generate the start key. This is the key that defines the lower
|
|
2466 |
** bound on the search. There is no start key if there are no
|
|
2467 |
** equality terms and if there is no "X>..." term. In
|
|
2468 |
** that case, generate a "Rewind" instruction in place of the
|
|
2469 |
** start key search.
|
|
2470 |
**
|
|
2471 |
** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
|
2472 |
** "start" key really ends up being used as the termination key.
|
|
2473 |
*/
|
|
2474 |
if( btmLimit ){
|
|
2475 |
Expr *pX;
|
|
2476 |
int k = pIdx->aiColumn[j];
|
|
2477 |
pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
|
|
2478 |
assert( pTerm!=0 );
|
|
2479 |
pX = pTerm->pExpr;
|
|
2480 |
assert( (pTerm->flags & TERM_CODED)==0 );
|
|
2481 |
sqlite3ExprCode(pParse, pX->pRight);
|
|
2482 |
sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
|
|
2483 |
btmEq = pTerm->eOperator & (WO_LE|WO_GE);
|
|
2484 |
disableTerm(pLevel, pTerm);
|
|
2485 |
}else{
|
|
2486 |
btmEq = 1;
|
|
2487 |
}
|
|
2488 |
if( nEq>0 || btmLimit ){
|
|
2489 |
int nCol = nEq + btmLimit;
|
|
2490 |
buildIndexProbe(v, nCol, pIdx);
|
|
2491 |
if( bRev ){
|
|
2492 |
pLevel->iMem = pParse->nMem++;
|
|
2493 |
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
2494 |
testOp = OP_IdxLT;
|
|
2495 |
}else{
|
|
2496 |
int op = btmEq ? OP_MoveGe : OP_MoveGt;
|
|
2497 |
sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
|
|
2498 |
}
|
|
2499 |
}else if( bRev ){
|
|
2500 |
testOp = OP_Noop;
|
|
2501 |
}else{
|
|
2502 |
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
|
|
2503 |
}
|
|
2504 |
|
|
2505 |
/* Generate the the top of the loop. If there is a termination
|
|
2506 |
** key we have to test for that key and abort at the top of the
|
|
2507 |
** loop.
|
|
2508 |
*/
|
|
2509 |
start = sqlite3VdbeCurrentAddr(v);
|
|
2510 |
if( testOp!=OP_Noop ){
|
|
2511 |
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
2512 |
sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
|
|
2513 |
if( (topEq && !bRev) || (!btmEq && bRev) ){
|
|
2514 |
sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
|
|
2515 |
}
|
|
2516 |
}
|
|
2517 |
if( topLimit | btmLimit ){
|
|
2518 |
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
|
|
2519 |
sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
|
|
2520 |
}
|
|
2521 |
if( !omitTable ){
|
|
2522 |
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
|
|
2523 |
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
|
2524 |
}
|
|
2525 |
|
|
2526 |
/* Record the instruction used to terminate the loop.
|
|
2527 |
*/
|
|
2528 |
pLevel->op = bRev ? OP_Prev : OP_Next;
|
|
2529 |
pLevel->p1 = iIdxCur;
|
|
2530 |
pLevel->p2 = start;
|
|
2531 |
}else if( pLevel->flags & WHERE_COLUMN_EQ ){
|
|
2532 |
/* Case 4: There is an index and all terms of the WHERE clause that
|
|
2533 |
** refer to the index using the "==" or "IN" operators.
|
|
2534 |
*/
|
|
2535 |
int start;
|
|
2536 |
int nEq = pLevel->nEq;
|
|
2537 |
|
|
2538 |
/* Generate code to evaluate all constraint terms using == or IN
|
|
2539 |
** and leave the values of those terms on the stack.
|
|
2540 |
*/
|
|
2541 |
codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
|
|
2542 |
nxt = pLevel->nxt;
|
|
2543 |
|
|
2544 |
/* Generate a single key that will be used to both start and terminate
|
|
2545 |
** the search
|
|
2546 |
*/
|
|
2547 |
buildIndexProbe(v, nEq, pIdx);
|
|
2548 |
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
2549 |
|
|
2550 |
/* Generate code (1) to move to the first matching element of the table.
|
|
2551 |
** Then generate code (2) that jumps to "nxt" after the cursor is past
|
|
2552 |
** the last matching element of the table. The code (1) is executed
|
|
2553 |
** once to initialize the search, the code (2) is executed before each
|
|
2554 |
** iteration of the scan to see if the scan has finished. */
|
|
2555 |
if( bRev ){
|
|
2556 |
/* Scan in reverse order */
|
|
2557 |
sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
|
|
2558 |
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
2559 |
sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
|
|
2560 |
pLevel->op = OP_Prev;
|
|
2561 |
}else{
|
|
2562 |
/* Scan in the forward order */
|
|
2563 |
sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
|
|
2564 |
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
2565 |
sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
|
|
2566 |
pLevel->op = OP_Next;
|
|
2567 |
}
|
|
2568 |
if( !omitTable ){
|
|
2569 |
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
|
|
2570 |
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
|
2571 |
}
|
|
2572 |
pLevel->p1 = iIdxCur;
|
|
2573 |
pLevel->p2 = start;
|
|
2574 |
}else{
|
|
2575 |
/* Case 5: There is no usable index. We must do a complete
|
|
2576 |
** scan of the entire table.
|
|
2577 |
*/
|
|
2578 |
assert( omitTable==0 );
|
|
2579 |
assert( bRev==0 );
|
|
2580 |
pLevel->op = OP_Next;
|
|
2581 |
pLevel->p1 = iCur;
|
|
2582 |
pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
|
|
2583 |
}
|
|
2584 |
notReady &= ~getMask(&maskSet, iCur);
|
|
2585 |
sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
|
|
2586 |
|
|
2587 |
/* Insert code to test every subexpression that can be completely
|
|
2588 |
** computed using the current set of tables.
|
|
2589 |
*/
|
|
2590 |
for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
|
|
2591 |
Expr *pE;
|
|
2592 |
if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
|
2593 |
if( (pTerm->prereqAll & notReady)!=0 ) continue;
|
|
2594 |
pE = pTerm->pExpr;
|
|
2595 |
assert( pE!=0 );
|
|
2596 |
if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
|
|
2597 |
continue;
|
|
2598 |
}
|
|
2599 |
sqlite3ExprIfFalse(pParse, pE, cont, 1);
|
|
2600 |
pTerm->flags |= TERM_CODED;
|
|
2601 |
}
|
|
2602 |
|
|
2603 |
/* For a LEFT OUTER JOIN, generate code that will record the fact that
|
|
2604 |
** at least one row of the right table has matched the left table.
|
|
2605 |
*/
|
|
2606 |
if( pLevel->iLeftJoin ){
|
|
2607 |
pLevel->top = sqlite3VdbeCurrentAddr(v);
|
|
2608 |
sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
|
|
2609 |
VdbeComment((v, "# record LEFT JOIN hit"));
|
|
2610 |
for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
|
|
2611 |
if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
|
2612 |
if( (pTerm->prereqAll & notReady)!=0 ) continue;
|
|
2613 |
assert( pTerm->pExpr );
|
|
2614 |
sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
|
|
2615 |
pTerm->flags |= TERM_CODED;
|
|
2616 |
}
|
|
2617 |
}
|
|
2618 |
}
|
|
2619 |
|
|
2620 |
#ifdef SQLITE_TEST /* For testing and debugging use only */
|
|
2621 |
/* Record in the query plan information about the current table
|
|
2622 |
** and the index used to access it (if any). If the table itself
|
|
2623 |
** is not used, its name is just '{}'. If no index is used
|
|
2624 |
** the index is listed as "{}". If the primary key is used the
|
|
2625 |
** index name is '*'.
|
|
2626 |
*/
|
|
2627 |
for(i=0; i<pTabList->nSrc; i++){
|
|
2628 |
char *z;
|
|
2629 |
int n;
|
|
2630 |
pLevel = &pWInfo->a[i];
|
|
2631 |
pTabItem = &pTabList->a[pLevel->iFrom];
|
|
2632 |
z = pTabItem->zAlias;
|
|
2633 |
if( z==0 ) z = pTabItem->pTab->zName;
|
|
2634 |
n = strlen(z);
|
|
2635 |
if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
|
|
2636 |
if( pLevel->flags & WHERE_IDX_ONLY ){
|
|
2637 |
memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
|
|
2638 |
nQPlan += 2;
|
|
2639 |
}else{
|
|
2640 |
memcpy(&sqlite3_query_plan[nQPlan], z, n);
|
|
2641 |
nQPlan += n;
|
|
2642 |
}
|
|
2643 |
sqlite3_query_plan[nQPlan++] = ' ';
|
|
2644 |
}
|
|
2645 |
if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
|
|
2646 |
memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
|
|
2647 |
nQPlan += 2;
|
|
2648 |
}else if( pLevel->pIdx==0 ){
|
|
2649 |
memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
|
|
2650 |
nQPlan += 3;
|
|
2651 |
}else{
|
|
2652 |
n = strlen(pLevel->pIdx->zName);
|
|
2653 |
if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
|
|
2654 |
memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
|
|
2655 |
nQPlan += n;
|
|
2656 |
sqlite3_query_plan[nQPlan++] = ' ';
|
|
2657 |
}
|
|
2658 |
}
|
|
2659 |
}
|
|
2660 |
while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
|
|
2661 |
sqlite3_query_plan[--nQPlan] = 0;
|
|
2662 |
}
|
|
2663 |
sqlite3_query_plan[nQPlan] = 0;
|
|
2664 |
nQPlan = 0;
|
|
2665 |
#endif /* SQLITE_TEST // Testing and debugging use only */
|
|
2666 |
|
|
2667 |
/* Record the continuation address in the WhereInfo structure. Then
|
|
2668 |
** clean up and return.
|
|
2669 |
*/
|
|
2670 |
pWInfo->iContinue = cont;
|
|
2671 |
whereClauseClear(&wc);
|
|
2672 |
return pWInfo;
|
|
2673 |
|
|
2674 |
/* Jump here if malloc fails */
|
|
2675 |
whereBeginNoMem:
|
|
2676 |
whereClauseClear(&wc);
|
|
2677 |
whereInfoFree(pWInfo);
|
|
2678 |
return 0;
|
|
2679 |
}
|
|
2680 |
|
|
2681 |
/*
|
|
2682 |
** Generate the end of the WHERE loop. See comments on
|
|
2683 |
** sqlite3WhereBegin() for additional information.
|
|
2684 |
*/
|
|
2685 |
void sqlite3WhereEnd(WhereInfo *pWInfo){
|
|
2686 |
Vdbe *v = pWInfo->pParse->pVdbe;
|
|
2687 |
int i;
|
|
2688 |
WhereLevel *pLevel;
|
|
2689 |
SrcList *pTabList = pWInfo->pTabList;
|
|
2690 |
|
|
2691 |
/* Generate loop termination code.
|
|
2692 |
*/
|
|
2693 |
for(i=pTabList->nSrc-1; i>=0; i--){
|
|
2694 |
pLevel = &pWInfo->a[i];
|
|
2695 |
sqlite3VdbeResolveLabel(v, pLevel->cont);
|
|
2696 |
if( pLevel->op!=OP_Noop ){
|
|
2697 |
sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
|
2698 |
}
|
|
2699 |
if( pLevel->nIn ){
|
|
2700 |
WhereLevel::InLoop *pIn;
|
|
2701 |
int j;
|
|
2702 |
sqlite3VdbeResolveLabel(v, pLevel->nxt);
|
|
2703 |
for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
|
|
2704 |
sqlite3VdbeJumpHere(v, pIn->topAddr+1);
|
|
2705 |
sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
|
|
2706 |
sqlite3VdbeJumpHere(v, pIn->topAddr-1);
|
|
2707 |
}
|
|
2708 |
sqlite3_free(pLevel->aInLoop);
|
|
2709 |
}
|
|
2710 |
sqlite3VdbeResolveLabel(v, pLevel->brk);
|
|
2711 |
if( pLevel->iLeftJoin ){
|
|
2712 |
int addr;
|
|
2713 |
addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
|
|
2714 |
sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
|
|
2715 |
if( pLevel->iIdxCur>=0 ){
|
|
2716 |
sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
|
|
2717 |
}
|
|
2718 |
sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
|
2719 |
sqlite3VdbeJumpHere(v, addr);
|
|
2720 |
}
|
|
2721 |
}
|
|
2722 |
|
|
2723 |
/* The "break" point is here, just past the end of the outer loop.
|
|
2724 |
** Set it.
|
|
2725 |
*/
|
|
2726 |
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
|
|
2727 |
|
|
2728 |
/* Close all of the cursors that were opened by sqlite3WhereBegin.
|
|
2729 |
*/
|
|
2730 |
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
2731 |
SrcList::SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
|
|
2732 |
Table *pTab = pTabItem->pTab;
|
|
2733 |
assert( pTab!=0 );
|
|
2734 |
if( pTab->isEphem || pTab->pSelect ) continue;
|
|
2735 |
if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
|
|
2736 |
sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
|
|
2737 |
}
|
|
2738 |
if( pLevel->pIdx!=0 ){
|
|
2739 |
sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
|
|
2740 |
}
|
|
2741 |
|
|
2742 |
/* If this scan uses an index, make code substitutions to read data
|
|
2743 |
** from the index in preference to the table. Sometimes, this means
|
|
2744 |
** the table need never be read from. This is a performance boost,
|
|
2745 |
** as the vdbe level waits until the table is read before actually
|
|
2746 |
** seeking the table cursor to the record corresponding to the current
|
|
2747 |
** position in the index.
|
|
2748 |
**
|
|
2749 |
** Calls to the code generator in between sqlite3WhereBegin and
|
|
2750 |
** sqlite3WhereEnd will have created code that references the table
|
|
2751 |
** directly. This loop scans all that code looking for opcodes
|
|
2752 |
** that reference the table and converts them into opcodes that
|
|
2753 |
** reference the index.
|
|
2754 |
*/
|
|
2755 |
if( pLevel->pIdx ){
|
|
2756 |
int k, j, last;
|
|
2757 |
VdbeOp *pOp;
|
|
2758 |
Index *pIdx = pLevel->pIdx;
|
|
2759 |
int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
|
|
2760 |
|
|
2761 |
assert( pIdx!=0 );
|
|
2762 |
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
|
|
2763 |
last = sqlite3VdbeCurrentAddr(v);
|
|
2764 |
for(k=pWInfo->iTop; k<last; k++, pOp++){
|
|
2765 |
if( pOp->p1!=pLevel->iTabCur ) continue;
|
|
2766 |
if( pOp->opcode==OP_Column ){
|
|
2767 |
for(j=0; j<pIdx->nColumn; j++){
|
|
2768 |
if( pOp->p2==pIdx->aiColumn[j] ){
|
|
2769 |
pOp->p2 = j;
|
|
2770 |
pOp->p1 = pLevel->iIdxCur;
|
|
2771 |
break;
|
|
2772 |
}
|
|
2773 |
}
|
|
2774 |
assert(!useIndexOnly || j<pIdx->nColumn);
|
|
2775 |
}else if( pOp->opcode==OP_Rowid ){
|
|
2776 |
pOp->p1 = pLevel->iIdxCur;
|
|
2777 |
pOp->opcode = OP_IdxRowid;
|
|
2778 |
}else if( pOp->opcode==OP_NullRow && useIndexOnly ){
|
|
2779 |
pOp->opcode = OP_Noop;
|
|
2780 |
}
|
|
2781 |
}
|
|
2782 |
}
|
|
2783 |
}
|
|
2784 |
|
|
2785 |
/* Final cleanup
|
|
2786 |
*/
|
|
2787 |
whereInfoFree(pWInfo);
|
|
2788 |
return;
|
|
2789 |
}
|