2
|
1 |
/*
|
|
2 |
** 2007 August 14
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains the C functions that implement a memory
|
|
13 |
** allocation subsystem for use by SQLite.
|
|
14 |
**
|
|
15 |
** $Id: mem4.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
16 |
*/
|
|
17 |
|
|
18 |
/*
|
|
19 |
** This version of the memory allocator attempts to obtain memory
|
|
20 |
** from mmap() if the size of the allocation is close to the size
|
|
21 |
** of a virtual memory page. If the size of the allocation is different
|
|
22 |
** from the virtual memory page size, then ordinary malloc() is used.
|
|
23 |
** Ordinary malloc is also used if space allocated to mmap() is
|
|
24 |
** exhausted.
|
|
25 |
**
|
|
26 |
** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn
|
|
27 |
** where nnn is the maximum number of bytes of mmap-ed memory you want
|
|
28 |
** to support. This module may choose to use less memory than requested.
|
|
29 |
**
|
|
30 |
*/
|
|
31 |
#if defined(SQLITE_MMAP_HEAP_SIZE)
|
|
32 |
|
|
33 |
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE)
|
|
34 |
# error cannot use SQLITE_MMAP_HEAP_SIZE with either SQLITE_MEMDEBUG \
|
|
35 |
or SQLITE_MEMORY_SIZE
|
|
36 |
#endif
|
|
37 |
|
|
38 |
/*
|
|
39 |
** This is a test version of the memory allocator that attempts to
|
|
40 |
** use mmap() and madvise() for allocations and frees of approximately
|
|
41 |
** the virtual memory page size.
|
|
42 |
*/
|
|
43 |
#include <sys/types.h>
|
|
44 |
#include <sys/mman.h>
|
|
45 |
#include <errno.h>
|
|
46 |
#include "sqliteInt.h"
|
|
47 |
#include <unistd.h>
|
|
48 |
|
|
49 |
|
|
50 |
/*
|
|
51 |
** All of the static variables used by this module are collected
|
|
52 |
** into a single structure named "mem". This is to keep the
|
|
53 |
** static variables organized and to reduce namespace pollution
|
|
54 |
** when this module is combined with other in the amalgamation.
|
|
55 |
*/
|
|
56 |
static struct {
|
|
57 |
/*
|
|
58 |
** The alarm callback and its arguments. The mem.mutex lock will
|
|
59 |
** be held while the callback is running. Recursive calls into
|
|
60 |
** the memory subsystem are allowed, but no new callbacks will be
|
|
61 |
** issued. The alarmBusy variable is set to prevent recursive
|
|
62 |
** callbacks.
|
|
63 |
*/
|
|
64 |
sqlite3_int64 alarmThreshold;
|
|
65 |
void (*alarmCallback)(void*, sqlite3_int64,int);
|
|
66 |
void *alarmArg;
|
|
67 |
int alarmBusy;
|
|
68 |
|
|
69 |
/*
|
|
70 |
** Mutex to control access to the memory allocation subsystem.
|
|
71 |
*/
|
|
72 |
sqlite3_mutex *mutex;
|
|
73 |
|
|
74 |
/*
|
|
75 |
** Current allocation and high-water mark.
|
|
76 |
*/
|
|
77 |
sqlite3_int64 nowUsed;
|
|
78 |
sqlite3_int64 mxUsed;
|
|
79 |
|
|
80 |
/*
|
|
81 |
** Current allocation and high-water marks for mmap allocated memory.
|
|
82 |
*/
|
|
83 |
sqlite3_int64 nowUsedMMap;
|
|
84 |
sqlite3_int64 mxUsedMMap;
|
|
85 |
|
|
86 |
/*
|
|
87 |
** Size of a single mmap page. Obtained from sysconf().
|
|
88 |
*/
|
|
89 |
int szPage;
|
|
90 |
int mnPage;
|
|
91 |
|
|
92 |
/*
|
|
93 |
** The number of available mmap pages.
|
|
94 |
*/
|
|
95 |
int nPage;
|
|
96 |
|
|
97 |
/*
|
|
98 |
** Index of the first free page. 0 means no pages have been freed.
|
|
99 |
*/
|
|
100 |
int firstFree;
|
|
101 |
|
|
102 |
/* First unused page on the top of the heap.
|
|
103 |
*/
|
|
104 |
int firstUnused;
|
|
105 |
|
|
106 |
/*
|
|
107 |
** Bulk memory obtained from from mmap().
|
|
108 |
*/
|
|
109 |
char *mmapHeap; /* first byte of the heap */
|
|
110 |
|
|
111 |
} mem;
|
|
112 |
|
|
113 |
|
|
114 |
/*
|
|
115 |
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
116 |
** The mmap() region is initialized the first time this routine is called.
|
|
117 |
*/
|
|
118 |
static void memsys4Enter(void){
|
|
119 |
if( mem.mutex==0 ){
|
|
120 |
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
121 |
}
|
|
122 |
sqlite3_mutex_enter(mem.mutex);
|
|
123 |
}
|
|
124 |
|
|
125 |
/*
|
|
126 |
** Attempt to free memory to the mmap heap. This only works if
|
|
127 |
** the pointer p is within the range of memory addresses that
|
|
128 |
** comprise the mmap heap. Return 1 if the memory was freed
|
|
129 |
** successfully. Return 0 if the pointer is out of range.
|
|
130 |
*/
|
|
131 |
static int mmapFree(void *p){
|
|
132 |
char *z;
|
|
133 |
int idx, *a;
|
|
134 |
if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){
|
|
135 |
return 0;
|
|
136 |
}
|
|
137 |
z = (char*)p;
|
|
138 |
idx = (z - mem.mmapHeap)/mem.szPage;
|
|
139 |
if( idx<1 || idx>=mem.nPage ){
|
|
140 |
return 0;
|
|
141 |
}
|
|
142 |
a = (int*)mem.mmapHeap;
|
|
143 |
a[idx] = a[mem.firstFree];
|
|
144 |
mem.firstFree = idx;
|
|
145 |
mem.nowUsedMMap -= mem.szPage;
|
|
146 |
madvise(p, mem.szPage, MADV_DONTNEED);
|
|
147 |
return 1;
|
|
148 |
}
|
|
149 |
|
|
150 |
/*
|
|
151 |
** Attempt to allocate nBytes from the mmap heap. Return a pointer
|
|
152 |
** to the allocated page. Or, return NULL if the allocation fails.
|
|
153 |
**
|
|
154 |
** The allocation will fail if nBytes is not the right size.
|
|
155 |
** Or, the allocation will fail if the mmap heap has been exhausted.
|
|
156 |
*/
|
|
157 |
static void *mmapAlloc(int nBytes){
|
|
158 |
int idx = 0;
|
|
159 |
if( nBytes>mem.szPage || nBytes<mem.mnPage ){
|
|
160 |
return 0;
|
|
161 |
}
|
|
162 |
if( mem.nPage==0 ){
|
|
163 |
mem.szPage = sysconf(_SC_PAGE_SIZE);
|
|
164 |
mem.mnPage = mem.szPage - mem.szPage/10;
|
|
165 |
mem.nPage = SQLITE_MMAP_HEAP_SIZE/mem.szPage;
|
|
166 |
if( mem.nPage * sizeof(int) > mem.szPage ){
|
|
167 |
mem.nPage = mem.szPage/sizeof(int);
|
|
168 |
}
|
|
169 |
mem.mmapHeap = mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ,
|
|
170 |
MAP_ANONYMOUS|MAP_SHARED, -1, 0);
|
|
171 |
if( mem.mmapHeap==MAP_FAILED ){
|
|
172 |
mem.firstUnused = errno;
|
|
173 |
}else{
|
|
174 |
mem.firstUnused = 1;
|
|
175 |
mem.nowUsedMMap = mem.szPage;
|
|
176 |
}
|
|
177 |
}
|
|
178 |
if( mem.mmapHeap==MAP_FAILED ){
|
|
179 |
return 0;
|
|
180 |
}
|
|
181 |
if( mem.firstFree ){
|
|
182 |
int idx = mem.firstFree;
|
|
183 |
int *a = (int*)mem.mmapHeap;
|
|
184 |
mem.firstFree = a[idx];
|
|
185 |
}else if( mem.firstUnused<mem.nPage ){
|
|
186 |
idx = mem.firstUnused++;
|
|
187 |
}
|
|
188 |
if( idx ){
|
|
189 |
mem.nowUsedMMap += mem.szPage;
|
|
190 |
if( mem.nowUsedMMap>mem.mxUsedMMap ){
|
|
191 |
mem.mxUsedMMap = mem.nowUsedMMap;
|
|
192 |
}
|
|
193 |
return (void*)&mem.mmapHeap[idx*mem.szPage];
|
|
194 |
}else{
|
|
195 |
return 0;
|
|
196 |
}
|
|
197 |
}
|
|
198 |
|
|
199 |
/*
|
|
200 |
** Release the mmap-ed memory region if it is currently allocated and
|
|
201 |
** is not in use.
|
|
202 |
*/
|
|
203 |
static void mmapUnmap(void){
|
|
204 |
if( mem.mmapHeap==MAP_FAILED ) return;
|
|
205 |
if( mem.nPage==0 ) return;
|
|
206 |
if( mem.nowUsedMMap>mem.szPage ) return;
|
|
207 |
munmap(mem.mmapHeap, mem.nPage*mem.szPage);
|
|
208 |
mem.nowUsedMMap = 0;
|
|
209 |
mem.nPage = 0;
|
|
210 |
}
|
|
211 |
|
|
212 |
|
|
213 |
/*
|
|
214 |
** Return the amount of memory currently checked out.
|
|
215 |
*/
|
|
216 |
sqlite3_int64 sqlite3_memory_used(void){
|
|
217 |
sqlite3_int64 n;
|
|
218 |
memsys4Enter();
|
|
219 |
n = mem.nowUsed + mem.nowUsedMMap;
|
|
220 |
sqlite3_mutex_leave(mem.mutex);
|
|
221 |
return n;
|
|
222 |
}
|
|
223 |
|
|
224 |
/*
|
|
225 |
** Return the maximum amount of memory that has ever been
|
|
226 |
** checked out since either the beginning of this process
|
|
227 |
** or since the most recent reset.
|
|
228 |
*/
|
|
229 |
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
230 |
sqlite3_int64 n;
|
|
231 |
memsys4Enter();
|
|
232 |
n = mem.mxUsed + mem.mxUsedMMap;
|
|
233 |
if( resetFlag ){
|
|
234 |
mem.mxUsed = mem.nowUsed;
|
|
235 |
mem.mxUsedMMap = mem.nowUsedMMap;
|
|
236 |
}
|
|
237 |
sqlite3_mutex_leave(mem.mutex);
|
|
238 |
return n;
|
|
239 |
}
|
|
240 |
|
|
241 |
/*
|
|
242 |
** Change the alarm callback
|
|
243 |
*/
|
|
244 |
int sqlite3_memory_alarm(
|
|
245 |
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
|
246 |
void *pArg,
|
|
247 |
sqlite3_int64 iThreshold
|
|
248 |
){
|
|
249 |
memsys4Enter();
|
|
250 |
mem.alarmCallback = xCallback;
|
|
251 |
mem.alarmArg = pArg;
|
|
252 |
mem.alarmThreshold = iThreshold;
|
|
253 |
sqlite3_mutex_leave(mem.mutex);
|
|
254 |
return SQLITE_OK;
|
|
255 |
}
|
|
256 |
|
|
257 |
/*
|
|
258 |
** Trigger the alarm
|
|
259 |
*/
|
|
260 |
static void sqlite3MemsysAlarm(int nByte){
|
|
261 |
void (*xCallback)(void*,sqlite3_int64,int);
|
|
262 |
sqlite3_int64 nowUsed;
|
|
263 |
void *pArg;
|
|
264 |
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
|
265 |
mem.alarmBusy = 1;
|
|
266 |
xCallback = mem.alarmCallback;
|
|
267 |
nowUsed = mem.nowUsed;
|
|
268 |
pArg = mem.alarmArg;
|
|
269 |
sqlite3_mutex_leave(mem.mutex);
|
|
270 |
xCallback(pArg, nowUsed, nByte);
|
|
271 |
sqlite3_mutex_enter(mem.mutex);
|
|
272 |
mem.alarmBusy = 0;
|
|
273 |
}
|
|
274 |
|
|
275 |
/*
|
|
276 |
** Allocate nBytes of memory
|
|
277 |
*/
|
|
278 |
static void *memsys4Malloc(int nBytes){
|
|
279 |
sqlite3_int64 *p = 0;
|
|
280 |
if( mem.alarmCallback!=0
|
|
281 |
&& mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){
|
|
282 |
sqlite3MemsysAlarm(nBytes);
|
|
283 |
}
|
|
284 |
if( (p = mmapAlloc(nBytes))==0 ){
|
|
285 |
p = malloc(nBytes+8);
|
|
286 |
if( p==0 ){
|
|
287 |
sqlite3MemsysAlarm(nBytes);
|
|
288 |
p = malloc(nBytes+8);
|
|
289 |
}
|
|
290 |
if( p ){
|
|
291 |
p[0] = nBytes;
|
|
292 |
p++;
|
|
293 |
mem.nowUsed += nBytes;
|
|
294 |
if( mem.nowUsed>mem.mxUsed ){
|
|
295 |
mem.mxUsed = mem.nowUsed;
|
|
296 |
}
|
|
297 |
}
|
|
298 |
}
|
|
299 |
return (void*)p;
|
|
300 |
}
|
|
301 |
|
|
302 |
/*
|
|
303 |
** Return the size of a memory allocation
|
|
304 |
*/
|
|
305 |
static int memsys4Size(void *pPrior){
|
|
306 |
char *z = (char*)pPrior;
|
|
307 |
int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0;
|
|
308 |
int nByte;
|
|
309 |
if( idx>=1 && idx<mem.nPage ){
|
|
310 |
nByte = mem.szPage;
|
|
311 |
}else{
|
|
312 |
sqlite3_int64 *p = pPrior;
|
|
313 |
p--;
|
|
314 |
nByte = (int)*p;
|
|
315 |
}
|
|
316 |
return nByte;
|
|
317 |
}
|
|
318 |
|
|
319 |
/*
|
|
320 |
** Free memory.
|
|
321 |
*/
|
|
322 |
static void memsys4Free(void *pPrior){
|
|
323 |
sqlite3_int64 *p;
|
|
324 |
int nByte;
|
|
325 |
if( mmapFree(pPrior)==0 ){
|
|
326 |
p = pPrior;
|
|
327 |
p--;
|
|
328 |
nByte = (int)*p;
|
|
329 |
mem.nowUsed -= nByte;
|
|
330 |
free(p);
|
|
331 |
if( mem.nowUsed==0 ){
|
|
332 |
mmapUnmap();
|
|
333 |
}
|
|
334 |
}
|
|
335 |
}
|
|
336 |
|
|
337 |
/*
|
|
338 |
** Allocate nBytes of memory
|
|
339 |
*/
|
|
340 |
void *sqlite3_malloc(int nBytes){
|
|
341 |
sqlite3_int64 *p = 0;
|
|
342 |
if( nBytes>0 ){
|
|
343 |
memsys4Enter();
|
|
344 |
p = memsys4Malloc(nBytes);
|
|
345 |
sqlite3_mutex_leave(mem.mutex);
|
|
346 |
}
|
|
347 |
return (void*)p;
|
|
348 |
}
|
|
349 |
|
|
350 |
/*
|
|
351 |
** Free memory.
|
|
352 |
*/
|
|
353 |
void sqlite3_free(void *pPrior){
|
|
354 |
if( pPrior==0 ){
|
|
355 |
return;
|
|
356 |
}
|
|
357 |
assert( mem.mutex!=0 );
|
|
358 |
sqlite3_mutex_enter(mem.mutex);
|
|
359 |
memsys4Free(pPrior);
|
|
360 |
sqlite3_mutex_leave(mem.mutex);
|
|
361 |
}
|
|
362 |
|
|
363 |
|
|
364 |
|
|
365 |
/*
|
|
366 |
** Change the size of an existing memory allocation
|
|
367 |
*/
|
|
368 |
void *sqlite3_realloc(void *pPrior, int nBytes){
|
|
369 |
int nOld;
|
|
370 |
sqlite3_int64 *p;
|
|
371 |
if( pPrior==0 ){
|
|
372 |
return sqlite3_malloc(nBytes);
|
|
373 |
}
|
|
374 |
if( nBytes<=0 ){
|
|
375 |
sqlite3_free(pPrior);
|
|
376 |
return 0;
|
|
377 |
}
|
|
378 |
nOld = memsys4Size(pPrior);
|
|
379 |
if( nBytes<=nOld && nBytes>=nOld-128 ){
|
|
380 |
return pPrior;
|
|
381 |
}
|
|
382 |
assert( mem.mutex!=0 );
|
|
383 |
sqlite3_mutex_enter(mem.mutex);
|
|
384 |
p = memsys4Malloc(nBytes);
|
|
385 |
if( p ){
|
|
386 |
if( nOld<nBytes ){
|
|
387 |
memcpy(p, pPrior, nOld);
|
|
388 |
}else{
|
|
389 |
memcpy(p, pPrior, nBytes);
|
|
390 |
}
|
|
391 |
memsys4Free(pPrior);
|
|
392 |
}
|
|
393 |
assert( mem.mutex!=0 );
|
|
394 |
sqlite3_mutex_leave(mem.mutex);
|
|
395 |
return (void*)p;
|
|
396 |
}
|
|
397 |
|
|
398 |
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|