2
+ − 1
/*
+ − 2
** 2007 August 14
+ − 3
**
+ − 4
** The author disclaims copyright to this source code. In place of
+ − 5
** a legal notice, here is a blessing:
+ − 6
**
+ − 7
** May you do good and not evil.
+ − 8
** May you find forgiveness for yourself and forgive others.
+ − 9
** May you share freely, never taking more than you give.
+ − 10
**
+ − 11
*************************************************************************
+ − 12
** This file contains the C functions that implement a memory
+ − 13
** allocation subsystem for use by SQLite.
+ − 14
**
+ − 15
** $Id: mem4.cpp 1282 2008-11-13 09:31:33Z LarsPson $
+ − 16
*/
+ − 17
+ − 18
/*
+ − 19
** This version of the memory allocator attempts to obtain memory
+ − 20
** from mmap() if the size of the allocation is close to the size
+ − 21
** of a virtual memory page. If the size of the allocation is different
+ − 22
** from the virtual memory page size, then ordinary malloc() is used.
+ − 23
** Ordinary malloc is also used if space allocated to mmap() is
+ − 24
** exhausted.
+ − 25
**
+ − 26
** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn
+ − 27
** where nnn is the maximum number of bytes of mmap-ed memory you want
+ − 28
** to support. This module may choose to use less memory than requested.
+ − 29
**
+ − 30
*/
+ − 31
#if defined(SQLITE_MMAP_HEAP_SIZE)
+ − 32
+ − 33
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE)
+ − 34
# error cannot use SQLITE_MMAP_HEAP_SIZE with either SQLITE_MEMDEBUG \
+ − 35
or SQLITE_MEMORY_SIZE
+ − 36
#endif
+ − 37
+ − 38
/*
+ − 39
** This is a test version of the memory allocator that attempts to
+ − 40
** use mmap() and madvise() for allocations and frees of approximately
+ − 41
** the virtual memory page size.
+ − 42
*/
+ − 43
#include <sys/types.h>
+ − 44
#include <sys/mman.h>
+ − 45
#include <errno.h>
+ − 46
#include "sqliteInt.h"
+ − 47
#include <unistd.h>
+ − 48
+ − 49
+ − 50
/*
+ − 51
** All of the static variables used by this module are collected
+ − 52
** into a single structure named "mem". This is to keep the
+ − 53
** static variables organized and to reduce namespace pollution
+ − 54
** when this module is combined with other in the amalgamation.
+ − 55
*/
+ − 56
static struct {
+ − 57
/*
+ − 58
** The alarm callback and its arguments. The mem.mutex lock will
+ − 59
** be held while the callback is running. Recursive calls into
+ − 60
** the memory subsystem are allowed, but no new callbacks will be
+ − 61
** issued. The alarmBusy variable is set to prevent recursive
+ − 62
** callbacks.
+ − 63
*/
+ − 64
sqlite3_int64 alarmThreshold;
+ − 65
void (*alarmCallback)(void*, sqlite3_int64,int);
+ − 66
void *alarmArg;
+ − 67
int alarmBusy;
+ − 68
+ − 69
/*
+ − 70
** Mutex to control access to the memory allocation subsystem.
+ − 71
*/
+ − 72
sqlite3_mutex *mutex;
+ − 73
+ − 74
/*
+ − 75
** Current allocation and high-water mark.
+ − 76
*/
+ − 77
sqlite3_int64 nowUsed;
+ − 78
sqlite3_int64 mxUsed;
+ − 79
+ − 80
/*
+ − 81
** Current allocation and high-water marks for mmap allocated memory.
+ − 82
*/
+ − 83
sqlite3_int64 nowUsedMMap;
+ − 84
sqlite3_int64 mxUsedMMap;
+ − 85
+ − 86
/*
+ − 87
** Size of a single mmap page. Obtained from sysconf().
+ − 88
*/
+ − 89
int szPage;
+ − 90
int mnPage;
+ − 91
+ − 92
/*
+ − 93
** The number of available mmap pages.
+ − 94
*/
+ − 95
int nPage;
+ − 96
+ − 97
/*
+ − 98
** Index of the first free page. 0 means no pages have been freed.
+ − 99
*/
+ − 100
int firstFree;
+ − 101
+ − 102
/* First unused page on the top of the heap.
+ − 103
*/
+ − 104
int firstUnused;
+ − 105
+ − 106
/*
+ − 107
** Bulk memory obtained from from mmap().
+ − 108
*/
+ − 109
char *mmapHeap; /* first byte of the heap */
+ − 110
+ − 111
} mem;
+ − 112
+ − 113
+ − 114
/*
+ − 115
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+ − 116
** The mmap() region is initialized the first time this routine is called.
+ − 117
*/
+ − 118
static void memsys4Enter(void){
+ − 119
if( mem.mutex==0 ){
+ − 120
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+ − 121
}
+ − 122
sqlite3_mutex_enter(mem.mutex);
+ − 123
}
+ − 124
+ − 125
/*
+ − 126
** Attempt to free memory to the mmap heap. This only works if
+ − 127
** the pointer p is within the range of memory addresses that
+ − 128
** comprise the mmap heap. Return 1 if the memory was freed
+ − 129
** successfully. Return 0 if the pointer is out of range.
+ − 130
*/
+ − 131
static int mmapFree(void *p){
+ − 132
char *z;
+ − 133
int idx, *a;
+ − 134
if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){
+ − 135
return 0;
+ − 136
}
+ − 137
z = (char*)p;
+ − 138
idx = (z - mem.mmapHeap)/mem.szPage;
+ − 139
if( idx<1 || idx>=mem.nPage ){
+ − 140
return 0;
+ − 141
}
+ − 142
a = (int*)mem.mmapHeap;
+ − 143
a[idx] = a[mem.firstFree];
+ − 144
mem.firstFree = idx;
+ − 145
mem.nowUsedMMap -= mem.szPage;
+ − 146
madvise(p, mem.szPage, MADV_DONTNEED);
+ − 147
return 1;
+ − 148
}
+ − 149
+ − 150
/*
+ − 151
** Attempt to allocate nBytes from the mmap heap. Return a pointer
+ − 152
** to the allocated page. Or, return NULL if the allocation fails.
+ − 153
**
+ − 154
** The allocation will fail if nBytes is not the right size.
+ − 155
** Or, the allocation will fail if the mmap heap has been exhausted.
+ − 156
*/
+ − 157
static void *mmapAlloc(int nBytes){
+ − 158
int idx = 0;
+ − 159
if( nBytes>mem.szPage || nBytes<mem.mnPage ){
+ − 160
return 0;
+ − 161
}
+ − 162
if( mem.nPage==0 ){
+ − 163
mem.szPage = sysconf(_SC_PAGE_SIZE);
+ − 164
mem.mnPage = mem.szPage - mem.szPage/10;
+ − 165
mem.nPage = SQLITE_MMAP_HEAP_SIZE/mem.szPage;
+ − 166
if( mem.nPage * sizeof(int) > mem.szPage ){
+ − 167
mem.nPage = mem.szPage/sizeof(int);
+ − 168
}
+ − 169
mem.mmapHeap = mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ,
+ − 170
MAP_ANONYMOUS|MAP_SHARED, -1, 0);
+ − 171
if( mem.mmapHeap==MAP_FAILED ){
+ − 172
mem.firstUnused = errno;
+ − 173
}else{
+ − 174
mem.firstUnused = 1;
+ − 175
mem.nowUsedMMap = mem.szPage;
+ − 176
}
+ − 177
}
+ − 178
if( mem.mmapHeap==MAP_FAILED ){
+ − 179
return 0;
+ − 180
}
+ − 181
if( mem.firstFree ){
+ − 182
int idx = mem.firstFree;
+ − 183
int *a = (int*)mem.mmapHeap;
+ − 184
mem.firstFree = a[idx];
+ − 185
}else if( mem.firstUnused<mem.nPage ){
+ − 186
idx = mem.firstUnused++;
+ − 187
}
+ − 188
if( idx ){
+ − 189
mem.nowUsedMMap += mem.szPage;
+ − 190
if( mem.nowUsedMMap>mem.mxUsedMMap ){
+ − 191
mem.mxUsedMMap = mem.nowUsedMMap;
+ − 192
}
+ − 193
return (void*)&mem.mmapHeap[idx*mem.szPage];
+ − 194
}else{
+ − 195
return 0;
+ − 196
}
+ − 197
}
+ − 198
+ − 199
/*
+ − 200
** Release the mmap-ed memory region if it is currently allocated and
+ − 201
** is not in use.
+ − 202
*/
+ − 203
static void mmapUnmap(void){
+ − 204
if( mem.mmapHeap==MAP_FAILED ) return;
+ − 205
if( mem.nPage==0 ) return;
+ − 206
if( mem.nowUsedMMap>mem.szPage ) return;
+ − 207
munmap(mem.mmapHeap, mem.nPage*mem.szPage);
+ − 208
mem.nowUsedMMap = 0;
+ − 209
mem.nPage = 0;
+ − 210
}
+ − 211
+ − 212
+ − 213
/*
+ − 214
** Return the amount of memory currently checked out.
+ − 215
*/
+ − 216
sqlite3_int64 sqlite3_memory_used(void){
+ − 217
sqlite3_int64 n;
+ − 218
memsys4Enter();
+ − 219
n = mem.nowUsed + mem.nowUsedMMap;
+ − 220
sqlite3_mutex_leave(mem.mutex);
+ − 221
return n;
+ − 222
}
+ − 223
+ − 224
/*
+ − 225
** Return the maximum amount of memory that has ever been
+ − 226
** checked out since either the beginning of this process
+ − 227
** or since the most recent reset.
+ − 228
*/
+ − 229
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ − 230
sqlite3_int64 n;
+ − 231
memsys4Enter();
+ − 232
n = mem.mxUsed + mem.mxUsedMMap;
+ − 233
if( resetFlag ){
+ − 234
mem.mxUsed = mem.nowUsed;
+ − 235
mem.mxUsedMMap = mem.nowUsedMMap;
+ − 236
}
+ − 237
sqlite3_mutex_leave(mem.mutex);
+ − 238
return n;
+ − 239
}
+ − 240
+ − 241
/*
+ − 242
** Change the alarm callback
+ − 243
*/
+ − 244
int sqlite3_memory_alarm(
+ − 245
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ − 246
void *pArg,
+ − 247
sqlite3_int64 iThreshold
+ − 248
){
+ − 249
memsys4Enter();
+ − 250
mem.alarmCallback = xCallback;
+ − 251
mem.alarmArg = pArg;
+ − 252
mem.alarmThreshold = iThreshold;
+ − 253
sqlite3_mutex_leave(mem.mutex);
+ − 254
return SQLITE_OK;
+ − 255
}
+ − 256
+ − 257
/*
+ − 258
** Trigger the alarm
+ − 259
*/
+ − 260
static void sqlite3MemsysAlarm(int nByte){
+ − 261
void (*xCallback)(void*,sqlite3_int64,int);
+ − 262
sqlite3_int64 nowUsed;
+ − 263
void *pArg;
+ − 264
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
+ − 265
mem.alarmBusy = 1;
+ − 266
xCallback = mem.alarmCallback;
+ − 267
nowUsed = mem.nowUsed;
+ − 268
pArg = mem.alarmArg;
+ − 269
sqlite3_mutex_leave(mem.mutex);
+ − 270
xCallback(pArg, nowUsed, nByte);
+ − 271
sqlite3_mutex_enter(mem.mutex);
+ − 272
mem.alarmBusy = 0;
+ − 273
}
+ − 274
+ − 275
/*
+ − 276
** Allocate nBytes of memory
+ − 277
*/
+ − 278
static void *memsys4Malloc(int nBytes){
+ − 279
sqlite3_int64 *p = 0;
+ − 280
if( mem.alarmCallback!=0
+ − 281
&& mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){
+ − 282
sqlite3MemsysAlarm(nBytes);
+ − 283
}
+ − 284
if( (p = mmapAlloc(nBytes))==0 ){
+ − 285
p = malloc(nBytes+8);
+ − 286
if( p==0 ){
+ − 287
sqlite3MemsysAlarm(nBytes);
+ − 288
p = malloc(nBytes+8);
+ − 289
}
+ − 290
if( p ){
+ − 291
p[0] = nBytes;
+ − 292
p++;
+ − 293
mem.nowUsed += nBytes;
+ − 294
if( mem.nowUsed>mem.mxUsed ){
+ − 295
mem.mxUsed = mem.nowUsed;
+ − 296
}
+ − 297
}
+ − 298
}
+ − 299
return (void*)p;
+ − 300
}
+ − 301
+ − 302
/*
+ − 303
** Return the size of a memory allocation
+ − 304
*/
+ − 305
static int memsys4Size(void *pPrior){
+ − 306
char *z = (char*)pPrior;
+ − 307
int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0;
+ − 308
int nByte;
+ − 309
if( idx>=1 && idx<mem.nPage ){
+ − 310
nByte = mem.szPage;
+ − 311
}else{
+ − 312
sqlite3_int64 *p = pPrior;
+ − 313
p--;
+ − 314
nByte = (int)*p;
+ − 315
}
+ − 316
return nByte;
+ − 317
}
+ − 318
+ − 319
/*
+ − 320
** Free memory.
+ − 321
*/
+ − 322
static void memsys4Free(void *pPrior){
+ − 323
sqlite3_int64 *p;
+ − 324
int nByte;
+ − 325
if( mmapFree(pPrior)==0 ){
+ − 326
p = pPrior;
+ − 327
p--;
+ − 328
nByte = (int)*p;
+ − 329
mem.nowUsed -= nByte;
+ − 330
free(p);
+ − 331
if( mem.nowUsed==0 ){
+ − 332
mmapUnmap();
+ − 333
}
+ − 334
}
+ − 335
}
+ − 336
+ − 337
/*
+ − 338
** Allocate nBytes of memory
+ − 339
*/
+ − 340
void *sqlite3_malloc(int nBytes){
+ − 341
sqlite3_int64 *p = 0;
+ − 342
if( nBytes>0 ){
+ − 343
memsys4Enter();
+ − 344
p = memsys4Malloc(nBytes);
+ − 345
sqlite3_mutex_leave(mem.mutex);
+ − 346
}
+ − 347
return (void*)p;
+ − 348
}
+ − 349
+ − 350
/*
+ − 351
** Free memory.
+ − 352
*/
+ − 353
void sqlite3_free(void *pPrior){
+ − 354
if( pPrior==0 ){
+ − 355
return;
+ − 356
}
+ − 357
assert( mem.mutex!=0 );
+ − 358
sqlite3_mutex_enter(mem.mutex);
+ − 359
memsys4Free(pPrior);
+ − 360
sqlite3_mutex_leave(mem.mutex);
+ − 361
}
+ − 362
+ − 363
+ − 364
+ − 365
/*
+ − 366
** Change the size of an existing memory allocation
+ − 367
*/
+ − 368
void *sqlite3_realloc(void *pPrior, int nBytes){
+ − 369
int nOld;
+ − 370
sqlite3_int64 *p;
+ − 371
if( pPrior==0 ){
+ − 372
return sqlite3_malloc(nBytes);
+ − 373
}
+ − 374
if( nBytes<=0 ){
+ − 375
sqlite3_free(pPrior);
+ − 376
return 0;
+ − 377
}
+ − 378
nOld = memsys4Size(pPrior);
+ − 379
if( nBytes<=nOld && nBytes>=nOld-128 ){
+ − 380
return pPrior;
+ − 381
}
+ − 382
assert( mem.mutex!=0 );
+ − 383
sqlite3_mutex_enter(mem.mutex);
+ − 384
p = memsys4Malloc(nBytes);
+ − 385
if( p ){
+ − 386
if( nOld<nBytes ){
+ − 387
memcpy(p, pPrior, nOld);
+ − 388
}else{
+ − 389
memcpy(p, pPrior, nBytes);
+ − 390
}
+ − 391
memsys4Free(pPrior);
+ − 392
}
+ − 393
assert( mem.mutex!=0 );
+ − 394
sqlite3_mutex_leave(mem.mutex);
+ − 395
return (void*)p;
+ − 396
}
+ − 397
+ − 398
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */