2
|
1 |
/*
|
|
2 |
** 2002 February 23
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains the C functions that implement various SQL
|
|
13 |
** functions of SQLite.
|
|
14 |
**
|
|
15 |
** There is only one exported symbol in this file - the function
|
|
16 |
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
|
|
17 |
** All other code has file scope.
|
|
18 |
**
|
|
19 |
** $Id: func.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
20 |
*/
|
|
21 |
#include "sqliteInt.h"
|
|
22 |
#include <ctype.h>
|
|
23 |
#include <stdlib.h>
|
|
24 |
#include <assert.h>
|
|
25 |
#include "vdbeInt.h"
|
|
26 |
|
|
27 |
|
|
28 |
/*
|
|
29 |
** Return the collating function associated with a function.
|
|
30 |
*/
|
|
31 |
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
|
|
32 |
return context->pColl;
|
|
33 |
}
|
|
34 |
|
|
35 |
/*
|
|
36 |
** Implementation of the non-aggregate min() and max() functions
|
|
37 |
*/
|
|
38 |
static void minmaxFunc(
|
|
39 |
sqlite3_context *context,
|
|
40 |
int argc,
|
|
41 |
sqlite3_value **argv
|
|
42 |
){
|
|
43 |
int i;
|
|
44 |
int mask; /* 0 for min() or 0xffffffff for max() */
|
|
45 |
int iBest;
|
|
46 |
CollSeq *pColl;
|
|
47 |
|
|
48 |
if( argc==0 ) return;
|
|
49 |
mask = sqlite3_user_data(context)==0 ? 0 : -1;
|
|
50 |
pColl = sqlite3GetFuncCollSeq(context);
|
|
51 |
assert( pColl );
|
|
52 |
assert( mask==-1 || mask==0 );
|
|
53 |
iBest = 0;
|
|
54 |
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
55 |
for(i=1; i<argc; i++){
|
|
56 |
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
|
|
57 |
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
|
|
58 |
iBest = i;
|
|
59 |
}
|
|
60 |
}
|
|
61 |
sqlite3_result_value(context, argv[iBest]);
|
|
62 |
}
|
|
63 |
|
|
64 |
/*
|
|
65 |
** Return the type of the argument.
|
|
66 |
*/
|
|
67 |
static void typeofFunc(
|
|
68 |
sqlite3_context *context,
|
|
69 |
int argc,
|
|
70 |
sqlite3_value **argv
|
|
71 |
){
|
|
72 |
const char *z = 0;
|
|
73 |
switch( sqlite3_value_type(argv[0]) ){
|
|
74 |
case SQLITE_NULL: z = "null"; break;
|
|
75 |
case SQLITE_INTEGER: z = "integer"; break;
|
|
76 |
case SQLITE_TEXT: z = "text"; break;
|
|
77 |
case SQLITE_FLOAT: z = "real"; break;
|
|
78 |
case SQLITE_BLOB: z = "blob"; break;
|
|
79 |
}
|
|
80 |
sqlite3_result_text(context, z, -1, SQLITE_STATIC);
|
|
81 |
}
|
|
82 |
|
|
83 |
|
|
84 |
/*
|
|
85 |
** Implementation of the length() function
|
|
86 |
*/
|
|
87 |
static void lengthFunc(
|
|
88 |
sqlite3_context *context,
|
|
89 |
int argc,
|
|
90 |
sqlite3_value **argv
|
|
91 |
){
|
|
92 |
int len;
|
|
93 |
|
|
94 |
assert( argc==1 );
|
|
95 |
switch( sqlite3_value_type(argv[0]) ){
|
|
96 |
case SQLITE_BLOB:
|
|
97 |
case SQLITE_INTEGER:
|
|
98 |
case SQLITE_FLOAT: {
|
|
99 |
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
100 |
break;
|
|
101 |
}
|
|
102 |
case SQLITE_TEXT: {
|
|
103 |
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
104 |
if( z==0 ) return;
|
|
105 |
len = 0;
|
|
106 |
while( *z ){
|
|
107 |
len++;
|
|
108 |
SQLITE_SKIP_UTF8(z);
|
|
109 |
}
|
|
110 |
sqlite3_result_int(context, len);
|
|
111 |
break;
|
|
112 |
}
|
|
113 |
default: {
|
|
114 |
sqlite3_result_null(context);
|
|
115 |
break;
|
|
116 |
}
|
|
117 |
}
|
|
118 |
}
|
|
119 |
|
|
120 |
/*
|
|
121 |
** Implementation of the abs() function
|
|
122 |
*/
|
|
123 |
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
124 |
assert( argc==1 );
|
|
125 |
switch( sqlite3_value_type(argv[0]) ){
|
|
126 |
case SQLITE_INTEGER: {
|
|
127 |
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
128 |
if( iVal<0 ){
|
|
129 |
if( (iVal<<1)==0 ){
|
|
130 |
sqlite3_result_error(context, "integer overflow", -1);
|
|
131 |
return;
|
|
132 |
}
|
|
133 |
iVal = -iVal;
|
|
134 |
}
|
|
135 |
sqlite3_result_int64(context, iVal);
|
|
136 |
break;
|
|
137 |
}
|
|
138 |
case SQLITE_NULL: {
|
|
139 |
sqlite3_result_null(context);
|
|
140 |
break;
|
|
141 |
}
|
|
142 |
default: {
|
|
143 |
double rVal = sqlite3_value_double(argv[0]);
|
|
144 |
if( rVal<0 ) rVal = -rVal;
|
|
145 |
sqlite3_result_double(context, rVal);
|
|
146 |
break;
|
|
147 |
}
|
|
148 |
}
|
|
149 |
}
|
|
150 |
|
|
151 |
/*
|
|
152 |
** Implementation of the substr() function.
|
|
153 |
**
|
|
154 |
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
|
|
155 |
** p1 is 1-indexed. So substr(x,1,1) returns the first character
|
|
156 |
** of x. If x is text, then we actually count UTF-8 characters.
|
|
157 |
** If x is a blob, then we count bytes.
|
|
158 |
**
|
|
159 |
** If p1 is negative, then we begin abs(p1) from the end of x[].
|
|
160 |
*/
|
|
161 |
static void substrFunc(
|
|
162 |
sqlite3_context *context,
|
|
163 |
int argc,
|
|
164 |
sqlite3_value **argv
|
|
165 |
){
|
|
166 |
const unsigned char *z;
|
|
167 |
const unsigned char *z2;
|
|
168 |
int len;
|
|
169 |
int p0type;
|
|
170 |
i64 p1, p2;
|
|
171 |
|
|
172 |
assert( argc==3 || argc==2 );
|
|
173 |
p0type = sqlite3_value_type(argv[0]);
|
|
174 |
if( p0type==SQLITE_BLOB ){
|
|
175 |
len = sqlite3_value_bytes(argv[0]);
|
|
176 |
z = (const unsigned char*)sqlite3_value_blob(argv[0]);
|
|
177 |
if( z==0 ) return;
|
|
178 |
assert( len==sqlite3_value_bytes(argv[0]) );
|
|
179 |
}else{
|
|
180 |
z = sqlite3_value_text(argv[0]);
|
|
181 |
if( z==0 ) return;
|
|
182 |
len = 0;
|
|
183 |
for(z2=z; *z2; len++){
|
|
184 |
SQLITE_SKIP_UTF8(z2);
|
|
185 |
}
|
|
186 |
}
|
|
187 |
p1 = sqlite3_value_int(argv[1]);
|
|
188 |
if( argc==3 ){
|
|
189 |
p2 = sqlite3_value_int(argv[2]);
|
|
190 |
}else{
|
|
191 |
p2 = SQLITE_MAX_LENGTH;
|
|
192 |
}
|
|
193 |
if( p1<0 ){
|
|
194 |
p1 += len;
|
|
195 |
if( p1<0 ){
|
|
196 |
p2 += p1;
|
|
197 |
p1 = 0;
|
|
198 |
}
|
|
199 |
}else if( p1>0 ){
|
|
200 |
p1--;
|
|
201 |
}
|
|
202 |
if( p1+p2>len ){
|
|
203 |
p2 = len-p1;
|
|
204 |
}
|
|
205 |
if( p0type!=SQLITE_BLOB ){
|
|
206 |
while( *z && p1 ){
|
|
207 |
SQLITE_SKIP_UTF8(z);
|
|
208 |
p1--;
|
|
209 |
}
|
|
210 |
for(z2=z; *z2 && p2; p2--){
|
|
211 |
SQLITE_SKIP_UTF8(z2);
|
|
212 |
}
|
|
213 |
sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
|
|
214 |
}else{
|
|
215 |
if( p2<0 ) p2 = 0;
|
|
216 |
sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
|
|
217 |
}
|
|
218 |
}
|
|
219 |
|
|
220 |
/*
|
|
221 |
** Implementation of the round() function
|
|
222 |
*/
|
|
223 |
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
224 |
int n = 0;
|
|
225 |
double r;
|
|
226 |
char zBuf[500]; /* larger than the %f representation of the largest double */
|
|
227 |
assert( argc==1 || argc==2 );
|
|
228 |
if( argc==2 ){
|
|
229 |
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
|
|
230 |
n = sqlite3_value_int(argv[1]);
|
|
231 |
if( n>30 ) n = 30;
|
|
232 |
if( n<0 ) n = 0;
|
|
233 |
}
|
|
234 |
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
235 |
r = sqlite3_value_double(argv[0]);
|
|
236 |
sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
|
|
237 |
sqlite3AtoF(zBuf, &r);
|
|
238 |
sqlite3_result_double(context, r);
|
|
239 |
}
|
|
240 |
|
|
241 |
/*
|
|
242 |
** Allocate nByte bytes of space using sqlite3_malloc(). If the
|
|
243 |
** allocation fails, call sqlite3_result_error_nomem() to notify
|
|
244 |
** the database handle that malloc() has failed.
|
|
245 |
*/
|
|
246 |
static void *contextMalloc(sqlite3_context *context, int nByte){
|
|
247 |
char *z = (char*)sqlite3_malloc(nByte);
|
|
248 |
if( !z && nByte>0 ){
|
|
249 |
sqlite3_result_error_nomem(context);
|
|
250 |
}
|
|
251 |
return z;
|
|
252 |
}
|
|
253 |
|
|
254 |
/*
|
|
255 |
** Implementation of the upper() and lower() SQL functions.
|
|
256 |
*/
|
|
257 |
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
258 |
char *z1;
|
|
259 |
const char *z2;
|
|
260 |
int i, n;
|
|
261 |
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
262 |
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
263 |
n = sqlite3_value_bytes(argv[0]);
|
|
264 |
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
265 |
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
266 |
if( z2 ){
|
|
267 |
z1 = (char*)contextMalloc(context, n+1);
|
|
268 |
if( z1 ){
|
|
269 |
memcpy(z1, z2, n+1);
|
|
270 |
for(i=0; z1[i]; i++){
|
|
271 |
z1[i] = toupper(z1[i]);
|
|
272 |
}
|
|
273 |
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
|
274 |
}
|
|
275 |
}
|
|
276 |
}
|
|
277 |
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
278 |
char *z1;
|
|
279 |
const char *z2;
|
|
280 |
int i, n;
|
|
281 |
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
282 |
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
283 |
n = sqlite3_value_bytes(argv[0]);
|
|
284 |
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
285 |
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
286 |
if( z2 ){
|
|
287 |
z1 = (char*)contextMalloc(context, n+1);
|
|
288 |
if( z1 ){
|
|
289 |
memcpy(z1, z2, n+1);
|
|
290 |
for(i=0; z1[i]; i++){
|
|
291 |
z1[i] = tolower(z1[i]);
|
|
292 |
}
|
|
293 |
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
|
294 |
}
|
|
295 |
}
|
|
296 |
}
|
|
297 |
|
|
298 |
/*
|
|
299 |
** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
|
|
300 |
** All three do the same thing. They return the first non-NULL
|
|
301 |
** argument.
|
|
302 |
*/
|
|
303 |
static void ifnullFunc(
|
|
304 |
sqlite3_context *context,
|
|
305 |
int argc,
|
|
306 |
sqlite3_value **argv
|
|
307 |
){
|
|
308 |
int i;
|
|
309 |
for(i=0; i<argc; i++){
|
|
310 |
if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
|
|
311 |
sqlite3_result_value(context, argv[i]);
|
|
312 |
break;
|
|
313 |
}
|
|
314 |
}
|
|
315 |
}
|
|
316 |
|
|
317 |
/*
|
|
318 |
** Implementation of random(). Return a random integer.
|
|
319 |
*/
|
|
320 |
static void randomFunc(
|
|
321 |
sqlite3_context *context,
|
|
322 |
int argc,
|
|
323 |
sqlite3_value **argv
|
|
324 |
){
|
|
325 |
sqlite_int64 r;
|
|
326 |
sqlite3Randomness(sizeof(r), &r);
|
|
327 |
if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
|
|
328 |
/* can always do abs() of the result */
|
|
329 |
sqlite3_result_int64(context, r);
|
|
330 |
}
|
|
331 |
|
|
332 |
/*
|
|
333 |
** Implementation of randomblob(N). Return a random blob
|
|
334 |
** that is N bytes long.
|
|
335 |
*/
|
|
336 |
static void randomBlob(
|
|
337 |
sqlite3_context *context,
|
|
338 |
int argc,
|
|
339 |
sqlite3_value **argv
|
|
340 |
){
|
|
341 |
int n;
|
|
342 |
unsigned char *p;
|
|
343 |
assert( argc==1 );
|
|
344 |
n = sqlite3_value_int(argv[0]);
|
|
345 |
if( n<1 ){
|
|
346 |
n = 1;
|
|
347 |
}
|
|
348 |
if( n>SQLITE_MAX_LENGTH ){
|
|
349 |
sqlite3_result_error_toobig(context);
|
|
350 |
return;
|
|
351 |
}
|
|
352 |
p = (unsigned char*)contextMalloc(context, n);
|
|
353 |
if( p ){
|
|
354 |
sqlite3Randomness(n, p);
|
|
355 |
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
|
|
356 |
}
|
|
357 |
}
|
|
358 |
|
|
359 |
/*
|
|
360 |
** Implementation of the last_insert_rowid() SQL function. The return
|
|
361 |
** value is the same as the sqlite3_last_insert_rowid() API function.
|
|
362 |
*/
|
|
363 |
static void last_insert_rowid(
|
|
364 |
sqlite3_context *context,
|
|
365 |
int arg,
|
|
366 |
sqlite3_value **argv
|
|
367 |
){
|
|
368 |
sqlite3 *db = (sqlite3*)sqlite3_user_data(context);
|
|
369 |
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
|
370 |
}
|
|
371 |
|
|
372 |
/*
|
|
373 |
** Implementation of the changes() SQL function. The return value is the
|
|
374 |
** same as the sqlite3_changes() API function.
|
|
375 |
*/
|
|
376 |
static void changes(
|
|
377 |
sqlite3_context *context,
|
|
378 |
int arg,
|
|
379 |
sqlite3_value **argv
|
|
380 |
){
|
|
381 |
sqlite3 *db = (sqlite3*)sqlite3_user_data(context);
|
|
382 |
sqlite3_result_int(context, sqlite3_changes(db));
|
|
383 |
}
|
|
384 |
|
|
385 |
/*
|
|
386 |
** Implementation of the total_changes() SQL function. The return value is
|
|
387 |
** the same as the sqlite3_total_changes() API function.
|
|
388 |
*/
|
|
389 |
static void total_changes(
|
|
390 |
sqlite3_context *context,
|
|
391 |
int arg,
|
|
392 |
sqlite3_value **argv
|
|
393 |
){
|
|
394 |
sqlite3 *db = (sqlite3*)sqlite3_user_data(context);
|
|
395 |
sqlite3_result_int(context, sqlite3_total_changes(db));
|
|
396 |
}
|
|
397 |
|
|
398 |
/*
|
|
399 |
** A structure defining how to do GLOB-style comparisons.
|
|
400 |
*/
|
|
401 |
struct compareInfo {
|
|
402 |
u8 matchAll;
|
|
403 |
u8 matchOne;
|
|
404 |
u8 matchSet;
|
|
405 |
u8 noCase;
|
|
406 |
};
|
|
407 |
|
|
408 |
/*
|
|
409 |
** For LIKE and GLOB matching on EBCDIC machines, assume that every
|
|
410 |
** character is exactly one byte in size. Also, all characters are
|
|
411 |
** able to participate in upper-case-to-lower-case mappings in EBCDIC
|
|
412 |
** whereas only characters less than 0x80 do in ASCII.
|
|
413 |
*/
|
|
414 |
#if defined(SQLITE_EBCDIC)
|
|
415 |
# define sqlite3Utf8Read(A,B,C) (*(A++))
|
|
416 |
# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
|
|
417 |
#else
|
|
418 |
# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
|
|
419 |
#endif
|
|
420 |
|
|
421 |
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
|
|
422 |
/* The correct SQL-92 behavior is for the LIKE operator to ignore
|
|
423 |
** case. Thus 'a' LIKE 'A' would be true. */
|
|
424 |
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
|
|
425 |
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
|
|
426 |
** is case sensitive causing 'a' LIKE 'A' to be false */
|
|
427 |
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
|
|
428 |
|
|
429 |
/*
|
|
430 |
** Compare two UTF-8 strings for equality where the first string can
|
|
431 |
** potentially be a "glob" expression. Return true (1) if they
|
|
432 |
** are the same and false (0) if they are different.
|
|
433 |
**
|
|
434 |
** Globbing rules:
|
|
435 |
**
|
|
436 |
** '*' Matches any sequence of zero or more characters.
|
|
437 |
**
|
|
438 |
** '?' Matches exactly one character.
|
|
439 |
**
|
|
440 |
** [...] Matches one character from the enclosed list of
|
|
441 |
** characters.
|
|
442 |
**
|
|
443 |
** [^...] Matches one character not in the enclosed list.
|
|
444 |
**
|
|
445 |
** With the [...] and [^...] matching, a ']' character can be included
|
|
446 |
** in the list by making it the first character after '[' or '^'. A
|
|
447 |
** range of characters can be specified using '-'. Example:
|
|
448 |
** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
449 |
** it the last character in the list.
|
|
450 |
**
|
|
451 |
** This routine is usually quick, but can be N**2 in the worst case.
|
|
452 |
**
|
|
453 |
** Hints: to match '*' or '?', put them in "[]". Like this:
|
|
454 |
**
|
|
455 |
** abc[*]xyz Matches "abc*xyz" only
|
|
456 |
*/
|
|
457 |
static int patternCompare(
|
|
458 |
const u8 *zPattern, /* The glob pattern */
|
|
459 |
const u8 *zString, /* The string to compare against the glob */
|
|
460 |
const struct compareInfo *pInfo, /* Information about how to do the compare */
|
|
461 |
const int esc /* The escape character */
|
|
462 |
){
|
|
463 |
int c, c2;
|
|
464 |
int invert;
|
|
465 |
int seen;
|
|
466 |
u8 matchOne = pInfo->matchOne;
|
|
467 |
u8 matchAll = pInfo->matchAll;
|
|
468 |
u8 matchSet = pInfo->matchSet;
|
|
469 |
u8 noCase = pInfo->noCase;
|
|
470 |
int prevEscape = 0; /* True if the previous character was 'escape' */
|
|
471 |
|
|
472 |
while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
|
|
473 |
if( !prevEscape && c==matchAll ){
|
|
474 |
while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
|
|
475 |
|| c == matchOne ){
|
|
476 |
if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
|
|
477 |
return 0;
|
|
478 |
}
|
|
479 |
}
|
|
480 |
if( c==0 ){
|
|
481 |
return 1;
|
|
482 |
}else if( c==esc ){
|
|
483 |
c = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
484 |
if( c==0 ){
|
|
485 |
return 0;
|
|
486 |
}
|
|
487 |
}else if( c==matchSet ){
|
|
488 |
assert( esc==0 ); /* This is GLOB, not LIKE */
|
|
489 |
assert( matchSet<0x80 ); /* '[' is a single-byte character */
|
|
490 |
while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
|
|
491 |
SQLITE_SKIP_UTF8(zString);
|
|
492 |
}
|
|
493 |
return *zString!=0;
|
|
494 |
}
|
|
495 |
while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
|
|
496 |
if( noCase ){
|
|
497 |
GlogUpperToLower(c2);
|
|
498 |
GlogUpperToLower(c);
|
|
499 |
while( c2 != 0 && c2 != c ){
|
|
500 |
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
501 |
GlogUpperToLower(c2);
|
|
502 |
}
|
|
503 |
}else{
|
|
504 |
while( c2 != 0 && c2 != c ){
|
|
505 |
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
506 |
}
|
|
507 |
}
|
|
508 |
if( c2==0 ) return 0;
|
|
509 |
if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
|
|
510 |
}
|
|
511 |
return 0;
|
|
512 |
}else if( !prevEscape && c==matchOne ){
|
|
513 |
if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
|
|
514 |
return 0;
|
|
515 |
}
|
|
516 |
}else if( c==matchSet ){
|
|
517 |
int prior_c = 0;
|
|
518 |
assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
|
|
519 |
seen = 0;
|
|
520 |
invert = 0;
|
|
521 |
c = sqlite3Utf8Read(zString, 0, &zString);
|
|
522 |
if( c==0 ) return 0;
|
|
523 |
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
524 |
if( c2=='^' ){
|
|
525 |
invert = 1;
|
|
526 |
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
527 |
}
|
|
528 |
if( c2==']' ){
|
|
529 |
if( c==']' ) seen = 1;
|
|
530 |
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
531 |
}
|
|
532 |
while( c2 && c2!=']' ){
|
|
533 |
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
|
|
534 |
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
535 |
if( c>=prior_c && c<=c2 ) seen = 1;
|
|
536 |
prior_c = 0;
|
|
537 |
}else{
|
|
538 |
if( c==c2 ){
|
|
539 |
seen = 1;
|
|
540 |
}
|
|
541 |
prior_c = c2;
|
|
542 |
}
|
|
543 |
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
544 |
}
|
|
545 |
if( c2==0 || (seen ^ invert)==0 ){
|
|
546 |
return 0;
|
|
547 |
}
|
|
548 |
}else if( esc==c && !prevEscape ){
|
|
549 |
prevEscape = 1;
|
|
550 |
}else{
|
|
551 |
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
552 |
if( noCase ){
|
|
553 |
GlogUpperToLower(c);
|
|
554 |
GlogUpperToLower(c2);
|
|
555 |
}
|
|
556 |
if( c!=c2 ){
|
|
557 |
return 0;
|
|
558 |
}
|
|
559 |
prevEscape = 0;
|
|
560 |
}
|
|
561 |
}
|
|
562 |
return *zString==0;
|
|
563 |
}
|
|
564 |
|
|
565 |
/*
|
|
566 |
** Count the number of times that the LIKE operator (or GLOB which is
|
|
567 |
** just a variation of LIKE) gets called. This is used for testing
|
|
568 |
** only.
|
|
569 |
*/
|
|
570 |
#ifdef SQLITE_TEST
|
|
571 |
int sqlite3_like_count = 0;
|
|
572 |
#endif
|
|
573 |
|
|
574 |
|
|
575 |
/*
|
|
576 |
** Implementation of the like() SQL function. This function implements
|
|
577 |
** the build-in LIKE operator. The first argument to the function is the
|
|
578 |
** pattern and the second argument is the string. So, the SQL statements:
|
|
579 |
**
|
|
580 |
** A LIKE B
|
|
581 |
**
|
|
582 |
** is implemented as like(B,A).
|
|
583 |
**
|
|
584 |
** This same function (with a different compareInfo structure) computes
|
|
585 |
** the GLOB operator.
|
|
586 |
*/
|
|
587 |
static void likeFunc(
|
|
588 |
sqlite3_context *context,
|
|
589 |
int argc,
|
|
590 |
sqlite3_value **argv
|
|
591 |
){
|
|
592 |
const unsigned char *zA, *zB;
|
|
593 |
int escape = 0;
|
|
594 |
|
|
595 |
zB = sqlite3_value_text(argv[0]);
|
|
596 |
zA = sqlite3_value_text(argv[1]);
|
|
597 |
|
|
598 |
/* Limit the length of the LIKE or GLOB pattern to avoid problems
|
|
599 |
** of deep recursion and N*N behavior in patternCompare().
|
|
600 |
*/
|
|
601 |
if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
|
|
602 |
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
|
|
603 |
return;
|
|
604 |
}
|
|
605 |
assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
|
|
606 |
|
|
607 |
if( argc==3 ){
|
|
608 |
/* The escape character string must consist of a single UTF-8 character.
|
|
609 |
** Otherwise, return an error.
|
|
610 |
*/
|
|
611 |
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
|
|
612 |
if( zEsc==0 ) return;
|
|
613 |
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
|
|
614 |
sqlite3_result_error(context,
|
|
615 |
"ESCAPE expression must be a single character", -1);
|
|
616 |
return;
|
|
617 |
}
|
|
618 |
escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
|
|
619 |
}
|
|
620 |
if( zA && zB ){
|
|
621 |
compareInfo *pInfo = (compareInfo*)sqlite3_user_data(context);
|
|
622 |
#ifdef SQLITE_TEST
|
|
623 |
sqlite3_like_count++;
|
|
624 |
#endif
|
|
625 |
|
|
626 |
sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
|
|
627 |
}
|
|
628 |
}
|
|
629 |
|
|
630 |
/*
|
|
631 |
** Implementation of the NULLIF(x,y) function. The result is the first
|
|
632 |
** argument if the arguments are different. The result is NULL if the
|
|
633 |
** arguments are equal to each other.
|
|
634 |
*/
|
|
635 |
static void nullifFunc(
|
|
636 |
sqlite3_context *context,
|
|
637 |
int argc,
|
|
638 |
sqlite3_value **argv
|
|
639 |
){
|
|
640 |
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
641 |
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
|
642 |
sqlite3_result_value(context, argv[0]);
|
|
643 |
}
|
|
644 |
}
|
|
645 |
|
|
646 |
/*
|
|
647 |
** Implementation of the VERSION(*) function. The result is the version
|
|
648 |
** of the SQLite library that is running.
|
|
649 |
*/
|
|
650 |
static void versionFunc(
|
|
651 |
sqlite3_context *context,
|
|
652 |
int argc,
|
|
653 |
sqlite3_value **argv
|
|
654 |
){
|
|
655 |
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
|
|
656 |
}
|
|
657 |
|
|
658 |
/* Array for converting from half-bytes (nybbles) into ASCII hex
|
|
659 |
** digits. */
|
|
660 |
static const char hexdigits[] = {
|
|
661 |
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
662 |
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
663 |
};
|
|
664 |
|
|
665 |
/*
|
|
666 |
** EXPERIMENTAL - This is not an official function. The interface may
|
|
667 |
** change. This function may disappear. Do not write code that depends
|
|
668 |
** on this function.
|
|
669 |
**
|
|
670 |
** Implementation of the QUOTE() function. This function takes a single
|
|
671 |
** argument. If the argument is numeric, the return value is the same as
|
|
672 |
** the argument. If the argument is NULL, the return value is the string
|
|
673 |
** "NULL". Otherwise, the argument is enclosed in single quotes with
|
|
674 |
** single-quote escapes.
|
|
675 |
*/
|
|
676 |
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
677 |
if( argc<1 ) return;
|
|
678 |
switch( sqlite3_value_type(argv[0]) ){
|
|
679 |
case SQLITE_NULL: {
|
|
680 |
sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
|
|
681 |
break;
|
|
682 |
}
|
|
683 |
case SQLITE_INTEGER:
|
|
684 |
case SQLITE_FLOAT: {
|
|
685 |
sqlite3_result_value(context, argv[0]);
|
|
686 |
break;
|
|
687 |
}
|
|
688 |
case SQLITE_BLOB: {
|
|
689 |
char *zText = 0;
|
|
690 |
char const *zBlob = (const char*)sqlite3_value_blob(argv[0]);
|
|
691 |
int nBlob = sqlite3_value_bytes(argv[0]);
|
|
692 |
assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
693 |
|
|
694 |
if( 2*nBlob+4>SQLITE_MAX_LENGTH ){
|
|
695 |
sqlite3_result_error_toobig(context);
|
|
696 |
return;
|
|
697 |
}
|
|
698 |
zText = (char *)contextMalloc(context, (2*nBlob)+4);
|
|
699 |
if( zText ){
|
|
700 |
int i;
|
|
701 |
for(i=0; i<nBlob; i++){
|
|
702 |
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
|
703 |
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
|
|
704 |
}
|
|
705 |
zText[(nBlob*2)+2] = '\'';
|
|
706 |
zText[(nBlob*2)+3] = '\0';
|
|
707 |
zText[0] = 'X';
|
|
708 |
zText[1] = '\'';
|
|
709 |
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
|
710 |
sqlite3_free(zText);
|
|
711 |
}
|
|
712 |
break;
|
|
713 |
}
|
|
714 |
case SQLITE_TEXT: {
|
|
715 |
int i,j;
|
|
716 |
u64 n;
|
|
717 |
const unsigned char *zArg = sqlite3_value_text(argv[0]);
|
|
718 |
char *z;
|
|
719 |
|
|
720 |
if( zArg==0 ) return;
|
|
721 |
for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
|
|
722 |
if( i+n+3>SQLITE_MAX_LENGTH ){
|
|
723 |
sqlite3_result_error_toobig(context);
|
|
724 |
return;
|
|
725 |
}
|
|
726 |
z = (char*)contextMalloc(context, i+n+3);
|
|
727 |
if( z ){
|
|
728 |
z[0] = '\'';
|
|
729 |
for(i=0, j=1; zArg[i]; i++){
|
|
730 |
z[j++] = zArg[i];
|
|
731 |
if( zArg[i]=='\'' ){
|
|
732 |
z[j++] = '\'';
|
|
733 |
}
|
|
734 |
}
|
|
735 |
z[j++] = '\'';
|
|
736 |
z[j] = 0;
|
|
737 |
sqlite3_result_text(context, z, j, sqlite3_free);
|
|
738 |
}
|
|
739 |
}
|
|
740 |
}
|
|
741 |
}
|
|
742 |
|
|
743 |
/*
|
|
744 |
** The hex() function. Interpret the argument as a blob. Return
|
|
745 |
** a hexadecimal rendering as text.
|
|
746 |
*/
|
|
747 |
static void hexFunc(
|
|
748 |
sqlite3_context *context,
|
|
749 |
int argc,
|
|
750 |
sqlite3_value **argv
|
|
751 |
){
|
|
752 |
int i, n;
|
|
753 |
const unsigned char *pBlob;
|
|
754 |
char *zHex, *z;
|
|
755 |
assert( argc==1 );
|
|
756 |
pBlob = (const unsigned char*)sqlite3_value_blob(argv[0]);
|
|
757 |
n = sqlite3_value_bytes(argv[0]);
|
|
758 |
if( n*2+1>SQLITE_MAX_LENGTH ){
|
|
759 |
sqlite3_result_error_toobig(context);
|
|
760 |
return;
|
|
761 |
}
|
|
762 |
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
763 |
z = zHex = (char*)contextMalloc(context, n*2 + 1);
|
|
764 |
if( zHex ){
|
|
765 |
for(i=0; i<n; i++, pBlob++){
|
|
766 |
unsigned char c = *pBlob;
|
|
767 |
*(z++) = hexdigits[(c>>4)&0xf];
|
|
768 |
*(z++) = hexdigits[c&0xf];
|
|
769 |
}
|
|
770 |
*z = 0;
|
|
771 |
sqlite3_result_text(context, zHex, n*2, sqlite3_free);
|
|
772 |
}
|
|
773 |
}
|
|
774 |
|
|
775 |
/*
|
|
776 |
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
|
|
777 |
*/
|
|
778 |
static void zeroblobFunc(
|
|
779 |
sqlite3_context *context,
|
|
780 |
int argc,
|
|
781 |
sqlite3_value **argv
|
|
782 |
){
|
|
783 |
i64 n;
|
|
784 |
assert( argc==1 );
|
|
785 |
n = sqlite3_value_int64(argv[0]);
|
|
786 |
if( n>SQLITE_MAX_LENGTH ){
|
|
787 |
sqlite3_result_error_toobig(context);
|
|
788 |
}else{
|
|
789 |
sqlite3_result_zeroblob(context, n);
|
|
790 |
}
|
|
791 |
}
|
|
792 |
|
|
793 |
/*
|
|
794 |
** The replace() function. Three arguments are all strings: call
|
|
795 |
** them A, B, and C. The result is also a string which is derived
|
|
796 |
** from A by replacing every occurance of B with C. The match
|
|
797 |
** must be exact. Collating sequences are not used.
|
|
798 |
*/
|
|
799 |
static void replaceFunc(
|
|
800 |
sqlite3_context *context,
|
|
801 |
int argc,
|
|
802 |
sqlite3_value **argv
|
|
803 |
){
|
|
804 |
const unsigned char *zStr; /* The input string A */
|
|
805 |
const unsigned char *zPattern; /* The pattern string B */
|
|
806 |
const unsigned char *zRep; /* The replacement string C */
|
|
807 |
unsigned char *zOut; /* The output */
|
|
808 |
int nStr; /* Size of zStr */
|
|
809 |
int nPattern; /* Size of zPattern */
|
|
810 |
int nRep; /* Size of zRep */
|
|
811 |
i64 nOut; /* Maximum size of zOut */
|
|
812 |
int loopLimit; /* Last zStr[] that might match zPattern[] */
|
|
813 |
int i, j; /* Loop counters */
|
|
814 |
|
|
815 |
assert( argc==3 );
|
|
816 |
zStr = sqlite3_value_text(argv[0]);
|
|
817 |
if( zStr==0 ) return;
|
|
818 |
nStr = sqlite3_value_bytes(argv[0]);
|
|
819 |
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
|
|
820 |
zPattern = sqlite3_value_text(argv[1]);
|
|
821 |
if( zPattern==0 || zPattern[0]==0 ) return;
|
|
822 |
nPattern = sqlite3_value_bytes(argv[1]);
|
|
823 |
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
|
|
824 |
zRep = sqlite3_value_text(argv[2]);
|
|
825 |
if( zRep==0 ) return;
|
|
826 |
nRep = sqlite3_value_bytes(argv[2]);
|
|
827 |
assert( zRep==sqlite3_value_text(argv[2]) );
|
|
828 |
nOut = nStr + 1;
|
|
829 |
assert( nOut<SQLITE_MAX_LENGTH );
|
|
830 |
zOut = (unsigned char*)contextMalloc(context, (int)nOut);
|
|
831 |
if( zOut==0 ){
|
|
832 |
return;
|
|
833 |
}
|
|
834 |
loopLimit = nStr - nPattern;
|
|
835 |
for(i=j=0; i<=loopLimit; i++){
|
|
836 |
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
|
|
837 |
zOut[j++] = zStr[i];
|
|
838 |
}else{
|
|
839 |
u8 *zOld;
|
|
840 |
nOut += nRep - nPattern;
|
|
841 |
if( nOut>=SQLITE_MAX_LENGTH ){
|
|
842 |
sqlite3_result_error_toobig(context);
|
|
843 |
sqlite3_free(zOut);
|
|
844 |
return;
|
|
845 |
}
|
|
846 |
zOld = zOut;
|
|
847 |
zOut = (unsigned char*)sqlite3_realloc(zOut, (int)nOut);
|
|
848 |
if( zOut==0 ){
|
|
849 |
sqlite3_result_error_nomem(context);
|
|
850 |
sqlite3_free(zOld);
|
|
851 |
return;
|
|
852 |
}
|
|
853 |
memcpy(&zOut[j], zRep, nRep);
|
|
854 |
j += nRep;
|
|
855 |
i += nPattern-1;
|
|
856 |
}
|
|
857 |
}
|
|
858 |
assert( j+nStr-i+1==nOut );
|
|
859 |
memcpy(&zOut[j], &zStr[i], nStr-i);
|
|
860 |
j += nStr - i;
|
|
861 |
assert( j<=nOut );
|
|
862 |
zOut[j] = 0;
|
|
863 |
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
|
|
864 |
}
|
|
865 |
|
|
866 |
/*
|
|
867 |
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
|
|
868 |
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
|
|
869 |
*/
|
|
870 |
static void trimFunc(
|
|
871 |
sqlite3_context *context,
|
|
872 |
int argc,
|
|
873 |
sqlite3_value **argv
|
|
874 |
){
|
|
875 |
const unsigned char *zIn; /* Input string */
|
|
876 |
const unsigned char *zCharSet; /* Set of characters to trim */
|
|
877 |
int nIn; /* Number of bytes in input */
|
|
878 |
int flags; /* 1: trimleft 2: trimright 3: trim */
|
|
879 |
int i; /* Loop counter */
|
|
880 |
unsigned char *aLen; /* Length of each character in zCharSet */
|
|
881 |
unsigned char **azChar; /* Individual characters in zCharSet */
|
|
882 |
int nChar; /* Number of characters in zCharSet */
|
|
883 |
|
|
884 |
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
|
885 |
return;
|
|
886 |
}
|
|
887 |
zIn = sqlite3_value_text(argv[0]);
|
|
888 |
if( zIn==0 ) return;
|
|
889 |
nIn = sqlite3_value_bytes(argv[0]);
|
|
890 |
assert( zIn==sqlite3_value_text(argv[0]) );
|
|
891 |
if( argc==1 ){
|
|
892 |
static const unsigned char lenOne[] = { 1 };
|
|
893 |
static const unsigned char *azOne[] = { (u8*)" " };
|
|
894 |
nChar = 1;
|
|
895 |
aLen = (u8*)lenOne;
|
|
896 |
azChar = (unsigned char **)azOne;
|
|
897 |
zCharSet = 0;
|
|
898 |
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
|
|
899 |
return;
|
|
900 |
}else{
|
|
901 |
const unsigned char *z;
|
|
902 |
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
903 |
SQLITE_SKIP_UTF8(z);
|
|
904 |
}
|
|
905 |
if( nChar>0 ){
|
|
906 |
azChar = (unsigned char**)contextMalloc(context, nChar*(sizeof(char*)+1));
|
|
907 |
if( azChar==0 ){
|
|
908 |
return;
|
|
909 |
}
|
|
910 |
aLen = (unsigned char*)&azChar[nChar];
|
|
911 |
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
912 |
azChar[nChar] = (unsigned char *)z;
|
|
913 |
SQLITE_SKIP_UTF8(z);
|
|
914 |
aLen[nChar] = z - azChar[nChar];
|
|
915 |
}
|
|
916 |
}
|
|
917 |
}
|
|
918 |
if( nChar>0 ){
|
|
919 |
flags = (int)sqlite3_user_data(context);
|
|
920 |
if( flags & 1 ){
|
|
921 |
while( nIn>0 ){
|
|
922 |
int len;
|
|
923 |
for(i=0; i<nChar; i++){
|
|
924 |
len = aLen[i];
|
|
925 |
if( memcmp(zIn, azChar[i], len)==0 ) break;
|
|
926 |
}
|
|
927 |
if( i>=nChar ) break;
|
|
928 |
zIn += len;
|
|
929 |
nIn -= len;
|
|
930 |
}
|
|
931 |
}
|
|
932 |
if( flags & 2 ){
|
|
933 |
while( nIn>0 ){
|
|
934 |
int len;
|
|
935 |
for(i=0; i<nChar; i++){
|
|
936 |
len = aLen[i];
|
|
937 |
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
|
|
938 |
}
|
|
939 |
if( i>=nChar ) break;
|
|
940 |
nIn -= len;
|
|
941 |
}
|
|
942 |
}
|
|
943 |
if( zCharSet ){
|
|
944 |
sqlite3_free(azChar);
|
|
945 |
}
|
|
946 |
}
|
|
947 |
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
|
|
948 |
}
|
|
949 |
|
|
950 |
#ifdef SQLITE_SOUNDEX
|
|
951 |
/*
|
|
952 |
** Compute the soundex encoding of a word.
|
|
953 |
*/
|
|
954 |
static void soundexFunc(
|
|
955 |
sqlite3_context *context,
|
|
956 |
int argc,
|
|
957 |
sqlite3_value **argv
|
|
958 |
){
|
|
959 |
char zResult[8];
|
|
960 |
const u8 *zIn;
|
|
961 |
int i, j;
|
|
962 |
static const unsigned char iCode[] = {
|
|
963 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
964 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
965 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
966 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
967 |
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
968 |
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
969 |
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
970 |
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
971 |
};
|
|
972 |
assert( argc==1 );
|
|
973 |
zIn = (u8*)sqlite3_value_text(argv[0]);
|
|
974 |
if( zIn==0 ) zIn = (u8*)"";
|
|
975 |
for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
|
|
976 |
if( zIn[i] ){
|
|
977 |
u8 prevcode = iCode[zIn[i]&0x7f];
|
|
978 |
zResult[0] = toupper(zIn[i]);
|
|
979 |
for(j=1; j<4 && zIn[i]; i++){
|
|
980 |
int code = iCode[zIn[i]&0x7f];
|
|
981 |
if( code>0 ){
|
|
982 |
if( code!=prevcode ){
|
|
983 |
prevcode = code;
|
|
984 |
zResult[j++] = code + '0';
|
|
985 |
}
|
|
986 |
}else{
|
|
987 |
prevcode = 0;
|
|
988 |
}
|
|
989 |
}
|
|
990 |
while( j<4 ){
|
|
991 |
zResult[j++] = '0';
|
|
992 |
}
|
|
993 |
zResult[j] = 0;
|
|
994 |
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
|
|
995 |
}else{
|
|
996 |
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
|
|
997 |
}
|
|
998 |
}
|
|
999 |
#endif
|
|
1000 |
|
|
1001 |
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
1002 |
/*
|
|
1003 |
** A function that loads a shared-library extension then returns NULL.
|
|
1004 |
*/
|
|
1005 |
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
1006 |
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
|
|
1007 |
const char *zProc;
|
|
1008 |
sqlite3 *db = (sqlite3*)sqlite3_user_data(context);
|
|
1009 |
char *zErrMsg = 0;
|
|
1010 |
|
|
1011 |
if( argc==2 ){
|
|
1012 |
zProc = (const char *)sqlite3_value_text(argv[1]);
|
|
1013 |
}else{
|
|
1014 |
zProc = 0;
|
|
1015 |
}
|
|
1016 |
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
|
|
1017 |
sqlite3_result_error(context, zErrMsg, -1);
|
|
1018 |
sqlite3_free(zErrMsg);
|
|
1019 |
}
|
|
1020 |
}
|
|
1021 |
#endif
|
|
1022 |
|
|
1023 |
#ifdef SQLITE_TEST
|
|
1024 |
/*
|
|
1025 |
** This function generates a string of random characters. Used for
|
|
1026 |
** generating test data.
|
|
1027 |
*/
|
|
1028 |
static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
1029 |
static const unsigned char zSrc[] =
|
|
1030 |
"abcdefghijklmnopqrstuvwxyz"
|
|
1031 |
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
1032 |
"0123456789"
|
|
1033 |
".-!,:*^+=_|?/<> ";
|
|
1034 |
int iMin, iMax, n, r, i;
|
|
1035 |
unsigned char zBuf[1000];
|
|
1036 |
|
|
1037 |
/* It used to be possible to call randstr() with any number of arguments,
|
|
1038 |
** but now it is registered with SQLite as requiring exactly 2.
|
|
1039 |
*/
|
|
1040 |
assert(argc==2);
|
|
1041 |
|
|
1042 |
iMin = sqlite3_value_int(argv[0]);
|
|
1043 |
if( iMin<0 ) iMin = 0;
|
|
1044 |
if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
|
|
1045 |
iMax = sqlite3_value_int(argv[1]);
|
|
1046 |
if( iMax<iMin ) iMax = iMin;
|
|
1047 |
if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
|
|
1048 |
n = iMin;
|
|
1049 |
if( iMax>iMin ){
|
|
1050 |
sqlite3Randomness(sizeof(r), &r);
|
|
1051 |
r &= 0x7fffffff;
|
|
1052 |
n += r%(iMax + 1 - iMin);
|
|
1053 |
}
|
|
1054 |
assert( n<sizeof(zBuf) );
|
|
1055 |
sqlite3Randomness(n, zBuf);
|
|
1056 |
for(i=0; i<n; i++){
|
|
1057 |
zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
|
|
1058 |
}
|
|
1059 |
zBuf[n] = 0;
|
|
1060 |
sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
|
|
1061 |
}
|
|
1062 |
#endif /* SQLITE_TEST */
|
|
1063 |
|
|
1064 |
#ifdef SQLITE_TEST
|
|
1065 |
/*
|
|
1066 |
** The following two SQL functions are used to test returning a text
|
|
1067 |
** result with a destructor. Function 'test_destructor' takes one argument
|
|
1068 |
** and returns the same argument interpreted as TEXT. A destructor is
|
|
1069 |
** passed with the sqlite3_result_text() call.
|
|
1070 |
**
|
|
1071 |
** SQL function 'test_destructor_count' returns the number of outstanding
|
|
1072 |
** allocations made by 'test_destructor';
|
|
1073 |
**
|
|
1074 |
** WARNING: Not threadsafe.
|
|
1075 |
*/
|
|
1076 |
static int test_destructor_count_var = 0;
|
|
1077 |
static void destructor(void *p){
|
|
1078 |
char *zVal = (char *)p;
|
|
1079 |
assert(zVal);
|
|
1080 |
zVal--;
|
|
1081 |
sqlite3_free(zVal);
|
|
1082 |
test_destructor_count_var--;
|
|
1083 |
}
|
|
1084 |
static void test_destructor(
|
|
1085 |
sqlite3_context *pCtx,
|
|
1086 |
int nArg,
|
|
1087 |
sqlite3_value **argv
|
|
1088 |
){
|
|
1089 |
char *zVal;
|
|
1090 |
int len;
|
|
1091 |
sqlite3 *db = sqlite3_user_data(pCtx);
|
|
1092 |
|
|
1093 |
test_destructor_count_var++;
|
|
1094 |
assert( nArg==1 );
|
|
1095 |
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
1096 |
len = sqlite3ValueBytes(argv[0], ENC(db));
|
|
1097 |
zVal = contextMalloc(pCtx, len+3);
|
|
1098 |
if( !zVal ){
|
|
1099 |
return;
|
|
1100 |
}
|
|
1101 |
zVal[len+1] = 0;
|
|
1102 |
zVal[len+2] = 0;
|
|
1103 |
zVal++;
|
|
1104 |
memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
|
|
1105 |
if( ENC(db)==SQLITE_UTF8 ){
|
|
1106 |
sqlite3_result_text(pCtx, zVal, -1, destructor);
|
|
1107 |
#ifndef SQLITE_OMIT_UTF16
|
|
1108 |
}else if( ENC(db)==SQLITE_UTF16LE ){
|
|
1109 |
sqlite3_result_text16le(pCtx, zVal, -1, destructor);
|
|
1110 |
}else{
|
|
1111 |
sqlite3_result_text16be(pCtx, zVal, -1, destructor);
|
|
1112 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
1113 |
}
|
|
1114 |
}
|
|
1115 |
static void test_destructor_count(
|
|
1116 |
sqlite3_context *pCtx,
|
|
1117 |
int nArg,
|
|
1118 |
sqlite3_value **argv
|
|
1119 |
){
|
|
1120 |
sqlite3_result_int(pCtx, test_destructor_count_var);
|
|
1121 |
}
|
|
1122 |
#endif /* SQLITE_TEST */
|
|
1123 |
|
|
1124 |
#ifdef SQLITE_TEST
|
|
1125 |
/*
|
|
1126 |
** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
|
|
1127 |
** interface.
|
|
1128 |
**
|
|
1129 |
** The test_auxdata() SQL function attempts to register each of its arguments
|
|
1130 |
** as auxiliary data. If there are no prior registrations of aux data for
|
|
1131 |
** that argument (meaning the argument is not a constant or this is its first
|
|
1132 |
** call) then the result for that argument is 0. If there is a prior
|
|
1133 |
** registration, the result for that argument is 1. The overall result
|
|
1134 |
** is the individual argument results separated by spaces.
|
|
1135 |
*/
|
|
1136 |
static void free_test_auxdata(void *p) {sqlite3_free(p);}
|
|
1137 |
static void test_auxdata(
|
|
1138 |
sqlite3_context *pCtx,
|
|
1139 |
int nArg,
|
|
1140 |
sqlite3_value **argv
|
|
1141 |
){
|
|
1142 |
int i;
|
|
1143 |
char *zRet = contextMalloc(pCtx, nArg*2);
|
|
1144 |
if( !zRet ) return;
|
|
1145 |
memset(zRet, 0, nArg*2);
|
|
1146 |
for(i=0; i<nArg; i++){
|
|
1147 |
char const *z = (char*)sqlite3_value_text(argv[i]);
|
|
1148 |
if( z ){
|
|
1149 |
char *zAux = sqlite3_get_auxdata(pCtx, i);
|
|
1150 |
if( zAux ){
|
|
1151 |
zRet[i*2] = '1';
|
|
1152 |
if( strcmp(zAux, z) ){
|
|
1153 |
sqlite3_result_error(pCtx, "Auxilary data corruption", -1);
|
|
1154 |
return;
|
|
1155 |
}
|
|
1156 |
}else {
|
|
1157 |
zRet[i*2] = '0';
|
|
1158 |
}
|
|
1159 |
|
|
1160 |
zAux = contextMalloc(pCtx, strlen(z)+1);
|
|
1161 |
if( zAux ){
|
|
1162 |
strcpy(zAux, z);
|
|
1163 |
sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
|
|
1164 |
}
|
|
1165 |
zRet[i*2+1] = ' ';
|
|
1166 |
}
|
|
1167 |
}
|
|
1168 |
sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
|
|
1169 |
}
|
|
1170 |
#endif /* SQLITE_TEST */
|
|
1171 |
|
|
1172 |
#ifdef SQLITE_TEST
|
|
1173 |
/*
|
|
1174 |
** A function to test error reporting from user functions. This function
|
|
1175 |
** returns a copy of its first argument as an error.
|
|
1176 |
*/
|
|
1177 |
static void test_error(
|
|
1178 |
sqlite3_context *pCtx,
|
|
1179 |
int nArg,
|
|
1180 |
sqlite3_value **argv
|
|
1181 |
){
|
|
1182 |
sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0);
|
|
1183 |
}
|
|
1184 |
#endif /* SQLITE_TEST */
|
|
1185 |
|
|
1186 |
/*
|
|
1187 |
** An instance of the following structure holds the context of a
|
|
1188 |
** sum() or avg() aggregate computation.
|
|
1189 |
*/
|
|
1190 |
typedef struct SumCtx SumCtx;
|
|
1191 |
struct SumCtx {
|
|
1192 |
double rSum; /* Floating point sum */
|
|
1193 |
i64 iSum; /* Integer sum */
|
|
1194 |
i64 cnt; /* Number of elements summed */
|
|
1195 |
u8 overflow; /* True if integer overflow seen */
|
|
1196 |
u8 approx; /* True if non-integer value was input to the sum */
|
|
1197 |
};
|
|
1198 |
|
|
1199 |
/*
|
|
1200 |
** Routines used to compute the sum, average, and total.
|
|
1201 |
**
|
|
1202 |
** The SUM() function follows the (broken) SQL standard which means
|
|
1203 |
** that it returns NULL if it sums over no inputs. TOTAL returns
|
|
1204 |
** 0.0 in that case. In addition, TOTAL always returns a float where
|
|
1205 |
** SUM might return an integer if it never encounters a floating point
|
|
1206 |
** value. TOTAL never fails, but SUM might through an exception if
|
|
1207 |
** it overflows an integer.
|
|
1208 |
*/
|
|
1209 |
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
1210 |
SumCtx *p;
|
|
1211 |
int type;
|
|
1212 |
assert( argc==1 );
|
|
1213 |
p = (SumCtx*)sqlite3_aggregate_context(context, sizeof(*p));
|
|
1214 |
type = sqlite3_value_numeric_type(argv[0]);
|
|
1215 |
if( p && type!=SQLITE_NULL ){
|
|
1216 |
p->cnt++;
|
|
1217 |
if( type==SQLITE_INTEGER ){
|
|
1218 |
i64 v = sqlite3_value_int64(argv[0]);
|
|
1219 |
p->rSum += v;
|
|
1220 |
if( (p->approx|p->overflow)==0 ){
|
|
1221 |
i64 iNewSum = p->iSum + v;
|
|
1222 |
int s1 = p->iSum >> (sizeof(i64)*8-1);
|
|
1223 |
int s2 = v >> (sizeof(i64)*8-1);
|
|
1224 |
int s3 = iNewSum >> (sizeof(i64)*8-1);
|
|
1225 |
p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
|
|
1226 |
p->iSum = iNewSum;
|
|
1227 |
}
|
|
1228 |
}else{
|
|
1229 |
p->rSum += sqlite3_value_double(argv[0]);
|
|
1230 |
p->approx = 1;
|
|
1231 |
}
|
|
1232 |
}
|
|
1233 |
}
|
|
1234 |
static void sumFinalize(sqlite3_context *context){
|
|
1235 |
SumCtx *p;
|
|
1236 |
p = (SumCtx*)sqlite3_aggregate_context(context, 0);
|
|
1237 |
if( p && p->cnt>0 ){
|
|
1238 |
if( p->overflow ){
|
|
1239 |
sqlite3_result_error(context,"integer overflow",-1);
|
|
1240 |
}else if( p->approx ){
|
|
1241 |
sqlite3_result_double(context, p->rSum);
|
|
1242 |
}else{
|
|
1243 |
sqlite3_result_int64(context, p->iSum);
|
|
1244 |
}
|
|
1245 |
}
|
|
1246 |
}
|
|
1247 |
static void avgFinalize(sqlite3_context *context){
|
|
1248 |
SumCtx *p;
|
|
1249 |
p = (SumCtx*)sqlite3_aggregate_context(context, 0);
|
|
1250 |
if( p && p->cnt>0 ){
|
|
1251 |
sqlite3_result_double(context, p->rSum/(double)p->cnt);
|
|
1252 |
}
|
|
1253 |
}
|
|
1254 |
static void totalFinalize(sqlite3_context *context){
|
|
1255 |
SumCtx *p;
|
|
1256 |
p = (SumCtx*)sqlite3_aggregate_context(context, 0);
|
|
1257 |
sqlite3_result_double(context, p ? p->rSum : 0.0);
|
|
1258 |
}
|
|
1259 |
|
|
1260 |
/*
|
|
1261 |
** The following structure keeps track of state information for the
|
|
1262 |
** count() aggregate function.
|
|
1263 |
*/
|
|
1264 |
typedef struct CountCtx CountCtx;
|
|
1265 |
struct CountCtx {
|
|
1266 |
i64 n;
|
|
1267 |
};
|
|
1268 |
|
|
1269 |
/*
|
|
1270 |
** Routines to implement the count() aggregate function.
|
|
1271 |
*/
|
|
1272 |
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
1273 |
CountCtx *p;
|
|
1274 |
p = (CountCtx*)sqlite3_aggregate_context(context, sizeof(*p));
|
|
1275 |
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
|
|
1276 |
p->n++;
|
|
1277 |
}
|
|
1278 |
}
|
|
1279 |
static void countFinalize(sqlite3_context *context){
|
|
1280 |
CountCtx *p;
|
|
1281 |
p = (CountCtx*)sqlite3_aggregate_context(context, 0);
|
|
1282 |
sqlite3_result_int64(context, p ? p->n : 0);
|
|
1283 |
}
|
|
1284 |
|
|
1285 |
/*
|
|
1286 |
** Routines to implement min() and max() aggregate functions.
|
|
1287 |
*/
|
|
1288 |
static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
1289 |
Mem *pArg = (Mem *)argv[0];
|
|
1290 |
Mem *pBest;
|
|
1291 |
|
|
1292 |
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
1293 |
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
|
1294 |
if( !pBest ) return;
|
|
1295 |
|
|
1296 |
if( pBest->flags ){
|
|
1297 |
int max;
|
|
1298 |
int cmp;
|
|
1299 |
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
1300 |
/* This step function is used for both the min() and max() aggregates,
|
|
1301 |
** the only difference between the two being that the sense of the
|
|
1302 |
** comparison is inverted. For the max() aggregate, the
|
|
1303 |
** sqlite3_user_data() function returns (void *)-1. For min() it
|
|
1304 |
** returns (void *)db, where db is the sqlite3* database pointer.
|
|
1305 |
** Therefore the next statement sets variable 'max' to 1 for the max()
|
|
1306 |
** aggregate, or 0 for min().
|
|
1307 |
*/
|
|
1308 |
max = sqlite3_user_data(context)!=0;
|
|
1309 |
cmp = sqlite3MemCompare(pBest, pArg, pColl);
|
|
1310 |
if( (max && cmp<0) || (!max && cmp>0) ){
|
|
1311 |
sqlite3VdbeMemCopy(pBest, pArg);
|
|
1312 |
}
|
|
1313 |
}else{
|
|
1314 |
sqlite3VdbeMemCopy(pBest, pArg);
|
|
1315 |
}
|
|
1316 |
}
|
|
1317 |
static void minMaxFinalize(sqlite3_context *context){
|
|
1318 |
sqlite3_value *pRes;
|
|
1319 |
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
|
|
1320 |
if( pRes ){
|
|
1321 |
if( pRes->flags ){
|
|
1322 |
sqlite3_result_value(context, pRes);
|
|
1323 |
}
|
|
1324 |
sqlite3VdbeMemRelease(pRes);
|
|
1325 |
}
|
|
1326 |
}
|
|
1327 |
|
|
1328 |
/*
|
|
1329 |
** group_concat(EXPR, ?SEPARATOR?)
|
|
1330 |
*/
|
|
1331 |
static void groupConcatStep(
|
|
1332 |
sqlite3_context *context,
|
|
1333 |
int argc,
|
|
1334 |
sqlite3_value **argv
|
|
1335 |
){
|
|
1336 |
const char *zVal;
|
|
1337 |
StrAccum *pAccum;
|
|
1338 |
const char *zSep;
|
|
1339 |
int nVal, nSep;
|
|
1340 |
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
1341 |
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
|
|
1342 |
|
|
1343 |
if( pAccum ){
|
|
1344 |
pAccum->useMalloc = 1;
|
|
1345 |
if( pAccum->nChar ){
|
|
1346 |
if( argc==2 ){
|
|
1347 |
zSep = (char*)sqlite3_value_text(argv[1]);
|
|
1348 |
nSep = sqlite3_value_bytes(argv[1]);
|
|
1349 |
}else{
|
|
1350 |
zSep = ",";
|
|
1351 |
nSep = 1;
|
|
1352 |
}
|
|
1353 |
sqlite3StrAccumAppend(pAccum, zSep, nSep);
|
|
1354 |
}
|
|
1355 |
zVal = (char*)sqlite3_value_text(argv[0]);
|
|
1356 |
nVal = sqlite3_value_bytes(argv[0]);
|
|
1357 |
sqlite3StrAccumAppend(pAccum, zVal, nVal);
|
|
1358 |
}
|
|
1359 |
}
|
|
1360 |
static void groupConcatFinalize(sqlite3_context *context){
|
|
1361 |
StrAccum *pAccum;
|
|
1362 |
pAccum = (StrAccum*)sqlite3_aggregate_context(context, 0);
|
|
1363 |
if( pAccum ){
|
|
1364 |
if( pAccum->tooBig ){
|
|
1365 |
sqlite3_result_error_toobig(context);
|
|
1366 |
}else if( pAccum->mallocFailed ){
|
|
1367 |
sqlite3_result_error_nomem(context);
|
|
1368 |
}else{
|
|
1369 |
sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
|
|
1370 |
sqlite3_free);
|
|
1371 |
}
|
|
1372 |
}
|
|
1373 |
}
|
|
1374 |
|
|
1375 |
/*
|
|
1376 |
** This function registered all of the above C functions as SQL
|
|
1377 |
** functions. This should be the only routine in this file with
|
|
1378 |
** external linkage.
|
|
1379 |
*/
|
|
1380 |
void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
|
|
1381 |
static const struct {
|
|
1382 |
char *zName;
|
|
1383 |
signed char nArg;
|
|
1384 |
u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */
|
|
1385 |
u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
|
|
1386 |
u8 needCollSeq;
|
|
1387 |
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
|
1388 |
} aFuncs[] = {
|
|
1389 |
{ "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
|
|
1390 |
{ "min", 0, 0, SQLITE_UTF8, 1, 0 },
|
|
1391 |
{ "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
|
|
1392 |
{ "max", 0, 1, SQLITE_UTF8, 1, 0 },
|
|
1393 |
{ "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
|
|
1394 |
{ "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
|
|
1395 |
{ "substr", 2, 0, SQLITE_UTF8, 0, substrFunc },
|
|
1396 |
{ "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
|
|
1397 |
{ "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
|
|
1398 |
{ "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
|
|
1399 |
{ "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
|
|
1400 |
{ "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
|
|
1401 |
{ "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
|
|
1402 |
{ "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
|
|
1403 |
{ "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
|
|
1404 |
{ "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
|
|
1405 |
{ "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
|
|
1406 |
{ "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
|
|
1407 |
{ "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
|
|
1408 |
{ "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
|
|
1409 |
{ "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
|
|
1410 |
{ "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
|
|
1411 |
{ "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
|
|
1412 |
{ "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
|
|
1413 |
{ "changes", 0, 0xff, SQLITE_UTF8, 0, changes },
|
|
1414 |
{ "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes },
|
|
1415 |
{ "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
|
|
1416 |
{ "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
|
|
1417 |
{ "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
|
|
1418 |
{ "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
|
|
1419 |
{ "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
|
|
1420 |
{ "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
|
|
1421 |
{ "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
|
|
1422 |
{ "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },
|
|
1423 |
#ifdef SQLITE_SOUNDEX
|
|
1424 |
{ "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
|
|
1425 |
#endif
|
|
1426 |
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
1427 |
{ "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt },
|
|
1428 |
{ "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt },
|
|
1429 |
#endif
|
|
1430 |
#ifdef SQLITE_TEST
|
|
1431 |
{ "randstr", 2, 0, SQLITE_UTF8, 0, randStr },
|
|
1432 |
{ "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor},
|
|
1433 |
{ "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count},
|
|
1434 |
{ "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata},
|
|
1435 |
{ "test_error", 1, 0, SQLITE_UTF8, 0, test_error},
|
|
1436 |
#endif
|
|
1437 |
};
|
|
1438 |
static const struct {
|
|
1439 |
char *zName;
|
|
1440 |
signed char nArg;
|
|
1441 |
u8 argType;
|
|
1442 |
u8 needCollSeq;
|
|
1443 |
void (*xStep)(sqlite3_context*,int,sqlite3_value**);
|
|
1444 |
void (*xFinalize)(sqlite3_context*);
|
|
1445 |
} aAggs[] = {
|
|
1446 |
{ "min", 1, 0, 1, minmaxStep, minMaxFinalize },
|
|
1447 |
{ "max", 1, 1, 1, minmaxStep, minMaxFinalize },
|
|
1448 |
{ "sum", 1, 0, 0, sumStep, sumFinalize },
|
|
1449 |
{ "total", 1, 0, 0, sumStep, totalFinalize },
|
|
1450 |
{ "avg", 1, 0, 0, sumStep, avgFinalize },
|
|
1451 |
{ "count", 0, 0, 0, countStep, countFinalize },
|
|
1452 |
{ "count", 1, 0, 0, countStep, countFinalize },
|
|
1453 |
{ "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize },
|
|
1454 |
{ "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize },
|
|
1455 |
};
|
|
1456 |
int i;
|
|
1457 |
|
|
1458 |
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
1459 |
void *pArg;
|
|
1460 |
u8 argType = aFuncs[i].argType;
|
|
1461 |
if( argType==0xff ){
|
|
1462 |
pArg = db;
|
|
1463 |
}else{
|
|
1464 |
pArg = (void*)(int)argType;
|
|
1465 |
}
|
|
1466 |
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
|
1467 |
aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
|
|
1468 |
if( aFuncs[i].needCollSeq ){
|
|
1469 |
FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
|
|
1470 |
strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
|
|
1471 |
if( pFunc && aFuncs[i].needCollSeq ){
|
|
1472 |
pFunc->needCollSeq = 1;
|
|
1473 |
}
|
|
1474 |
}
|
|
1475 |
}
|
|
1476 |
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
1477 |
sqlite3AlterFunctions(db);
|
|
1478 |
#endif
|
|
1479 |
#ifndef SQLITE_OMIT_PARSER
|
|
1480 |
sqlite3AttachFunctions(db);
|
|
1481 |
#endif
|
|
1482 |
for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
|
|
1483 |
void *pArg = (void*)(int)aAggs[i].argType;
|
|
1484 |
sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
|
|
1485 |
pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
|
|
1486 |
if( aAggs[i].needCollSeq ){
|
|
1487 |
FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
|
|
1488 |
strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
|
|
1489 |
if( pFunc && aAggs[i].needCollSeq ){
|
|
1490 |
pFunc->needCollSeq = 1;
|
|
1491 |
}
|
|
1492 |
}
|
|
1493 |
}
|
|
1494 |
sqlite3RegisterDateTimeFunctions(db);
|
|
1495 |
if( !db->mallocFailed ){
|
|
1496 |
int rc = sqlite3_overload_function(db, "MATCH", 2);
|
|
1497 |
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
|
1498 |
if( rc==SQLITE_NOMEM ){
|
|
1499 |
db->mallocFailed = 1;
|
|
1500 |
}
|
|
1501 |
}
|
|
1502 |
#ifdef SQLITE_SSE
|
|
1503 |
(void)sqlite3SseFunctions(db);
|
|
1504 |
#endif
|
|
1505 |
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
|
1506 |
sqlite3RegisterLikeFunctions(db, 1);
|
|
1507 |
#else
|
|
1508 |
sqlite3RegisterLikeFunctions(db, 0);
|
|
1509 |
#endif
|
|
1510 |
}
|
|
1511 |
|
|
1512 |
/*
|
|
1513 |
** Set the LIKEOPT flag on the 2-argument function with the given name.
|
|
1514 |
*/
|
|
1515 |
static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
|
|
1516 |
FuncDef *pDef;
|
|
1517 |
pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
|
|
1518 |
if( pDef ){
|
|
1519 |
pDef->flags = flagVal;
|
|
1520 |
}
|
|
1521 |
}
|
|
1522 |
|
|
1523 |
/*
|
|
1524 |
** Register the built-in LIKE and GLOB functions. The caseSensitive
|
|
1525 |
** parameter determines whether or not the LIKE operator is case
|
|
1526 |
** sensitive. GLOB is always case sensitive.
|
|
1527 |
*/
|
|
1528 |
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
|
|
1529 |
struct compareInfo *pInfo;
|
|
1530 |
if( caseSensitive ){
|
|
1531 |
pInfo = (struct compareInfo*)&likeInfoAlt;
|
|
1532 |
}else{
|
|
1533 |
pInfo = (struct compareInfo*)&likeInfoNorm;
|
|
1534 |
}
|
|
1535 |
sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
|
|
1536 |
sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
|
|
1537 |
sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
|
|
1538 |
(struct compareInfo*)&globInfo, likeFunc, 0,0);
|
|
1539 |
setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
|
|
1540 |
setLikeOptFlag(db, "like",
|
|
1541 |
caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
|
|
1542 |
}
|
|
1543 |
|
|
1544 |
/*
|
|
1545 |
** pExpr points to an expression which implements a function. If
|
|
1546 |
** it is appropriate to apply the LIKE optimization to that function
|
|
1547 |
** then set aWc[0] through aWc[2] to the wildcard characters and
|
|
1548 |
** return TRUE. If the function is not a LIKE-style function then
|
|
1549 |
** return FALSE.
|
|
1550 |
*/
|
|
1551 |
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
|
|
1552 |
FuncDef *pDef;
|
|
1553 |
if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
|
|
1554 |
return 0;
|
|
1555 |
}
|
|
1556 |
if( pExpr->pList->nExpr!=2 ){
|
|
1557 |
return 0;
|
|
1558 |
}
|
|
1559 |
pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
|
|
1560 |
SQLITE_UTF8, 0);
|
|
1561 |
if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
|
|
1562 |
return 0;
|
|
1563 |
}
|
|
1564 |
|
|
1565 |
/* The memcpy() statement assumes that the wildcard characters are
|
|
1566 |
** the first three statements in the compareInfo structure. The
|
|
1567 |
** asserts() that follow verify that assumption
|
|
1568 |
*/
|
|
1569 |
memcpy(aWc, pDef->pUserData, 3);
|
|
1570 |
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
|
|
1571 |
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
|
|
1572 |
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
|
|
1573 |
*pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
|
|
1574 |
return 1;
|
|
1575 |
}
|