2
|
1 |
/*
|
|
2 |
** 2001 September 22
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This is the implementation of generic hash-tables
|
|
13 |
** used in SQLite.
|
|
14 |
**
|
|
15 |
** $Id: hash.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
16 |
*/
|
|
17 |
#include "sqliteInt.h"
|
|
18 |
#include <assert.h>
|
|
19 |
|
|
20 |
/* Turn bulk memory into a hash table object by initializing the
|
|
21 |
** fields of the Hash structure.
|
|
22 |
**
|
|
23 |
** "pNew" is a pointer to the hash table that is to be initialized.
|
|
24 |
** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
|
|
25 |
** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
|
|
26 |
** determines what kind of key the hash table will use. "copyKey" is
|
|
27 |
** true if the hash table should make its own private copy of keys and
|
|
28 |
** false if it should just use the supplied pointer. CopyKey only makes
|
|
29 |
** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
|
|
30 |
** for other key classes.
|
|
31 |
*/
|
|
32 |
void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
|
|
33 |
assert( pNew!=0 );
|
|
34 |
assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
|
|
35 |
pNew->keyClass = keyClass;
|
|
36 |
#if 0
|
|
37 |
if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
|
|
38 |
#endif
|
|
39 |
pNew->copyKey = copyKey;
|
|
40 |
pNew->first = 0;
|
|
41 |
pNew->count = 0;
|
|
42 |
pNew->htsize = 0;
|
|
43 |
pNew->ht = 0;
|
|
44 |
}
|
|
45 |
|
|
46 |
/* Remove all entries from a hash table. Reclaim all memory.
|
|
47 |
** Call this routine to delete a hash table or to reset a hash table
|
|
48 |
** to the empty state.
|
|
49 |
*/
|
|
50 |
void sqlite3HashClear(Hash *pH){
|
|
51 |
HashElem *elem; /* For looping over all elements of the table */
|
|
52 |
|
|
53 |
assert( pH!=0 );
|
|
54 |
elem = pH->first;
|
|
55 |
pH->first = 0;
|
|
56 |
if( pH->ht ) sqlite3_free(pH->ht);
|
|
57 |
pH->ht = 0;
|
|
58 |
pH->htsize = 0;
|
|
59 |
while( elem ){
|
|
60 |
HashElem *next_elem = elem->next;
|
|
61 |
if( pH->copyKey && elem->pKey ){
|
|
62 |
sqlite3_free(elem->pKey);
|
|
63 |
}
|
|
64 |
sqlite3_free(elem);
|
|
65 |
elem = next_elem;
|
|
66 |
}
|
|
67 |
pH->count = 0;
|
|
68 |
}
|
|
69 |
|
|
70 |
#if 0 /* NOT USED */
|
|
71 |
/*
|
|
72 |
** Hash and comparison functions when the mode is SQLITE_HASH_INT
|
|
73 |
*/
|
|
74 |
static int intHash(const void *pKey, int nKey){
|
|
75 |
return nKey ^ (nKey<<8) ^ (nKey>>8);
|
|
76 |
}
|
|
77 |
static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
78 |
return n2 - n1;
|
|
79 |
}
|
|
80 |
#endif
|
|
81 |
|
|
82 |
#if 0 /* NOT USED */
|
|
83 |
/*
|
|
84 |
** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
|
|
85 |
*/
|
|
86 |
static int ptrHash(const void *pKey, int nKey){
|
|
87 |
uptr x = Addr(pKey);
|
|
88 |
return x ^ (x<<8) ^ (x>>8);
|
|
89 |
}
|
|
90 |
static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
91 |
if( pKey1==pKey2 ) return 0;
|
|
92 |
if( pKey1<pKey2 ) return -1;
|
|
93 |
return 1;
|
|
94 |
}
|
|
95 |
#endif
|
|
96 |
|
|
97 |
/*
|
|
98 |
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
|
99 |
*/
|
|
100 |
static int strHash(const void *pKey, int nKey){
|
|
101 |
const char *z = (const char *)pKey;
|
|
102 |
int h = 0;
|
|
103 |
if( nKey<=0 ) nKey = strlen(z);
|
|
104 |
while( nKey > 0 ){
|
|
105 |
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
|
|
106 |
nKey--;
|
|
107 |
}
|
|
108 |
return h & 0x7fffffff;
|
|
109 |
}
|
|
110 |
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
111 |
if( n1!=n2 ) return 1;
|
|
112 |
return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
|
113 |
}
|
|
114 |
|
|
115 |
/*
|
|
116 |
** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
|
|
117 |
*/
|
|
118 |
static int binHash(const void *pKey, int nKey){
|
|
119 |
int h = 0;
|
|
120 |
const char *z = (const char *)pKey;
|
|
121 |
while( nKey-- > 0 ){
|
|
122 |
h = (h<<3) ^ h ^ *(z++);
|
|
123 |
}
|
|
124 |
return h & 0x7fffffff;
|
|
125 |
}
|
|
126 |
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
127 |
if( n1!=n2 ) return 1;
|
|
128 |
return memcmp(pKey1,pKey2,n1);
|
|
129 |
}
|
|
130 |
|
|
131 |
/*
|
|
132 |
** Return a pointer to the appropriate hash function given the key class.
|
|
133 |
**
|
|
134 |
** The C syntax in this function definition may be unfamilar to some
|
|
135 |
** programmers, so we provide the following additional explanation:
|
|
136 |
**
|
|
137 |
** The name of the function is "hashFunction". The function takes a
|
|
138 |
** single parameter "keyClass". The return value of hashFunction()
|
|
139 |
** is a pointer to another function. Specifically, the return value
|
|
140 |
** of hashFunction() is a pointer to a function that takes two parameters
|
|
141 |
** with types "const void*" and "int" and returns an "int".
|
|
142 |
*/
|
|
143 |
static int (*hashFunction(int keyClass))(const void*,int){
|
|
144 |
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
|
145 |
switch( keyClass ){
|
|
146 |
case SQLITE_HASH_INT: return &intHash;
|
|
147 |
case SQLITE_HASH_POINTER: return &ptrHash;
|
|
148 |
case SQLITE_HASH_STRING: return &strHash;
|
|
149 |
case SQLITE_HASH_BINARY: return &binHash;;
|
|
150 |
default: break;
|
|
151 |
}
|
|
152 |
return 0;
|
|
153 |
#else
|
|
154 |
if( keyClass==SQLITE_HASH_STRING ){
|
|
155 |
return &strHash;
|
|
156 |
}else{
|
|
157 |
assert( keyClass==SQLITE_HASH_BINARY );
|
|
158 |
return &binHash;
|
|
159 |
}
|
|
160 |
#endif
|
|
161 |
}
|
|
162 |
|
|
163 |
/*
|
|
164 |
** Return a pointer to the appropriate hash function given the key class.
|
|
165 |
**
|
|
166 |
** For help in interpreted the obscure C code in the function definition,
|
|
167 |
** see the header comment on the previous function.
|
|
168 |
*/
|
|
169 |
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
|
170 |
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
|
171 |
switch( keyClass ){
|
|
172 |
case SQLITE_HASH_INT: return &intCompare;
|
|
173 |
case SQLITE_HASH_POINTER: return &ptrCompare;
|
|
174 |
case SQLITE_HASH_STRING: return &strCompare;
|
|
175 |
case SQLITE_HASH_BINARY: return &binCompare;
|
|
176 |
default: break;
|
|
177 |
}
|
|
178 |
return 0;
|
|
179 |
#else
|
|
180 |
if( keyClass==SQLITE_HASH_STRING ){
|
|
181 |
return &strCompare;
|
|
182 |
}else{
|
|
183 |
assert( keyClass==SQLITE_HASH_BINARY );
|
|
184 |
return &binCompare;
|
|
185 |
}
|
|
186 |
#endif
|
|
187 |
}
|
|
188 |
|
|
189 |
/* Link an element into the hash table
|
|
190 |
*/
|
|
191 |
static void insertElement(
|
|
192 |
Hash *pH, /* The complete hash table */
|
|
193 |
Hash::_ht *pEntry, /* The entry into which pNew is inserted */
|
|
194 |
HashElem *pNew /* The element to be inserted */
|
|
195 |
){
|
|
196 |
HashElem *pHead; /* First element already in pEntry */
|
|
197 |
pHead = pEntry->chain;
|
|
198 |
if( pHead ){
|
|
199 |
pNew->next = pHead;
|
|
200 |
pNew->prev = pHead->prev;
|
|
201 |
if( pHead->prev ){ pHead->prev->next = pNew; }
|
|
202 |
else { pH->first = pNew; }
|
|
203 |
pHead->prev = pNew;
|
|
204 |
}else{
|
|
205 |
pNew->next = pH->first;
|
|
206 |
if( pH->first ){ pH->first->prev = pNew; }
|
|
207 |
pNew->prev = 0;
|
|
208 |
pH->first = pNew;
|
|
209 |
}
|
|
210 |
pEntry->count++;
|
|
211 |
pEntry->chain = pNew;
|
|
212 |
}
|
|
213 |
|
|
214 |
|
|
215 |
/* Resize the hash table so that it cantains "new_size" buckets.
|
|
216 |
** "new_size" must be a power of 2. The hash table might fail
|
|
217 |
** to resize if sqlite3_malloc() fails.
|
|
218 |
*/
|
|
219 |
static void rehash(Hash *pH, int new_size){
|
|
220 |
Hash::_ht *new_ht; /* The new hash table */
|
|
221 |
HashElem *elem, *next_elem; /* For looping over existing elements */
|
|
222 |
int (*xHash)(const void*,int); /* The hash function */
|
|
223 |
|
|
224 |
assert( (new_size & (new_size-1))==0 );
|
|
225 |
|
|
226 |
/* There is a call to sqlite3_malloc() inside rehash(). If there is
|
|
227 |
** already an allocation at pH->ht, then if this malloc() fails it
|
|
228 |
** is benign (since failing to resize a hash table is a performance
|
|
229 |
** hit only, not a fatal error).
|
|
230 |
*/
|
|
231 |
sqlite3MallocBenignFailure(pH->htsize>0);
|
|
232 |
|
|
233 |
new_ht = (Hash::_ht *)sqlite3MallocZero( new_size*sizeof(Hash::_ht) );
|
|
234 |
if( new_ht==0 ) return;
|
|
235 |
if( pH->ht ) sqlite3_free(pH->ht);
|
|
236 |
pH->ht = new_ht;
|
|
237 |
pH->htsize = new_size;
|
|
238 |
xHash = hashFunction(pH->keyClass);
|
|
239 |
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
|
240 |
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
|
241 |
next_elem = elem->next;
|
|
242 |
insertElement(pH, &new_ht[h], elem);
|
|
243 |
}
|
|
244 |
}
|
|
245 |
|
|
246 |
/* This function (for internal use only) locates an element in an
|
|
247 |
** hash table that matches the given key. The hash for this key has
|
|
248 |
** already been computed and is passed as the 4th parameter.
|
|
249 |
*/
|
|
250 |
static HashElem *findElementGivenHash(
|
|
251 |
const Hash *pH, /* The pH to be searched */
|
|
252 |
const void *pKey, /* The key we are searching for */
|
|
253 |
int nKey,
|
|
254 |
int h /* The hash for this key. */
|
|
255 |
){
|
|
256 |
HashElem *elem; /* Used to loop thru the element list */
|
|
257 |
int count; /* Number of elements left to test */
|
|
258 |
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
|
259 |
|
|
260 |
if( pH->ht ){
|
|
261 |
Hash::_ht *pEntry = &pH->ht[h];
|
|
262 |
elem = pEntry->chain;
|
|
263 |
count = pEntry->count;
|
|
264 |
xCompare = compareFunction(pH->keyClass);
|
|
265 |
while( count-- && elem ){
|
|
266 |
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
|
267 |
return elem;
|
|
268 |
}
|
|
269 |
elem = elem->next;
|
|
270 |
}
|
|
271 |
}
|
|
272 |
return 0;
|
|
273 |
}
|
|
274 |
|
|
275 |
/* Remove a single entry from the hash table given a pointer to that
|
|
276 |
** element and a hash on the element's key.
|
|
277 |
*/
|
|
278 |
static void removeElementGivenHash(
|
|
279 |
Hash *pH, /* The pH containing "elem" */
|
|
280 |
HashElem* elem, /* The element to be removed from the pH */
|
|
281 |
int h /* Hash value for the element */
|
|
282 |
){
|
|
283 |
Hash::_ht *pEntry;
|
|
284 |
if( elem->prev ){
|
|
285 |
elem->prev->next = elem->next;
|
|
286 |
}else{
|
|
287 |
pH->first = elem->next;
|
|
288 |
}
|
|
289 |
if( elem->next ){
|
|
290 |
elem->next->prev = elem->prev;
|
|
291 |
}
|
|
292 |
pEntry = &pH->ht[h];
|
|
293 |
if( pEntry->chain==elem ){
|
|
294 |
pEntry->chain = elem->next;
|
|
295 |
}
|
|
296 |
pEntry->count--;
|
|
297 |
if( pEntry->count<=0 ){
|
|
298 |
pEntry->chain = 0;
|
|
299 |
}
|
|
300 |
if( pH->copyKey ){
|
|
301 |
sqlite3_free(elem->pKey);
|
|
302 |
}
|
|
303 |
sqlite3_free( elem );
|
|
304 |
pH->count--;
|
|
305 |
if( pH->count<=0 ){
|
|
306 |
assert( pH->first==0 );
|
|
307 |
assert( pH->count==0 );
|
|
308 |
sqlite3HashClear(pH);
|
|
309 |
}
|
|
310 |
}
|
|
311 |
|
|
312 |
/* Attempt to locate an element of the hash table pH with a key
|
|
313 |
** that matches pKey,nKey. Return a pointer to the corresponding
|
|
314 |
** HashElem structure for this element if it is found, or NULL
|
|
315 |
** otherwise.
|
|
316 |
*/
|
|
317 |
HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
|
|
318 |
int h; /* A hash on key */
|
|
319 |
HashElem *elem; /* The element that matches key */
|
|
320 |
int (*xHash)(const void*,int); /* The hash function */
|
|
321 |
|
|
322 |
if( pH==0 || pH->ht==0 ) return 0;
|
|
323 |
xHash = hashFunction(pH->keyClass);
|
|
324 |
assert( xHash!=0 );
|
|
325 |
h = (*xHash)(pKey,nKey);
|
|
326 |
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
327 |
elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
|
328 |
return elem;
|
|
329 |
}
|
|
330 |
|
|
331 |
/* Attempt to locate an element of the hash table pH with a key
|
|
332 |
** that matches pKey,nKey. Return the data for this element if it is
|
|
333 |
** found, or NULL if there is no match.
|
|
334 |
*/
|
|
335 |
void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
|
|
336 |
HashElem *elem; /* The element that matches key */
|
|
337 |
elem = sqlite3HashFindElem(pH, pKey, nKey);
|
|
338 |
return elem ? elem->data : 0;
|
|
339 |
}
|
|
340 |
|
|
341 |
/* Insert an element into the hash table pH. The key is pKey,nKey
|
|
342 |
** and the data is "data".
|
|
343 |
**
|
|
344 |
** If no element exists with a matching key, then a new
|
|
345 |
** element is created. A copy of the key is made if the copyKey
|
|
346 |
** flag is set. NULL is returned.
|
|
347 |
**
|
|
348 |
** If another element already exists with the same key, then the
|
|
349 |
** new data replaces the old data and the old data is returned.
|
|
350 |
** The key is not copied in this instance. If a malloc fails, then
|
|
351 |
** the new data is returned and the hash table is unchanged.
|
|
352 |
**
|
|
353 |
** If the "data" parameter to this function is NULL, then the
|
|
354 |
** element corresponding to "key" is removed from the hash table.
|
|
355 |
*/
|
|
356 |
void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|
357 |
int hraw; /* Raw hash value of the key */
|
|
358 |
int h; /* the hash of the key modulo hash table size */
|
|
359 |
HashElem *elem; /* Used to loop thru the element list */
|
|
360 |
HashElem *new_elem; /* New element added to the pH */
|
|
361 |
int (*xHash)(const void*,int); /* The hash function */
|
|
362 |
|
|
363 |
assert( pH!=0 );
|
|
364 |
xHash = hashFunction(pH->keyClass);
|
|
365 |
assert( xHash!=0 );
|
|
366 |
hraw = (*xHash)(pKey, nKey);
|
|
367 |
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
368 |
h = hraw & (pH->htsize-1);
|
|
369 |
elem = findElementGivenHash(pH,pKey,nKey,h);
|
|
370 |
if( elem ){
|
|
371 |
void *old_data = elem->data;
|
|
372 |
if( data==0 ){
|
|
373 |
removeElementGivenHash(pH,elem,h);
|
|
374 |
}else{
|
|
375 |
elem->data = data;
|
|
376 |
if( !pH->copyKey ){
|
|
377 |
elem->pKey = (void *)pKey;
|
|
378 |
}
|
|
379 |
assert(nKey==elem->nKey);
|
|
380 |
}
|
|
381 |
return old_data;
|
|
382 |
}
|
|
383 |
if( data==0 ) return 0;
|
|
384 |
new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
|
|
385 |
if( new_elem==0 ) return data;
|
|
386 |
if( pH->copyKey && pKey!=0 ){
|
|
387 |
new_elem->pKey = sqlite3_malloc( nKey );
|
|
388 |
if( new_elem->pKey==0 ){
|
|
389 |
sqlite3_free(new_elem);
|
|
390 |
return data;
|
|
391 |
}
|
|
392 |
memcpy((void*)new_elem->pKey, pKey, nKey);
|
|
393 |
}else{
|
|
394 |
new_elem->pKey = (void*)pKey;
|
|
395 |
}
|
|
396 |
new_elem->nKey = nKey;
|
|
397 |
pH->count++;
|
|
398 |
if( pH->htsize==0 ){
|
|
399 |
rehash(pH,8);
|
|
400 |
if( pH->htsize==0 ){
|
|
401 |
pH->count = 0;
|
|
402 |
if( pH->copyKey ){
|
|
403 |
sqlite3_free(new_elem->pKey);
|
|
404 |
}
|
|
405 |
sqlite3_free(new_elem);
|
|
406 |
return data;
|
|
407 |
}
|
|
408 |
}
|
|
409 |
if( pH->count > pH->htsize ){
|
|
410 |
rehash(pH,pH->htsize*2);
|
|
411 |
}
|
|
412 |
assert( pH->htsize>0 );
|
|
413 |
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
414 |
h = hraw & (pH->htsize-1);
|
|
415 |
insertElement(pH, &pH->ht[h], new_elem);
|
|
416 |
new_elem->data = data;
|
|
417 |
return 0;
|
|
418 |
}
|