2
|
1 |
/*
|
|
2 |
** 2007 August 14
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains the C functions that implement a memory
|
|
13 |
** allocation subsystem for use by SQLite.
|
|
14 |
**
|
|
15 |
** $Id: mem1.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
16 |
*/
|
|
17 |
|
|
18 |
/*
|
|
19 |
** This version of the memory allocator is the default. It is
|
|
20 |
** used when no other memory allocator is specified using compile-time
|
|
21 |
** macros.
|
|
22 |
*/
|
|
23 |
#if !defined(SQLITE_MEMDEBUG) && !defined(SQLITE_MEMORY_SIZE) \
|
|
24 |
&& !defined(SQLITE_MMAP_HEAP_SIZE)
|
|
25 |
|
|
26 |
/*
|
|
27 |
** We will eventually construct multiple memory allocation subsystems
|
|
28 |
** suitable for use in various contexts:
|
|
29 |
**
|
|
30 |
** * Normal multi-threaded builds
|
|
31 |
** * Normal single-threaded builds
|
|
32 |
** * Debugging builds
|
|
33 |
**
|
|
34 |
** This initial version is suitable for use in normal multi-threaded
|
|
35 |
** builds. We envision that alternative versions will be stored in
|
|
36 |
** separate source files. #ifdefs will be used to select the code from
|
|
37 |
** one of the various memN.c source files for use in any given build.
|
|
38 |
*/
|
|
39 |
#include "sqliteInt.h"
|
|
40 |
|
|
41 |
/*
|
|
42 |
** All of the static variables used by this module are collected
|
|
43 |
** into a single structure named "mem". This is to keep the
|
|
44 |
** static variables organized and to reduce namespace pollution
|
|
45 |
** when this module is combined with other in the amalgamation.
|
|
46 |
*/
|
|
47 |
static struct {
|
|
48 |
/*
|
|
49 |
** The alarm callback and its arguments. The mem.mutex lock will
|
|
50 |
** be held while the callback is running. Recursive calls into
|
|
51 |
** the memory subsystem are allowed, but no new callbacks will be
|
|
52 |
** issued. The alarmBusy variable is set to prevent recursive
|
|
53 |
** callbacks.
|
|
54 |
*/
|
|
55 |
sqlite3_int64 alarmThreshold;
|
|
56 |
void (*alarmCallback)(void*, sqlite3_int64,int);
|
|
57 |
void *alarmArg;
|
|
58 |
int alarmBusy;
|
|
59 |
|
|
60 |
/*
|
|
61 |
** Mutex to control access to the memory allocation subsystem.
|
|
62 |
*/
|
|
63 |
sqlite3_mutex *mutex;
|
|
64 |
|
|
65 |
/*
|
|
66 |
** Current allocation and high-water mark.
|
|
67 |
*/
|
|
68 |
sqlite3_int64 nowUsed;
|
|
69 |
sqlite3_int64 mxUsed;
|
|
70 |
|
|
71 |
|
|
72 |
} mem;
|
|
73 |
|
|
74 |
/*
|
|
75 |
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
76 |
*/
|
|
77 |
static void enterMem(void){
|
|
78 |
if( mem.mutex==0 ){
|
|
79 |
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
80 |
}
|
|
81 |
sqlite3_mutex_enter(mem.mutex);
|
|
82 |
}
|
|
83 |
|
|
84 |
/*
|
|
85 |
** Return the amount of memory currently checked out.
|
|
86 |
*/
|
|
87 |
EXPORT_C sqlite3_int64 sqlite3_memory_used(void){
|
|
88 |
sqlite3_int64 n;
|
|
89 |
enterMem();
|
|
90 |
n = mem.nowUsed;
|
|
91 |
sqlite3_mutex_leave(mem.mutex);
|
|
92 |
return n;
|
|
93 |
}
|
|
94 |
|
|
95 |
/*
|
|
96 |
** Return the maximum amount of memory that has ever been
|
|
97 |
** checked out since either the beginning of this process
|
|
98 |
** or since the most recent reset.
|
|
99 |
*/
|
|
100 |
EXPORT_C sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
101 |
sqlite3_int64 n;
|
|
102 |
enterMem();
|
|
103 |
n = mem.mxUsed;
|
|
104 |
if( resetFlag ){
|
|
105 |
mem.mxUsed = mem.nowUsed;
|
|
106 |
}
|
|
107 |
sqlite3_mutex_leave(mem.mutex);
|
|
108 |
return n;
|
|
109 |
}
|
|
110 |
|
|
111 |
/*
|
|
112 |
** Change the alarm callback
|
|
113 |
*/
|
|
114 |
EXPORT_C int sqlite3_memory_alarm(
|
|
115 |
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
|
116 |
void *pArg,
|
|
117 |
sqlite3_int64 iThreshold
|
|
118 |
){
|
|
119 |
enterMem();
|
|
120 |
mem.alarmCallback = xCallback;
|
|
121 |
mem.alarmArg = pArg;
|
|
122 |
mem.alarmThreshold = iThreshold;
|
|
123 |
sqlite3_mutex_leave(mem.mutex);
|
|
124 |
return SQLITE_OK;
|
|
125 |
}
|
|
126 |
|
|
127 |
/*
|
|
128 |
** Trigger the alarm
|
|
129 |
*/
|
|
130 |
static void sqlite3MemsysAlarm(int nByte){
|
|
131 |
void (*xCallback)(void*,sqlite3_int64,int);
|
|
132 |
sqlite3_int64 nowUsed;
|
|
133 |
void *pArg;
|
|
134 |
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
|
135 |
mem.alarmBusy = 1;
|
|
136 |
xCallback = mem.alarmCallback;
|
|
137 |
nowUsed = mem.nowUsed;
|
|
138 |
pArg = mem.alarmArg;
|
|
139 |
sqlite3_mutex_leave(mem.mutex);
|
|
140 |
xCallback(pArg, nowUsed, nByte);
|
|
141 |
sqlite3_mutex_enter(mem.mutex);
|
|
142 |
mem.alarmBusy = 0;
|
|
143 |
}
|
|
144 |
|
|
145 |
/*
|
|
146 |
** Allocate nBytes of memory
|
|
147 |
*/
|
|
148 |
EXPORT_C void *sqlite3_malloc(int nBytes){
|
|
149 |
sqlite3_int64 *p = 0;
|
|
150 |
if( nBytes>0 ){
|
|
151 |
enterMem();
|
|
152 |
if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
|
|
153 |
sqlite3MemsysAlarm(nBytes);
|
|
154 |
}
|
|
155 |
p = (sqlite3_int64*)malloc(nBytes+8);
|
|
156 |
if( p==0 ){
|
|
157 |
sqlite3MemsysAlarm(nBytes);
|
|
158 |
p = (sqlite3_int64*)malloc(nBytes+8);
|
|
159 |
}
|
|
160 |
if( p ){
|
|
161 |
p[0] = nBytes;
|
|
162 |
p++;
|
|
163 |
mem.nowUsed += nBytes;
|
|
164 |
if( mem.nowUsed>mem.mxUsed ){
|
|
165 |
mem.mxUsed = mem.nowUsed;
|
|
166 |
}
|
|
167 |
}
|
|
168 |
sqlite3_mutex_leave(mem.mutex);
|
|
169 |
}
|
|
170 |
return (void*)p;
|
|
171 |
}
|
|
172 |
|
|
173 |
/*
|
|
174 |
** Free memory.
|
|
175 |
*/
|
|
176 |
EXPORT_C void sqlite3_free(void *pPrior){
|
|
177 |
sqlite3_int64 *p;
|
|
178 |
int nByte;
|
|
179 |
if( pPrior==0 ){
|
|
180 |
return;
|
|
181 |
}
|
|
182 |
assert( mem.mutex!=0 );
|
|
183 |
p = (sqlite3_int64*)pPrior;
|
|
184 |
p--;
|
|
185 |
nByte = (int)*p;
|
|
186 |
sqlite3_mutex_enter(mem.mutex);
|
|
187 |
mem.nowUsed -= nByte;
|
|
188 |
free(p);
|
|
189 |
sqlite3_mutex_leave(mem.mutex);
|
|
190 |
}
|
|
191 |
|
|
192 |
/*
|
|
193 |
** Change the size of an existing memory allocation
|
|
194 |
*/
|
|
195 |
EXPORT_C void *sqlite3_realloc(void *pPrior, int nBytes){
|
|
196 |
int nOld;
|
|
197 |
sqlite3_int64 *p;
|
|
198 |
if( pPrior==0 ){
|
|
199 |
return sqlite3_malloc(nBytes);
|
|
200 |
}
|
|
201 |
if( nBytes<=0 ){
|
|
202 |
sqlite3_free(pPrior);
|
|
203 |
return 0;
|
|
204 |
}
|
|
205 |
p = (sqlite3_int64*)pPrior;
|
|
206 |
p--;
|
|
207 |
nOld = (int)p[0];
|
|
208 |
assert( mem.mutex!=0 );
|
|
209 |
sqlite3_mutex_enter(mem.mutex);
|
|
210 |
if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
|
|
211 |
sqlite3MemsysAlarm(nBytes-nOld);
|
|
212 |
}
|
|
213 |
p = (sqlite3_int64*)realloc(p, nBytes+8);
|
|
214 |
if( p==0 ){
|
|
215 |
sqlite3MemsysAlarm(nBytes);
|
|
216 |
p = (sqlite3_int64*)pPrior;
|
|
217 |
p--;
|
|
218 |
p = (sqlite3_int64*)realloc(p, nBytes+8);
|
|
219 |
}
|
|
220 |
if( p ){
|
|
221 |
p[0] = nBytes;
|
|
222 |
p++;
|
|
223 |
mem.nowUsed += nBytes-nOld;
|
|
224 |
if( mem.nowUsed>mem.mxUsed ){
|
|
225 |
mem.mxUsed = mem.nowUsed;
|
|
226 |
}
|
|
227 |
}
|
|
228 |
sqlite3_mutex_leave(mem.mutex);
|
|
229 |
return (void*)p;
|
|
230 |
}
|
|
231 |
|
|
232 |
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|