2
|
1 |
/*
|
|
2 |
** 2003 September 6
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains code used for creating, destroying, and populating
|
|
13 |
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
|
|
14 |
** to version 2.8.7, all this code was combined into the vdbe.c source file.
|
|
15 |
** But that file was getting too big so this subroutines were split out.
|
|
16 |
*/
|
|
17 |
#include "sqliteInt.h"
|
|
18 |
#include <ctype.h>
|
|
19 |
#include "vdbeInt.h"
|
|
20 |
|
|
21 |
|
|
22 |
|
|
23 |
/*
|
|
24 |
** When debugging the code generator in a symbolic debugger, one can
|
|
25 |
** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
|
|
26 |
** as they are added to the instruction stream.
|
|
27 |
*/
|
|
28 |
#ifdef SQLITE_DEBUG
|
|
29 |
int sqlite3_vdbe_addop_trace = 0;
|
|
30 |
#endif
|
|
31 |
|
|
32 |
|
|
33 |
/*
|
|
34 |
** Create a new virtual database engine.
|
|
35 |
*/
|
|
36 |
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
|
|
37 |
Vdbe *p;
|
|
38 |
p = (Vdbe*)sqlite3DbMallocZero(db, sizeof(Vdbe) );
|
|
39 |
if( p==0 ) return 0;
|
|
40 |
p->db = db;
|
|
41 |
if( db->pVdbe ){
|
|
42 |
db->pVdbe->pPrev = p;
|
|
43 |
}
|
|
44 |
p->pNext = db->pVdbe;
|
|
45 |
p->pPrev = 0;
|
|
46 |
db->pVdbe = p;
|
|
47 |
p->magic = VDBE_MAGIC_INIT;
|
|
48 |
return p;
|
|
49 |
}
|
|
50 |
|
|
51 |
/*
|
|
52 |
** Remember the SQL string for a prepared statement.
|
|
53 |
*/
|
|
54 |
void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
|
|
55 |
if( p==0 ) return;
|
|
56 |
assert( p->zSql==0 );
|
|
57 |
p->zSql = sqlite3DbStrNDup(p->db, z, n);
|
|
58 |
}
|
|
59 |
|
|
60 |
/*
|
|
61 |
** Return the SQL associated with a prepared statement
|
|
62 |
*/
|
|
63 |
EXPORT_C const char *sqlite3_sql(sqlite3_stmt *pStmt){
|
|
64 |
return ((Vdbe *)pStmt)->zSql;
|
|
65 |
}
|
|
66 |
|
|
67 |
/*
|
|
68 |
** Swap all content between two VDBE structures.
|
|
69 |
*/
|
|
70 |
void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
|
|
71 |
Vdbe tmp, *pTmp;
|
|
72 |
char *zTmp;
|
|
73 |
int nTmp;
|
|
74 |
tmp = *pA;
|
|
75 |
*pA = *pB;
|
|
76 |
*pB = tmp;
|
|
77 |
pTmp = pA->pNext;
|
|
78 |
pA->pNext = pB->pNext;
|
|
79 |
pB->pNext = pTmp;
|
|
80 |
pTmp = pA->pPrev;
|
|
81 |
pA->pPrev = pB->pPrev;
|
|
82 |
pB->pPrev = pTmp;
|
|
83 |
zTmp = pA->zSql;
|
|
84 |
pA->zSql = pB->zSql;
|
|
85 |
pB->zSql = zTmp;
|
|
86 |
nTmp = pA->nSql;
|
|
87 |
pA->nSql = pB->nSql;
|
|
88 |
pB->nSql = nTmp;
|
|
89 |
}
|
|
90 |
|
|
91 |
#ifdef SQLITE_DEBUG
|
|
92 |
/*
|
|
93 |
** Turn tracing on or off
|
|
94 |
*/
|
|
95 |
void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
|
|
96 |
p->trace = trace;
|
|
97 |
}
|
|
98 |
#endif
|
|
99 |
|
|
100 |
/*
|
|
101 |
** Resize the Vdbe.aOp array so that it contains at least N
|
|
102 |
** elements.
|
|
103 |
**
|
|
104 |
** If an out-of-memory error occurs while resizing the array,
|
|
105 |
** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
|
|
106 |
** any opcodes already allocated can be correctly deallocated
|
|
107 |
** along with the rest of the Vdbe).
|
|
108 |
*/
|
|
109 |
static void resizeOpArray(Vdbe *p, int N){
|
|
110 |
VdbeOp *pNew;
|
|
111 |
int oldSize = p->nOpAlloc;
|
|
112 |
pNew = (VdbeOp*)sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
|
|
113 |
if( pNew ){
|
|
114 |
p->nOpAlloc = N;
|
|
115 |
p->aOp = pNew;
|
|
116 |
if( N>oldSize ){
|
|
117 |
memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op));
|
|
118 |
}
|
|
119 |
}
|
|
120 |
}
|
|
121 |
|
|
122 |
/*
|
|
123 |
** Add a new instruction to the list of instructions current in the
|
|
124 |
** VDBE. Return the address of the new instruction.
|
|
125 |
**
|
|
126 |
** Parameters:
|
|
127 |
**
|
|
128 |
** p Pointer to the VDBE
|
|
129 |
**
|
|
130 |
** op The opcode for this instruction
|
|
131 |
**
|
|
132 |
** p1, p2 First two of the three possible operands.
|
|
133 |
**
|
|
134 |
** Use the sqlite3VdbeResolveLabel() function to fix an address and
|
|
135 |
** the sqlite3VdbeChangeP3() function to change the value of the P3
|
|
136 |
** operand.
|
|
137 |
*/
|
|
138 |
int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
|
|
139 |
int i;
|
|
140 |
VdbeOp *pOp;
|
|
141 |
|
|
142 |
i = p->nOp;
|
|
143 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
144 |
if( p->nOpAlloc<=i ){
|
|
145 |
resizeOpArray(p, p->nOpAlloc*2 + 100);
|
|
146 |
if( p->db->mallocFailed ){
|
|
147 |
return 0;
|
|
148 |
}
|
|
149 |
}
|
|
150 |
p->nOp++;
|
|
151 |
pOp = &p->aOp[i];
|
|
152 |
pOp->opcode = op;
|
|
153 |
pOp->p1 = p1;
|
|
154 |
pOp->p2 = p2;
|
|
155 |
pOp->p3 = 0;
|
|
156 |
pOp->p3type = P3_NOTUSED;
|
|
157 |
p->expired = 0;
|
|
158 |
#ifdef SQLITE_DEBUG
|
|
159 |
if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
|
|
160 |
#endif
|
|
161 |
return i;
|
|
162 |
}
|
|
163 |
|
|
164 |
/*
|
|
165 |
** Add an opcode that includes the p3 value.
|
|
166 |
*/
|
|
167 |
int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
|
|
168 |
int addr = sqlite3VdbeAddOp(p, op, p1, p2);
|
|
169 |
sqlite3VdbeChangeP3(p, addr, zP3, p3type);
|
|
170 |
return addr;
|
|
171 |
}
|
|
172 |
|
|
173 |
/*
|
|
174 |
** Create a new symbolic label for an instruction that has yet to be
|
|
175 |
** coded. The symbolic label is really just a negative number. The
|
|
176 |
** label can be used as the P2 value of an operation. Later, when
|
|
177 |
** the label is resolved to a specific address, the VDBE will scan
|
|
178 |
** through its operation list and change all values of P2 which match
|
|
179 |
** the label into the resolved address.
|
|
180 |
**
|
|
181 |
** The VDBE knows that a P2 value is a label because labels are
|
|
182 |
** always negative and P2 values are suppose to be non-negative.
|
|
183 |
** Hence, a negative P2 value is a label that has yet to be resolved.
|
|
184 |
**
|
|
185 |
** Zero is returned if a malloc() fails.
|
|
186 |
*/
|
|
187 |
int sqlite3VdbeMakeLabel(Vdbe *p){
|
|
188 |
int i;
|
|
189 |
i = p->nLabel++;
|
|
190 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
191 |
if( i>=p->nLabelAlloc ){
|
|
192 |
p->nLabelAlloc = p->nLabelAlloc*2 + 10;
|
|
193 |
p->aLabel = (int*)sqlite3DbReallocOrFree(p->db, p->aLabel,
|
|
194 |
p->nLabelAlloc*sizeof(p->aLabel[0]));
|
|
195 |
}
|
|
196 |
if( p->aLabel ){
|
|
197 |
p->aLabel[i] = -1;
|
|
198 |
}
|
|
199 |
return -1-i;
|
|
200 |
}
|
|
201 |
|
|
202 |
/*
|
|
203 |
** Resolve label "x" to be the address of the next instruction to
|
|
204 |
** be inserted. The parameter "x" must have been obtained from
|
|
205 |
** a prior call to sqlite3VdbeMakeLabel().
|
|
206 |
*/
|
|
207 |
void sqlite3VdbeResolveLabel(Vdbe *p, int x){
|
|
208 |
int j = -1-x;
|
|
209 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
210 |
assert( j>=0 && j<p->nLabel );
|
|
211 |
if( p->aLabel ){
|
|
212 |
p->aLabel[j] = p->nOp;
|
|
213 |
}
|
|
214 |
}
|
|
215 |
|
|
216 |
/*
|
|
217 |
** Return non-zero if opcode 'op' is guarenteed not to push more values
|
|
218 |
** onto the VDBE stack than it pops off.
|
|
219 |
*/
|
|
220 |
static int opcodeNoPush(u8 op){
|
|
221 |
/* The 10 NOPUSH_MASK_n constants are defined in the automatically
|
|
222 |
** generated header file opcodes.h. Each is a 16-bit bitmask, one
|
|
223 |
** bit corresponding to each opcode implemented by the virtual
|
|
224 |
** machine in vdbe.c. The bit is true if the word "no-push" appears
|
|
225 |
** in a comment on the same line as the "case OP_XXX:" in
|
|
226 |
** sqlite3VdbeExec() in vdbe.c.
|
|
227 |
**
|
|
228 |
** If the bit is true, then the corresponding opcode is guarenteed not
|
|
229 |
** to grow the stack when it is executed. Otherwise, it may grow the
|
|
230 |
** stack by at most one entry.
|
|
231 |
**
|
|
232 |
** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
|
|
233 |
** one bit for opcodes 16 to 31, and so on.
|
|
234 |
**
|
|
235 |
** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h
|
|
236 |
** because the file is generated by an awk program. Awk manipulates
|
|
237 |
** all numbers as floating-point and we don't want to risk a rounding
|
|
238 |
** error if someone builds with an awk that uses (for example) 32-bit
|
|
239 |
** IEEE floats.
|
|
240 |
*/
|
|
241 |
static const u32 masks[5] = {
|
|
242 |
NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
|
|
243 |
NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
|
|
244 |
NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
|
|
245 |
NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
|
|
246 |
NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
|
|
247 |
};
|
|
248 |
assert( op<32*5 );
|
|
249 |
return (masks[op>>5] & (1<<(op&0x1F)));
|
|
250 |
}
|
|
251 |
|
|
252 |
#ifndef NDEBUG
|
|
253 |
int sqlite3VdbeOpcodeNoPush(u8 op){
|
|
254 |
return opcodeNoPush(op);
|
|
255 |
}
|
|
256 |
#endif
|
|
257 |
|
|
258 |
/*
|
|
259 |
** Loop through the program looking for P2 values that are negative.
|
|
260 |
** Each such value is a label. Resolve the label by setting the P2
|
|
261 |
** value to its correct non-zero value.
|
|
262 |
**
|
|
263 |
** This routine is called once after all opcodes have been inserted.
|
|
264 |
**
|
|
265 |
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
|
|
266 |
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
|
|
267 |
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
|
|
268 |
**
|
|
269 |
** The integer *pMaxStack is set to the maximum number of vdbe stack
|
|
270 |
** entries that static analysis reveals this program might need.
|
|
271 |
**
|
|
272 |
** This routine also does the following optimization: It scans for
|
|
273 |
** instructions that might cause a statement rollback. Such instructions
|
|
274 |
** are:
|
|
275 |
**
|
|
276 |
** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
|
|
277 |
** * OP_Destroy
|
|
278 |
** * OP_VUpdate
|
|
279 |
** * OP_VRename
|
|
280 |
**
|
|
281 |
** If no such instruction is found, then every Statement instruction
|
|
282 |
** is changed to a Noop. In this way, we avoid creating the statement
|
|
283 |
** journal file unnecessarily.
|
|
284 |
*/
|
|
285 |
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
|
|
286 |
int i;
|
|
287 |
int nMaxArgs = 0;
|
|
288 |
int nMaxStack = p->nOp;
|
|
289 |
Op *pOp;
|
|
290 |
int *aLabel = p->aLabel;
|
|
291 |
int doesStatementRollback = 0;
|
|
292 |
int hasStatementBegin = 0;
|
|
293 |
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
|
294 |
u8 opcode = pOp->opcode;
|
|
295 |
|
|
296 |
if( opcode==OP_Function || opcode==OP_AggStep
|
|
297 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
298 |
|| opcode==OP_VUpdate
|
|
299 |
#endif
|
|
300 |
){
|
|
301 |
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
|
|
302 |
}
|
|
303 |
if( opcode==OP_Halt ){
|
|
304 |
if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
|
|
305 |
doesStatementRollback = 1;
|
|
306 |
}
|
|
307 |
}else if( opcode==OP_Statement ){
|
|
308 |
hasStatementBegin = 1;
|
|
309 |
}else if( opcode==OP_Destroy ){
|
|
310 |
doesStatementRollback = 1;
|
|
311 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
312 |
}else if( opcode==OP_VUpdate || opcode==OP_VRename ){
|
|
313 |
doesStatementRollback = 1;
|
|
314 |
}else if( opcode==OP_VFilter ){
|
|
315 |
int n;
|
|
316 |
assert( p->nOp - i >= 3 );
|
|
317 |
assert( pOp[-2].opcode==OP_Integer );
|
|
318 |
n = pOp[-2].p1;
|
|
319 |
if( n>nMaxArgs ) nMaxArgs = n;
|
|
320 |
#endif
|
|
321 |
}
|
|
322 |
if( opcodeNoPush(opcode) ){
|
|
323 |
nMaxStack--;
|
|
324 |
}
|
|
325 |
|
|
326 |
if( pOp->p2>=0 ) continue;
|
|
327 |
assert( -1-pOp->p2<p->nLabel );
|
|
328 |
pOp->p2 = aLabel[-1-pOp->p2];
|
|
329 |
}
|
|
330 |
sqlite3_free(p->aLabel);
|
|
331 |
p->aLabel = 0;
|
|
332 |
|
|
333 |
*pMaxFuncArgs = nMaxArgs;
|
|
334 |
*pMaxStack = nMaxStack;
|
|
335 |
|
|
336 |
/* If we never rollback a statement transaction, then statement
|
|
337 |
** transactions are not needed. So change every OP_Statement
|
|
338 |
** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
|
|
339 |
** which can be expensive on some platforms.
|
|
340 |
*/
|
|
341 |
if( hasStatementBegin && !doesStatementRollback ){
|
|
342 |
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
|
343 |
if( pOp->opcode==OP_Statement ){
|
|
344 |
pOp->opcode = OP_Noop;
|
|
345 |
}
|
|
346 |
}
|
|
347 |
}
|
|
348 |
}
|
|
349 |
|
|
350 |
/*
|
|
351 |
** Return the address of the next instruction to be inserted.
|
|
352 |
*/
|
|
353 |
int sqlite3VdbeCurrentAddr(Vdbe *p){
|
|
354 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
355 |
return p->nOp;
|
|
356 |
}
|
|
357 |
|
|
358 |
/*
|
|
359 |
** Add a whole list of operations to the operation stack. Return the
|
|
360 |
** address of the first operation added.
|
|
361 |
*/
|
|
362 |
int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
|
363 |
int addr;
|
|
364 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
365 |
if( p->nOp + nOp > p->nOpAlloc ){
|
|
366 |
resizeOpArray(p, p->nOp*2 + nOp);
|
|
367 |
}
|
|
368 |
if( p->db->mallocFailed ){
|
|
369 |
return 0;
|
|
370 |
}
|
|
371 |
addr = p->nOp;
|
|
372 |
if( nOp>0 ){
|
|
373 |
int i;
|
|
374 |
VdbeOpList const *pIn = aOp;
|
|
375 |
for(i=0; i<nOp; i++, pIn++){
|
|
376 |
int p2 = pIn->p2;
|
|
377 |
VdbeOp *pOut = &p->aOp[i+addr];
|
|
378 |
pOut->opcode = pIn->opcode;
|
|
379 |
pOut->p1 = pIn->p1;
|
|
380 |
pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
|
|
381 |
pOut->p3 = pIn->p3;
|
|
382 |
pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
|
|
383 |
#ifdef SQLITE_DEBUG
|
|
384 |
if( sqlite3_vdbe_addop_trace ){
|
|
385 |
sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
|
|
386 |
}
|
|
387 |
#endif
|
|
388 |
}
|
|
389 |
p->nOp += nOp;
|
|
390 |
}
|
|
391 |
return addr;
|
|
392 |
}
|
|
393 |
|
|
394 |
/*
|
|
395 |
** Change the value of the P1 operand for a specific instruction.
|
|
396 |
** This routine is useful when a large program is loaded from a
|
|
397 |
** static array using sqlite3VdbeAddOpList but we want to make a
|
|
398 |
** few minor changes to the program.
|
|
399 |
*/
|
|
400 |
void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
|
|
401 |
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
402 |
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
403 |
p->aOp[addr].p1 = val;
|
|
404 |
}
|
|
405 |
}
|
|
406 |
|
|
407 |
/*
|
|
408 |
** Change the value of the P2 operand for a specific instruction.
|
|
409 |
** This routine is useful for setting a jump destination.
|
|
410 |
*/
|
|
411 |
void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
|
|
412 |
assert( val>=0 );
|
|
413 |
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
414 |
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
415 |
p->aOp[addr].p2 = val;
|
|
416 |
}
|
|
417 |
}
|
|
418 |
|
|
419 |
/*
|
|
420 |
** Change the P2 operand of instruction addr so that it points to
|
|
421 |
** the address of the next instruction to be coded.
|
|
422 |
*/
|
|
423 |
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
|
|
424 |
sqlite3VdbeChangeP2(p, addr, p->nOp);
|
|
425 |
}
|
|
426 |
|
|
427 |
|
|
428 |
/*
|
|
429 |
** If the input FuncDef structure is ephemeral, then free it. If
|
|
430 |
** the FuncDef is not ephermal, then do nothing.
|
|
431 |
*/
|
|
432 |
static void freeEphemeralFunction(FuncDef *pDef){
|
|
433 |
if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
|
|
434 |
sqlite3_free(pDef);
|
|
435 |
}
|
|
436 |
}
|
|
437 |
|
|
438 |
/*
|
|
439 |
** Delete a P3 value if necessary.
|
|
440 |
*/
|
|
441 |
static void freeP3(int p3type, void *p3){
|
|
442 |
if( p3 ){
|
|
443 |
switch( p3type ){
|
|
444 |
case P3_REAL:
|
|
445 |
case P3_INT64:
|
|
446 |
case P3_MPRINTF:
|
|
447 |
case P3_DYNAMIC:
|
|
448 |
case P3_KEYINFO:
|
|
449 |
case P3_KEYINFO_HANDOFF: {
|
|
450 |
sqlite3_free(p3);
|
|
451 |
break;
|
|
452 |
}
|
|
453 |
case P3_VDBEFUNC: {
|
|
454 |
VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
|
|
455 |
freeEphemeralFunction(pVdbeFunc->pFunc);
|
|
456 |
sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
|
|
457 |
sqlite3_free(pVdbeFunc);
|
|
458 |
break;
|
|
459 |
}
|
|
460 |
case P3_FUNCDEF: {
|
|
461 |
freeEphemeralFunction((FuncDef*)p3);
|
|
462 |
break;
|
|
463 |
}
|
|
464 |
case P3_MEM: {
|
|
465 |
sqlite3ValueFree((sqlite3_value*)p3);
|
|
466 |
break;
|
|
467 |
}
|
|
468 |
}
|
|
469 |
}
|
|
470 |
}
|
|
471 |
|
|
472 |
|
|
473 |
/*
|
|
474 |
** Change N opcodes starting at addr to No-ops.
|
|
475 |
*/
|
|
476 |
void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
|
|
477 |
if( p && p->aOp ){
|
|
478 |
VdbeOp *pOp = &p->aOp[addr];
|
|
479 |
while( N-- ){
|
|
480 |
freeP3(pOp->p3type, pOp->p3);
|
|
481 |
memset(pOp, 0, sizeof(pOp[0]));
|
|
482 |
pOp->opcode = OP_Noop;
|
|
483 |
pOp++;
|
|
484 |
}
|
|
485 |
}
|
|
486 |
}
|
|
487 |
|
|
488 |
/*
|
|
489 |
** Change the value of the P3 operand for a specific instruction.
|
|
490 |
** This routine is useful when a large program is loaded from a
|
|
491 |
** static array using sqlite3VdbeAddOpList but we want to make a
|
|
492 |
** few minor changes to the program.
|
|
493 |
**
|
|
494 |
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
|
|
495 |
** the string is made into memory obtained from sqlite3_malloc().
|
|
496 |
** A value of n==0 means copy bytes of zP3 up to and including the
|
|
497 |
** first null byte. If n>0 then copy n+1 bytes of zP3.
|
|
498 |
**
|
|
499 |
** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
|
|
500 |
** A copy is made of the KeyInfo structure into memory obtained from
|
|
501 |
** sqlite3_malloc, to be freed when the Vdbe is finalized.
|
|
502 |
** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
|
|
503 |
** stored in memory that the caller has obtained from sqlite3_malloc. The
|
|
504 |
** caller should not free the allocation, it will be freed when the Vdbe is
|
|
505 |
** finalized.
|
|
506 |
**
|
|
507 |
** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
|
|
508 |
** to a string or structure that is guaranteed to exist for the lifetime of
|
|
509 |
** the Vdbe. In these cases we can just copy the pointer.
|
|
510 |
**
|
|
511 |
** If addr<0 then change P3 on the most recently inserted instruction.
|
|
512 |
*/
|
|
513 |
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
|
|
514 |
Op *pOp;
|
|
515 |
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
516 |
if( p==0 || p->aOp==0 || p->db->mallocFailed ){
|
|
517 |
if (n != P3_KEYINFO) {
|
|
518 |
freeP3(n, (void*)*(char**)&zP3);
|
|
519 |
}
|
|
520 |
return;
|
|
521 |
}
|
|
522 |
if( addr<0 || addr>=p->nOp ){
|
|
523 |
addr = p->nOp - 1;
|
|
524 |
if( addr<0 ) return;
|
|
525 |
}
|
|
526 |
pOp = &p->aOp[addr];
|
|
527 |
freeP3(pOp->p3type, pOp->p3);
|
|
528 |
pOp->p3 = 0;
|
|
529 |
if( zP3==0 ){
|
|
530 |
pOp->p3 = 0;
|
|
531 |
pOp->p3type = P3_NOTUSED;
|
|
532 |
}else if( n==P3_KEYINFO ){
|
|
533 |
KeyInfo *pKeyInfo;
|
|
534 |
int nField, nByte;
|
|
535 |
|
|
536 |
nField = ((KeyInfo*)zP3)->nField;
|
|
537 |
nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
|
|
538 |
pKeyInfo = (KeyInfo*)sqlite3_malloc( nByte );
|
|
539 |
pOp->p3 = (char*)pKeyInfo;
|
|
540 |
if( pKeyInfo ){
|
|
541 |
unsigned char *aSortOrder;
|
|
542 |
memcpy(pKeyInfo, zP3, nByte);
|
|
543 |
aSortOrder = pKeyInfo->aSortOrder;
|
|
544 |
if( aSortOrder ){
|
|
545 |
pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
|
|
546 |
memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
|
|
547 |
}
|
|
548 |
pOp->p3type = P3_KEYINFO;
|
|
549 |
}else{
|
|
550 |
p->db->mallocFailed = 1;
|
|
551 |
pOp->p3type = P3_NOTUSED;
|
|
552 |
}
|
|
553 |
}else if( n==P3_KEYINFO_HANDOFF ){
|
|
554 |
pOp->p3 = (char*)zP3;
|
|
555 |
pOp->p3type = P3_KEYINFO;
|
|
556 |
}else if( n<0 ){
|
|
557 |
pOp->p3 = (char*)zP3;
|
|
558 |
pOp->p3type = n;
|
|
559 |
}else{
|
|
560 |
if( n==0 ) n = strlen(zP3);
|
|
561 |
pOp->p3 = sqlite3DbStrNDup(p->db, zP3, n);
|
|
562 |
pOp->p3type = P3_DYNAMIC;
|
|
563 |
}
|
|
564 |
}
|
|
565 |
|
|
566 |
#ifndef NDEBUG
|
|
567 |
/*
|
|
568 |
** Replace the P3 field of the most recently coded instruction with
|
|
569 |
** comment text.
|
|
570 |
*/
|
|
571 |
void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
|
|
572 |
va_list ap;
|
|
573 |
assert( p->nOp>0 || p->aOp==0 );
|
|
574 |
assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || p->db->mallocFailed );
|
|
575 |
va_start(ap, zFormat);
|
|
576 |
sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(p->db, zFormat, ap), P3_DYNAMIC);
|
|
577 |
va_end(ap);
|
|
578 |
}
|
|
579 |
#endif
|
|
580 |
|
|
581 |
/*
|
|
582 |
** Return the opcode for a given address.
|
|
583 |
*/
|
|
584 |
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
|
|
585 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
586 |
assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
|
|
587 |
return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
|
|
588 |
}
|
|
589 |
|
|
590 |
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|
|
591 |
|| defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
|
592 |
/*
|
|
593 |
** Compute a string that describes the P3 parameter for an opcode.
|
|
594 |
** Use zTemp for any required temporary buffer space.
|
|
595 |
*/
|
|
596 |
static char *displayP3(Op *pOp, char *zTemp, int nTemp){
|
|
597 |
char *zP3;
|
|
598 |
assert( nTemp>=20 );
|
|
599 |
switch( pOp->p3type ){
|
|
600 |
case P3_KEYINFO: {
|
|
601 |
int i, j;
|
|
602 |
KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
|
|
603 |
sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
|
|
604 |
i = strlen(zTemp);
|
|
605 |
for(j=0; j<pKeyInfo->nField; j++){
|
|
606 |
CollSeq *pColl = pKeyInfo->aColl[j];
|
|
607 |
if( pColl ){
|
|
608 |
int n = strlen(pColl->zName);
|
|
609 |
if( i+n>nTemp-6 ){
|
|
610 |
memcpy(&zTemp[i],",...",4);
|
|
611 |
break;
|
|
612 |
}
|
|
613 |
zTemp[i++] = ',';
|
|
614 |
if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
|
|
615 |
zTemp[i++] = '-';
|
|
616 |
}
|
|
617 |
memcpy(&zTemp[i], pColl->zName,n+1);
|
|
618 |
i += n;
|
|
619 |
}else if( i+4<nTemp-6 ){
|
|
620 |
memcpy(&zTemp[i],",nil",4);
|
|
621 |
i += 4;
|
|
622 |
}
|
|
623 |
}
|
|
624 |
zTemp[i++] = ')';
|
|
625 |
zTemp[i] = 0;
|
|
626 |
assert( i<nTemp );
|
|
627 |
zP3 = zTemp;
|
|
628 |
break;
|
|
629 |
}
|
|
630 |
case P3_COLLSEQ: {
|
|
631 |
CollSeq *pColl = (CollSeq*)pOp->p3;
|
|
632 |
sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
|
|
633 |
zP3 = zTemp;
|
|
634 |
break;
|
|
635 |
}
|
|
636 |
case P3_FUNCDEF: {
|
|
637 |
FuncDef *pDef = (FuncDef*)pOp->p3;
|
|
638 |
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
|
|
639 |
zP3 = zTemp;
|
|
640 |
break;
|
|
641 |
}
|
|
642 |
case P3_INT64: {
|
|
643 |
sqlite3_snprintf(nTemp, zTemp, "%lld", *(sqlite3_int64*)pOp->p3);
|
|
644 |
zP3 = zTemp;
|
|
645 |
break;
|
|
646 |
}
|
|
647 |
case P3_REAL: {
|
|
648 |
sqlite3_snprintf(nTemp, zTemp, "%.16g", *(double*)pOp->p3);
|
|
649 |
zP3 = zTemp;
|
|
650 |
break;
|
|
651 |
}
|
|
652 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
653 |
case P3_VTAB: {
|
|
654 |
sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3;
|
|
655 |
sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
|
|
656 |
zP3 = zTemp;
|
|
657 |
break;
|
|
658 |
}
|
|
659 |
#endif
|
|
660 |
default: {
|
|
661 |
zP3 = pOp->p3;
|
|
662 |
if( zP3==0 || pOp->opcode==OP_Noop ){
|
|
663 |
zP3 = "";
|
|
664 |
}
|
|
665 |
}
|
|
666 |
}
|
|
667 |
assert( zP3!=0 );
|
|
668 |
return zP3;
|
|
669 |
}
|
|
670 |
#endif
|
|
671 |
|
|
672 |
/*
|
|
673 |
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
|
|
674 |
**
|
|
675 |
*/
|
|
676 |
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
|
|
677 |
int mask;
|
|
678 |
assert( i>=0 && i<p->db->nDb );
|
|
679 |
assert( i<sizeof(p->btreeMask)*8 );
|
|
680 |
mask = 1<<i;
|
|
681 |
if( (p->btreeMask & mask)==0 ){
|
|
682 |
p->btreeMask |= mask;
|
|
683 |
sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
|
|
684 |
}
|
|
685 |
}
|
|
686 |
|
|
687 |
|
|
688 |
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
|
689 |
/*
|
|
690 |
** Print a single opcode. This routine is used for debugging only.
|
|
691 |
*/
|
|
692 |
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
|
693 |
char *zP3;
|
|
694 |
char zPtr[50];
|
|
695 |
static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
|
|
696 |
if( pOut==0 ) pOut = stdout;
|
|
697 |
zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
|
|
698 |
fprintf(pOut, zFormat1,
|
|
699 |
pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3);
|
|
700 |
fflush(pOut);
|
|
701 |
}
|
|
702 |
#endif
|
|
703 |
|
|
704 |
/*
|
|
705 |
** Release an array of N Mem elements
|
|
706 |
*/
|
|
707 |
static void releaseMemArray(Mem *p, int N){
|
|
708 |
if( p ){
|
|
709 |
while( N-->0 ){
|
|
710 |
assert( N<2 || p[0].db==p[1].db );
|
|
711 |
sqlite3VdbeMemRelease(p++);
|
|
712 |
}
|
|
713 |
}
|
|
714 |
}
|
|
715 |
|
|
716 |
#ifndef SQLITE_OMIT_EXPLAIN
|
|
717 |
/*
|
|
718 |
** Give a listing of the program in the virtual machine.
|
|
719 |
**
|
|
720 |
** The interface is the same as sqlite3VdbeExec(). But instead of
|
|
721 |
** running the code, it invokes the callback once for each instruction.
|
|
722 |
** This feature is used to implement "EXPLAIN".
|
|
723 |
*/
|
|
724 |
int sqlite3VdbeList(
|
|
725 |
Vdbe *p /* The VDBE */
|
|
726 |
){
|
|
727 |
sqlite3 *db = p->db;
|
|
728 |
int i;
|
|
729 |
int rc = SQLITE_OK;
|
|
730 |
|
|
731 |
assert( p->explain );
|
|
732 |
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
|
|
733 |
assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
734 |
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
735 |
|
|
736 |
/* Even though this opcode does not put dynamic strings onto the
|
|
737 |
** the stack, they may become dynamic if the user calls
|
|
738 |
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
|
|
739 |
*/
|
|
740 |
if( p->pTos==&p->aStack[4] ){
|
|
741 |
releaseMemArray(p->aStack, 5);
|
|
742 |
}
|
|
743 |
p->resOnStack = 0;
|
|
744 |
|
|
745 |
do{
|
|
746 |
i = p->pc++;
|
|
747 |
}while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
|
|
748 |
if( i>=p->nOp ){
|
|
749 |
p->rc = SQLITE_OK;
|
|
750 |
rc = SQLITE_DONE;
|
|
751 |
}else if( db->u1.isInterrupted ){
|
|
752 |
p->rc = SQLITE_INTERRUPT;
|
|
753 |
rc = SQLITE_ERROR;
|
|
754 |
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
|
|
755 |
}else{
|
|
756 |
Op *pOp = &p->aOp[i];
|
|
757 |
Mem *pMem = p->aStack;
|
|
758 |
pMem->flags = MEM_Int;
|
|
759 |
pMem->type = SQLITE_INTEGER;
|
|
760 |
pMem->u.i = i; /* Program counter */
|
|
761 |
pMem++;
|
|
762 |
|
|
763 |
pMem->flags = MEM_Static|MEM_Str|MEM_Term;
|
|
764 |
pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
|
|
765 |
assert( pMem->z!=0 );
|
|
766 |
pMem->n = strlen(pMem->z);
|
|
767 |
pMem->type = SQLITE_TEXT;
|
|
768 |
pMem->enc = SQLITE_UTF8;
|
|
769 |
pMem++;
|
|
770 |
|
|
771 |
pMem->flags = MEM_Int;
|
|
772 |
pMem->u.i = pOp->p1; /* P1 */
|
|
773 |
pMem->type = SQLITE_INTEGER;
|
|
774 |
pMem++;
|
|
775 |
|
|
776 |
pMem->flags = MEM_Int;
|
|
777 |
pMem->u.i = pOp->p2; /* P2 */
|
|
778 |
pMem->type = SQLITE_INTEGER;
|
|
779 |
pMem++;
|
|
780 |
|
|
781 |
pMem->flags = MEM_Ephem|MEM_Str|MEM_Term; /* P3 */
|
|
782 |
pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
|
|
783 |
assert( pMem->z!=0 );
|
|
784 |
pMem->n = strlen(pMem->z);
|
|
785 |
pMem->type = SQLITE_TEXT;
|
|
786 |
pMem->enc = SQLITE_UTF8;
|
|
787 |
|
|
788 |
p->nResColumn = 5 - 2*(p->explain-1);
|
|
789 |
p->pTos = pMem;
|
|
790 |
p->rc = SQLITE_OK;
|
|
791 |
p->resOnStack = 1;
|
|
792 |
rc = SQLITE_ROW;
|
|
793 |
}
|
|
794 |
return rc;
|
|
795 |
}
|
|
796 |
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
797 |
|
|
798 |
#ifdef SQLITE_DEBUG
|
|
799 |
/*
|
|
800 |
** Print the SQL that was used to generate a VDBE program.
|
|
801 |
*/
|
|
802 |
void sqlite3VdbePrintSql(Vdbe *p){
|
|
803 |
int nOp = p->nOp;
|
|
804 |
VdbeOp *pOp;
|
|
805 |
if( nOp<1 ) return;
|
|
806 |
pOp = &p->aOp[nOp-1];
|
|
807 |
if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
|
|
808 |
const char *z = pOp->p3;
|
|
809 |
while( isspace(*(u8*)z) ) z++;
|
|
810 |
printf("SQL: [%s]\n", z);
|
|
811 |
}
|
|
812 |
}
|
|
813 |
#endif
|
|
814 |
|
|
815 |
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
|
|
816 |
/*
|
|
817 |
** Print an IOTRACE message showing SQL content.
|
|
818 |
*/
|
|
819 |
void sqlite3VdbeIOTraceSql(Vdbe *p){
|
|
820 |
int nOp = p->nOp;
|
|
821 |
VdbeOp *pOp;
|
|
822 |
if( sqlite3_io_trace==0 ) return;
|
|
823 |
if( nOp<1 ) return;
|
|
824 |
pOp = &p->aOp[nOp-1];
|
|
825 |
if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
|
|
826 |
int i, j;
|
|
827 |
char z[1000];
|
|
828 |
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3);
|
|
829 |
for(i=0; isspace((unsigned char)z[i]); i++){}
|
|
830 |
for(j=0; z[i]; i++){
|
|
831 |
if( isspace((unsigned char)z[i]) ){
|
|
832 |
if( z[i-1]!=' ' ){
|
|
833 |
z[j++] = ' ';
|
|
834 |
}
|
|
835 |
}else{
|
|
836 |
z[j++] = z[i];
|
|
837 |
}
|
|
838 |
}
|
|
839 |
z[j] = 0;
|
|
840 |
sqlite3_io_trace("SQL %s\n", z);
|
|
841 |
}
|
|
842 |
}
|
|
843 |
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
|
|
844 |
|
|
845 |
|
|
846 |
/*
|
|
847 |
** Prepare a virtual machine for execution. This involves things such
|
|
848 |
** as allocating stack space and initializing the program counter.
|
|
849 |
** After the VDBE has be prepped, it can be executed by one or more
|
|
850 |
** calls to sqlite3VdbeExec().
|
|
851 |
**
|
|
852 |
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
|
|
853 |
** VDBE_MAGIC_RUN.
|
|
854 |
*/
|
|
855 |
void sqlite3VdbeMakeReady(
|
|
856 |
Vdbe *p, /* The VDBE */
|
|
857 |
int nVar, /* Number of '?' see in the SQL statement */
|
|
858 |
int nMem, /* Number of memory cells to allocate */
|
|
859 |
int nCursor, /* Number of cursors to allocate */
|
|
860 |
int isExplain /* True if the EXPLAIN keywords is present */
|
|
861 |
){
|
|
862 |
int n;
|
|
863 |
sqlite3 *db = p->db;
|
|
864 |
|
|
865 |
assert( p!=0 );
|
|
866 |
assert( p->magic==VDBE_MAGIC_INIT );
|
|
867 |
|
|
868 |
/* There should be at least one opcode.
|
|
869 |
*/
|
|
870 |
assert( p->nOp>0 );
|
|
871 |
|
|
872 |
/* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
|
|
873 |
* is because the call to resizeOpArray() below may shrink the
|
|
874 |
* p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
|
|
875 |
* state.
|
|
876 |
*/
|
|
877 |
p->magic = VDBE_MAGIC_RUN;
|
|
878 |
|
|
879 |
/* No instruction ever pushes more than a single element onto the
|
|
880 |
** stack. And the stack never grows on successive executions of the
|
|
881 |
** same loop. So the total number of instructions is an upper bound
|
|
882 |
** on the maximum stack depth required. (Added later:) The
|
|
883 |
** resolveP2Values() call computes a tighter upper bound on the
|
|
884 |
** stack size.
|
|
885 |
**
|
|
886 |
** Allocation all the stack space we will ever need.
|
|
887 |
*/
|
|
888 |
if( p->aStack==0 ){
|
|
889 |
int nArg; /* Maximum number of args passed to a user function. */
|
|
890 |
int nStack; /* Maximum number of stack entries required */
|
|
891 |
resolveP2Values(p, &nArg, &nStack);
|
|
892 |
resizeOpArray(p, p->nOp);
|
|
893 |
assert( nVar>=0 );
|
|
894 |
assert( nStack<p->nOp );
|
|
895 |
if( isExplain ){
|
|
896 |
nStack = 10;
|
|
897 |
}
|
|
898 |
p->aStack = (Mem*)sqlite3DbMallocZero(db,
|
|
899 |
nStack*sizeof(p->aStack[0]) /* aStack */
|
|
900 |
+ nArg*sizeof(Mem*) /* apArg */
|
|
901 |
+ nVar*sizeof(Mem) /* aVar */
|
|
902 |
+ nVar*sizeof(char*) /* azVar */
|
|
903 |
+ nMem*sizeof(Mem) /* aMem */
|
|
904 |
+ nCursor*sizeof(Cursor*) /* apCsr */
|
|
905 |
);
|
|
906 |
if( !db->mallocFailed ){
|
|
907 |
p->aMem = &p->aStack[nStack];
|
|
908 |
p->nMem = nMem;
|
|
909 |
p->aVar = &p->aMem[nMem];
|
|
910 |
p->nVar = nVar;
|
|
911 |
p->okVar = 0;
|
|
912 |
p->apArg = (Mem**)&p->aVar[nVar];
|
|
913 |
p->azVar = (char**)&p->apArg[nArg];
|
|
914 |
p->apCsr = (Cursor**)&p->azVar[nVar];
|
|
915 |
p->nCursor = nCursor;
|
|
916 |
for(n=0; n<nVar; n++){
|
|
917 |
p->aVar[n].flags = MEM_Null;
|
|
918 |
p->aVar[n].db = db;
|
|
919 |
}
|
|
920 |
for(n=0; n<nStack; n++){
|
|
921 |
p->aStack[n].db = db;
|
|
922 |
}
|
|
923 |
}
|
|
924 |
}
|
|
925 |
for(n=0; n<p->nMem; n++){
|
|
926 |
p->aMem[n].flags = MEM_Null;
|
|
927 |
p->aMem[n].db = db;
|
|
928 |
}
|
|
929 |
|
|
930 |
p->pTos = &p->aStack[-1];
|
|
931 |
p->pc = -1;
|
|
932 |
p->rc = SQLITE_OK;
|
|
933 |
p->uniqueCnt = 0;
|
|
934 |
p->returnDepth = 0;
|
|
935 |
p->errorAction = OE_Abort;
|
|
936 |
p->popStack = 0;
|
|
937 |
p->explain |= isExplain;
|
|
938 |
p->magic = VDBE_MAGIC_RUN;
|
|
939 |
p->nChange = 0;
|
|
940 |
p->cacheCtr = 1;
|
|
941 |
p->minWriteFileFormat = 255;
|
|
942 |
p->openedStatement = 0;
|
|
943 |
#ifdef VDBE_PROFILE
|
|
944 |
{
|
|
945 |
int i;
|
|
946 |
for(i=0; i<p->nOp; i++){
|
|
947 |
p->aOp[i].cnt = 0;
|
|
948 |
p->aOp[i].cycles = 0;
|
|
949 |
}
|
|
950 |
}
|
|
951 |
#endif
|
|
952 |
}
|
|
953 |
|
|
954 |
/*
|
|
955 |
** Close a VDBE cursor and release all the resources that cursor happens
|
|
956 |
** to hold.
|
|
957 |
*/
|
|
958 |
void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
|
|
959 |
if( pCx==0 ){
|
|
960 |
return;
|
|
961 |
}
|
|
962 |
if( pCx->pCursor ){
|
|
963 |
sqlite3BtreeCloseCursor(pCx->pCursor);
|
|
964 |
}
|
|
965 |
if( pCx->pBt ){
|
|
966 |
sqlite3BtreeClose(pCx->pBt);
|
|
967 |
}
|
|
968 |
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
969 |
if( pCx->pVtabCursor ){
|
|
970 |
sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
|
|
971 |
const sqlite3_module *pModule = pCx->pModule;
|
|
972 |
p->inVtabMethod = 1;
|
|
973 |
sqlite3SafetyOff(p->db);
|
|
974 |
pModule->xClose(pVtabCursor);
|
|
975 |
sqlite3SafetyOn(p->db);
|
|
976 |
p->inVtabMethod = 0;
|
|
977 |
}
|
|
978 |
#endif
|
|
979 |
sqlite3_free(pCx->pData);
|
|
980 |
sqlite3_free(pCx->aType);
|
|
981 |
sqlite3_free(pCx);
|
|
982 |
}
|
|
983 |
|
|
984 |
/*
|
|
985 |
** Close all cursors except for VTab cursors that are currently
|
|
986 |
** in use.
|
|
987 |
*/
|
|
988 |
static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
|
|
989 |
int i;
|
|
990 |
if( p->apCsr==0 ) return;
|
|
991 |
for(i=0; i<p->nCursor; i++){
|
|
992 |
Cursor *pC = p->apCsr[i];
|
|
993 |
if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
|
|
994 |
sqlite3VdbeFreeCursor(p, pC);
|
|
995 |
p->apCsr[i] = 0;
|
|
996 |
}
|
|
997 |
}
|
|
998 |
}
|
|
999 |
|
|
1000 |
/*
|
|
1001 |
** Clean up the VM after execution.
|
|
1002 |
**
|
|
1003 |
** This routine will automatically close any cursors, lists, and/or
|
|
1004 |
** sorters that were left open. It also deletes the values of
|
|
1005 |
** variables in the aVar[] array.
|
|
1006 |
*/
|
|
1007 |
static void Cleanup(Vdbe *p){
|
|
1008 |
int i;
|
|
1009 |
if( p->aStack ){
|
|
1010 |
releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
|
|
1011 |
p->pTos = &p->aStack[-1];
|
|
1012 |
}
|
|
1013 |
closeAllCursorsExceptActiveVtabs(p);
|
|
1014 |
releaseMemArray(p->aMem, p->nMem);
|
|
1015 |
sqlite3VdbeFifoClear(&p->sFifo);
|
|
1016 |
if( p->contextStack ){
|
|
1017 |
for(i=0; i<p->contextStackTop; i++){
|
|
1018 |
sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
|
|
1019 |
}
|
|
1020 |
sqlite3_free(p->contextStack);
|
|
1021 |
}
|
|
1022 |
p->contextStack = 0;
|
|
1023 |
p->contextStackDepth = 0;
|
|
1024 |
p->contextStackTop = 0;
|
|
1025 |
sqlite3_free(p->zErrMsg);
|
|
1026 |
p->zErrMsg = 0;
|
|
1027 |
p->resOnStack = 0;
|
|
1028 |
}
|
|
1029 |
|
|
1030 |
/*
|
|
1031 |
** Set the number of result columns that will be returned by this SQL
|
|
1032 |
** statement. This is now set at compile time, rather than during
|
|
1033 |
** execution of the vdbe program so that sqlite3_column_count() can
|
|
1034 |
** be called on an SQL statement before sqlite3_step().
|
|
1035 |
*/
|
|
1036 |
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
|
|
1037 |
Mem *pColName;
|
|
1038 |
int n;
|
|
1039 |
|
|
1040 |
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
|
1041 |
sqlite3_free(p->aColName);
|
|
1042 |
n = nResColumn*COLNAME_N;
|
|
1043 |
p->nResColumn = nResColumn;
|
|
1044 |
p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
|
|
1045 |
if( p->aColName==0 ) return;
|
|
1046 |
while( n-- > 0 ){
|
|
1047 |
pColName->flags = MEM_Null;
|
|
1048 |
pColName->db = p->db;
|
|
1049 |
pColName++;
|
|
1050 |
}
|
|
1051 |
}
|
|
1052 |
|
|
1053 |
/*
|
|
1054 |
** Set the name of the idx'th column to be returned by the SQL statement.
|
|
1055 |
** zName must be a pointer to a nul terminated string.
|
|
1056 |
**
|
|
1057 |
** This call must be made after a call to sqlite3VdbeSetNumCols().
|
|
1058 |
**
|
|
1059 |
** If N==P3_STATIC it means that zName is a pointer to a constant static
|
|
1060 |
** string and we can just copy the pointer. If it is P3_DYNAMIC, then
|
|
1061 |
** the string is freed using sqlite3_free() when the vdbe is finished with
|
|
1062 |
** it. Otherwise, N bytes of zName are copied.
|
|
1063 |
*/
|
|
1064 |
int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
|
|
1065 |
int rc;
|
|
1066 |
Mem *pColName;
|
|
1067 |
assert( idx<p->nResColumn );
|
|
1068 |
assert( var<COLNAME_N );
|
|
1069 |
if( p->db->mallocFailed ) return SQLITE_NOMEM;
|
|
1070 |
assert( p->aColName!=0 );
|
|
1071 |
pColName = &(p->aColName[idx+var*p->nResColumn]);
|
|
1072 |
if( N==P3_DYNAMIC || N==P3_STATIC ){
|
|
1073 |
rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
1074 |
}else{
|
|
1075 |
rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
|
|
1076 |
}
|
|
1077 |
if( rc==SQLITE_OK && N==P3_DYNAMIC ){
|
|
1078 |
pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
|
|
1079 |
pColName->xDel = 0;
|
|
1080 |
}
|
|
1081 |
return rc;
|
|
1082 |
}
|
|
1083 |
|
|
1084 |
/*
|
|
1085 |
** A read or write transaction may or may not be active on database handle
|
|
1086 |
** db. If a transaction is active, commit it. If there is a
|
|
1087 |
** write-transaction spanning more than one database file, this routine
|
|
1088 |
** takes care of the master journal trickery.
|
|
1089 |
*/
|
|
1090 |
static int vdbeCommit(sqlite3 *db){
|
|
1091 |
int i;
|
|
1092 |
int nTrans = 0; /* Number of databases with an active write-transaction */
|
|
1093 |
int rc = SQLITE_OK;
|
|
1094 |
int needXcommit = 0;
|
|
1095 |
|
|
1096 |
/* Before doing anything else, call the xSync() callback for any
|
|
1097 |
** virtual module tables written in this transaction. This has to
|
|
1098 |
** be done before determining whether a master journal file is
|
|
1099 |
** required, as an xSync() callback may add an attached database
|
|
1100 |
** to the transaction.
|
|
1101 |
*/
|
|
1102 |
rc = sqlite3VtabSync(db, rc);
|
|
1103 |
if( rc!=SQLITE_OK ){
|
|
1104 |
return rc;
|
|
1105 |
}
|
|
1106 |
|
|
1107 |
/* This loop determines (a) if the commit hook should be invoked and
|
|
1108 |
** (b) how many database files have open write transactions, not
|
|
1109 |
** including the temp database. (b) is important because if more than
|
|
1110 |
** one database file has an open write transaction, a master journal
|
|
1111 |
** file is required for an atomic commit.
|
|
1112 |
*/
|
|
1113 |
for(i=0; i<db->nDb; i++){
|
|
1114 |
Btree *pBt = db->aDb[i].pBt;
|
|
1115 |
if( sqlite3BtreeIsInTrans(pBt) ){
|
|
1116 |
needXcommit = 1;
|
|
1117 |
if( i!=1 ) nTrans++;
|
|
1118 |
}
|
|
1119 |
}
|
|
1120 |
|
|
1121 |
/* If there are any write-transactions at all, invoke the commit hook */
|
|
1122 |
if( needXcommit && db->xCommitCallback ){
|
|
1123 |
sqlite3SafetyOff(db);
|
|
1124 |
rc = db->xCommitCallback(db->pCommitArg);
|
|
1125 |
sqlite3SafetyOn(db);
|
|
1126 |
if( rc ){
|
|
1127 |
return SQLITE_CONSTRAINT;
|
|
1128 |
}
|
|
1129 |
}
|
|
1130 |
|
|
1131 |
/* The simple case - no more than one database file (not counting the
|
|
1132 |
** TEMP database) has a transaction active. There is no need for the
|
|
1133 |
** master-journal.
|
|
1134 |
**
|
|
1135 |
** If the return value of sqlite3BtreeGetFilename() is a zero length
|
|
1136 |
** string, it means the main database is :memory:. In that case we do
|
|
1137 |
** not support atomic multi-file commits, so use the simple case then
|
|
1138 |
** too.
|
|
1139 |
*/
|
|
1140 |
if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
|
|
1141 |
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
1142 |
Btree *pBt = db->aDb[i].pBt;
|
|
1143 |
if( pBt ){
|
|
1144 |
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
|
|
1145 |
}
|
|
1146 |
}
|
|
1147 |
|
|
1148 |
/* Do the commit only if all databases successfully complete phase 1.
|
|
1149 |
** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
|
|
1150 |
** IO error while deleting or truncating a journal file. It is unlikely,
|
|
1151 |
** but could happen. In this case abandon processing and return the error.
|
|
1152 |
*/
|
|
1153 |
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
1154 |
Btree *pBt = db->aDb[i].pBt;
|
|
1155 |
if( pBt ){
|
|
1156 |
rc = sqlite3BtreeCommitPhaseTwo(pBt);
|
|
1157 |
}
|
|
1158 |
}
|
|
1159 |
if( rc==SQLITE_OK ){
|
|
1160 |
sqlite3VtabCommit(db);
|
|
1161 |
}
|
|
1162 |
}
|
|
1163 |
|
|
1164 |
/* The complex case - There is a multi-file write-transaction active.
|
|
1165 |
** This requires a master journal file to ensure the transaction is
|
|
1166 |
** committed atomicly.
|
|
1167 |
*/
|
|
1168 |
#ifndef SQLITE_OMIT_DISKIO
|
|
1169 |
else{
|
|
1170 |
sqlite3_vfs *pVfs = db->pVfs;
|
|
1171 |
int needSync = 0;
|
|
1172 |
char *zMaster = 0; /* File-name for the master journal */
|
|
1173 |
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
|
|
1174 |
sqlite3_file *pMaster = 0;
|
|
1175 |
i64 offset = 0;
|
|
1176 |
|
|
1177 |
/* Select a master journal file name */
|
|
1178 |
do {
|
|
1179 |
u32 random;
|
|
1180 |
sqlite3_free(zMaster);
|
|
1181 |
sqlite3Randomness(sizeof(random), &random);
|
|
1182 |
zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
|
|
1183 |
if( !zMaster ){
|
|
1184 |
return SQLITE_NOMEM;
|
|
1185 |
}
|
|
1186 |
}while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) );
|
|
1187 |
|
|
1188 |
/* Open the master journal. */
|
|
1189 |
rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
|
|
1190 |
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
|
|
1191 |
SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
|
|
1192 |
);
|
|
1193 |
if( rc!=SQLITE_OK ){
|
|
1194 |
sqlite3_free(zMaster);
|
|
1195 |
return rc;
|
|
1196 |
}
|
|
1197 |
|
|
1198 |
/* Write the name of each database file in the transaction into the new
|
|
1199 |
** master journal file. If an error occurs at this point close
|
|
1200 |
** and delete the master journal file. All the individual journal files
|
|
1201 |
** still have 'null' as the master journal pointer, so they will roll
|
|
1202 |
** back independently if a failure occurs.
|
|
1203 |
*/
|
|
1204 |
for(i=0; i<db->nDb; i++){
|
|
1205 |
Btree *pBt = db->aDb[i].pBt;
|
|
1206 |
if( i==1 ) continue; /* Ignore the TEMP database */
|
|
1207 |
if( sqlite3BtreeIsInTrans(pBt) ){
|
|
1208 |
char const *zFile = sqlite3BtreeGetJournalname(pBt);
|
|
1209 |
if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
|
|
1210 |
if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
|
|
1211 |
needSync = 1;
|
|
1212 |
}
|
|
1213 |
rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
|
|
1214 |
offset += strlen(zFile)+1;
|
|
1215 |
if( rc!=SQLITE_OK ){
|
|
1216 |
sqlite3OsCloseFree(pMaster);
|
|
1217 |
sqlite3OsDelete(pVfs, zMaster, 0);
|
|
1218 |
sqlite3_free(zMaster);
|
|
1219 |
return rc;
|
|
1220 |
}
|
|
1221 |
}
|
|
1222 |
}
|
|
1223 |
|
|
1224 |
/* Sync the master journal file. If the IOCAP_SEQUENTIAL device
|
|
1225 |
** flag is set this is not required.
|
|
1226 |
*/
|
|
1227 |
zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
|
|
1228 |
if( (needSync
|
|
1229 |
&& (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
|
|
1230 |
&& (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
|
|
1231 |
sqlite3OsCloseFree(pMaster);
|
|
1232 |
sqlite3OsDelete(pVfs, zMaster, 0);
|
|
1233 |
sqlite3_free(zMaster);
|
|
1234 |
return rc;
|
|
1235 |
}
|
|
1236 |
|
|
1237 |
/* Sync all the db files involved in the transaction. The same call
|
|
1238 |
** sets the master journal pointer in each individual journal. If
|
|
1239 |
** an error occurs here, do not delete the master journal file.
|
|
1240 |
**
|
|
1241 |
** If the error occurs during the first call to
|
|
1242 |
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
|
|
1243 |
** master journal file will be orphaned. But we cannot delete it,
|
|
1244 |
** in case the master journal file name was written into the journal
|
|
1245 |
** file before the failure occured.
|
|
1246 |
*/
|
|
1247 |
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
1248 |
Btree *pBt = db->aDb[i].pBt;
|
|
1249 |
if( pBt ){
|
|
1250 |
rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
|
|
1251 |
}
|
|
1252 |
}
|
|
1253 |
sqlite3OsCloseFree(pMaster);
|
|
1254 |
if( rc!=SQLITE_OK ){
|
|
1255 |
sqlite3_free(zMaster);
|
|
1256 |
return rc;
|
|
1257 |
}
|
|
1258 |
|
|
1259 |
/* Delete the master journal file. This commits the transaction. After
|
|
1260 |
** doing this the directory is synced again before any individual
|
|
1261 |
** transaction files are deleted.
|
|
1262 |
*/
|
|
1263 |
rc = sqlite3OsDelete(pVfs, zMaster, 1);
|
|
1264 |
sqlite3_free(zMaster);
|
|
1265 |
zMaster = 0;
|
|
1266 |
if( rc ){
|
|
1267 |
return rc;
|
|
1268 |
}
|
|
1269 |
|
|
1270 |
/* All files and directories have already been synced, so the following
|
|
1271 |
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
|
|
1272 |
** deleting or truncating journals. If something goes wrong while
|
|
1273 |
** this is happening we don't really care. The integrity of the
|
|
1274 |
** transaction is already guaranteed, but some stray 'cold' journals
|
|
1275 |
** may be lying around. Returning an error code won't help matters.
|
|
1276 |
*/
|
|
1277 |
disable_simulated_io_errors();
|
|
1278 |
for(i=0; i<db->nDb; i++){
|
|
1279 |
Btree *pBt = db->aDb[i].pBt;
|
|
1280 |
if( pBt ){
|
|
1281 |
sqlite3BtreeCommitPhaseTwo(pBt);
|
|
1282 |
}
|
|
1283 |
}
|
|
1284 |
enable_simulated_io_errors();
|
|
1285 |
|
|
1286 |
sqlite3VtabCommit(db);
|
|
1287 |
}
|
|
1288 |
#endif
|
|
1289 |
|
|
1290 |
return rc;
|
|
1291 |
}
|
|
1292 |
|
|
1293 |
/*
|
|
1294 |
** This routine checks that the sqlite3.activeVdbeCnt count variable
|
|
1295 |
** matches the number of vdbe's in the list sqlite3.pVdbe that are
|
|
1296 |
** currently active. An assertion fails if the two counts do not match.
|
|
1297 |
** This is an internal self-check only - it is not an essential processing
|
|
1298 |
** step.
|
|
1299 |
**
|
|
1300 |
** This is a no-op if NDEBUG is defined.
|
|
1301 |
*/
|
|
1302 |
#ifndef NDEBUG
|
|
1303 |
static void checkActiveVdbeCnt(sqlite3 *db){
|
|
1304 |
Vdbe *p;
|
|
1305 |
int cnt = 0;
|
|
1306 |
p = db->pVdbe;
|
|
1307 |
while( p ){
|
|
1308 |
if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
|
|
1309 |
cnt++;
|
|
1310 |
}
|
|
1311 |
p = p->pNext;
|
|
1312 |
}
|
|
1313 |
assert( cnt==db->activeVdbeCnt );
|
|
1314 |
}
|
|
1315 |
#else
|
|
1316 |
#define checkActiveVdbeCnt(x)
|
|
1317 |
#endif
|
|
1318 |
|
|
1319 |
/*
|
|
1320 |
** For every Btree that in database connection db which
|
|
1321 |
** has been modified, "trip" or invalidate each cursor in
|
|
1322 |
** that Btree might have been modified so that the cursor
|
|
1323 |
** can never be used again. This happens when a rollback
|
|
1324 |
*** occurs. We have to trip all the other cursors, even
|
|
1325 |
** cursor from other VMs in different database connections,
|
|
1326 |
** so that none of them try to use the data at which they
|
|
1327 |
** were pointing and which now may have been changed due
|
|
1328 |
** to the rollback.
|
|
1329 |
**
|
|
1330 |
** Remember that a rollback can delete tables complete and
|
|
1331 |
** reorder rootpages. So it is not sufficient just to save
|
|
1332 |
** the state of the cursor. We have to invalidate the cursor
|
|
1333 |
** so that it is never used again.
|
|
1334 |
*/
|
|
1335 |
static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
|
|
1336 |
int i;
|
|
1337 |
for(i=0; i<db->nDb; i++){
|
|
1338 |
Btree *p = db->aDb[i].pBt;
|
|
1339 |
if( p && sqlite3BtreeIsInTrans(p) ){
|
|
1340 |
sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
|
|
1341 |
}
|
|
1342 |
}
|
|
1343 |
}
|
|
1344 |
|
|
1345 |
/*
|
|
1346 |
** This routine is called the when a VDBE tries to halt. If the VDBE
|
|
1347 |
** has made changes and is in autocommit mode, then commit those
|
|
1348 |
** changes. If a rollback is needed, then do the rollback.
|
|
1349 |
**
|
|
1350 |
** This routine is the only way to move the state of a VM from
|
|
1351 |
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
|
|
1352 |
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
|
|
1353 |
**
|
|
1354 |
** Return an error code. If the commit could not complete because of
|
|
1355 |
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
|
|
1356 |
** means the close did not happen and needs to be repeated.
|
|
1357 |
*/
|
|
1358 |
int sqlite3VdbeHalt(Vdbe *p){
|
|
1359 |
sqlite3 *db = p->db;
|
|
1360 |
int i;
|
|
1361 |
int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
|
|
1362 |
int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
|
|
1363 |
|
|
1364 |
/* This function contains the logic that determines if a statement or
|
|
1365 |
** transaction will be committed or rolled back as a result of the
|
|
1366 |
** execution of this virtual machine.
|
|
1367 |
**
|
|
1368 |
** If any of the following errors occur:
|
|
1369 |
**
|
|
1370 |
** SQLITE_NOMEM
|
|
1371 |
** SQLITE_IOERR
|
|
1372 |
** SQLITE_FULL
|
|
1373 |
** SQLITE_INTERRUPT
|
|
1374 |
**
|
|
1375 |
** Then the internal cache might have been left in an inconsistent
|
|
1376 |
** state. We need to rollback the statement transaction, if there is
|
|
1377 |
** one, or the complete transaction if there is no statement transaction.
|
|
1378 |
*/
|
|
1379 |
|
|
1380 |
if( p->db->mallocFailed ){
|
|
1381 |
p->rc = SQLITE_NOMEM;
|
|
1382 |
}
|
|
1383 |
closeAllCursorsExceptActiveVtabs(p);
|
|
1384 |
if( p->magic!=VDBE_MAGIC_RUN ){
|
|
1385 |
return SQLITE_OK;
|
|
1386 |
}
|
|
1387 |
checkActiveVdbeCnt(db);
|
|
1388 |
|
|
1389 |
/* No commit or rollback needed if the program never started */
|
|
1390 |
if( p->pc>=0 ){
|
|
1391 |
int mrc; /* Primary error code from p->rc */
|
|
1392 |
|
|
1393 |
/* Lock all btrees used by the statement */
|
|
1394 |
sqlite3BtreeMutexArrayEnter(&p->aMutex);
|
|
1395 |
|
|
1396 |
/* Check for one of the special errors */
|
|
1397 |
mrc = p->rc & 0xff;
|
|
1398 |
isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|
|
1399 |
|| mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
|
|
1400 |
if( isSpecialError ){
|
|
1401 |
/* This loop does static analysis of the query to see which of the
|
|
1402 |
** following three categories it falls into:
|
|
1403 |
**
|
|
1404 |
** Read-only
|
|
1405 |
** Query with statement journal
|
|
1406 |
** Query without statement journal
|
|
1407 |
**
|
|
1408 |
** We could do something more elegant than this static analysis (i.e.
|
|
1409 |
** store the type of query as part of the compliation phase), but
|
|
1410 |
** handling malloc() or IO failure is a fairly obscure edge case so
|
|
1411 |
** this is probably easier. Todo: Might be an opportunity to reduce
|
|
1412 |
** code size a very small amount though...
|
|
1413 |
*/
|
|
1414 |
int notReadOnly = 0;
|
|
1415 |
int isStatement = 0;
|
|
1416 |
assert(p->aOp || p->nOp==0);
|
|
1417 |
for(i=0; i<p->nOp; i++){
|
|
1418 |
switch( p->aOp[i].opcode ){
|
|
1419 |
case OP_Transaction:
|
|
1420 |
notReadOnly |= p->aOp[i].p2;
|
|
1421 |
break;
|
|
1422 |
case OP_Statement:
|
|
1423 |
isStatement = 1;
|
|
1424 |
break;
|
|
1425 |
}
|
|
1426 |
}
|
|
1427 |
|
|
1428 |
|
|
1429 |
/* If the query was read-only, we need do no rollback at all. Otherwise,
|
|
1430 |
** proceed with the special handling.
|
|
1431 |
*/
|
|
1432 |
if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
|
|
1433 |
if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
|
|
1434 |
xFunc = sqlite3BtreeRollbackStmt;
|
|
1435 |
p->rc = SQLITE_BUSY;
|
|
1436 |
} else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
|
|
1437 |
xFunc = sqlite3BtreeRollbackStmt;
|
|
1438 |
}else{
|
|
1439 |
/* We are forced to roll back the active transaction. Before doing
|
|
1440 |
** so, abort any other statements this handle currently has active.
|
|
1441 |
*/
|
|
1442 |
invalidateCursorsOnModifiedBtrees(db);
|
|
1443 |
sqlite3RollbackAll(db);
|
|
1444 |
db->autoCommit = 1;
|
|
1445 |
}
|
|
1446 |
}
|
|
1447 |
}
|
|
1448 |
|
|
1449 |
/* If the auto-commit flag is set and this is the only active vdbe, then
|
|
1450 |
** we do either a commit or rollback of the current transaction.
|
|
1451 |
**
|
|
1452 |
** Note: This block also runs if one of the special errors handled
|
|
1453 |
** above has occured.
|
|
1454 |
*/
|
|
1455 |
if( db->autoCommit && db->activeVdbeCnt==1 ){
|
|
1456 |
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
|
|
1457 |
/* The auto-commit flag is true, and the vdbe program was
|
|
1458 |
** successful or hit an 'OR FAIL' constraint. This means a commit
|
|
1459 |
** is required.
|
|
1460 |
*/
|
|
1461 |
int rc = vdbeCommit(db);
|
|
1462 |
if( rc==SQLITE_BUSY ){
|
|
1463 |
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
1464 |
return SQLITE_BUSY;
|
|
1465 |
}else if( rc!=SQLITE_OK ){
|
|
1466 |
p->rc = rc;
|
|
1467 |
sqlite3RollbackAll(db);
|
|
1468 |
}else{
|
|
1469 |
sqlite3CommitInternalChanges(db);
|
|
1470 |
}
|
|
1471 |
}else{
|
|
1472 |
sqlite3RollbackAll(db);
|
|
1473 |
}
|
|
1474 |
}else if( !xFunc ){
|
|
1475 |
if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
|
|
1476 |
if( p->openedStatement ){
|
|
1477 |
xFunc = sqlite3BtreeCommitStmt;
|
|
1478 |
}
|
|
1479 |
}else if( p->errorAction==OE_Abort ){
|
|
1480 |
xFunc = sqlite3BtreeRollbackStmt;
|
|
1481 |
}else{
|
|
1482 |
invalidateCursorsOnModifiedBtrees(db);
|
|
1483 |
sqlite3RollbackAll(db);
|
|
1484 |
db->autoCommit = 1;
|
|
1485 |
}
|
|
1486 |
}
|
|
1487 |
|
|
1488 |
/* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
|
|
1489 |
** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
|
|
1490 |
** and the return code is still SQLITE_OK, set the return code to the new
|
|
1491 |
** error value.
|
|
1492 |
*/
|
|
1493 |
assert(!xFunc ||
|
|
1494 |
xFunc==sqlite3BtreeCommitStmt ||
|
|
1495 |
xFunc==sqlite3BtreeRollbackStmt
|
|
1496 |
);
|
|
1497 |
for(i=0; xFunc && i<db->nDb; i++){
|
|
1498 |
int rc;
|
|
1499 |
Btree *pBt = db->aDb[i].pBt;
|
|
1500 |
if( pBt ){
|
|
1501 |
rc = xFunc(pBt);
|
|
1502 |
if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
|
|
1503 |
p->rc = rc;
|
|
1504 |
sqlite3SetString(&p->zErrMsg, 0);
|
|
1505 |
}
|
|
1506 |
}
|
|
1507 |
}
|
|
1508 |
|
|
1509 |
/* If this was an INSERT, UPDATE or DELETE and the statement was committed,
|
|
1510 |
** set the change counter.
|
|
1511 |
*/
|
|
1512 |
if( p->changeCntOn && p->pc>=0 ){
|
|
1513 |
if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
|
|
1514 |
sqlite3VdbeSetChanges(db, p->nChange);
|
|
1515 |
}else{
|
|
1516 |
sqlite3VdbeSetChanges(db, 0);
|
|
1517 |
}
|
|
1518 |
p->nChange = 0;
|
|
1519 |
}
|
|
1520 |
|
|
1521 |
/* Rollback or commit any schema changes that occurred. */
|
|
1522 |
if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
|
|
1523 |
sqlite3ResetInternalSchema(db, 0);
|
|
1524 |
db->flags = (db->flags | SQLITE_InternChanges);
|
|
1525 |
}
|
|
1526 |
|
|
1527 |
/* Release the locks */
|
|
1528 |
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
1529 |
}
|
|
1530 |
|
|
1531 |
/* We have successfully halted and closed the VM. Record this fact. */
|
|
1532 |
if( p->pc>=0 ){
|
|
1533 |
db->activeVdbeCnt--;
|
|
1534 |
}
|
|
1535 |
p->magic = VDBE_MAGIC_HALT;
|
|
1536 |
checkActiveVdbeCnt(db);
|
|
1537 |
if( p->db->mallocFailed ){
|
|
1538 |
p->rc = SQLITE_NOMEM;
|
|
1539 |
}
|
|
1540 |
checkActiveVdbeCnt(db);
|
|
1541 |
|
|
1542 |
return SQLITE_OK;
|
|
1543 |
}
|
|
1544 |
|
|
1545 |
|
|
1546 |
/*
|
|
1547 |
** Each VDBE holds the result of the most recent sqlite3_step() call
|
|
1548 |
** in p->rc. This routine sets that result back to SQLITE_OK.
|
|
1549 |
*/
|
|
1550 |
void sqlite3VdbeResetStepResult(Vdbe *p){
|
|
1551 |
p->rc = SQLITE_OK;
|
|
1552 |
}
|
|
1553 |
|
|
1554 |
/*
|
|
1555 |
** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
|
1556 |
** Write any error messages into *pzErrMsg. Return the result code.
|
|
1557 |
**
|
|
1558 |
** After this routine is run, the VDBE should be ready to be executed
|
|
1559 |
** again.
|
|
1560 |
**
|
|
1561 |
** To look at it another way, this routine resets the state of the
|
|
1562 |
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
|
|
1563 |
** VDBE_MAGIC_INIT.
|
|
1564 |
*/
|
|
1565 |
int sqlite3VdbeReset(Vdbe *p){
|
|
1566 |
sqlite3 *db;
|
|
1567 |
db = p->db;
|
|
1568 |
|
|
1569 |
/* If the VM did not run to completion or if it encountered an
|
|
1570 |
** error, then it might not have been halted properly. So halt
|
|
1571 |
** it now.
|
|
1572 |
*/
|
|
1573 |
sqlite3SafetyOn(db);
|
|
1574 |
sqlite3VdbeHalt(p);
|
|
1575 |
sqlite3SafetyOff(db);
|
|
1576 |
|
|
1577 |
/* If the VDBE has be run even partially, then transfer the error code
|
|
1578 |
** and error message from the VDBE into the main database structure. But
|
|
1579 |
** if the VDBE has just been set to run but has not actually executed any
|
|
1580 |
** instructions yet, leave the main database error information unchanged.
|
|
1581 |
*/
|
|
1582 |
if( p->pc>=0 ){
|
|
1583 |
if( p->zErrMsg ){
|
|
1584 |
sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
|
|
1585 |
db->errCode = p->rc;
|
|
1586 |
p->zErrMsg = 0;
|
|
1587 |
}else if( p->rc ){
|
|
1588 |
sqlite3Error(db, p->rc, 0);
|
|
1589 |
}else{
|
|
1590 |
sqlite3Error(db, SQLITE_OK, 0);
|
|
1591 |
}
|
|
1592 |
}else if( p->rc && p->expired ){
|
|
1593 |
/* The expired flag was set on the VDBE before the first call
|
|
1594 |
** to sqlite3_step(). For consistency (since sqlite3_step() was
|
|
1595 |
** called), set the database error in this case as well.
|
|
1596 |
*/
|
|
1597 |
sqlite3Error(db, p->rc, 0);
|
|
1598 |
sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
|
|
1599 |
p->zErrMsg = 0;
|
|
1600 |
}
|
|
1601 |
|
|
1602 |
/* Reclaim all memory used by the VDBE
|
|
1603 |
*/
|
|
1604 |
Cleanup(p);
|
|
1605 |
|
|
1606 |
/* Save profiling information from this VDBE run.
|
|
1607 |
*/
|
|
1608 |
assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
|
|
1609 |
#ifdef VDBE_PROFILE
|
|
1610 |
{
|
|
1611 |
FILE *out = fopen("vdbe_profile.out", "a");
|
|
1612 |
if( out ){
|
|
1613 |
int i;
|
|
1614 |
fprintf(out, "---- ");
|
|
1615 |
for(i=0; i<p->nOp; i++){
|
|
1616 |
fprintf(out, "%02x", p->aOp[i].opcode);
|
|
1617 |
}
|
|
1618 |
fprintf(out, "\n");
|
|
1619 |
for(i=0; i<p->nOp; i++){
|
|
1620 |
fprintf(out, "%6d %10lld %8lld ",
|
|
1621 |
p->aOp[i].cnt,
|
|
1622 |
p->aOp[i].cycles,
|
|
1623 |
p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
|
|
1624 |
);
|
|
1625 |
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
|
|
1626 |
}
|
|
1627 |
fclose(out);
|
|
1628 |
}
|
|
1629 |
}
|
|
1630 |
#endif
|
|
1631 |
p->magic = VDBE_MAGIC_INIT;
|
|
1632 |
p->aborted = 0;
|
|
1633 |
return p->rc & db->errMask;
|
|
1634 |
}
|
|
1635 |
|
|
1636 |
/*
|
|
1637 |
** Clean up and delete a VDBE after execution. Return an integer which is
|
|
1638 |
** the result code. Write any error message text into *pzErrMsg.
|
|
1639 |
*/
|
|
1640 |
int sqlite3VdbeFinalize(Vdbe *p){
|
|
1641 |
int rc = SQLITE_OK;
|
|
1642 |
if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
|
|
1643 |
rc = sqlite3VdbeReset(p);
|
|
1644 |
assert( (rc & p->db->errMask)==rc );
|
|
1645 |
}else if( p->magic!=VDBE_MAGIC_INIT ){
|
|
1646 |
return SQLITE_MISUSE;
|
|
1647 |
}
|
|
1648 |
sqlite3VdbeDelete(p);
|
|
1649 |
return rc;
|
|
1650 |
}
|
|
1651 |
|
|
1652 |
/*
|
|
1653 |
** Call the destructor for each auxdata entry in pVdbeFunc for which
|
|
1654 |
** the corresponding bit in mask is clear. Auxdata entries beyond 31
|
|
1655 |
** are always destroyed. To destroy all auxdata entries, call this
|
|
1656 |
** routine with mask==0.
|
|
1657 |
*/
|
|
1658 |
void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
|
|
1659 |
int i;
|
|
1660 |
for(i=0; i<pVdbeFunc->nAux; i++){
|
|
1661 |
VdbeFunc::AuxData *pAux = &pVdbeFunc->apAux[i];
|
|
1662 |
if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
|
|
1663 |
if( pAux->xDelete ){
|
|
1664 |
pAux->xDelete(pAux->pAux);
|
|
1665 |
}
|
|
1666 |
pAux->pAux = 0;
|
|
1667 |
}
|
|
1668 |
}
|
|
1669 |
}
|
|
1670 |
|
|
1671 |
/*
|
|
1672 |
** Delete an entire VDBE.
|
|
1673 |
*/
|
|
1674 |
void sqlite3VdbeDelete(Vdbe *p){
|
|
1675 |
int i;
|
|
1676 |
if( p==0 ) return;
|
|
1677 |
Cleanup(p);
|
|
1678 |
if( p->pPrev ){
|
|
1679 |
p->pPrev->pNext = p->pNext;
|
|
1680 |
}else{
|
|
1681 |
assert( p->db->pVdbe==p );
|
|
1682 |
p->db->pVdbe = p->pNext;
|
|
1683 |
}
|
|
1684 |
if( p->pNext ){
|
|
1685 |
p->pNext->pPrev = p->pPrev;
|
|
1686 |
}
|
|
1687 |
if( p->aOp ){
|
|
1688 |
for(i=0; i<p->nOp; i++){
|
|
1689 |
Op *pOp = &p->aOp[i];
|
|
1690 |
freeP3(pOp->p3type, pOp->p3);
|
|
1691 |
}
|
|
1692 |
sqlite3_free(p->aOp);
|
|
1693 |
}
|
|
1694 |
releaseMemArray(p->aVar, p->nVar);
|
|
1695 |
sqlite3_free(p->aLabel);
|
|
1696 |
sqlite3_free(p->aStack);
|
|
1697 |
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
|
1698 |
sqlite3_free(p->aColName);
|
|
1699 |
sqlite3_free(p->zSql);
|
|
1700 |
p->magic = VDBE_MAGIC_DEAD;
|
|
1701 |
sqlite3_free(p);
|
|
1702 |
}
|
|
1703 |
|
|
1704 |
/*
|
|
1705 |
** If a MoveTo operation is pending on the given cursor, then do that
|
|
1706 |
** MoveTo now. Return an error code. If no MoveTo is pending, this
|
|
1707 |
** routine does nothing and returns SQLITE_OK.
|
|
1708 |
*/
|
|
1709 |
int sqlite3VdbeCursorMoveto(Cursor *p){
|
|
1710 |
if( p->deferredMoveto ){
|
|
1711 |
int res, rc;
|
|
1712 |
#ifdef SQLITE_TEST
|
|
1713 |
extern int sqlite3_search_count;
|
|
1714 |
#endif
|
|
1715 |
assert( p->isTable );
|
|
1716 |
rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
|
|
1717 |
if( rc ) return rc;
|
|
1718 |
*p->pIncrKey = 0;
|
|
1719 |
p->lastRowid = keyToInt(p->movetoTarget);
|
|
1720 |
p->rowidIsValid = res==0;
|
|
1721 |
if( res<0 ){
|
|
1722 |
rc = sqlite3BtreeNext(p->pCursor, &res);
|
|
1723 |
if( rc ) return rc;
|
|
1724 |
}
|
|
1725 |
#ifdef SQLITE_TEST
|
|
1726 |
sqlite3_search_count++;
|
|
1727 |
#endif
|
|
1728 |
p->deferredMoveto = 0;
|
|
1729 |
p->cacheStatus = CACHE_STALE;
|
|
1730 |
}
|
|
1731 |
return SQLITE_OK;
|
|
1732 |
}
|
|
1733 |
|
|
1734 |
/*
|
|
1735 |
** The following functions:
|
|
1736 |
**
|
|
1737 |
** sqlite3VdbeSerialType()
|
|
1738 |
** sqlite3VdbeSerialTypeLen()
|
|
1739 |
** sqlite3VdbeSerialRead()
|
|
1740 |
** sqlite3VdbeSerialLen()
|
|
1741 |
** sqlite3VdbeSerialWrite()
|
|
1742 |
**
|
|
1743 |
** encapsulate the code that serializes values for storage in SQLite
|
|
1744 |
** data and index records. Each serialized value consists of a
|
|
1745 |
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
|
|
1746 |
** integer, stored as a varint.
|
|
1747 |
**
|
|
1748 |
** In an SQLite index record, the serial type is stored directly before
|
|
1749 |
** the blob of data that it corresponds to. In a table record, all serial
|
|
1750 |
** types are stored at the start of the record, and the blobs of data at
|
|
1751 |
** the end. Hence these functions allow the caller to handle the
|
|
1752 |
** serial-type and data blob seperately.
|
|
1753 |
**
|
|
1754 |
** The following table describes the various storage classes for data:
|
|
1755 |
**
|
|
1756 |
** serial type bytes of data type
|
|
1757 |
** -------------- --------------- ---------------
|
|
1758 |
** 0 0 NULL
|
|
1759 |
** 1 1 signed integer
|
|
1760 |
** 2 2 signed integer
|
|
1761 |
** 3 3 signed integer
|
|
1762 |
** 4 4 signed integer
|
|
1763 |
** 5 6 signed integer
|
|
1764 |
** 6 8 signed integer
|
|
1765 |
** 7 8 IEEE float
|
|
1766 |
** 8 0 Integer constant 0
|
|
1767 |
** 9 0 Integer constant 1
|
|
1768 |
** 10,11 reserved for expansion
|
|
1769 |
** N>=12 and even (N-12)/2 BLOB
|
|
1770 |
** N>=13 and odd (N-13)/2 text
|
|
1771 |
**
|
|
1772 |
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
|
|
1773 |
** of SQLite will not understand those serial types.
|
|
1774 |
*/
|
|
1775 |
|
|
1776 |
/*
|
|
1777 |
** Return the serial-type for the value stored in pMem.
|
|
1778 |
*/
|
|
1779 |
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
|
1780 |
int flags = pMem->flags;
|
|
1781 |
int n;
|
|
1782 |
|
|
1783 |
if( flags&MEM_Null ){
|
|
1784 |
return 0;
|
|
1785 |
}
|
|
1786 |
if( flags&MEM_Int ){
|
|
1787 |
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
|
|
1788 |
# define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
|
|
1789 |
i64 i = pMem->u.i;
|
|
1790 |
u64 u;
|
|
1791 |
if( file_format>=4 && (i&1)==i ){
|
|
1792 |
return 8+i;
|
|
1793 |
}
|
|
1794 |
u = i<0 ? -i : i;
|
|
1795 |
if( u<=127 ) return 1;
|
|
1796 |
if( u<=32767 ) return 2;
|
|
1797 |
if( u<=8388607 ) return 3;
|
|
1798 |
if( u<=2147483647 ) return 4;
|
|
1799 |
if( u<=MAX_6BYTE ) return 5;
|
|
1800 |
return 6;
|
|
1801 |
}
|
|
1802 |
if( flags&MEM_Real ){
|
|
1803 |
return 7;
|
|
1804 |
}
|
|
1805 |
assert( flags&(MEM_Str|MEM_Blob) );
|
|
1806 |
n = pMem->n;
|
|
1807 |
if( flags & MEM_Zero ){
|
|
1808 |
n += pMem->u.i;
|
|
1809 |
}
|
|
1810 |
assert( n>=0 );
|
|
1811 |
return ((n*2) + 12 + ((flags&MEM_Str)!=0));
|
|
1812 |
}
|
|
1813 |
|
|
1814 |
/*
|
|
1815 |
** Return the length of the data corresponding to the supplied serial-type.
|
|
1816 |
*/
|
|
1817 |
int sqlite3VdbeSerialTypeLen(u32 serial_type){
|
|
1818 |
if( serial_type>=12 ){
|
|
1819 |
return (serial_type-12)/2;
|
|
1820 |
}else{
|
|
1821 |
static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
|
|
1822 |
return aSize[serial_type];
|
|
1823 |
}
|
|
1824 |
}
|
|
1825 |
|
|
1826 |
/*
|
|
1827 |
** If we are on an architecture with mixed-endian floating
|
|
1828 |
** points (ex: ARM7) then swap the lower 4 bytes with the
|
|
1829 |
** upper 4 bytes. Return the result.
|
|
1830 |
**
|
|
1831 |
** For most architectures, this is a no-op.
|
|
1832 |
**
|
|
1833 |
** (later): It is reported to me that the mixed-endian problem
|
|
1834 |
** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
|
|
1835 |
** that early versions of GCC stored the two words of a 64-bit
|
|
1836 |
** float in the wrong order. And that error has been propagated
|
|
1837 |
** ever since. The blame is not necessarily with GCC, though.
|
|
1838 |
** GCC might have just copying the problem from a prior compiler.
|
|
1839 |
** I am also told that newer versions of GCC that follow a different
|
|
1840 |
** ABI get the byte order right.
|
|
1841 |
**
|
|
1842 |
** Developers using SQLite on an ARM7 should compile and run their
|
|
1843 |
** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
|
|
1844 |
** enabled, some asserts below will ensure that the byte order of
|
|
1845 |
** floating point values is correct.
|
|
1846 |
**
|
|
1847 |
** (2007-08-30) Frank van Vugt has studied this problem closely
|
|
1848 |
** and has send his findings to the SQLite developers. Frank
|
|
1849 |
** writes that some Linux kernels offer floating point hardware
|
|
1850 |
** emulation that uses only 32-bit mantissas instead of a full
|
|
1851 |
** 48-bits as required by the IEEE standard. (This is the
|
|
1852 |
** CONFIG_FPE_FASTFPE option.) On such systems, floating point
|
|
1853 |
** byte swapping becomes very complicated. To avoid problems,
|
|
1854 |
** the necessary byte swapping is carried out using a 64-bit integer
|
|
1855 |
** rather than a 64-bit float. Frank assures us that the code here
|
|
1856 |
** works for him. We, the developers, have no way to independently
|
|
1857 |
** verify this, but Frank seems to know what he is talking about
|
|
1858 |
** so we trust him.
|
|
1859 |
*/
|
|
1860 |
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
|
|
1861 |
static u64 floatSwap(u64 in){
|
|
1862 |
union {
|
|
1863 |
u64 r;
|
|
1864 |
u32 i[2];
|
|
1865 |
} u;
|
|
1866 |
u32 t;
|
|
1867 |
|
|
1868 |
u.r = in;
|
|
1869 |
t = u.i[0];
|
|
1870 |
u.i[0] = u.i[1];
|
|
1871 |
u.i[1] = t;
|
|
1872 |
return u.r;
|
|
1873 |
}
|
|
1874 |
# define swapMixedEndianFloat(X) X = floatSwap(X)
|
|
1875 |
#else
|
|
1876 |
# define swapMixedEndianFloat(X)
|
|
1877 |
#endif
|
|
1878 |
|
|
1879 |
/*
|
|
1880 |
** Write the serialized data blob for the value stored in pMem into
|
|
1881 |
** buf. It is assumed that the caller has allocated sufficient space.
|
|
1882 |
** Return the number of bytes written.
|
|
1883 |
**
|
|
1884 |
** nBuf is the amount of space left in buf[]. nBuf must always be
|
|
1885 |
** large enough to hold the entire field. Except, if the field is
|
|
1886 |
** a blob with a zero-filled tail, then buf[] might be just the right
|
|
1887 |
** size to hold everything except for the zero-filled tail. If buf[]
|
|
1888 |
** is only big enough to hold the non-zero prefix, then only write that
|
|
1889 |
** prefix into buf[]. But if buf[] is large enough to hold both the
|
|
1890 |
** prefix and the tail then write the prefix and set the tail to all
|
|
1891 |
** zeros.
|
|
1892 |
**
|
|
1893 |
** Return the number of bytes actually written into buf[]. The number
|
|
1894 |
** of bytes in the zero-filled tail is included in the return value only
|
|
1895 |
** if those bytes were zeroed in buf[].
|
|
1896 |
*/
|
|
1897 |
int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
|
|
1898 |
u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
|
|
1899 |
int len;
|
|
1900 |
|
|
1901 |
/* Integer and Real */
|
|
1902 |
if( serial_type<=7 && serial_type>0 ){
|
|
1903 |
u64 v;
|
|
1904 |
int i;
|
|
1905 |
if( serial_type==7 ){
|
|
1906 |
assert( sizeof(v)==sizeof(pMem->r) );
|
|
1907 |
memcpy(&v, &pMem->r, sizeof(v));
|
|
1908 |
swapMixedEndianFloat(v);
|
|
1909 |
}else{
|
|
1910 |
v = pMem->u.i;
|
|
1911 |
}
|
|
1912 |
len = i = sqlite3VdbeSerialTypeLen(serial_type);
|
|
1913 |
assert( len<=nBuf );
|
|
1914 |
while( i-- ){
|
|
1915 |
buf[i] = (v&0xFF);
|
|
1916 |
v >>= 8;
|
|
1917 |
}
|
|
1918 |
return len;
|
|
1919 |
}
|
|
1920 |
|
|
1921 |
/* String or blob */
|
|
1922 |
if( serial_type>=12 ){
|
|
1923 |
assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
|
|
1924 |
== sqlite3VdbeSerialTypeLen(serial_type) );
|
|
1925 |
assert( pMem->n<=nBuf );
|
|
1926 |
len = pMem->n;
|
|
1927 |
memcpy(buf, pMem->z, len);
|
|
1928 |
if( pMem->flags & MEM_Zero ){
|
|
1929 |
len += pMem->u.i;
|
|
1930 |
if( len>nBuf ){
|
|
1931 |
len = nBuf;
|
|
1932 |
}
|
|
1933 |
memset(&buf[pMem->n], 0, len-pMem->n);
|
|
1934 |
}
|
|
1935 |
return len;
|
|
1936 |
}
|
|
1937 |
|
|
1938 |
/* NULL or constants 0 or 1 */
|
|
1939 |
return 0;
|
|
1940 |
}
|
|
1941 |
|
|
1942 |
/*
|
|
1943 |
** Deserialize the data blob pointed to by buf as serial type serial_type
|
|
1944 |
** and store the result in pMem. Return the number of bytes read.
|
|
1945 |
*/
|
|
1946 |
int sqlite3VdbeSerialGet(
|
|
1947 |
const unsigned char *buf, /* Buffer to deserialize from */
|
|
1948 |
u32 serial_type, /* Serial type to deserialize */
|
|
1949 |
Mem *pMem /* Memory cell to write value into */
|
|
1950 |
){
|
|
1951 |
switch( serial_type ){
|
|
1952 |
case 10: /* Reserved for future use */
|
|
1953 |
case 11: /* Reserved for future use */
|
|
1954 |
case 0: { /* NULL */
|
|
1955 |
pMem->flags = MEM_Null;
|
|
1956 |
break;
|
|
1957 |
}
|
|
1958 |
case 1: { /* 1-byte signed integer */
|
|
1959 |
pMem->u.i = (signed char)buf[0];
|
|
1960 |
pMem->flags = MEM_Int;
|
|
1961 |
return 1;
|
|
1962 |
}
|
|
1963 |
case 2: { /* 2-byte signed integer */
|
|
1964 |
pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
|
|
1965 |
pMem->flags = MEM_Int;
|
|
1966 |
return 2;
|
|
1967 |
}
|
|
1968 |
case 3: { /* 3-byte signed integer */
|
|
1969 |
pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
|
|
1970 |
pMem->flags = MEM_Int;
|
|
1971 |
return 3;
|
|
1972 |
}
|
|
1973 |
case 4: { /* 4-byte signed integer */
|
|
1974 |
pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
|
|
1975 |
pMem->flags = MEM_Int;
|
|
1976 |
return 4;
|
|
1977 |
}
|
|
1978 |
case 5: { /* 6-byte signed integer */
|
|
1979 |
u64 x = (((signed char)buf[0])<<8) | buf[1];
|
|
1980 |
u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
|
|
1981 |
x = (x<<32) | y;
|
|
1982 |
pMem->u.i = *(i64*)&x;
|
|
1983 |
pMem->flags = MEM_Int;
|
|
1984 |
return 6;
|
|
1985 |
}
|
|
1986 |
case 6: /* 8-byte signed integer */
|
|
1987 |
case 7: { /* IEEE floating point */
|
|
1988 |
u64 x;
|
|
1989 |
u32 y;
|
|
1990 |
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
|
|
1991 |
/* Verify that integers and floating point values use the same
|
|
1992 |
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
|
|
1993 |
** defined that 64-bit floating point values really are mixed
|
|
1994 |
** endian.
|
|
1995 |
*/
|
|
1996 |
static const u64 t1 = ((u64)0x3ff00000)<<32;
|
|
1997 |
static const double r1 = 1.0;
|
|
1998 |
u64 t2 = t1;
|
|
1999 |
swapMixedEndianFloat(t2);
|
|
2000 |
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
|
|
2001 |
#endif
|
|
2002 |
|
|
2003 |
x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
|
|
2004 |
y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
|
|
2005 |
x = (x<<32) | y;
|
|
2006 |
if( serial_type==6 ){
|
|
2007 |
pMem->u.i = *(i64*)&x;
|
|
2008 |
pMem->flags = MEM_Int;
|
|
2009 |
}else{
|
|
2010 |
assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
|
|
2011 |
swapMixedEndianFloat(x);
|
|
2012 |
memcpy(&pMem->r, &x, sizeof(x));
|
|
2013 |
pMem->flags = MEM_Real;
|
|
2014 |
}
|
|
2015 |
return 8;
|
|
2016 |
}
|
|
2017 |
case 8: /* Integer 0 */
|
|
2018 |
case 9: { /* Integer 1 */
|
|
2019 |
pMem->u.i = serial_type-8;
|
|
2020 |
pMem->flags = MEM_Int;
|
|
2021 |
return 0;
|
|
2022 |
}
|
|
2023 |
default: {
|
|
2024 |
int len = (serial_type-12)/2;
|
|
2025 |
pMem->z = (char *)buf;
|
|
2026 |
pMem->n = len;
|
|
2027 |
pMem->xDel = 0;
|
|
2028 |
if( serial_type&0x01 ){
|
|
2029 |
pMem->flags = MEM_Str | MEM_Ephem;
|
|
2030 |
}else{
|
|
2031 |
pMem->flags = MEM_Blob | MEM_Ephem;
|
|
2032 |
}
|
|
2033 |
return len;
|
|
2034 |
}
|
|
2035 |
}
|
|
2036 |
return 0;
|
|
2037 |
}
|
|
2038 |
|
|
2039 |
/*
|
|
2040 |
** The header of a record consists of a sequence variable-length integers.
|
|
2041 |
** These integers are almost always small and are encoded as a single byte.
|
|
2042 |
** The following macro takes advantage this fact to provide a fast decode
|
|
2043 |
** of the integers in a record header. It is faster for the common case
|
|
2044 |
** where the integer is a single byte. It is a little slower when the
|
|
2045 |
** integer is two or more bytes. But overall it is faster.
|
|
2046 |
**
|
|
2047 |
** The following expressions are equivalent:
|
|
2048 |
**
|
|
2049 |
** x = sqlite3GetVarint32( A, &B );
|
|
2050 |
**
|
|
2051 |
** x = GetVarint( A, B );
|
|
2052 |
**
|
|
2053 |
*/
|
|
2054 |
#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
|
|
2055 |
|
|
2056 |
/*
|
|
2057 |
** This function compares the two table rows or index records specified by
|
|
2058 |
** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
|
|
2059 |
** or positive integer if {nKey1, pKey1} is less than, equal to or
|
|
2060 |
** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
|
|
2061 |
** composed by the OP_MakeRecord opcode of the VDBE.
|
|
2062 |
*/
|
|
2063 |
int sqlite3VdbeRecordCompare(
|
|
2064 |
void *userData,
|
|
2065 |
int nKey1, const void *pKey1,
|
|
2066 |
int nKey2, const void *pKey2
|
|
2067 |
){
|
|
2068 |
KeyInfo *pKeyInfo = (KeyInfo*)userData;
|
|
2069 |
u32 d1, d2; /* Offset into aKey[] of next data element */
|
|
2070 |
u32 idx1, idx2; /* Offset into aKey[] of next header element */
|
|
2071 |
u32 szHdr1, szHdr2; /* Number of bytes in header */
|
|
2072 |
int i = 0;
|
|
2073 |
int nField;
|
|
2074 |
int rc = 0;
|
|
2075 |
const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
|
2076 |
const unsigned char *aKey2 = (const unsigned char *)pKey2;
|
|
2077 |
|
|
2078 |
Mem mem1;
|
|
2079 |
Mem mem2;
|
|
2080 |
mem1.enc = pKeyInfo->enc;
|
|
2081 |
mem1.db = pKeyInfo->db;
|
|
2082 |
mem2.enc = pKeyInfo->enc;
|
|
2083 |
mem2.db = pKeyInfo->db;
|
|
2084 |
|
|
2085 |
idx1 = GetVarint(aKey1, szHdr1);
|
|
2086 |
d1 = szHdr1;
|
|
2087 |
idx2 = GetVarint(aKey2, szHdr2);
|
|
2088 |
d2 = szHdr2;
|
|
2089 |
nField = pKeyInfo->nField;
|
|
2090 |
while( idx1<szHdr1 && idx2<szHdr2 ){
|
|
2091 |
u32 serial_type1;
|
|
2092 |
u32 serial_type2;
|
|
2093 |
|
|
2094 |
/* Read the serial types for the next element in each key. */
|
|
2095 |
idx1 += GetVarint( aKey1+idx1, serial_type1 );
|
|
2096 |
if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
|
|
2097 |
idx2 += GetVarint( aKey2+idx2, serial_type2 );
|
|
2098 |
if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
|
|
2099 |
|
|
2100 |
/* Extract the values to be compared.
|
|
2101 |
*/
|
|
2102 |
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
|
|
2103 |
d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
|
|
2104 |
|
|
2105 |
/* Do the comparison
|
|
2106 |
*/
|
|
2107 |
rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
|
|
2108 |
if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
|
|
2109 |
if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
|
|
2110 |
if( rc!=0 ){
|
|
2111 |
break;
|
|
2112 |
}
|
|
2113 |
i++;
|
|
2114 |
}
|
|
2115 |
|
|
2116 |
/* One of the keys ran out of fields, but all the fields up to that point
|
|
2117 |
** were equal. If the incrKey flag is true, then the second key is
|
|
2118 |
** treated as larger.
|
|
2119 |
*/
|
|
2120 |
if( rc==0 ){
|
|
2121 |
if( pKeyInfo->incrKey ){
|
|
2122 |
rc = -1;
|
|
2123 |
}else if( !pKeyInfo->prefixIsEqual ){
|
|
2124 |
if( d1<nKey1 ){
|
|
2125 |
rc = 1;
|
|
2126 |
}else if( d2<nKey2 ){
|
|
2127 |
rc = -1;
|
|
2128 |
}
|
|
2129 |
}
|
|
2130 |
}else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
|
|
2131 |
&& pKeyInfo->aSortOrder[i] ){
|
|
2132 |
rc = -rc;
|
|
2133 |
}
|
|
2134 |
|
|
2135 |
return rc;
|
|
2136 |
}
|
|
2137 |
|
|
2138 |
/*
|
|
2139 |
** The argument is an index entry composed using the OP_MakeRecord opcode.
|
|
2140 |
** The last entry in this record should be an integer (specifically
|
|
2141 |
** an integer rowid). This routine returns the number of bytes in
|
|
2142 |
** that integer.
|
|
2143 |
*/
|
|
2144 |
int sqlite3VdbeIdxRowidLen(const u8 *aKey){
|
|
2145 |
u32 szHdr; /* Size of the header */
|
|
2146 |
u32 typeRowid; /* Serial type of the rowid */
|
|
2147 |
|
|
2148 |
sqlite3GetVarint32(aKey, &szHdr);
|
|
2149 |
sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
|
|
2150 |
return sqlite3VdbeSerialTypeLen(typeRowid);
|
|
2151 |
}
|
|
2152 |
|
|
2153 |
|
|
2154 |
/*
|
|
2155 |
** pCur points at an index entry created using the OP_MakeRecord opcode.
|
|
2156 |
** Read the rowid (the last field in the record) and store it in *rowid.
|
|
2157 |
** Return SQLITE_OK if everything works, or an error code otherwise.
|
|
2158 |
*/
|
|
2159 |
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
|
|
2160 |
i64 nCellKey = 0;
|
|
2161 |
int rc;
|
|
2162 |
u32 szHdr; /* Size of the header */
|
|
2163 |
u32 typeRowid; /* Serial type of the rowid */
|
|
2164 |
u32 lenRowid; /* Size of the rowid */
|
|
2165 |
Mem m, v;
|
|
2166 |
|
|
2167 |
sqlite3BtreeKeySize(pCur, &nCellKey);
|
|
2168 |
if( nCellKey<=0 ){
|
|
2169 |
return SQLITE_CORRUPT_BKPT;
|
|
2170 |
}
|
|
2171 |
rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
|
|
2172 |
if( rc ){
|
|
2173 |
return rc;
|
|
2174 |
}
|
|
2175 |
sqlite3GetVarint32((u8*)m.z, &szHdr);
|
|
2176 |
sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
|
|
2177 |
lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
|
|
2178 |
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
|
|
2179 |
*rowid = v.u.i;
|
|
2180 |
sqlite3VdbeMemRelease(&m);
|
|
2181 |
return SQLITE_OK;
|
|
2182 |
}
|
|
2183 |
|
|
2184 |
/*
|
|
2185 |
** Compare the key of the index entry that cursor pC is point to against
|
|
2186 |
** the key string in pKey (of length nKey). Write into *pRes a number
|
|
2187 |
** that is negative, zero, or positive if pC is less than, equal to,
|
|
2188 |
** or greater than pKey. Return SQLITE_OK on success.
|
|
2189 |
**
|
|
2190 |
** pKey is either created without a rowid or is truncated so that it
|
|
2191 |
** omits the rowid at the end. The rowid at the end of the index entry
|
|
2192 |
** is ignored as well.
|
|
2193 |
*/
|
|
2194 |
int sqlite3VdbeIdxKeyCompare(
|
|
2195 |
Cursor *pC, /* The cursor to compare against */
|
|
2196 |
int nKey, const u8 *pKey, /* The key to compare */
|
|
2197 |
int *res /* Write the comparison result here */
|
|
2198 |
){
|
|
2199 |
i64 nCellKey = 0;
|
|
2200 |
int rc;
|
|
2201 |
BtCursor *pCur = pC->pCursor;
|
|
2202 |
int lenRowid;
|
|
2203 |
Mem m;
|
|
2204 |
|
|
2205 |
sqlite3BtreeKeySize(pCur, &nCellKey);
|
|
2206 |
if( nCellKey<=0 ){
|
|
2207 |
*res = 0;
|
|
2208 |
return SQLITE_OK;
|
|
2209 |
}
|
|
2210 |
rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
|
|
2211 |
if( rc ){
|
|
2212 |
return rc;
|
|
2213 |
}
|
|
2214 |
lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
|
|
2215 |
*res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
|
|
2216 |
sqlite3VdbeMemRelease(&m);
|
|
2217 |
return SQLITE_OK;
|
|
2218 |
}
|
|
2219 |
|
|
2220 |
/*
|
|
2221 |
** This routine sets the value to be returned by subsequent calls to
|
|
2222 |
** sqlite3_changes() on the database handle 'db'.
|
|
2223 |
*/
|
|
2224 |
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
|
|
2225 |
assert( sqlite3_mutex_held(db->mutex) );
|
|
2226 |
db->nChange = nChange;
|
|
2227 |
db->nTotalChange += nChange;
|
|
2228 |
}
|
|
2229 |
|
|
2230 |
/*
|
|
2231 |
** Set a flag in the vdbe to update the change counter when it is finalised
|
|
2232 |
** or reset.
|
|
2233 |
*/
|
|
2234 |
void sqlite3VdbeCountChanges(Vdbe *v){
|
|
2235 |
v->changeCntOn = 1;
|
|
2236 |
}
|
|
2237 |
|
|
2238 |
/*
|
|
2239 |
** Mark every prepared statement associated with a database connection
|
|
2240 |
** as expired.
|
|
2241 |
**
|
|
2242 |
** An expired statement means that recompilation of the statement is
|
|
2243 |
** recommend. Statements expire when things happen that make their
|
|
2244 |
** programs obsolete. Removing user-defined functions or collating
|
|
2245 |
** sequences, or changing an authorization function are the types of
|
|
2246 |
** things that make prepared statements obsolete.
|
|
2247 |
*/
|
|
2248 |
void sqlite3ExpirePreparedStatements(sqlite3 *db){
|
|
2249 |
Vdbe *p;
|
|
2250 |
for(p = db->pVdbe; p; p=p->pNext){
|
|
2251 |
p->expired = 1;
|
|
2252 |
}
|
|
2253 |
}
|
|
2254 |
|
|
2255 |
/*
|
|
2256 |
** Return the database associated with the Vdbe.
|
|
2257 |
*/
|
|
2258 |
sqlite3 *sqlite3VdbeDb(Vdbe *v){
|
|
2259 |
return v->db;
|
|
2260 |
}
|