|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains routines used for analyzing expressions and |
|
13 ** for generating VDBE code that evaluates expressions in SQLite. |
|
14 ** |
|
15 ** $Id: expr.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 #include <ctype.h> |
|
19 |
|
20 /* |
|
21 ** Return the 'affinity' of the expression pExpr if any. |
|
22 ** |
|
23 ** If pExpr is a column, a reference to a column via an 'AS' alias, |
|
24 ** or a sub-select with a column as the return value, then the |
|
25 ** affinity of that column is returned. Otherwise, 0x00 is returned, |
|
26 ** indicating no affinity for the expression. |
|
27 ** |
|
28 ** i.e. the WHERE clause expresssions in the following statements all |
|
29 ** have an affinity: |
|
30 ** |
|
31 ** CREATE TABLE t1(a); |
|
32 ** SELECT * FROM t1 WHERE a; |
|
33 ** SELECT a AS b FROM t1 WHERE b; |
|
34 ** SELECT * FROM t1 WHERE (select a from t1); |
|
35 */ |
|
36 char sqlite3ExprAffinity(Expr *pExpr){ |
|
37 int op = pExpr->op; |
|
38 if( op==TK_SELECT ){ |
|
39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); |
|
40 } |
|
41 #ifndef SQLITE_OMIT_CAST |
|
42 if( op==TK_CAST ){ |
|
43 return sqlite3AffinityType(&pExpr->token); |
|
44 } |
|
45 #endif |
|
46 return pExpr->affinity; |
|
47 } |
|
48 |
|
49 /* |
|
50 ** Set the collating sequence for expression pExpr to be the collating |
|
51 ** sequence named by pToken. Return a pointer to the revised expression. |
|
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate |
|
53 ** flag. An explicit collating sequence will override implicit |
|
54 ** collating sequences. |
|
55 */ |
|
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ |
|
57 char *zColl = 0; /* Dequoted name of collation sequence */ |
|
58 CollSeq *pColl; |
|
59 zColl = sqlite3NameFromToken(pParse->db, pName); |
|
60 if( pExpr && zColl ){ |
|
61 pColl = sqlite3LocateCollSeq(pParse, zColl, -1); |
|
62 if( pColl ){ |
|
63 pExpr->pColl = pColl; |
|
64 pExpr->flags |= EP_ExpCollate; |
|
65 } |
|
66 } |
|
67 sqlite3_free(zColl); |
|
68 return pExpr; |
|
69 } |
|
70 |
|
71 /* |
|
72 ** Return the default collation sequence for the expression pExpr. If |
|
73 ** there is no default collation type, return 0. |
|
74 */ |
|
75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
|
76 CollSeq *pColl = 0; |
|
77 if( pExpr ){ |
|
78 int op; |
|
79 pColl = pExpr->pColl; |
|
80 op = pExpr->op; |
|
81 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ |
|
82 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
|
83 } |
|
84 } |
|
85 if( sqlite3CheckCollSeq(pParse, pColl) ){ |
|
86 pColl = 0; |
|
87 } |
|
88 return pColl; |
|
89 } |
|
90 |
|
91 /* |
|
92 ** pExpr is an operand of a comparison operator. aff2 is the |
|
93 ** type affinity of the other operand. This routine returns the |
|
94 ** type affinity that should be used for the comparison operator. |
|
95 */ |
|
96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
|
97 char aff1 = sqlite3ExprAffinity(pExpr); |
|
98 if( aff1 && aff2 ){ |
|
99 /* Both sides of the comparison are columns. If one has numeric |
|
100 ** affinity, use that. Otherwise use no affinity. |
|
101 */ |
|
102 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
|
103 return SQLITE_AFF_NUMERIC; |
|
104 }else{ |
|
105 return SQLITE_AFF_NONE; |
|
106 } |
|
107 }else if( !aff1 && !aff2 ){ |
|
108 /* Neither side of the comparison is a column. Compare the |
|
109 ** results directly. |
|
110 */ |
|
111 return SQLITE_AFF_NONE; |
|
112 }else{ |
|
113 /* One side is a column, the other is not. Use the columns affinity. */ |
|
114 assert( aff1==0 || aff2==0 ); |
|
115 return (aff1 + aff2); |
|
116 } |
|
117 } |
|
118 |
|
119 /* |
|
120 ** pExpr is a comparison operator. Return the type affinity that should |
|
121 ** be applied to both operands prior to doing the comparison. |
|
122 */ |
|
123 static char comparisonAffinity(Expr *pExpr){ |
|
124 char aff; |
|
125 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
|
126 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
|
127 pExpr->op==TK_NE ); |
|
128 assert( pExpr->pLeft ); |
|
129 aff = sqlite3ExprAffinity(pExpr->pLeft); |
|
130 if( pExpr->pRight ){ |
|
131 aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
|
132 } |
|
133 else if( pExpr->pSelect ){ |
|
134 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); |
|
135 } |
|
136 else if( !aff ){ |
|
137 aff = SQLITE_AFF_NONE; |
|
138 } |
|
139 return aff; |
|
140 } |
|
141 |
|
142 /* |
|
143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
|
144 ** idx_affinity is the affinity of an indexed column. Return true |
|
145 ** if the index with affinity idx_affinity may be used to implement |
|
146 ** the comparison in pExpr. |
|
147 */ |
|
148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
|
149 char aff = comparisonAffinity(pExpr); |
|
150 switch( aff ){ |
|
151 case SQLITE_AFF_NONE: |
|
152 return 1; |
|
153 case SQLITE_AFF_TEXT: |
|
154 return idx_affinity==SQLITE_AFF_TEXT; |
|
155 default: |
|
156 return sqlite3IsNumericAffinity(idx_affinity); |
|
157 } |
|
158 } |
|
159 |
|
160 /* |
|
161 ** Return the P1 value that should be used for a binary comparison |
|
162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
|
163 ** If jumpIfNull is true, then set the low byte of the returned |
|
164 ** P1 value to tell the opcode to jump if either expression |
|
165 ** evaluates to NULL. |
|
166 */ |
|
167 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
|
168 char aff = sqlite3ExprAffinity(pExpr2); |
|
169 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); |
|
170 } |
|
171 |
|
172 /* |
|
173 ** Return a pointer to the collation sequence that should be used by |
|
174 ** a binary comparison operator comparing pLeft and pRight. |
|
175 ** |
|
176 ** If the left hand expression has a collating sequence type, then it is |
|
177 ** used. Otherwise the collation sequence for the right hand expression |
|
178 ** is used, or the default (BINARY) if neither expression has a collating |
|
179 ** type. |
|
180 ** |
|
181 ** Argument pRight (but not pLeft) may be a null pointer. In this case, |
|
182 ** it is not considered. |
|
183 */ |
|
184 CollSeq *sqlite3BinaryCompareCollSeq( |
|
185 Parse *pParse, |
|
186 Expr *pLeft, |
|
187 Expr *pRight |
|
188 ){ |
|
189 CollSeq *pColl; |
|
190 assert( pLeft ); |
|
191 if( pLeft->flags & EP_ExpCollate ){ |
|
192 assert( pLeft->pColl ); |
|
193 pColl = pLeft->pColl; |
|
194 }else if( pRight && pRight->flags & EP_ExpCollate ){ |
|
195 assert( pRight->pColl ); |
|
196 pColl = pRight->pColl; |
|
197 }else{ |
|
198 pColl = sqlite3ExprCollSeq(pParse, pLeft); |
|
199 if( !pColl ){ |
|
200 pColl = sqlite3ExprCollSeq(pParse, pRight); |
|
201 } |
|
202 } |
|
203 return pColl; |
|
204 } |
|
205 |
|
206 /* |
|
207 ** Generate code for a comparison operator. |
|
208 */ |
|
209 static int codeCompare( |
|
210 Parse *pParse, /* The parsing (and code generating) context */ |
|
211 Expr *pLeft, /* The left operand */ |
|
212 Expr *pRight, /* The right operand */ |
|
213 int opcode, /* The comparison opcode */ |
|
214 int dest, /* Jump here if true. */ |
|
215 int jumpIfNull /* If true, jump if either operand is NULL */ |
|
216 ){ |
|
217 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); |
|
218 CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
|
219 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (const char*)p3, P3_COLLSEQ); |
|
220 } |
|
221 |
|
222 /* |
|
223 ** Construct a new expression node and return a pointer to it. Memory |
|
224 ** for this node is obtained from sqlite3_malloc(). The calling function |
|
225 ** is responsible for making sure the node eventually gets freed. |
|
226 */ |
|
227 Expr *sqlite3Expr( |
|
228 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
|
229 int op, /* Expression opcode */ |
|
230 Expr *pLeft, /* Left operand */ |
|
231 Expr *pRight, /* Right operand */ |
|
232 const Token *pToken /* Argument token */ |
|
233 ){ |
|
234 Expr *pNew; |
|
235 pNew = (Expr*)sqlite3DbMallocZero(db, sizeof(Expr)); |
|
236 if( pNew==0 ){ |
|
237 /* When malloc fails, delete pLeft and pRight. Expressions passed to |
|
238 ** this function must always be allocated with sqlite3Expr() for this |
|
239 ** reason. |
|
240 */ |
|
241 sqlite3ExprDelete(pLeft); |
|
242 sqlite3ExprDelete(pRight); |
|
243 return 0; |
|
244 } |
|
245 pNew->op = op; |
|
246 pNew->pLeft = pLeft; |
|
247 pNew->pRight = pRight; |
|
248 pNew->iAgg = -1; |
|
249 if( pToken ){ |
|
250 assert( pToken->dyn==0 ); |
|
251 pNew->span = pNew->token = *pToken; |
|
252 }else if( pLeft ){ |
|
253 if( pRight ){ |
|
254 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); |
|
255 if( pRight->flags & EP_ExpCollate ){ |
|
256 pNew->flags |= EP_ExpCollate; |
|
257 pNew->pColl = pRight->pColl; |
|
258 } |
|
259 } |
|
260 if( pLeft->flags & EP_ExpCollate ){ |
|
261 pNew->flags |= EP_ExpCollate; |
|
262 pNew->pColl = pLeft->pColl; |
|
263 } |
|
264 } |
|
265 |
|
266 sqlite3ExprSetHeight(pNew); |
|
267 return pNew; |
|
268 } |
|
269 |
|
270 /* |
|
271 ** Works like sqlite3Expr() except that it takes an extra Parse* |
|
272 ** argument and notifies the associated connection object if malloc fails. |
|
273 */ |
|
274 Expr *sqlite3PExpr( |
|
275 Parse *pParse, /* Parsing context */ |
|
276 int op, /* Expression opcode */ |
|
277 Expr *pLeft, /* Left operand */ |
|
278 Expr *pRight, /* Right operand */ |
|
279 const Token *pToken /* Argument token */ |
|
280 ){ |
|
281 return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); |
|
282 } |
|
283 |
|
284 /* |
|
285 ** When doing a nested parse, you can include terms in an expression |
|
286 ** that look like this: #0 #1 #2 ... These terms refer to elements |
|
287 ** on the stack. "#0" means the top of the stack. |
|
288 ** "#1" means the next down on the stack. And so forth. |
|
289 ** |
|
290 ** This routine is called by the parser to deal with on of those terms. |
|
291 ** It immediately generates code to store the value in a memory location. |
|
292 ** The returns an expression that will code to extract the value from |
|
293 ** that memory location as needed. |
|
294 */ |
|
295 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ |
|
296 Vdbe *v = pParse->pVdbe; |
|
297 Expr *p; |
|
298 int depth; |
|
299 if( pParse->nested==0 ){ |
|
300 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); |
|
301 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
|
302 } |
|
303 if( v==0 ) return 0; |
|
304 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); |
|
305 if( p==0 ){ |
|
306 return 0; /* Malloc failed */ |
|
307 } |
|
308 depth = atoi((char*)&pToken->z[1]); |
|
309 p->iTable = pParse->nMem++; |
|
310 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); |
|
311 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); |
|
312 return p; |
|
313 } |
|
314 |
|
315 /* |
|
316 ** Join two expressions using an AND operator. If either expression is |
|
317 ** NULL, then just return the other expression. |
|
318 */ |
|
319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ |
|
320 if( pLeft==0 ){ |
|
321 return pRight; |
|
322 }else if( pRight==0 ){ |
|
323 return pLeft; |
|
324 }else{ |
|
325 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); |
|
326 } |
|
327 } |
|
328 |
|
329 /* |
|
330 ** Set the Expr.span field of the given expression to span all |
|
331 ** text between the two given tokens. |
|
332 */ |
|
333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
|
334 assert( pRight!=0 ); |
|
335 assert( pLeft!=0 ); |
|
336 if( pExpr && pRight->z && pLeft->z ){ |
|
337 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); |
|
338 if( pLeft->dyn==0 && pRight->dyn==0 ){ |
|
339 pExpr->span.z = pLeft->z; |
|
340 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); |
|
341 }else{ |
|
342 pExpr->span.z = 0; |
|
343 } |
|
344 } |
|
345 } |
|
346 |
|
347 /* |
|
348 ** Construct a new expression node for a function with multiple |
|
349 ** arguments. |
|
350 */ |
|
351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ |
|
352 Expr *pNew; |
|
353 assert( pToken ); |
|
354 pNew = (Expr*)sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); |
|
355 if( pNew==0 ){ |
|
356 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ |
|
357 return 0; |
|
358 } |
|
359 pNew->op = TK_FUNCTION; |
|
360 pNew->pList = pList; |
|
361 assert( pToken->dyn==0 ); |
|
362 pNew->token = *pToken; |
|
363 pNew->span = pNew->token; |
|
364 |
|
365 sqlite3ExprSetHeight(pNew); |
|
366 return pNew; |
|
367 } |
|
368 |
|
369 /* |
|
370 ** Assign a variable number to an expression that encodes a wildcard |
|
371 ** in the original SQL statement. |
|
372 ** |
|
373 ** Wildcards consisting of a single "?" are assigned the next sequential |
|
374 ** variable number. |
|
375 ** |
|
376 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
|
377 ** sure "nnn" is not too be to avoid a denial of service attack when |
|
378 ** the SQL statement comes from an external source. |
|
379 ** |
|
380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number |
|
381 ** as the previous instance of the same wildcard. Or if this is the first |
|
382 ** instance of the wildcard, the next sequenial variable number is |
|
383 ** assigned. |
|
384 */ |
|
385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ |
|
386 Token *pToken; |
|
387 sqlite3 *db = pParse->db; |
|
388 |
|
389 if( pExpr==0 ) return; |
|
390 pToken = &pExpr->token; |
|
391 assert( pToken->n>=1 ); |
|
392 assert( pToken->z!=0 ); |
|
393 assert( pToken->z[0]!=0 ); |
|
394 if( pToken->n==1 ){ |
|
395 /* Wildcard of the form "?". Assign the next variable number */ |
|
396 pExpr->iTable = ++pParse->nVar; |
|
397 }else if( pToken->z[0]=='?' ){ |
|
398 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
|
399 ** use it as the variable number */ |
|
400 int i; |
|
401 pExpr->iTable = i = atoi((char*)&pToken->z[1]); |
|
402 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ |
|
403 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
|
404 SQLITE_MAX_VARIABLE_NUMBER); |
|
405 } |
|
406 if( i>pParse->nVar ){ |
|
407 pParse->nVar = i; |
|
408 } |
|
409 }else{ |
|
410 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable |
|
411 ** number as the prior appearance of the same name, or if the name |
|
412 ** has never appeared before, reuse the same variable number |
|
413 */ |
|
414 int i, n; |
|
415 n = pToken->n; |
|
416 for(i=0; i<pParse->nVarExpr; i++){ |
|
417 Expr *pE; |
|
418 if( (pE = pParse->apVarExpr[i])!=0 |
|
419 && pE->token.n==n |
|
420 && memcmp(pE->token.z, pToken->z, n)==0 ){ |
|
421 pExpr->iTable = pE->iTable; |
|
422 break; |
|
423 } |
|
424 } |
|
425 if( i>=pParse->nVarExpr ){ |
|
426 pExpr->iTable = ++pParse->nVar; |
|
427 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ |
|
428 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; |
|
429 pParse->apVarExpr = |
|
430 (Expr**)sqlite3DbReallocOrFree( |
|
431 db, |
|
432 pParse->apVarExpr, |
|
433 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) |
|
434 ); |
|
435 } |
|
436 if( !db->mallocFailed ){ |
|
437 assert( pParse->apVarExpr!=0 ); |
|
438 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; |
|
439 } |
|
440 } |
|
441 } |
|
442 if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ |
|
443 sqlite3ErrorMsg(pParse, "too many SQL variables"); |
|
444 } |
|
445 } |
|
446 |
|
447 /* |
|
448 ** Recursively delete an expression tree. |
|
449 */ |
|
450 void sqlite3ExprDelete(Expr *p){ |
|
451 if( p==0 ) return; |
|
452 if( p->span.dyn ) sqlite3_free((char*)p->span.z); |
|
453 if( p->token.dyn ) sqlite3_free((char*)p->token.z); |
|
454 sqlite3ExprDelete(p->pLeft); |
|
455 sqlite3ExprDelete(p->pRight); |
|
456 sqlite3ExprListDelete(p->pList); |
|
457 sqlite3SelectDelete(p->pSelect); |
|
458 sqlite3_free(p); |
|
459 } |
|
460 |
|
461 /* |
|
462 ** The Expr.token field might be a string literal that is quoted. |
|
463 ** If so, remove the quotation marks. |
|
464 */ |
|
465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ |
|
466 if( ExprHasAnyProperty(p, EP_Dequoted) ){ |
|
467 return; |
|
468 } |
|
469 ExprSetProperty(p, EP_Dequoted); |
|
470 if( p->token.dyn==0 ){ |
|
471 sqlite3TokenCopy(db, &p->token, &p->token); |
|
472 } |
|
473 sqlite3Dequote((char*)p->token.z); |
|
474 } |
|
475 |
|
476 |
|
477 /* |
|
478 ** The following group of routines make deep copies of expressions, |
|
479 ** expression lists, ID lists, and select statements. The copies can |
|
480 ** be deleted (by being passed to their respective ...Delete() routines) |
|
481 ** without effecting the originals. |
|
482 ** |
|
483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
|
484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
|
485 ** by subsequent calls to sqlite*ListAppend() routines. |
|
486 ** |
|
487 ** Any tables that the SrcList might point to are not duplicated. |
|
488 */ |
|
489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ |
|
490 Expr *pNew; |
|
491 if( p==0 ) return 0; |
|
492 pNew = (Expr*)sqlite3DbMallocRaw(db, sizeof(*p) ); |
|
493 if( pNew==0 ) return 0; |
|
494 memcpy(pNew, p, sizeof(*pNew)); |
|
495 if( p->token.z!=0 ){ |
|
496 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); |
|
497 pNew->token.dyn = 1; |
|
498 }else{ |
|
499 assert( pNew->token.z==0 ); |
|
500 } |
|
501 pNew->span.z = 0; |
|
502 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); |
|
503 pNew->pRight = sqlite3ExprDup(db, p->pRight); |
|
504 pNew->pList = sqlite3ExprListDup(db, p->pList); |
|
505 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); |
|
506 return pNew; |
|
507 } |
|
508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ |
|
509 if( pTo->dyn ) sqlite3_free((char*)pTo->z); |
|
510 if( pFrom->z ){ |
|
511 pTo->n = pFrom->n; |
|
512 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); |
|
513 pTo->dyn = 1; |
|
514 }else{ |
|
515 pTo->z = 0; |
|
516 } |
|
517 } |
|
518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ |
|
519 ExprList *pNew; |
|
520 ExprList::ExprList_item *pItem, *pOldItem; |
|
521 int i; |
|
522 if( p==0 ) return 0; |
|
523 pNew = (ExprList*)sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
|
524 if( pNew==0 ) return 0; |
|
525 pNew->iECursor = 0; |
|
526 pNew->nExpr = pNew->nAlloc = p->nExpr; |
|
527 pNew->a = pItem = (ExprList::ExprList_item*)sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); |
|
528 if( pItem==0 ){ |
|
529 sqlite3_free(pNew); |
|
530 return 0; |
|
531 } |
|
532 pOldItem = p->a; |
|
533 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
|
534 Expr *pNewExpr, *pOldExpr; |
|
535 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); |
|
536 if( pOldExpr->span.z!=0 && pNewExpr ){ |
|
537 /* Always make a copy of the span for top-level expressions in the |
|
538 ** expression list. The logic in SELECT processing that determines |
|
539 ** the names of columns in the result set needs this information */ |
|
540 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); |
|
541 } |
|
542 assert( pNewExpr==0 || pNewExpr->span.z!=0 |
|
543 || pOldExpr->span.z==0 |
|
544 || db->mallocFailed ); |
|
545 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
|
546 pItem->sortOrder = pOldItem->sortOrder; |
|
547 pItem->isAgg = pOldItem->isAgg; |
|
548 pItem->done = 0; |
|
549 } |
|
550 return pNew; |
|
551 } |
|
552 |
|
553 /* |
|
554 ** If cursors, triggers, views and subqueries are all omitted from |
|
555 ** the build, then none of the following routines, except for |
|
556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
|
557 ** called with a NULL argument. |
|
558 */ |
|
559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
|
560 || !defined(SQLITE_OMIT_SUBQUERY) |
|
561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ |
|
562 SrcList *pNew; |
|
563 int i; |
|
564 int nByte; |
|
565 if( p==0 ) return 0; |
|
566 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
|
567 pNew = (SrcList*)sqlite3DbMallocRaw(db, nByte ); |
|
568 if( pNew==0 ) return 0; |
|
569 pNew->nSrc = pNew->nAlloc = p->nSrc; |
|
570 for(i=0; i<p->nSrc; i++){ |
|
571 SrcList::SrcList_item *pNewItem = &pNew->a[i]; |
|
572 SrcList::SrcList_item *pOldItem = &p->a[i]; |
|
573 Table *pTab; |
|
574 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
|
575 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
|
576 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
|
577 pNewItem->jointype = pOldItem->jointype; |
|
578 pNewItem->iCursor = pOldItem->iCursor; |
|
579 pNewItem->isPopulated = pOldItem->isPopulated; |
|
580 pTab = pNewItem->pTab = pOldItem->pTab; |
|
581 if( pTab ){ |
|
582 pTab->nRef++; |
|
583 } |
|
584 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); |
|
585 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); |
|
586 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
|
587 pNewItem->colUsed = pOldItem->colUsed; |
|
588 } |
|
589 return pNew; |
|
590 } |
|
591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
|
592 IdList *pNew; |
|
593 int i; |
|
594 if( p==0 ) return 0; |
|
595 pNew = (IdList*)sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
|
596 if( pNew==0 ) return 0; |
|
597 pNew->nId = pNew->nAlloc = p->nId; |
|
598 pNew->a = (IdList::IdList_item*)sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); |
|
599 if( pNew->a==0 ){ |
|
600 sqlite3_free(pNew); |
|
601 return 0; |
|
602 } |
|
603 for(i=0; i<p->nId; i++){ |
|
604 IdList::IdList_item *pNewItem = &pNew->a[i]; |
|
605 IdList::IdList_item *pOldItem = &p->a[i]; |
|
606 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
|
607 pNewItem->idx = pOldItem->idx; |
|
608 } |
|
609 return pNew; |
|
610 } |
|
611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ |
|
612 Select *pNew; |
|
613 if( p==0 ) return 0; |
|
614 pNew = (Select*)sqlite3DbMallocRaw(db, sizeof(*p) ); |
|
615 if( pNew==0 ) return 0; |
|
616 pNew->isDistinct = p->isDistinct; |
|
617 pNew->pEList = sqlite3ExprListDup(db, p->pEList); |
|
618 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); |
|
619 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); |
|
620 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); |
|
621 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); |
|
622 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); |
|
623 pNew->op = p->op; |
|
624 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); |
|
625 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); |
|
626 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); |
|
627 pNew->iLimit = -1; |
|
628 pNew->iOffset = -1; |
|
629 pNew->isResolved = p->isResolved; |
|
630 pNew->isAgg = p->isAgg; |
|
631 pNew->usesEphm = 0; |
|
632 pNew->disallowOrderBy = 0; |
|
633 pNew->pRightmost = 0; |
|
634 pNew->addrOpenEphm[0] = -1; |
|
635 pNew->addrOpenEphm[1] = -1; |
|
636 pNew->addrOpenEphm[2] = -1; |
|
637 return pNew; |
|
638 } |
|
639 #else |
|
640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ |
|
641 assert( p==0 ); |
|
642 return 0; |
|
643 } |
|
644 #endif |
|
645 |
|
646 |
|
647 /* |
|
648 ** Add a new element to the end of an expression list. If pList is |
|
649 ** initially NULL, then create a new expression list. |
|
650 */ |
|
651 ExprList *sqlite3ExprListAppend( |
|
652 Parse *pParse, /* Parsing context */ |
|
653 ExprList *pList, /* List to which to append. Might be NULL */ |
|
654 Expr *pExpr, /* Expression to be appended */ |
|
655 Token *pName /* AS keyword for the expression */ |
|
656 ){ |
|
657 sqlite3 *db = pParse->db; |
|
658 if( pList==0 ){ |
|
659 pList = (ExprList*)sqlite3DbMallocZero(db, sizeof(ExprList) ); |
|
660 if( pList==0 ){ |
|
661 goto no_mem; |
|
662 } |
|
663 assert( pList->nAlloc==0 ); |
|
664 } |
|
665 if( pList->nAlloc<=pList->nExpr ){ |
|
666 ExprList::ExprList_item *a; |
|
667 int n = pList->nAlloc*2 + 4; |
|
668 a = (ExprList::ExprList_item*)sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); |
|
669 if( a==0 ){ |
|
670 goto no_mem; |
|
671 } |
|
672 pList->a = a; |
|
673 pList->nAlloc = n; |
|
674 } |
|
675 assert( pList->a!=0 ); |
|
676 if( pExpr || pName ){ |
|
677 ExprList::ExprList_item *pItem = &pList->a[pList->nExpr++]; |
|
678 memset(pItem, 0, sizeof(*pItem)); |
|
679 pItem->zName = sqlite3NameFromToken(db, pName); |
|
680 pItem->pExpr = pExpr; |
|
681 } |
|
682 return pList; |
|
683 |
|
684 no_mem: |
|
685 /* Avoid leaking memory if malloc has failed. */ |
|
686 sqlite3ExprDelete(pExpr); |
|
687 sqlite3ExprListDelete(pList); |
|
688 return 0; |
|
689 } |
|
690 |
|
691 /* |
|
692 ** If the expression list pEList contains more than iLimit elements, |
|
693 ** leave an error message in pParse. |
|
694 */ |
|
695 void sqlite3ExprListCheckLength( |
|
696 Parse *pParse, |
|
697 ExprList *pEList, |
|
698 int iLimit, |
|
699 const char *zObject |
|
700 ){ |
|
701 if( pEList && pEList->nExpr>iLimit ){ |
|
702 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
|
703 } |
|
704 } |
|
705 |
|
706 |
|
707 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 |
|
708 /* The following three functions, heightOfExpr(), heightOfExprList() |
|
709 ** and heightOfSelect(), are used to determine the maximum height |
|
710 ** of any expression tree referenced by the structure passed as the |
|
711 ** first argument. |
|
712 ** |
|
713 ** If this maximum height is greater than the current value pointed |
|
714 ** to by pnHeight, the second parameter, then set *pnHeight to that |
|
715 ** value. |
|
716 */ |
|
717 static void heightOfExpr(Expr *p, int *pnHeight){ |
|
718 if( p ){ |
|
719 if( p->nHeight>*pnHeight ){ |
|
720 *pnHeight = p->nHeight; |
|
721 } |
|
722 } |
|
723 } |
|
724 static void heightOfExprList(ExprList *p, int *pnHeight){ |
|
725 if( p ){ |
|
726 int i; |
|
727 for(i=0; i<p->nExpr; i++){ |
|
728 heightOfExpr(p->a[i].pExpr, pnHeight); |
|
729 } |
|
730 } |
|
731 } |
|
732 static void heightOfSelect(Select *p, int *pnHeight){ |
|
733 if( p ){ |
|
734 heightOfExpr(p->pWhere, pnHeight); |
|
735 heightOfExpr(p->pHaving, pnHeight); |
|
736 heightOfExpr(p->pLimit, pnHeight); |
|
737 heightOfExpr(p->pOffset, pnHeight); |
|
738 heightOfExprList(p->pEList, pnHeight); |
|
739 heightOfExprList(p->pGroupBy, pnHeight); |
|
740 heightOfExprList(p->pOrderBy, pnHeight); |
|
741 heightOfSelect(p->pPrior, pnHeight); |
|
742 } |
|
743 } |
|
744 |
|
745 /* |
|
746 ** Set the Expr.nHeight variable in the structure passed as an |
|
747 ** argument. An expression with no children, Expr.pList or |
|
748 ** Expr.pSelect member has a height of 1. Any other expression |
|
749 ** has a height equal to the maximum height of any other |
|
750 ** referenced Expr plus one. |
|
751 */ |
|
752 void sqlite3ExprSetHeight(Expr *p){ |
|
753 int nHeight = 0; |
|
754 heightOfExpr(p->pLeft, &nHeight); |
|
755 heightOfExpr(p->pRight, &nHeight); |
|
756 heightOfExprList(p->pList, &nHeight); |
|
757 heightOfSelect(p->pSelect, &nHeight); |
|
758 p->nHeight = nHeight + 1; |
|
759 } |
|
760 |
|
761 /* |
|
762 ** Return the maximum height of any expression tree referenced |
|
763 ** by the select statement passed as an argument. |
|
764 */ |
|
765 int sqlite3SelectExprHeight(Select *p){ |
|
766 int nHeight = 0; |
|
767 heightOfSelect(p, &nHeight); |
|
768 return nHeight; |
|
769 } |
|
770 #endif |
|
771 |
|
772 /* |
|
773 ** Delete an entire expression list. |
|
774 */ |
|
775 void sqlite3ExprListDelete(ExprList *pList){ |
|
776 int i; |
|
777 ExprList::ExprList_item *pItem; |
|
778 if( pList==0 ) return; |
|
779 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); |
|
780 assert( pList->nExpr<=pList->nAlloc ); |
|
781 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
|
782 sqlite3ExprDelete(pItem->pExpr); |
|
783 sqlite3_free(pItem->zName); |
|
784 } |
|
785 sqlite3_free(pList->a); |
|
786 sqlite3_free(pList); |
|
787 } |
|
788 |
|
789 /* |
|
790 ** Walk an expression tree. Call xFunc for each node visited. |
|
791 ** |
|
792 ** The return value from xFunc determines whether the tree walk continues. |
|
793 ** 0 means continue walking the tree. 1 means do not walk children |
|
794 ** of the current node but continue with siblings. 2 means abandon |
|
795 ** the tree walk completely. |
|
796 ** |
|
797 ** The return value from this routine is 1 to abandon the tree walk |
|
798 ** and 0 to continue. |
|
799 ** |
|
800 ** NOTICE: This routine does *not* descend into subqueries. |
|
801 */ |
|
802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); |
|
803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ |
|
804 int rc; |
|
805 if( pExpr==0 ) return 0; |
|
806 rc = (*xFunc)(pArg, pExpr); |
|
807 if( rc==0 ){ |
|
808 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; |
|
809 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; |
|
810 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; |
|
811 } |
|
812 return rc>1; |
|
813 } |
|
814 |
|
815 /* |
|
816 ** Call walkExprTree() for every expression in list p. |
|
817 */ |
|
818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ |
|
819 int i; |
|
820 ExprList::ExprList_item *pItem; |
|
821 if( !p ) return 0; |
|
822 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ |
|
823 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; |
|
824 } |
|
825 return 0; |
|
826 } |
|
827 |
|
828 /* |
|
829 ** Call walkExprTree() for every expression in Select p, not including |
|
830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT |
|
831 ** or OFFSET expressions.. |
|
832 */ |
|
833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ |
|
834 walkExprList(p->pEList, xFunc, pArg); |
|
835 walkExprTree(p->pWhere, xFunc, pArg); |
|
836 walkExprList(p->pGroupBy, xFunc, pArg); |
|
837 walkExprTree(p->pHaving, xFunc, pArg); |
|
838 walkExprList(p->pOrderBy, xFunc, pArg); |
|
839 if( p->pPrior ){ |
|
840 walkSelectExpr(p->pPrior, xFunc, pArg); |
|
841 } |
|
842 return 0; |
|
843 } |
|
844 |
|
845 |
|
846 /* |
|
847 ** This routine is designed as an xFunc for walkExprTree(). |
|
848 ** |
|
849 ** pArg is really a pointer to an integer. If we can tell by looking |
|
850 ** at pExpr that the expression that contains pExpr is not a constant |
|
851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. |
|
852 ** If pExpr does does not disqualify the expression from being a constant |
|
853 ** then do nothing. |
|
854 ** |
|
855 ** After walking the whole tree, if no nodes are found that disqualify |
|
856 ** the expression as constant, then we assume the whole expression |
|
857 ** is constant. See sqlite3ExprIsConstant() for additional information. |
|
858 */ |
|
859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ |
|
860 int *pN = (int*)pArg; |
|
861 |
|
862 /* If *pArg is 3 then any term of the expression that comes from |
|
863 ** the ON or USING clauses of a join disqualifies the expression |
|
864 ** from being considered constant. */ |
|
865 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ |
|
866 *pN = 0; |
|
867 return 2; |
|
868 } |
|
869 |
|
870 switch( pExpr->op ){ |
|
871 /* Consider functions to be constant if all their arguments are constant |
|
872 ** and *pArg==2 */ |
|
873 case TK_FUNCTION: |
|
874 if( (*pN)==2 ) return 0; |
|
875 /* Fall through */ |
|
876 case TK_ID: |
|
877 case TK_COLUMN: |
|
878 case TK_DOT: |
|
879 case TK_AGG_FUNCTION: |
|
880 case TK_AGG_COLUMN: |
|
881 #ifndef SQLITE_OMIT_SUBQUERY |
|
882 case TK_SELECT: |
|
883 case TK_EXISTS: |
|
884 #endif |
|
885 *pN = 0; |
|
886 return 2; |
|
887 case TK_IN: |
|
888 if( pExpr->pSelect ){ |
|
889 *pN = 0; |
|
890 return 2; |
|
891 } |
|
892 default: |
|
893 return 0; |
|
894 } |
|
895 } |
|
896 |
|
897 /* |
|
898 ** Walk an expression tree. Return 1 if the expression is constant |
|
899 ** and 0 if it involves variables or function calls. |
|
900 ** |
|
901 ** For the purposes of this function, a double-quoted string (ex: "abc") |
|
902 ** is considered a variable but a single-quoted string (ex: 'abc') is |
|
903 ** a constant. |
|
904 */ |
|
905 int sqlite3ExprIsConstant(Expr *p){ |
|
906 int isConst = 1; |
|
907 walkExprTree(p, exprNodeIsConstant, &isConst); |
|
908 return isConst; |
|
909 } |
|
910 |
|
911 /* |
|
912 ** Walk an expression tree. Return 1 if the expression is constant |
|
913 ** that does no originate from the ON or USING clauses of a join. |
|
914 ** Return 0 if it involves variables or function calls or terms from |
|
915 ** an ON or USING clause. |
|
916 */ |
|
917 int sqlite3ExprIsConstantNotJoin(Expr *p){ |
|
918 int isConst = 3; |
|
919 walkExprTree(p, exprNodeIsConstant, &isConst); |
|
920 return isConst!=0; |
|
921 } |
|
922 |
|
923 /* |
|
924 ** Walk an expression tree. Return 1 if the expression is constant |
|
925 ** or a function call with constant arguments. Return and 0 if there |
|
926 ** are any variables. |
|
927 ** |
|
928 ** For the purposes of this function, a double-quoted string (ex: "abc") |
|
929 ** is considered a variable but a single-quoted string (ex: 'abc') is |
|
930 ** a constant. |
|
931 */ |
|
932 int sqlite3ExprIsConstantOrFunction(Expr *p){ |
|
933 int isConst = 2; |
|
934 walkExprTree(p, exprNodeIsConstant, &isConst); |
|
935 return isConst!=0; |
|
936 } |
|
937 |
|
938 /* |
|
939 ** If the expression p codes a constant integer that is small enough |
|
940 ** to fit in a 32-bit integer, return 1 and put the value of the integer |
|
941 ** in *pValue. If the expression is not an integer or if it is too big |
|
942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
|
943 */ |
|
944 int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
|
945 switch( p->op ){ |
|
946 case TK_INTEGER: { |
|
947 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ |
|
948 return 1; |
|
949 } |
|
950 break; |
|
951 } |
|
952 case TK_UPLUS: { |
|
953 return sqlite3ExprIsInteger(p->pLeft, pValue); |
|
954 } |
|
955 case TK_UMINUS: { |
|
956 int v; |
|
957 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
|
958 *pValue = -v; |
|
959 return 1; |
|
960 } |
|
961 break; |
|
962 } |
|
963 default: break; |
|
964 } |
|
965 return 0; |
|
966 } |
|
967 |
|
968 /* |
|
969 ** Return TRUE if the given string is a row-id column name. |
|
970 */ |
|
971 int sqlite3IsRowid(const char *z){ |
|
972 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
|
973 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
|
974 if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
|
975 return 0; |
|
976 } |
|
977 |
|
978 /* |
|
979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up |
|
980 ** that name in the set of source tables in pSrcList and make the pExpr |
|
981 ** expression node refer back to that source column. The following changes |
|
982 ** are made to pExpr: |
|
983 ** |
|
984 ** pExpr->iDb Set the index in db->aDb[] of the database holding |
|
985 ** the table. |
|
986 ** pExpr->iTable Set to the cursor number for the table obtained |
|
987 ** from pSrcList. |
|
988 ** pExpr->iColumn Set to the column number within the table. |
|
989 ** pExpr->op Set to TK_COLUMN. |
|
990 ** pExpr->pLeft Any expression this points to is deleted |
|
991 ** pExpr->pRight Any expression this points to is deleted. |
|
992 ** |
|
993 ** The pDbToken is the name of the database (the "X"). This value may be |
|
994 ** NULL meaning that name is of the form Y.Z or Z. Any available database |
|
995 ** can be used. The pTableToken is the name of the table (the "Y"). This |
|
996 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it |
|
997 ** means that the form of the name is Z and that columns from any table |
|
998 ** can be used. |
|
999 ** |
|
1000 ** If the name cannot be resolved unambiguously, leave an error message |
|
1001 ** in pParse and return non-zero. Return zero on success. |
|
1002 */ |
|
1003 static int lookupName( |
|
1004 Parse *pParse, /* The parsing context */ |
|
1005 Token *pDbToken, /* Name of the database containing table, or NULL */ |
|
1006 Token *pTableToken, /* Name of table containing column, or NULL */ |
|
1007 Token *pColumnToken, /* Name of the column. */ |
|
1008 NameContext *pNC, /* The name context used to resolve the name */ |
|
1009 Expr *pExpr /* Make this EXPR node point to the selected column */ |
|
1010 ){ |
|
1011 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ |
|
1012 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ |
|
1013 char *zCol = 0; /* Name of the column. The "Z" */ |
|
1014 int i, j; /* Loop counters */ |
|
1015 int cnt = 0; /* Number of matching column names */ |
|
1016 int cntTab = 0; /* Number of matching table names */ |
|
1017 sqlite3 *db = pParse->db; /* The database */ |
|
1018 SrcList::SrcList_item *pItem; /* Use for looping over pSrcList items */ |
|
1019 SrcList::SrcList_item *pMatch = 0; /* The matching pSrcList item */ |
|
1020 NameContext *pTopNC = pNC; /* First namecontext in the list */ |
|
1021 Schema *pSchema = 0; /* Schema of the expression */ |
|
1022 |
|
1023 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ |
|
1024 zDb = sqlite3NameFromToken(db, pDbToken); |
|
1025 zTab = sqlite3NameFromToken(db, pTableToken); |
|
1026 zCol = sqlite3NameFromToken(db, pColumnToken); |
|
1027 if( db->mallocFailed ){ |
|
1028 goto lookupname_end; |
|
1029 } |
|
1030 |
|
1031 pExpr->iTable = -1; |
|
1032 while( pNC && cnt==0 ){ |
|
1033 ExprList *pEList; |
|
1034 SrcList *pSrcList = pNC->pSrcList; |
|
1035 |
|
1036 if( pSrcList ){ |
|
1037 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ |
|
1038 Table *pTab; |
|
1039 int iDb; |
|
1040 Column *pCol; |
|
1041 |
|
1042 pTab = pItem->pTab; |
|
1043 assert( pTab!=0 ); |
|
1044 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
|
1045 assert( pTab->nCol>0 ); |
|
1046 if( zTab ){ |
|
1047 if( pItem->zAlias ){ |
|
1048 char *zTabName = pItem->zAlias; |
|
1049 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
|
1050 }else{ |
|
1051 char *zTabName = pTab->zName; |
|
1052 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
|
1053 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ |
|
1054 continue; |
|
1055 } |
|
1056 } |
|
1057 } |
|
1058 if( 0==(cntTab++) ){ |
|
1059 pExpr->iTable = pItem->iCursor; |
|
1060 pSchema = pTab->pSchema; |
|
1061 pMatch = pItem; |
|
1062 } |
|
1063 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ |
|
1064 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
|
1065 const char *zColl = pTab->aCol[j].zColl; |
|
1066 IdList *pUsing; |
|
1067 cnt++; |
|
1068 pExpr->iTable = pItem->iCursor; |
|
1069 pMatch = pItem; |
|
1070 pSchema = pTab->pSchema; |
|
1071 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ |
|
1072 pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
|
1073 pExpr->affinity = pTab->aCol[j].affinity; |
|
1074 if( (pExpr->flags & EP_ExpCollate)==0 ){ |
|
1075 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); |
|
1076 } |
|
1077 if( i<pSrcList->nSrc-1 ){ |
|
1078 if( pItem[1].jointype & JT_NATURAL ){ |
|
1079 /* If this match occurred in the left table of a natural join, |
|
1080 ** then skip the right table to avoid a duplicate match */ |
|
1081 pItem++; |
|
1082 i++; |
|
1083 }else if( (pUsing = pItem[1].pUsing)!=0 ){ |
|
1084 /* If this match occurs on a column that is in the USING clause |
|
1085 ** of a join, skip the search of the right table of the join |
|
1086 ** to avoid a duplicate match there. */ |
|
1087 int k; |
|
1088 for(k=0; k<pUsing->nId; k++){ |
|
1089 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ |
|
1090 pItem++; |
|
1091 i++; |
|
1092 break; |
|
1093 } |
|
1094 } |
|
1095 } |
|
1096 } |
|
1097 break; |
|
1098 } |
|
1099 } |
|
1100 } |
|
1101 } |
|
1102 |
|
1103 #ifndef SQLITE_OMIT_TRIGGER |
|
1104 /* If we have not already resolved the name, then maybe |
|
1105 ** it is a new.* or old.* trigger argument reference |
|
1106 */ |
|
1107 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ |
|
1108 TriggerStack *pTriggerStack = pParse->trigStack; |
|
1109 Table *pTab = 0; |
|
1110 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ |
|
1111 pExpr->iTable = pTriggerStack->newIdx; |
|
1112 assert( pTriggerStack->pTab ); |
|
1113 pTab = pTriggerStack->pTab; |
|
1114 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ |
|
1115 pExpr->iTable = pTriggerStack->oldIdx; |
|
1116 assert( pTriggerStack->pTab ); |
|
1117 pTab = pTriggerStack->pTab; |
|
1118 } |
|
1119 |
|
1120 if( pTab ){ |
|
1121 int iCol; |
|
1122 Column *pCol = pTab->aCol; |
|
1123 |
|
1124 pSchema = pTab->pSchema; |
|
1125 cntTab++; |
|
1126 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { |
|
1127 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
|
1128 const char *zColl = pTab->aCol[iCol].zColl; |
|
1129 cnt++; |
|
1130 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; |
|
1131 pExpr->affinity = pTab->aCol[iCol].affinity; |
|
1132 if( (pExpr->flags & EP_ExpCollate)==0 ){ |
|
1133 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); |
|
1134 } |
|
1135 pExpr->pTab = pTab; |
|
1136 break; |
|
1137 } |
|
1138 } |
|
1139 } |
|
1140 } |
|
1141 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ |
|
1142 |
|
1143 /* |
|
1144 ** Perhaps the name is a reference to the ROWID |
|
1145 */ |
|
1146 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ |
|
1147 cnt = 1; |
|
1148 pExpr->iColumn = -1; |
|
1149 pExpr->affinity = SQLITE_AFF_INTEGER; |
|
1150 } |
|
1151 |
|
1152 /* |
|
1153 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
|
1154 ** might refer to an result-set alias. This happens, for example, when |
|
1155 ** we are resolving names in the WHERE clause of the following command: |
|
1156 ** |
|
1157 ** SELECT a+b AS x FROM table WHERE x<10; |
|
1158 ** |
|
1159 ** In cases like this, replace pExpr with a copy of the expression that |
|
1160 ** forms the result set entry ("a+b" in the example) and return immediately. |
|
1161 ** Note that the expression in the result set should have already been |
|
1162 ** resolved by the time the WHERE clause is resolved. |
|
1163 */ |
|
1164 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ |
|
1165 for(j=0; j<pEList->nExpr; j++){ |
|
1166 char *zAs = pEList->a[j].zName; |
|
1167 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
|
1168 Expr *pDup, *pOrig; |
|
1169 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
|
1170 assert( pExpr->pList==0 ); |
|
1171 assert( pExpr->pSelect==0 ); |
|
1172 pOrig = pEList->a[j].pExpr; |
|
1173 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ |
|
1174 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); |
|
1175 sqlite3_free(zCol); |
|
1176 return 2; |
|
1177 } |
|
1178 pDup = sqlite3ExprDup(db, pOrig); |
|
1179 if( pExpr->flags & EP_ExpCollate ){ |
|
1180 pDup->pColl = pExpr->pColl; |
|
1181 pDup->flags |= EP_ExpCollate; |
|
1182 } |
|
1183 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); |
|
1184 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); |
|
1185 memcpy(pExpr, pDup, sizeof(*pExpr)); |
|
1186 sqlite3_free(pDup); |
|
1187 cnt = 1; |
|
1188 pMatch = 0; |
|
1189 assert( zTab==0 && zDb==0 ); |
|
1190 goto lookupname_end_2; |
|
1191 } |
|
1192 } |
|
1193 } |
|
1194 |
|
1195 /* Advance to the next name context. The loop will exit when either |
|
1196 ** we have a match (cnt>0) or when we run out of name contexts. |
|
1197 */ |
|
1198 if( cnt==0 ){ |
|
1199 pNC = pNC->pNext; |
|
1200 } |
|
1201 } |
|
1202 |
|
1203 /* |
|
1204 ** If X and Y are NULL (in other words if only the column name Z is |
|
1205 ** supplied) and the value of Z is enclosed in double-quotes, then |
|
1206 ** Z is a string literal if it doesn't match any column names. In that |
|
1207 ** case, we need to return right away and not make any changes to |
|
1208 ** pExpr. |
|
1209 ** |
|
1210 ** Because no reference was made to outer contexts, the pNC->nRef |
|
1211 ** fields are not changed in any context. |
|
1212 */ |
|
1213 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ |
|
1214 sqlite3_free(zCol); |
|
1215 return 0; |
|
1216 } |
|
1217 |
|
1218 /* |
|
1219 ** cnt==0 means there was not match. cnt>1 means there were two or |
|
1220 ** more matches. Either way, we have an error. |
|
1221 */ |
|
1222 if( cnt!=1 ){ |
|
1223 char *z = 0; |
|
1224 char *zErr; |
|
1225 zErr = (char*)(cnt==0 ? "no such column: %s" : "ambiguous column name: %s"); |
|
1226 if( zDb ){ |
|
1227 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); |
|
1228 }else if( zTab ){ |
|
1229 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); |
|
1230 }else{ |
|
1231 z = sqlite3StrDup(zCol); |
|
1232 } |
|
1233 if( z ){ |
|
1234 sqlite3ErrorMsg(pParse, zErr, z); |
|
1235 sqlite3_free(z); |
|
1236 pTopNC->nErr++; |
|
1237 }else{ |
|
1238 db->mallocFailed = 1; |
|
1239 } |
|
1240 } |
|
1241 |
|
1242 /* If a column from a table in pSrcList is referenced, then record |
|
1243 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes |
|
1244 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the |
|
1245 ** column number is greater than the number of bits in the bitmask |
|
1246 ** then set the high-order bit of the bitmask. |
|
1247 */ |
|
1248 if( pExpr->iColumn>=0 && pMatch!=0 ){ |
|
1249 int n = pExpr->iColumn; |
|
1250 if( n>=sizeof(Bitmask)*8 ){ |
|
1251 n = sizeof(Bitmask)*8-1; |
|
1252 } |
|
1253 assert( pMatch->iCursor==pExpr->iTable ); |
|
1254 pMatch->colUsed |= ((Bitmask)1)<<n; |
|
1255 } |
|
1256 |
|
1257 lookupname_end: |
|
1258 /* Clean up and return |
|
1259 */ |
|
1260 sqlite3_free(zDb); |
|
1261 sqlite3_free(zTab); |
|
1262 sqlite3ExprDelete(pExpr->pLeft); |
|
1263 pExpr->pLeft = 0; |
|
1264 sqlite3ExprDelete(pExpr->pRight); |
|
1265 pExpr->pRight = 0; |
|
1266 pExpr->op = TK_COLUMN; |
|
1267 lookupname_end_2: |
|
1268 sqlite3_free(zCol); |
|
1269 if( cnt==1 ){ |
|
1270 assert( pNC!=0 ); |
|
1271 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); |
|
1272 if( pMatch && !pMatch->pSelect ){ |
|
1273 pExpr->pTab = pMatch->pTab; |
|
1274 } |
|
1275 /* Increment the nRef value on all name contexts from TopNC up to |
|
1276 ** the point where the name matched. */ |
|
1277 for(;;){ |
|
1278 assert( pTopNC!=0 ); |
|
1279 pTopNC->nRef++; |
|
1280 if( pTopNC==pNC ) break; |
|
1281 pTopNC = pTopNC->pNext; |
|
1282 } |
|
1283 return 0; |
|
1284 } else { |
|
1285 return 1; |
|
1286 } |
|
1287 } |
|
1288 |
|
1289 /* |
|
1290 ** This routine is designed as an xFunc for walkExprTree(). |
|
1291 ** |
|
1292 ** Resolve symbolic names into TK_COLUMN operators for the current |
|
1293 ** node in the expression tree. Return 0 to continue the search down |
|
1294 ** the tree or 2 to abort the tree walk. |
|
1295 ** |
|
1296 ** This routine also does error checking and name resolution for |
|
1297 ** function names. The operator for aggregate functions is changed |
|
1298 ** to TK_AGG_FUNCTION. |
|
1299 */ |
|
1300 static int nameResolverStep(void *pArg, Expr *pExpr){ |
|
1301 NameContext *pNC = (NameContext*)pArg; |
|
1302 Parse *pParse; |
|
1303 |
|
1304 if( pExpr==0 ) return 1; |
|
1305 assert( pNC!=0 ); |
|
1306 pParse = pNC->pParse; |
|
1307 |
|
1308 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; |
|
1309 ExprSetProperty(pExpr, EP_Resolved); |
|
1310 #ifndef NDEBUG |
|
1311 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ |
|
1312 SrcList *pSrcList = pNC->pSrcList; |
|
1313 int i; |
|
1314 for(i=0; i<pNC->pSrcList->nSrc; i++){ |
|
1315 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); |
|
1316 } |
|
1317 } |
|
1318 #endif |
|
1319 switch( pExpr->op ){ |
|
1320 /* Double-quoted strings (ex: "abc") are used as identifiers if |
|
1321 ** possible. Otherwise they remain as strings. Single-quoted |
|
1322 ** strings (ex: 'abc') are always string literals. |
|
1323 */ |
|
1324 case TK_STRING: { |
|
1325 if( pExpr->token.z[0]=='\'' ) break; |
|
1326 /* Fall thru into the TK_ID case if this is a double-quoted string */ |
|
1327 } |
|
1328 /* A lone identifier is the name of a column. |
|
1329 */ |
|
1330 case TK_ID: { |
|
1331 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); |
|
1332 return 1; |
|
1333 } |
|
1334 |
|
1335 /* A table name and column name: ID.ID |
|
1336 ** Or a database, table and column: ID.ID.ID |
|
1337 */ |
|
1338 case TK_DOT: { |
|
1339 Token *pColumn; |
|
1340 Token *pTable; |
|
1341 Token *pDb; |
|
1342 Expr *pRight; |
|
1343 |
|
1344 /* if( pSrcList==0 ) break; */ |
|
1345 pRight = pExpr->pRight; |
|
1346 if( pRight->op==TK_ID ){ |
|
1347 pDb = 0; |
|
1348 pTable = &pExpr->pLeft->token; |
|
1349 pColumn = &pRight->token; |
|
1350 }else{ |
|
1351 assert( pRight->op==TK_DOT ); |
|
1352 pDb = &pExpr->pLeft->token; |
|
1353 pTable = &pRight->pLeft->token; |
|
1354 pColumn = &pRight->pRight->token; |
|
1355 } |
|
1356 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); |
|
1357 return 1; |
|
1358 } |
|
1359 |
|
1360 /* Resolve function names |
|
1361 */ |
|
1362 case TK_CONST_FUNC: |
|
1363 case TK_FUNCTION: { |
|
1364 ExprList *pList = pExpr->pList; /* The argument list */ |
|
1365 int n = pList ? pList->nExpr : 0; /* Number of arguments */ |
|
1366 int no_such_func = 0; /* True if no such function exists */ |
|
1367 int wrong_num_args = 0; /* True if wrong number of arguments */ |
|
1368 int is_agg = 0; /* True if is an aggregate function */ |
|
1369 int i; |
|
1370 int auth; /* Authorization to use the function */ |
|
1371 int nId; /* Number of characters in function name */ |
|
1372 const char *zId; /* The function name. */ |
|
1373 FuncDef *pDef; /* Information about the function */ |
|
1374 int enc = ENC(pParse->db); /* The database encoding */ |
|
1375 |
|
1376 zId = (char*)pExpr->token.z; |
|
1377 nId = pExpr->token.n; |
|
1378 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); |
|
1379 if( pDef==0 ){ |
|
1380 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); |
|
1381 if( pDef==0 ){ |
|
1382 no_such_func = 1; |
|
1383 }else{ |
|
1384 wrong_num_args = 1; |
|
1385 } |
|
1386 }else{ |
|
1387 is_agg = pDef->xFunc==0; |
|
1388 } |
|
1389 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
1390 if( pDef ){ |
|
1391 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); |
|
1392 if( auth!=SQLITE_OK ){ |
|
1393 if( auth==SQLITE_DENY ){ |
|
1394 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", |
|
1395 pDef->zName); |
|
1396 pNC->nErr++; |
|
1397 } |
|
1398 pExpr->op = TK_NULL; |
|
1399 return 1; |
|
1400 } |
|
1401 } |
|
1402 #endif |
|
1403 if( is_agg && !pNC->allowAgg ){ |
|
1404 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); |
|
1405 pNC->nErr++; |
|
1406 is_agg = 0; |
|
1407 }else if( no_such_func ){ |
|
1408 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); |
|
1409 pNC->nErr++; |
|
1410 }else if( wrong_num_args ){ |
|
1411 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", |
|
1412 nId, zId); |
|
1413 pNC->nErr++; |
|
1414 } |
|
1415 if( is_agg ){ |
|
1416 pExpr->op = TK_AGG_FUNCTION; |
|
1417 pNC->hasAgg = 1; |
|
1418 } |
|
1419 if( is_agg ) pNC->allowAgg = 0; |
|
1420 for(i=0; pNC->nErr==0 && i<n; i++){ |
|
1421 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); |
|
1422 } |
|
1423 if( is_agg ) pNC->allowAgg = 1; |
|
1424 /* FIX ME: Compute pExpr->affinity based on the expected return |
|
1425 ** type of the function |
|
1426 */ |
|
1427 return is_agg; |
|
1428 } |
|
1429 #ifndef SQLITE_OMIT_SUBQUERY |
|
1430 case TK_SELECT: |
|
1431 case TK_EXISTS: |
|
1432 #endif |
|
1433 case TK_IN: { |
|
1434 if( pExpr->pSelect ){ |
|
1435 int nRef = pNC->nRef; |
|
1436 #ifndef SQLITE_OMIT_CHECK |
|
1437 if( pNC->isCheck ){ |
|
1438 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); |
|
1439 } |
|
1440 #endif |
|
1441 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); |
|
1442 assert( pNC->nRef>=nRef ); |
|
1443 if( nRef!=pNC->nRef ){ |
|
1444 ExprSetProperty(pExpr, EP_VarSelect); |
|
1445 } |
|
1446 } |
|
1447 break; |
|
1448 } |
|
1449 #ifndef SQLITE_OMIT_CHECK |
|
1450 case TK_VARIABLE: { |
|
1451 if( pNC->isCheck ){ |
|
1452 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); |
|
1453 } |
|
1454 break; |
|
1455 } |
|
1456 #endif |
|
1457 } |
|
1458 return 0; |
|
1459 } |
|
1460 |
|
1461 /* |
|
1462 ** This routine walks an expression tree and resolves references to |
|
1463 ** table columns. Nodes of the form ID.ID or ID resolve into an |
|
1464 ** index to the table in the table list and a column offset. The |
|
1465 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
|
1466 ** value is changed to the index of the referenced table in pTabList |
|
1467 ** plus the "base" value. The base value will ultimately become the |
|
1468 ** VDBE cursor number for a cursor that is pointing into the referenced |
|
1469 ** table. The Expr.iColumn value is changed to the index of the column |
|
1470 ** of the referenced table. The Expr.iColumn value for the special |
|
1471 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
|
1472 ** alias for ROWID. |
|
1473 ** |
|
1474 ** Also resolve function names and check the functions for proper |
|
1475 ** usage. Make sure all function names are recognized and all functions |
|
1476 ** have the correct number of arguments. Leave an error message |
|
1477 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. |
|
1478 ** |
|
1479 ** If the expression contains aggregate functions then set the EP_Agg |
|
1480 ** property on the expression. |
|
1481 */ |
|
1482 int sqlite3ExprResolveNames( |
|
1483 NameContext *pNC, /* Namespace to resolve expressions in. */ |
|
1484 Expr *pExpr /* The expression to be analyzed. */ |
|
1485 ){ |
|
1486 int savedHasAgg; |
|
1487 if( pExpr==0 ) return 0; |
|
1488 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 |
|
1489 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ |
|
1490 sqlite3ErrorMsg(pNC->pParse, |
|
1491 "Expression tree is too large (maximum depth %d)", |
|
1492 SQLITE_MAX_EXPR_DEPTH |
|
1493 ); |
|
1494 return 1; |
|
1495 } |
|
1496 pNC->pParse->nHeight += pExpr->nHeight; |
|
1497 #endif |
|
1498 savedHasAgg = pNC->hasAgg; |
|
1499 pNC->hasAgg = 0; |
|
1500 walkExprTree(pExpr, nameResolverStep, pNC); |
|
1501 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 |
|
1502 pNC->pParse->nHeight -= pExpr->nHeight; |
|
1503 #endif |
|
1504 if( pNC->nErr>0 ){ |
|
1505 ExprSetProperty(pExpr, EP_Error); |
|
1506 } |
|
1507 if( pNC->hasAgg ){ |
|
1508 ExprSetProperty(pExpr, EP_Agg); |
|
1509 }else if( savedHasAgg ){ |
|
1510 pNC->hasAgg = 1; |
|
1511 } |
|
1512 return ExprHasProperty(pExpr, EP_Error); |
|
1513 } |
|
1514 |
|
1515 /* |
|
1516 ** A pointer instance of this structure is used to pass information |
|
1517 ** through walkExprTree into codeSubqueryStep(). |
|
1518 */ |
|
1519 typedef struct QueryCoder QueryCoder; |
|
1520 struct QueryCoder { |
|
1521 Parse *pParse; /* The parsing context */ |
|
1522 NameContext *pNC; /* Namespace of first enclosing query */ |
|
1523 }; |
|
1524 |
|
1525 #ifdef SQLITE_TEST |
|
1526 int sqlite3_enable_in_opt = 1; |
|
1527 #else |
|
1528 #define sqlite3_enable_in_opt 1 |
|
1529 #endif |
|
1530 |
|
1531 /* |
|
1532 ** This function is used by the implementation of the IN (...) operator. |
|
1533 ** It's job is to find or create a b-tree structure that may be used |
|
1534 ** either to test for membership of the (...) set or to iterate through |
|
1535 ** its members, skipping duplicates. |
|
1536 ** |
|
1537 ** The cursor opened on the structure (database table, database index |
|
1538 ** or ephermal table) is stored in pX->iTable before this function returns. |
|
1539 ** The returned value indicates the structure type, as follows: |
|
1540 ** |
|
1541 ** IN_INDEX_ROWID - The cursor was opened on a database table. |
|
1542 ** IN_INDEX_INDEX - The cursor was opened on a database indec. |
|
1543 ** IN_INDEX_EPH - The cursor was opened on a specially created and |
|
1544 ** populated epheremal table. |
|
1545 ** |
|
1546 ** An existing structure may only be used if the SELECT is of the simple |
|
1547 ** form: |
|
1548 ** |
|
1549 ** SELECT <column> FROM <table> |
|
1550 ** |
|
1551 ** If the mustBeUnique parameter is false, the structure will be used |
|
1552 ** for fast set membership tests. In this case an epheremal table must |
|
1553 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can |
|
1554 ** be found with <column> as its left-most column. |
|
1555 ** |
|
1556 ** If mustBeUnique is true, then the structure will be used to iterate |
|
1557 ** through the set members, skipping any duplicates. In this case an |
|
1558 ** epheremal table must be used unless the selected <column> is guaranteed |
|
1559 ** to be unique - either because it is an INTEGER PRIMARY KEY or it |
|
1560 ** is unique by virtue of a constraint or implicit index. |
|
1561 */ |
|
1562 #ifndef SQLITE_OMIT_SUBQUERY |
|
1563 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ |
|
1564 Select *p; |
|
1565 int eType = 0; |
|
1566 int iTab = pParse->nTab++; |
|
1567 |
|
1568 /* The follwing if(...) expression is true if the SELECT is of the |
|
1569 ** simple form: |
|
1570 ** |
|
1571 ** SELECT <column> FROM <table> |
|
1572 ** |
|
1573 ** If this is the case, it may be possible to use an existing table |
|
1574 ** or index instead of generating an epheremal table. |
|
1575 */ |
|
1576 if( sqlite3_enable_in_opt |
|
1577 && (p=pX->pSelect) && !p->pPrior |
|
1578 && !p->isDistinct && !p->isAgg && !p->pGroupBy |
|
1579 && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect |
|
1580 && !p->pSrc->a[0].pTab->pSelect |
|
1581 && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN |
|
1582 && !p->pLimit && !p->pOffset && !p->pWhere |
|
1583 ){ |
|
1584 sqlite3 *db = pParse->db; |
|
1585 Index *pIdx; |
|
1586 Expr *pExpr = p->pEList->a[0].pExpr; |
|
1587 int iCol = pExpr->iColumn; |
|
1588 Vdbe *v = sqlite3GetVdbe(pParse); |
|
1589 |
|
1590 /* This function is only called from two places. In both cases the vdbe |
|
1591 ** has already been allocated. So assume sqlite3GetVdbe() is always |
|
1592 ** successful here. |
|
1593 */ |
|
1594 assert(v); |
|
1595 if( iCol<0 ){ |
|
1596 int iMem = pParse->nMem++; |
|
1597 int iAddr; |
|
1598 Table *pTab = p->pSrc->a[0].pTab; |
|
1599 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
|
1600 sqlite3VdbeUsesBtree(v, iDb); |
|
1601 |
|
1602 sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); |
|
1603 iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); |
|
1604 sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); |
|
1605 |
|
1606 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
|
1607 eType = IN_INDEX_ROWID; |
|
1608 |
|
1609 sqlite3VdbeJumpHere(v, iAddr); |
|
1610 }else{ |
|
1611 /* The collation sequence used by the comparison. If an index is to |
|
1612 ** be used in place of a temp-table, it must be ordered according |
|
1613 ** to this collation sequence. |
|
1614 */ |
|
1615 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); |
|
1616 |
|
1617 /* Check that the affinity that will be used to perform the |
|
1618 ** comparison is the same as the affinity of the column. If |
|
1619 ** it is not, it is not possible to use any index. |
|
1620 */ |
|
1621 Table *pTab = p->pSrc->a[0].pTab; |
|
1622 char aff = comparisonAffinity(pX); |
|
1623 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); |
|
1624 |
|
1625 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ |
|
1626 if( (pIdx->aiColumn[0]==iCol) |
|
1627 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) |
|
1628 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) |
|
1629 ){ |
|
1630 int iDb; |
|
1631 int iMem = pParse->nMem++; |
|
1632 int iAddr; |
|
1633 char *pKey; |
|
1634 |
|
1635 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); |
|
1636 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); |
|
1637 sqlite3VdbeUsesBtree(v, iDb); |
|
1638 |
|
1639 sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); |
|
1640 iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); |
|
1641 sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); |
|
1642 |
|
1643 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
|
1644 VdbeComment((v, "# %s", pIdx->zName)); |
|
1645 sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF); |
|
1646 eType = IN_INDEX_INDEX; |
|
1647 sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn); |
|
1648 |
|
1649 sqlite3VdbeJumpHere(v, iAddr); |
|
1650 } |
|
1651 } |
|
1652 } |
|
1653 } |
|
1654 |
|
1655 if( eType==0 ){ |
|
1656 sqlite3CodeSubselect(pParse, pX); |
|
1657 eType = IN_INDEX_EPH; |
|
1658 }else{ |
|
1659 pX->iTable = iTab; |
|
1660 } |
|
1661 return eType; |
|
1662 } |
|
1663 #endif |
|
1664 |
|
1665 /* |
|
1666 ** Generate code for scalar subqueries used as an expression |
|
1667 ** and IN operators. Examples: |
|
1668 ** |
|
1669 ** (SELECT a FROM b) -- subquery |
|
1670 ** EXISTS (SELECT a FROM b) -- EXISTS subquery |
|
1671 ** x IN (4,5,11) -- IN operator with list on right-hand side |
|
1672 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
|
1673 ** |
|
1674 ** The pExpr parameter describes the expression that contains the IN |
|
1675 ** operator or subquery. |
|
1676 */ |
|
1677 #ifndef SQLITE_OMIT_SUBQUERY |
|
1678 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ |
|
1679 int testAddr = 0; /* One-time test address */ |
|
1680 Vdbe *v = sqlite3GetVdbe(pParse); |
|
1681 if( v==0 ) return; |
|
1682 |
|
1683 |
|
1684 /* This code must be run in its entirety every time it is encountered |
|
1685 ** if any of the following is true: |
|
1686 ** |
|
1687 ** * The right-hand side is a correlated subquery |
|
1688 ** * The right-hand side is an expression list containing variables |
|
1689 ** * We are inside a trigger |
|
1690 ** |
|
1691 ** If all of the above are false, then we can run this code just once |
|
1692 ** save the results, and reuse the same result on subsequent invocations. |
|
1693 */ |
|
1694 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ |
|
1695 int mem = pParse->nMem++; |
|
1696 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); |
|
1697 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); |
|
1698 assert( testAddr>0 || pParse->db->mallocFailed ); |
|
1699 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); |
|
1700 } |
|
1701 |
|
1702 switch( pExpr->op ){ |
|
1703 case TK_IN: { |
|
1704 char affinity; |
|
1705 KeyInfo keyInfo; |
|
1706 int addr; /* Address of OP_OpenEphemeral instruction */ |
|
1707 |
|
1708 affinity = sqlite3ExprAffinity(pExpr->pLeft); |
|
1709 |
|
1710 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
|
1711 ** expression it is handled the same way. A virtual table is |
|
1712 ** filled with single-field index keys representing the results |
|
1713 ** from the SELECT or the <exprlist>. |
|
1714 ** |
|
1715 ** If the 'x' expression is a column value, or the SELECT... |
|
1716 ** statement returns a column value, then the affinity of that |
|
1717 ** column is used to build the index keys. If both 'x' and the |
|
1718 ** SELECT... statement are columns, then numeric affinity is used |
|
1719 ** if either column has NUMERIC or INTEGER affinity. If neither |
|
1720 ** 'x' nor the SELECT... statement are columns, then numeric affinity |
|
1721 ** is used. |
|
1722 */ |
|
1723 pExpr->iTable = pParse->nTab++; |
|
1724 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); |
|
1725 memset(&keyInfo, 0, sizeof(keyInfo)); |
|
1726 keyInfo.nField = 1; |
|
1727 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); |
|
1728 |
|
1729 if( pExpr->pSelect ){ |
|
1730 /* Case 1: expr IN (SELECT ...) |
|
1731 ** |
|
1732 ** Generate code to write the results of the select into the temporary |
|
1733 ** table allocated and opened above. |
|
1734 */ |
|
1735 int iParm = pExpr->iTable + (((int)affinity)<<16); |
|
1736 ExprList *pEList; |
|
1737 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
|
1738 if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ |
|
1739 return; |
|
1740 } |
|
1741 pEList = pExpr->pSelect->pEList; |
|
1742 if( pEList && pEList->nExpr>0 ){ |
|
1743 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, |
|
1744 pEList->a[0].pExpr); |
|
1745 } |
|
1746 }else if( pExpr->pList ){ |
|
1747 /* Case 2: expr IN (exprlist) |
|
1748 ** |
|
1749 ** For each expression, build an index key from the evaluation and |
|
1750 ** store it in the temporary table. If <expr> is a column, then use |
|
1751 ** that columns affinity when building index keys. If <expr> is not |
|
1752 ** a column, use numeric affinity. |
|
1753 */ |
|
1754 int i; |
|
1755 ExprList *pList = pExpr->pList; |
|
1756 ExprList::ExprList_item *pItem; |
|
1757 |
|
1758 if( !affinity ){ |
|
1759 affinity = SQLITE_AFF_NONE; |
|
1760 } |
|
1761 keyInfo.aColl[0] = pExpr->pLeft->pColl; |
|
1762 |
|
1763 /* Loop through each expression in <exprlist>. */ |
|
1764 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
|
1765 Expr *pE2 = pItem->pExpr; |
|
1766 |
|
1767 /* If the expression is not constant then we will need to |
|
1768 ** disable the test that was generated above that makes sure |
|
1769 ** this code only executes once. Because for a non-constant |
|
1770 ** expression we need to rerun this code each time. |
|
1771 */ |
|
1772 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ |
|
1773 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); |
|
1774 testAddr = 0; |
|
1775 } |
|
1776 |
|
1777 /* Evaluate the expression and insert it into the temp table */ |
|
1778 sqlite3ExprCode(pParse, pE2); |
|
1779 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); |
|
1780 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); |
|
1781 } |
|
1782 } |
|
1783 sqlite3VdbeChangeP3(v, addr, (const char *)&keyInfo, P3_KEYINFO); |
|
1784 break; |
|
1785 } |
|
1786 |
|
1787 case TK_EXISTS: |
|
1788 case TK_SELECT: { |
|
1789 /* This has to be a scalar SELECT. Generate code to put the |
|
1790 ** value of this select in a memory cell and record the number |
|
1791 ** of the memory cell in iColumn. |
|
1792 */ |
|
1793 static const Token one = { (u8*)"1", 0, 1 }; |
|
1794 Select *pSel; |
|
1795 int iMem; |
|
1796 int sop; |
|
1797 |
|
1798 pExpr->iColumn = iMem = pParse->nMem++; |
|
1799 pSel = pExpr->pSelect; |
|
1800 if( pExpr->op==TK_SELECT ){ |
|
1801 sop = SRT_Mem; |
|
1802 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); |
|
1803 VdbeComment((v, "# Init subquery result")); |
|
1804 }else{ |
|
1805 sop = SRT_Exists; |
|
1806 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); |
|
1807 VdbeComment((v, "# Init EXISTS result")); |
|
1808 } |
|
1809 sqlite3ExprDelete(pSel->pLimit); |
|
1810 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); |
|
1811 if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ |
|
1812 return; |
|
1813 } |
|
1814 break; |
|
1815 } |
|
1816 } |
|
1817 |
|
1818 if( testAddr ){ |
|
1819 sqlite3VdbeJumpHere(v, testAddr); |
|
1820 } |
|
1821 |
|
1822 return; |
|
1823 } |
|
1824 #endif /* SQLITE_OMIT_SUBQUERY */ |
|
1825 |
|
1826 /* |
|
1827 ** Duplicate an 8-byte value |
|
1828 */ |
|
1829 static char *dup8bytes(Vdbe *v, const char *in){ |
|
1830 char *out = (char*)sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); |
|
1831 if( out ){ |
|
1832 memcpy(out, in, 8); |
|
1833 } |
|
1834 return out; |
|
1835 } |
|
1836 |
|
1837 /* |
|
1838 ** Generate an instruction that will put the floating point |
|
1839 ** value described by z[0..n-1] on the stack. |
|
1840 ** |
|
1841 ** The z[] string will probably not be zero-terminated. But the |
|
1842 ** z[n] character is guaranteed to be something that does not look |
|
1843 ** like the continuation of the number. |
|
1844 */ |
|
1845 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){ |
|
1846 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); |
|
1847 if( z ){ |
|
1848 double value; |
|
1849 char *zV; |
|
1850 assert( !isdigit(z[n]) ); |
|
1851 sqlite3AtoF(z, &value); |
|
1852 if( negateFlag ) value = -value; |
|
1853 zV = dup8bytes(v, (char*)&value); |
|
1854 sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL); |
|
1855 } |
|
1856 } |
|
1857 |
|
1858 |
|
1859 /* |
|
1860 ** Generate an instruction that will put the integer describe by |
|
1861 ** text z[0..n-1] on the stack. |
|
1862 ** |
|
1863 ** The z[] string will probably not be zero-terminated. But the |
|
1864 ** z[n] character is guaranteed to be something that does not look |
|
1865 ** like the continuation of the number. |
|
1866 */ |
|
1867 static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){ |
|
1868 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); |
|
1869 if( z ){ |
|
1870 int i; |
|
1871 assert( !isdigit(z[n]) ); |
|
1872 if( sqlite3GetInt32(z, &i) ){ |
|
1873 if( negateFlag ) i = -i; |
|
1874 sqlite3VdbeAddOp(v, OP_Integer, i, 0); |
|
1875 }else if( sqlite3FitsIn64Bits(z, negateFlag) ){ |
|
1876 i64 value; |
|
1877 char *zV; |
|
1878 sqlite3Atoi64(z, &value); |
|
1879 if( negateFlag ) value = -value; |
|
1880 zV = dup8bytes(v, (char*)&value); |
|
1881 sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64); |
|
1882 }else{ |
|
1883 codeReal(v, z, n, negateFlag); |
|
1884 } |
|
1885 } |
|
1886 } |
|
1887 |
|
1888 |
|
1889 /* |
|
1890 ** Generate code that will extract the iColumn-th column from |
|
1891 ** table pTab and push that column value on the stack. There |
|
1892 ** is an open cursor to pTab in iTable. If iColumn<0 then |
|
1893 ** code is generated that extracts the rowid. |
|
1894 */ |
|
1895 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ |
|
1896 if( iColumn<0 ){ |
|
1897 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; |
|
1898 sqlite3VdbeAddOp(v, op, iTable, 0); |
|
1899 }else if( pTab==0 ){ |
|
1900 sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); |
|
1901 }else{ |
|
1902 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; |
|
1903 sqlite3VdbeAddOp(v, op, iTable, iColumn); |
|
1904 sqlite3ColumnDefault(v, pTab, iColumn); |
|
1905 #ifndef SQLITE_OMIT_FLOATING_POINT |
|
1906 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ |
|
1907 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); |
|
1908 } |
|
1909 #endif |
|
1910 } |
|
1911 } |
|
1912 |
|
1913 /* |
|
1914 ** Generate code into the current Vdbe to evaluate the given |
|
1915 ** expression and leave the result on the top of stack. |
|
1916 ** |
|
1917 ** This code depends on the fact that certain token values (ex: TK_EQ) |
|
1918 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
|
1919 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
|
1920 ** the make process cause these values to align. Assert()s in the code |
|
1921 ** below verify that the numbers are aligned correctly. |
|
1922 */ |
|
1923 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ |
|
1924 Vdbe *v = pParse->pVdbe; |
|
1925 int op; |
|
1926 int stackChng = 1; /* Amount of change to stack depth */ |
|
1927 |
|
1928 if( v==0 ) return; |
|
1929 if( pExpr==0 ){ |
|
1930 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1931 return; |
|
1932 } |
|
1933 op = pExpr->op; |
|
1934 switch( op ){ |
|
1935 case TK_AGG_COLUMN: { |
|
1936 AggInfo *pAggInfo = pExpr->pAggInfo; |
|
1937 AggInfo::AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
|
1938 if( !pAggInfo->directMode ){ |
|
1939 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); |
|
1940 break; |
|
1941 }else if( pAggInfo->useSortingIdx ){ |
|
1942 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, |
|
1943 pCol->iSorterColumn); |
|
1944 break; |
|
1945 } |
|
1946 /* Otherwise, fall thru into the TK_COLUMN case */ |
|
1947 } |
|
1948 case TK_COLUMN: { |
|
1949 if( pExpr->iTable<0 ){ |
|
1950 /* This only happens when coding check constraints */ |
|
1951 assert( pParse->ckOffset>0 ); |
|
1952 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); |
|
1953 }else{ |
|
1954 sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); |
|
1955 } |
|
1956 break; |
|
1957 } |
|
1958 case TK_INTEGER: { |
|
1959 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0); |
|
1960 break; |
|
1961 } |
|
1962 case TK_FLOAT: { |
|
1963 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0); |
|
1964 break; |
|
1965 } |
|
1966 case TK_STRING: { |
|
1967 sqlite3DequoteExpr(pParse->db, pExpr); |
|
1968 sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n); |
|
1969 break; |
|
1970 } |
|
1971 case TK_NULL: { |
|
1972 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1973 break; |
|
1974 } |
|
1975 #ifndef SQLITE_OMIT_BLOB_LITERAL |
|
1976 case TK_BLOB: { |
|
1977 int n; |
|
1978 const char *z; |
|
1979 assert( TK_BLOB==OP_HexBlob ); |
|
1980 n = pExpr->token.n - 3; |
|
1981 z = (char*)pExpr->token.z + 2; |
|
1982 assert( n>=0 ); |
|
1983 if( n==0 ){ |
|
1984 z = ""; |
|
1985 } |
|
1986 sqlite3VdbeOp3(v, op, 0, 0, z, n); |
|
1987 break; |
|
1988 } |
|
1989 #endif |
|
1990 case TK_VARIABLE: { |
|
1991 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); |
|
1992 if( pExpr->token.n>1 ){ |
|
1993 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); |
|
1994 } |
|
1995 break; |
|
1996 } |
|
1997 case TK_REGISTER: { |
|
1998 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); |
|
1999 break; |
|
2000 } |
|
2001 #ifndef SQLITE_OMIT_CAST |
|
2002 case TK_CAST: { |
|
2003 /* Expressions of the form: CAST(pLeft AS token) */ |
|
2004 int aff, to_op; |
|
2005 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2006 aff = sqlite3AffinityType(&pExpr->token); |
|
2007 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; |
|
2008 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); |
|
2009 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); |
|
2010 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); |
|
2011 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); |
|
2012 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); |
|
2013 sqlite3VdbeAddOp(v, to_op, 0, 0); |
|
2014 stackChng = 0; |
|
2015 break; |
|
2016 } |
|
2017 #endif /* SQLITE_OMIT_CAST */ |
|
2018 case TK_LT: |
|
2019 case TK_LE: |
|
2020 case TK_GT: |
|
2021 case TK_GE: |
|
2022 case TK_NE: |
|
2023 case TK_EQ: { |
|
2024 assert( TK_LT==OP_Lt ); |
|
2025 assert( TK_LE==OP_Le ); |
|
2026 assert( TK_GT==OP_Gt ); |
|
2027 assert( TK_GE==OP_Ge ); |
|
2028 assert( TK_EQ==OP_Eq ); |
|
2029 assert( TK_NE==OP_Ne ); |
|
2030 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2031 sqlite3ExprCode(pParse, pExpr->pRight); |
|
2032 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); |
|
2033 stackChng = -1; |
|
2034 break; |
|
2035 } |
|
2036 case TK_AND: |
|
2037 case TK_OR: |
|
2038 case TK_PLUS: |
|
2039 case TK_STAR: |
|
2040 case TK_MINUS: |
|
2041 case TK_REM: |
|
2042 case TK_BITAND: |
|
2043 case TK_BITOR: |
|
2044 case TK_SLASH: |
|
2045 case TK_LSHIFT: |
|
2046 case TK_RSHIFT: |
|
2047 case TK_CONCAT: { |
|
2048 assert( TK_AND==OP_And ); |
|
2049 assert( TK_OR==OP_Or ); |
|
2050 assert( TK_PLUS==OP_Add ); |
|
2051 assert( TK_MINUS==OP_Subtract ); |
|
2052 assert( TK_REM==OP_Remainder ); |
|
2053 assert( TK_BITAND==OP_BitAnd ); |
|
2054 assert( TK_BITOR==OP_BitOr ); |
|
2055 assert( TK_SLASH==OP_Divide ); |
|
2056 assert( TK_LSHIFT==OP_ShiftLeft ); |
|
2057 assert( TK_RSHIFT==OP_ShiftRight ); |
|
2058 assert( TK_CONCAT==OP_Concat ); |
|
2059 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2060 sqlite3ExprCode(pParse, pExpr->pRight); |
|
2061 sqlite3VdbeAddOp(v, op, 0, 0); |
|
2062 stackChng = -1; |
|
2063 break; |
|
2064 } |
|
2065 case TK_UMINUS: { |
|
2066 Expr *pLeft = pExpr->pLeft; |
|
2067 assert( pLeft ); |
|
2068 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ |
|
2069 Token *p = &pLeft->token; |
|
2070 if( pLeft->op==TK_FLOAT ){ |
|
2071 codeReal(v, (char*)p->z, p->n, 1); |
|
2072 }else{ |
|
2073 codeInteger(v, (char*)p->z, p->n, 1); |
|
2074 } |
|
2075 break; |
|
2076 } |
|
2077 /* Fall through into TK_NOT */ |
|
2078 } |
|
2079 case TK_BITNOT: |
|
2080 case TK_NOT: { |
|
2081 assert( TK_BITNOT==OP_BitNot ); |
|
2082 assert( TK_NOT==OP_Not ); |
|
2083 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2084 sqlite3VdbeAddOp(v, op, 0, 0); |
|
2085 stackChng = 0; |
|
2086 break; |
|
2087 } |
|
2088 case TK_ISNULL: |
|
2089 case TK_NOTNULL: { |
|
2090 int dest; |
|
2091 assert( TK_ISNULL==OP_IsNull ); |
|
2092 assert( TK_NOTNULL==OP_NotNull ); |
|
2093 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
|
2094 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2095 dest = sqlite3VdbeCurrentAddr(v) + 2; |
|
2096 sqlite3VdbeAddOp(v, op, 1, dest); |
|
2097 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); |
|
2098 stackChng = 0; |
|
2099 break; |
|
2100 } |
|
2101 case TK_AGG_FUNCTION: { |
|
2102 AggInfo *pInfo = pExpr->pAggInfo; |
|
2103 if( pInfo==0 ){ |
|
2104 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", |
|
2105 &pExpr->span); |
|
2106 }else{ |
|
2107 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); |
|
2108 } |
|
2109 break; |
|
2110 } |
|
2111 case TK_CONST_FUNC: |
|
2112 case TK_FUNCTION: { |
|
2113 ExprList *pList = pExpr->pList; |
|
2114 int nExpr = pList ? pList->nExpr : 0; |
|
2115 FuncDef *pDef; |
|
2116 int nId; |
|
2117 const char *zId; |
|
2118 int constMask = 0; |
|
2119 int i; |
|
2120 sqlite3 *db = pParse->db; |
|
2121 u8 enc = ENC(db); |
|
2122 CollSeq *pColl = 0; |
|
2123 |
|
2124 zId = (char*)pExpr->token.z; |
|
2125 nId = pExpr->token.n; |
|
2126 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); |
|
2127 assert( pDef!=0 ); |
|
2128 nExpr = sqlite3ExprCodeExprList(pParse, pList); |
|
2129 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2130 /* Possibly overload the function if the first argument is |
|
2131 ** a virtual table column. |
|
2132 ** |
|
2133 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
|
2134 ** second argument, not the first, as the argument to test to |
|
2135 ** see if it is a column in a virtual table. This is done because |
|
2136 ** the left operand of infix functions (the operand we want to |
|
2137 ** control overloading) ends up as the second argument to the |
|
2138 ** function. The expression "A glob B" is equivalent to |
|
2139 ** "glob(B,A). We want to use the A in "A glob B" to test |
|
2140 ** for function overloading. But we use the B term in "glob(B,A)". |
|
2141 */ |
|
2142 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ |
|
2143 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); |
|
2144 }else if( nExpr>0 ){ |
|
2145 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); |
|
2146 } |
|
2147 #endif |
|
2148 for(i=0; i<nExpr && i<32; i++){ |
|
2149 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ |
|
2150 constMask |= (1<<i); |
|
2151 } |
|
2152 if( pDef->needCollSeq && !pColl ){ |
|
2153 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
|
2154 } |
|
2155 } |
|
2156 if( pDef->needCollSeq ){ |
|
2157 if( !pColl ) pColl = pParse->db->pDfltColl; |
|
2158 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); |
|
2159 } |
|
2160 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); |
|
2161 stackChng = 1-nExpr; |
|
2162 break; |
|
2163 } |
|
2164 #ifndef SQLITE_OMIT_SUBQUERY |
|
2165 case TK_EXISTS: |
|
2166 case TK_SELECT: { |
|
2167 if( pExpr->iColumn==0 ){ |
|
2168 sqlite3CodeSubselect(pParse, pExpr); |
|
2169 } |
|
2170 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); |
|
2171 VdbeComment((v, "# load subquery result")); |
|
2172 break; |
|
2173 } |
|
2174 case TK_IN: { |
|
2175 int addr; |
|
2176 char affinity; |
|
2177 int ckOffset = pParse->ckOffset; |
|
2178 int eType; |
|
2179 int iLabel = sqlite3VdbeMakeLabel(v); |
|
2180 |
|
2181 eType = sqlite3FindInIndex(pParse, pExpr, 0); |
|
2182 |
|
2183 /* Figure out the affinity to use to create a key from the results |
|
2184 ** of the expression. affinityStr stores a static string suitable for |
|
2185 ** P3 of OP_MakeRecord. |
|
2186 */ |
|
2187 affinity = comparisonAffinity(pExpr); |
|
2188 |
|
2189 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
|
2190 pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); |
|
2191 |
|
2192 /* Code the <expr> from "<expr> IN (...)". The temporary table |
|
2193 ** pExpr->iTable contains the values that make up the (...) set. |
|
2194 */ |
|
2195 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2196 addr = sqlite3VdbeCurrentAddr(v); |
|
2197 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ |
|
2198 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); |
|
2199 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
2200 sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel); |
|
2201 if( eType==IN_INDEX_ROWID ){ |
|
2202 int iAddr = sqlite3VdbeCurrentAddr(v)+3; |
|
2203 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr); |
|
2204 sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr); |
|
2205 sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel); |
|
2206 }else{ |
|
2207 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ |
|
2208 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel); |
|
2209 } |
|
2210 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ |
|
2211 sqlite3VdbeResolveLabel(v, iLabel); |
|
2212 |
|
2213 break; |
|
2214 } |
|
2215 #endif |
|
2216 case TK_BETWEEN: { |
|
2217 Expr *pLeft = pExpr->pLeft; |
|
2218 ExprList::ExprList_item *pLItem = pExpr->pList->a; |
|
2219 Expr *pRight = pLItem->pExpr; |
|
2220 sqlite3ExprCode(pParse, pLeft); |
|
2221 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
|
2222 sqlite3ExprCode(pParse, pRight); |
|
2223 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); |
|
2224 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
|
2225 pLItem++; |
|
2226 pRight = pLItem->pExpr; |
|
2227 sqlite3ExprCode(pParse, pRight); |
|
2228 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); |
|
2229 sqlite3VdbeAddOp(v, OP_And, 0, 0); |
|
2230 break; |
|
2231 } |
|
2232 case TK_UPLUS: { |
|
2233 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2234 stackChng = 0; |
|
2235 break; |
|
2236 } |
|
2237 case TK_CASE: { |
|
2238 int expr_end_label; |
|
2239 int jumpInst; |
|
2240 int nExpr; |
|
2241 int i; |
|
2242 ExprList *pEList; |
|
2243 ExprList::ExprList_item *aListelem; |
|
2244 |
|
2245 assert(pExpr->pList); |
|
2246 assert((pExpr->pList->nExpr % 2) == 0); |
|
2247 assert(pExpr->pList->nExpr > 0); |
|
2248 pEList = pExpr->pList; |
|
2249 aListelem = pEList->a; |
|
2250 nExpr = pEList->nExpr; |
|
2251 expr_end_label = sqlite3VdbeMakeLabel(v); |
|
2252 if( pExpr->pLeft ){ |
|
2253 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2254 } |
|
2255 for(i=0; i<nExpr; i=i+2){ |
|
2256 sqlite3ExprCode(pParse, aListelem[i].pExpr); |
|
2257 if( pExpr->pLeft ){ |
|
2258 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); |
|
2259 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, |
|
2260 OP_Ne, 0, 1); |
|
2261 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
2262 }else{ |
|
2263 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); |
|
2264 } |
|
2265 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); |
|
2266 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); |
|
2267 sqlite3VdbeJumpHere(v, jumpInst); |
|
2268 } |
|
2269 if( pExpr->pLeft ){ |
|
2270 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
2271 } |
|
2272 if( pExpr->pRight ){ |
|
2273 sqlite3ExprCode(pParse, pExpr->pRight); |
|
2274 }else{ |
|
2275 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
2276 } |
|
2277 sqlite3VdbeResolveLabel(v, expr_end_label); |
|
2278 break; |
|
2279 } |
|
2280 #ifndef SQLITE_OMIT_TRIGGER |
|
2281 case TK_RAISE: { |
|
2282 if( !pParse->trigStack ){ |
|
2283 sqlite3ErrorMsg(pParse, |
|
2284 "RAISE() may only be used within a trigger-program"); |
|
2285 return; |
|
2286 } |
|
2287 if( pExpr->iColumn!=OE_Ignore ){ |
|
2288 assert( pExpr->iColumn==OE_Rollback || |
|
2289 pExpr->iColumn == OE_Abort || |
|
2290 pExpr->iColumn == OE_Fail ); |
|
2291 sqlite3DequoteExpr(pParse->db, pExpr); |
|
2292 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, |
|
2293 (char*)pExpr->token.z, pExpr->token.n); |
|
2294 } else { |
|
2295 assert( pExpr->iColumn == OE_Ignore ); |
|
2296 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); |
|
2297 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); |
|
2298 VdbeComment((v, "# raise(IGNORE)")); |
|
2299 } |
|
2300 stackChng = 0; |
|
2301 break; |
|
2302 } |
|
2303 #endif |
|
2304 } |
|
2305 |
|
2306 if( pParse->ckOffset ){ |
|
2307 pParse->ckOffset += stackChng; |
|
2308 assert( pParse->ckOffset ); |
|
2309 } |
|
2310 } |
|
2311 |
|
2312 #ifndef SQLITE_OMIT_TRIGGER |
|
2313 /* |
|
2314 ** Generate code that evalutes the given expression and leaves the result |
|
2315 ** on the stack. See also sqlite3ExprCode(). |
|
2316 ** |
|
2317 ** This routine might also cache the result and modify the pExpr tree |
|
2318 ** so that it will make use of the cached result on subsequent evaluations |
|
2319 ** rather than evaluate the whole expression again. Trivial expressions are |
|
2320 ** not cached. If the expression is cached, its result is stored in a |
|
2321 ** memory location. |
|
2322 */ |
|
2323 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ |
|
2324 Vdbe *v = pParse->pVdbe; |
|
2325 VdbeOp *pOp; |
|
2326 int iMem; |
|
2327 int addr1, addr2; |
|
2328 if( v==0 ) return; |
|
2329 addr1 = sqlite3VdbeCurrentAddr(v); |
|
2330 sqlite3ExprCode(pParse, pExpr); |
|
2331 addr2 = sqlite3VdbeCurrentAddr(v); |
|
2332 if( addr2>addr1+1 |
|
2333 || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){ |
|
2334 iMem = pExpr->iTable = pParse->nMem++; |
|
2335 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); |
|
2336 pExpr->op = TK_REGISTER; |
|
2337 } |
|
2338 } |
|
2339 #endif |
|
2340 |
|
2341 /* |
|
2342 ** Generate code that pushes the value of every element of the given |
|
2343 ** expression list onto the stack. |
|
2344 ** |
|
2345 ** Return the number of elements pushed onto the stack. |
|
2346 */ |
|
2347 int sqlite3ExprCodeExprList( |
|
2348 Parse *pParse, /* Parsing context */ |
|
2349 ExprList *pList /* The expression list to be coded */ |
|
2350 ){ |
|
2351 ExprList::ExprList_item *pItem; |
|
2352 int i, n; |
|
2353 if( pList==0 ) return 0; |
|
2354 n = pList->nExpr; |
|
2355 for(pItem=pList->a, i=n; i>0; i--, pItem++){ |
|
2356 sqlite3ExprCode(pParse, pItem->pExpr); |
|
2357 } |
|
2358 return n; |
|
2359 } |
|
2360 |
|
2361 /* |
|
2362 ** Generate code for a boolean expression such that a jump is made |
|
2363 ** to the label "dest" if the expression is true but execution |
|
2364 ** continues straight thru if the expression is false. |
|
2365 ** |
|
2366 ** If the expression evaluates to NULL (neither true nor false), then |
|
2367 ** take the jump if the jumpIfNull flag is true. |
|
2368 ** |
|
2369 ** This code depends on the fact that certain token values (ex: TK_EQ) |
|
2370 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
|
2371 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
|
2372 ** the make process cause these values to align. Assert()s in the code |
|
2373 ** below verify that the numbers are aligned correctly. |
|
2374 */ |
|
2375 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
|
2376 Vdbe *v = pParse->pVdbe; |
|
2377 int op = 0; |
|
2378 int ckOffset = pParse->ckOffset; |
|
2379 if( v==0 || pExpr==0 ) return; |
|
2380 op = pExpr->op; |
|
2381 switch( op ){ |
|
2382 case TK_AND: { |
|
2383 int d2 = sqlite3VdbeMakeLabel(v); |
|
2384 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); |
|
2385 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
|
2386 sqlite3VdbeResolveLabel(v, d2); |
|
2387 break; |
|
2388 } |
|
2389 case TK_OR: { |
|
2390 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
2391 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
|
2392 break; |
|
2393 } |
|
2394 case TK_NOT: { |
|
2395 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
2396 break; |
|
2397 } |
|
2398 case TK_LT: |
|
2399 case TK_LE: |
|
2400 case TK_GT: |
|
2401 case TK_GE: |
|
2402 case TK_NE: |
|
2403 case TK_EQ: { |
|
2404 assert( TK_LT==OP_Lt ); |
|
2405 assert( TK_LE==OP_Le ); |
|
2406 assert( TK_GT==OP_Gt ); |
|
2407 assert( TK_GE==OP_Ge ); |
|
2408 assert( TK_EQ==OP_Eq ); |
|
2409 assert( TK_NE==OP_Ne ); |
|
2410 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2411 sqlite3ExprCode(pParse, pExpr->pRight); |
|
2412 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); |
|
2413 break; |
|
2414 } |
|
2415 case TK_ISNULL: |
|
2416 case TK_NOTNULL: { |
|
2417 assert( TK_ISNULL==OP_IsNull ); |
|
2418 assert( TK_NOTNULL==OP_NotNull ); |
|
2419 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2420 sqlite3VdbeAddOp(v, op, 1, dest); |
|
2421 break; |
|
2422 } |
|
2423 case TK_BETWEEN: { |
|
2424 /* The expression "x BETWEEN y AND z" is implemented as: |
|
2425 ** |
|
2426 ** 1 IF (x < y) GOTO 3 |
|
2427 ** 2 IF (x <= z) GOTO <dest> |
|
2428 ** 3 ... |
|
2429 */ |
|
2430 int addr; |
|
2431 Expr *pLeft = pExpr->pLeft; |
|
2432 Expr *pRight = pExpr->pList->a[0].pExpr; |
|
2433 sqlite3ExprCode(pParse, pLeft); |
|
2434 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
|
2435 sqlite3ExprCode(pParse, pRight); |
|
2436 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); |
|
2437 |
|
2438 pRight = pExpr->pList->a[1].pExpr; |
|
2439 sqlite3ExprCode(pParse, pRight); |
|
2440 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); |
|
2441 |
|
2442 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
|
2443 sqlite3VdbeJumpHere(v, addr); |
|
2444 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
2445 break; |
|
2446 } |
|
2447 default: { |
|
2448 sqlite3ExprCode(pParse, pExpr); |
|
2449 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); |
|
2450 break; |
|
2451 } |
|
2452 } |
|
2453 pParse->ckOffset = ckOffset; |
|
2454 } |
|
2455 |
|
2456 /* |
|
2457 ** Generate code for a boolean expression such that a jump is made |
|
2458 ** to the label "dest" if the expression is false but execution |
|
2459 ** continues straight thru if the expression is true. |
|
2460 ** |
|
2461 ** If the expression evaluates to NULL (neither true nor false) then |
|
2462 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. |
|
2463 */ |
|
2464 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
|
2465 Vdbe *v = pParse->pVdbe; |
|
2466 int op = 0; |
|
2467 int ckOffset = pParse->ckOffset; |
|
2468 if( v==0 || pExpr==0 ) return; |
|
2469 |
|
2470 /* The value of pExpr->op and op are related as follows: |
|
2471 ** |
|
2472 ** pExpr->op op |
|
2473 ** --------- ---------- |
|
2474 ** TK_ISNULL OP_NotNull |
|
2475 ** TK_NOTNULL OP_IsNull |
|
2476 ** TK_NE OP_Eq |
|
2477 ** TK_EQ OP_Ne |
|
2478 ** TK_GT OP_Le |
|
2479 ** TK_LE OP_Gt |
|
2480 ** TK_GE OP_Lt |
|
2481 ** TK_LT OP_Ge |
|
2482 ** |
|
2483 ** For other values of pExpr->op, op is undefined and unused. |
|
2484 ** The value of TK_ and OP_ constants are arranged such that we |
|
2485 ** can compute the mapping above using the following expression. |
|
2486 ** Assert()s verify that the computation is correct. |
|
2487 */ |
|
2488 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
|
2489 |
|
2490 /* Verify correct alignment of TK_ and OP_ constants |
|
2491 */ |
|
2492 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
|
2493 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
|
2494 assert( pExpr->op!=TK_NE || op==OP_Eq ); |
|
2495 assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
|
2496 assert( pExpr->op!=TK_LT || op==OP_Ge ); |
|
2497 assert( pExpr->op!=TK_LE || op==OP_Gt ); |
|
2498 assert( pExpr->op!=TK_GT || op==OP_Le ); |
|
2499 assert( pExpr->op!=TK_GE || op==OP_Lt ); |
|
2500 |
|
2501 switch( pExpr->op ){ |
|
2502 case TK_AND: { |
|
2503 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
2504 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
|
2505 break; |
|
2506 } |
|
2507 case TK_OR: { |
|
2508 int d2 = sqlite3VdbeMakeLabel(v); |
|
2509 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); |
|
2510 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
|
2511 sqlite3VdbeResolveLabel(v, d2); |
|
2512 break; |
|
2513 } |
|
2514 case TK_NOT: { |
|
2515 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
2516 break; |
|
2517 } |
|
2518 case TK_LT: |
|
2519 case TK_LE: |
|
2520 case TK_GT: |
|
2521 case TK_GE: |
|
2522 case TK_NE: |
|
2523 case TK_EQ: { |
|
2524 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2525 sqlite3ExprCode(pParse, pExpr->pRight); |
|
2526 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); |
|
2527 break; |
|
2528 } |
|
2529 case TK_ISNULL: |
|
2530 case TK_NOTNULL: { |
|
2531 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2532 sqlite3VdbeAddOp(v, op, 1, dest); |
|
2533 break; |
|
2534 } |
|
2535 case TK_BETWEEN: { |
|
2536 /* The expression is "x BETWEEN y AND z". It is implemented as: |
|
2537 ** |
|
2538 ** 1 IF (x >= y) GOTO 3 |
|
2539 ** 2 GOTO <dest> |
|
2540 ** 3 IF (x > z) GOTO <dest> |
|
2541 */ |
|
2542 int addr; |
|
2543 Expr *pLeft = pExpr->pLeft; |
|
2544 Expr *pRight = pExpr->pList->a[0].pExpr; |
|
2545 sqlite3ExprCode(pParse, pLeft); |
|
2546 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
|
2547 sqlite3ExprCode(pParse, pRight); |
|
2548 addr = sqlite3VdbeCurrentAddr(v); |
|
2549 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); |
|
2550 |
|
2551 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
2552 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); |
|
2553 pRight = pExpr->pList->a[1].pExpr; |
|
2554 sqlite3ExprCode(pParse, pRight); |
|
2555 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); |
|
2556 break; |
|
2557 } |
|
2558 default: { |
|
2559 sqlite3ExprCode(pParse, pExpr); |
|
2560 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); |
|
2561 break; |
|
2562 } |
|
2563 } |
|
2564 pParse->ckOffset = ckOffset; |
|
2565 } |
|
2566 |
|
2567 /* |
|
2568 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
|
2569 ** if they are identical and return FALSE if they differ in any way. |
|
2570 ** |
|
2571 ** Sometimes this routine will return FALSE even if the two expressions |
|
2572 ** really are equivalent. If we cannot prove that the expressions are |
|
2573 ** identical, we return FALSE just to be safe. So if this routine |
|
2574 ** returns false, then you do not really know for certain if the two |
|
2575 ** expressions are the same. But if you get a TRUE return, then you |
|
2576 ** can be sure the expressions are the same. In the places where |
|
2577 ** this routine is used, it does not hurt to get an extra FALSE - that |
|
2578 ** just might result in some slightly slower code. But returning |
|
2579 ** an incorrect TRUE could lead to a malfunction. |
|
2580 */ |
|
2581 int sqlite3ExprCompare(Expr *pA, Expr *pB){ |
|
2582 int i; |
|
2583 if( pA==0||pB==0 ){ |
|
2584 return pB==pA; |
|
2585 } |
|
2586 if( pA->op!=pB->op ) return 0; |
|
2587 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; |
|
2588 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
|
2589 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; |
|
2590 if( pA->pList ){ |
|
2591 if( pB->pList==0 ) return 0; |
|
2592 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
|
2593 for(i=0; i<pA->pList->nExpr; i++){ |
|
2594 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
|
2595 return 0; |
|
2596 } |
|
2597 } |
|
2598 }else if( pB->pList ){ |
|
2599 return 0; |
|
2600 } |
|
2601 if( pA->pSelect || pB->pSelect ) return 0; |
|
2602 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; |
|
2603 if( pA->op!=TK_COLUMN && pA->token.z ){ |
|
2604 if( pB->token.z==0 ) return 0; |
|
2605 if( pB->token.n!=pA->token.n ) return 0; |
|
2606 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ |
|
2607 return 0; |
|
2608 } |
|
2609 } |
|
2610 return 1; |
|
2611 } |
|
2612 |
|
2613 |
|
2614 /* |
|
2615 ** Add a new element to the pAggInfo->aCol[] array. Return the index of |
|
2616 ** the new element. Return a negative number if malloc fails. |
|
2617 */ |
|
2618 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
|
2619 int i; |
|
2620 pInfo->aCol = (AggInfo::AggInfo_col*)sqlite3ArrayAllocate( |
|
2621 db, |
|
2622 pInfo->aCol, |
|
2623 sizeof(pInfo->aCol[0]), |
|
2624 3, |
|
2625 &pInfo->nColumn, |
|
2626 &pInfo->nColumnAlloc, |
|
2627 &i |
|
2628 ); |
|
2629 return i; |
|
2630 } |
|
2631 |
|
2632 /* |
|
2633 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
|
2634 ** the new element. Return a negative number if malloc fails. |
|
2635 */ |
|
2636 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
|
2637 int i; |
|
2638 pInfo->aFunc = (AggInfo::AggInfo_func*)sqlite3ArrayAllocate( |
|
2639 db, |
|
2640 pInfo->aFunc, |
|
2641 sizeof(pInfo->aFunc[0]), |
|
2642 3, |
|
2643 &pInfo->nFunc, |
|
2644 &pInfo->nFuncAlloc, |
|
2645 &i |
|
2646 ); |
|
2647 return i; |
|
2648 } |
|
2649 |
|
2650 /* |
|
2651 ** This is an xFunc for walkExprTree() used to implement |
|
2652 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
|
2653 ** for additional information. |
|
2654 ** |
|
2655 ** This routine analyzes the aggregate function at pExpr. |
|
2656 */ |
|
2657 static int analyzeAggregate(void *pArg, Expr *pExpr){ |
|
2658 int i; |
|
2659 NameContext *pNC = (NameContext *)pArg; |
|
2660 Parse *pParse = pNC->pParse; |
|
2661 SrcList *pSrcList = pNC->pSrcList; |
|
2662 AggInfo *pAggInfo = pNC->pAggInfo; |
|
2663 |
|
2664 switch( pExpr->op ){ |
|
2665 case TK_AGG_COLUMN: |
|
2666 case TK_COLUMN: { |
|
2667 /* Check to see if the column is in one of the tables in the FROM |
|
2668 ** clause of the aggregate query */ |
|
2669 if( pSrcList ){ |
|
2670 SrcList::SrcList_item *pItem = pSrcList->a; |
|
2671 for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
|
2672 AggInfo::AggInfo_col *pCol; |
|
2673 if( pExpr->iTable==pItem->iCursor ){ |
|
2674 /* If we reach this point, it means that pExpr refers to a table |
|
2675 ** that is in the FROM clause of the aggregate query. |
|
2676 ** |
|
2677 ** Make an entry for the column in pAggInfo->aCol[] if there |
|
2678 ** is not an entry there already. |
|
2679 */ |
|
2680 int k=0; |
|
2681 pCol = pAggInfo->aCol; |
|
2682 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
|
2683 if( pCol->iTable==pExpr->iTable && |
|
2684 pCol->iColumn==pExpr->iColumn ){ |
|
2685 break; |
|
2686 } |
|
2687 } |
|
2688 if( (k>=pAggInfo->nColumn) |
|
2689 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
|
2690 ){ |
|
2691 pCol = &pAggInfo->aCol[k]; |
|
2692 pCol->pTab = pExpr->pTab; |
|
2693 pCol->iTable = pExpr->iTable; |
|
2694 pCol->iColumn = pExpr->iColumn; |
|
2695 pCol->iMem = pParse->nMem++; |
|
2696 pCol->iSorterColumn = -1; |
|
2697 pCol->pExpr = pExpr; |
|
2698 if( pAggInfo->pGroupBy ){ |
|
2699 int j, n; |
|
2700 ExprList *pGB = pAggInfo->pGroupBy; |
|
2701 ExprList::ExprList_item *pTerm = pGB->a; |
|
2702 n = pGB->nExpr; |
|
2703 for(j=0; j<n; j++, pTerm++){ |
|
2704 Expr *pE = pTerm->pExpr; |
|
2705 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
|
2706 pE->iColumn==pExpr->iColumn ){ |
|
2707 pCol->iSorterColumn = j; |
|
2708 break; |
|
2709 } |
|
2710 } |
|
2711 } |
|
2712 if( pCol->iSorterColumn<0 ){ |
|
2713 pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
|
2714 } |
|
2715 } |
|
2716 /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
|
2717 ** because it was there before or because we just created it). |
|
2718 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
|
2719 ** pAggInfo->aCol[] entry. |
|
2720 */ |
|
2721 pExpr->pAggInfo = pAggInfo; |
|
2722 pExpr->op = TK_AGG_COLUMN; |
|
2723 pExpr->iAgg = k; |
|
2724 break; |
|
2725 } /* endif pExpr->iTable==pItem->iCursor */ |
|
2726 } /* end loop over pSrcList */ |
|
2727 } |
|
2728 return 1; |
|
2729 } |
|
2730 case TK_AGG_FUNCTION: { |
|
2731 /* The pNC->nDepth==0 test causes aggregate functions in subqueries |
|
2732 ** to be ignored */ |
|
2733 if( pNC->nDepth==0 ){ |
|
2734 /* Check to see if pExpr is a duplicate of another aggregate |
|
2735 ** function that is already in the pAggInfo structure |
|
2736 */ |
|
2737 AggInfo::AggInfo_func *pItem = pAggInfo->aFunc; |
|
2738 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
|
2739 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ |
|
2740 break; |
|
2741 } |
|
2742 } |
|
2743 if( i>=pAggInfo->nFunc ){ |
|
2744 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
|
2745 */ |
|
2746 u8 enc = ENC(pParse->db); |
|
2747 i = addAggInfoFunc(pParse->db, pAggInfo); |
|
2748 if( i>=0 ){ |
|
2749 pItem = &pAggInfo->aFunc[i]; |
|
2750 pItem->pExpr = pExpr; |
|
2751 pItem->iMem = pParse->nMem++; |
|
2752 pItem->pFunc = sqlite3FindFunction(pParse->db, |
|
2753 (char*)pExpr->token.z, pExpr->token.n, |
|
2754 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); |
|
2755 if( pExpr->flags & EP_Distinct ){ |
|
2756 pItem->iDistinct = pParse->nTab++; |
|
2757 }else{ |
|
2758 pItem->iDistinct = -1; |
|
2759 } |
|
2760 } |
|
2761 } |
|
2762 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
|
2763 */ |
|
2764 pExpr->iAgg = i; |
|
2765 pExpr->pAggInfo = pAggInfo; |
|
2766 return 1; |
|
2767 } |
|
2768 } |
|
2769 } |
|
2770 |
|
2771 /* Recursively walk subqueries looking for TK_COLUMN nodes that need |
|
2772 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that |
|
2773 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. |
|
2774 */ |
|
2775 if( pExpr->pSelect ){ |
|
2776 pNC->nDepth++; |
|
2777 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); |
|
2778 pNC->nDepth--; |
|
2779 } |
|
2780 return 0; |
|
2781 } |
|
2782 |
|
2783 /* |
|
2784 ** Analyze the given expression looking for aggregate functions and |
|
2785 ** for variables that need to be added to the pParse->aAgg[] array. |
|
2786 ** Make additional entries to the pParse->aAgg[] array as necessary. |
|
2787 ** |
|
2788 ** This routine should only be called after the expression has been |
|
2789 ** analyzed by sqlite3ExprResolveNames(). |
|
2790 ** |
|
2791 ** If errors are seen, leave an error message in zErrMsg and return |
|
2792 ** the number of errors. |
|
2793 */ |
|
2794 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
|
2795 int nErr = pNC->pParse->nErr; |
|
2796 walkExprTree(pExpr, analyzeAggregate, pNC); |
|
2797 return pNC->pParse->nErr - nErr; |
|
2798 } |
|
2799 |
|
2800 /* |
|
2801 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
|
2802 ** expression list. Return the number of errors. |
|
2803 ** |
|
2804 ** If an error is found, the analysis is cut short. |
|
2805 */ |
|
2806 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
|
2807 ExprList::ExprList_item *pItem; |
|
2808 int i; |
|
2809 int nErr = 0; |
|
2810 if( pList ){ |
|
2811 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ |
|
2812 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
|
2813 } |
|
2814 } |
|
2815 return nErr; |
|
2816 } |