|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This is the implementation of the page cache subsystem or "pager". |
|
13 ** |
|
14 ** The pager is used to access a database disk file. It implements |
|
15 ** atomic commit and rollback through the use of a journal file that |
|
16 ** is separate from the database file. The pager also implements file |
|
17 ** locking to prevent two processes from writing the same database |
|
18 ** file simultaneously, or one process from reading the database while |
|
19 ** another is writing. |
|
20 ** |
|
21 ** @(#) $Id: pager.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
22 */ |
|
23 #ifndef SQLITE_OMIT_DISKIO |
|
24 #include "sqliteInt.h" |
|
25 #include <assert.h> |
|
26 #include <string.h> |
|
27 |
|
28 /* |
|
29 ** Macros for troubleshooting. Normally turned off |
|
30 */ |
|
31 #if 0 |
|
32 #define sqlite3DebugPrintf printf |
|
33 #define PAGERTRACE1(X) sqlite3DebugPrintf(X) |
|
34 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) |
|
35 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) |
|
36 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) |
|
37 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) |
|
38 #else |
|
39 #define PAGERTRACE1(X) |
|
40 #define PAGERTRACE2(X,Y) |
|
41 #define PAGERTRACE3(X,Y,Z) |
|
42 #define PAGERTRACE4(X,Y,Z,W) |
|
43 #define PAGERTRACE5(X,Y,Z,W,V) |
|
44 #endif |
|
45 |
|
46 /* |
|
47 ** The following two macros are used within the PAGERTRACEX() macros above |
|
48 ** to print out file-descriptors. |
|
49 ** |
|
50 ** PAGERID() takes a pointer to a Pager struct as its argument. The |
|
51 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file |
|
52 ** struct as its argument. |
|
53 */ |
|
54 #define PAGERID(p) ((int)(p->fd)) |
|
55 #define FILEHANDLEID(fd) ((int)fd) |
|
56 |
|
57 /* |
|
58 ** The page cache as a whole is always in one of the following |
|
59 ** states: |
|
60 ** |
|
61 ** PAGER_UNLOCK The page cache is not currently reading or |
|
62 ** writing the database file. There is no |
|
63 ** data held in memory. This is the initial |
|
64 ** state. |
|
65 ** |
|
66 ** PAGER_SHARED The page cache is reading the database. |
|
67 ** Writing is not permitted. There can be |
|
68 ** multiple readers accessing the same database |
|
69 ** file at the same time. |
|
70 ** |
|
71 ** PAGER_RESERVED This process has reserved the database for writing |
|
72 ** but has not yet made any changes. Only one process |
|
73 ** at a time can reserve the database. The original |
|
74 ** database file has not been modified so other |
|
75 ** processes may still be reading the on-disk |
|
76 ** database file. |
|
77 ** |
|
78 ** PAGER_EXCLUSIVE The page cache is writing the database. |
|
79 ** Access is exclusive. No other processes or |
|
80 ** threads can be reading or writing while one |
|
81 ** process is writing. |
|
82 ** |
|
83 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE |
|
84 ** after all dirty pages have been written to the |
|
85 ** database file and the file has been synced to |
|
86 ** disk. All that remains to do is to remove or |
|
87 ** truncate the journal file and the transaction |
|
88 ** will be committed. |
|
89 ** |
|
90 ** The page cache comes up in PAGER_UNLOCK. The first time a |
|
91 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. |
|
92 ** After all pages have been released using sqlite_page_unref(), |
|
93 ** the state transitions back to PAGER_UNLOCK. The first time |
|
94 ** that sqlite3PagerWrite() is called, the state transitions to |
|
95 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be |
|
96 ** called on an outstanding page which means that the pager must |
|
97 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) |
|
98 ** PAGER_RESERVED means that there is an open rollback journal. |
|
99 ** The transition to PAGER_EXCLUSIVE occurs before any changes |
|
100 ** are made to the database file, though writes to the rollback |
|
101 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() |
|
102 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, |
|
103 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. |
|
104 */ |
|
105 #define PAGER_UNLOCK 0 |
|
106 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ |
|
107 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ |
|
108 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ |
|
109 #define PAGER_SYNCED 5 |
|
110 |
|
111 /* |
|
112 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, |
|
113 ** then failed attempts to get a reserved lock will invoke the busy callback. |
|
114 ** This is off by default. To see why, consider the following scenario: |
|
115 ** |
|
116 ** Suppose thread A already has a shared lock and wants a reserved lock. |
|
117 ** Thread B already has a reserved lock and wants an exclusive lock. If |
|
118 ** both threads are using their busy callbacks, it might be a long time |
|
119 ** be for one of the threads give up and allows the other to proceed. |
|
120 ** But if the thread trying to get the reserved lock gives up quickly |
|
121 ** (if it never invokes its busy callback) then the contention will be |
|
122 ** resolved quickly. |
|
123 */ |
|
124 #ifndef SQLITE_BUSY_RESERVED_LOCK |
|
125 # define SQLITE_BUSY_RESERVED_LOCK 0 |
|
126 #endif |
|
127 |
|
128 /* |
|
129 ** This macro rounds values up so that if the value is an address it |
|
130 ** is guaranteed to be an address that is aligned to an 8-byte boundary. |
|
131 */ |
|
132 #define FORCE_ALIGNMENT(X) (((X)+7)&~7) |
|
133 |
|
134 typedef struct PgHdr PgHdr; |
|
135 |
|
136 /* |
|
137 ** Each pager stores all currently unreferenced pages in a list sorted |
|
138 ** in least-recently-used (LRU) order (i.e. the first item on the list has |
|
139 ** not been referenced in a long time, the last item has been recently |
|
140 ** used). An instance of this structure is included as part of each |
|
141 ** pager structure for this purpose (variable Pager.lru). |
|
142 ** |
|
143 ** Additionally, if memory-management is enabled, all unreferenced pages |
|
144 ** are stored in a global LRU list (global variable sqlite3LruPageList). |
|
145 ** |
|
146 ** In both cases, the PagerLruList.pFirstSynced variable points to |
|
147 ** the first page in the corresponding list that does not require an |
|
148 ** fsync() operation before its memory can be reclaimed. If no such |
|
149 ** page exists, PagerLruList.pFirstSynced is set to NULL. |
|
150 */ |
|
151 typedef struct PagerLruList PagerLruList; |
|
152 struct PagerLruList { |
|
153 PgHdr *pFirst; /* First page in LRU list */ |
|
154 PgHdr *pLast; /* Last page in LRU list (the most recently used) */ |
|
155 PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */ |
|
156 }; |
|
157 |
|
158 /* |
|
159 ** The following structure contains the next and previous pointers used |
|
160 ** to link a PgHdr structure into a PagerLruList linked list. |
|
161 */ |
|
162 typedef struct PagerLruLink PagerLruLink; |
|
163 struct PagerLruLink { |
|
164 PgHdr *pNext; |
|
165 PgHdr *pPrev; |
|
166 }; |
|
167 |
|
168 /* |
|
169 ** Each in-memory image of a page begins with the following header. |
|
170 ** This header is only visible to this pager module. The client |
|
171 ** code that calls pager sees only the data that follows the header. |
|
172 ** |
|
173 ** Client code should call sqlite3PagerWrite() on a page prior to making |
|
174 ** any modifications to that page. The first time sqlite3PagerWrite() |
|
175 ** is called, the original page contents are written into the rollback |
|
176 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once |
|
177 ** the journal page has made it onto the disk surface, PgHdr.needSync |
|
178 ** is cleared. The modified page cannot be written back into the original |
|
179 ** database file until the journal pages has been synced to disk and the |
|
180 ** PgHdr.needSync has been cleared. |
|
181 ** |
|
182 ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and |
|
183 ** is cleared again when the page content is written back to the original |
|
184 ** database file. |
|
185 ** |
|
186 ** Details of important structure elements: |
|
187 ** |
|
188 ** needSync |
|
189 ** |
|
190 ** If this is true, this means that it is not safe to write the page |
|
191 ** content to the database because the original content needed |
|
192 ** for rollback has not by synced to the main rollback journal. |
|
193 ** The original content may have been written to the rollback journal |
|
194 ** but it has not yet been synced. So we cannot write to the database |
|
195 ** file because power failure might cause the page in the journal file |
|
196 ** to never reach the disk. It is as if the write to the journal file |
|
197 ** does not occur until the journal file is synced. |
|
198 ** |
|
199 ** This flag is false if the page content exactly matches what |
|
200 ** currently exists in the database file. The needSync flag is also |
|
201 ** false if the original content has been written to the main rollback |
|
202 ** journal and synced. If the page represents a new page that has |
|
203 ** been added onto the end of the database during the current |
|
204 ** transaction, the needSync flag is true until the original database |
|
205 ** size in the journal header has been synced to disk. |
|
206 ** |
|
207 ** inJournal |
|
208 ** |
|
209 ** This is true if the original page has been written into the main |
|
210 ** rollback journal. This is always false for new pages added to |
|
211 ** the end of the database file during the current transaction. |
|
212 ** And this flag says nothing about whether or not the journal |
|
213 ** has been synced to disk. For pages that are in the original |
|
214 ** database file, the following expression should always be true: |
|
215 ** |
|
216 ** inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0 |
|
217 ** |
|
218 ** The pPager->aInJournal[] array is only valid for the original |
|
219 ** pages of the database, not new pages that are added to the end |
|
220 ** of the database, so obviously the above expression cannot be |
|
221 ** valid for new pages. For new pages inJournal is always 0. |
|
222 ** |
|
223 ** dirty |
|
224 ** |
|
225 ** When true, this means that the content of the page has been |
|
226 ** modified and needs to be written back to the database file. |
|
227 ** If false, it means that either the content of the page is |
|
228 ** unchanged or else the content is unimportant and we do not |
|
229 ** care whether or not it is preserved. |
|
230 ** |
|
231 ** alwaysRollback |
|
232 ** |
|
233 ** This means that the sqlite3PagerDontRollback() API should be |
|
234 ** ignored for this page. The DontRollback() API attempts to say |
|
235 ** that the content of the page on disk is unimportant (it is an |
|
236 ** unused page on the freelist) so that it is unnecessary to |
|
237 ** rollback changes to this page because the content of the page |
|
238 ** can change without changing the meaning of the database. This |
|
239 ** flag overrides any DontRollback() attempt. This flag is set |
|
240 ** when a page that originally contained valid data is added to |
|
241 ** the freelist. Later in the same transaction, this page might |
|
242 ** be pulled from the freelist and reused for something different |
|
243 ** and at that point the DontRollback() API will be called because |
|
244 ** pages taken from the freelist do not need to be protected by |
|
245 ** the rollback journal. But this flag says that the page was |
|
246 ** not originally part of the freelist so that it still needs to |
|
247 ** be rolled back in spite of any subsequent DontRollback() calls. |
|
248 ** |
|
249 ** needRead |
|
250 ** |
|
251 ** This flag means (when true) that the content of the page has |
|
252 ** not yet been loaded from disk. The in-memory content is just |
|
253 ** garbage. (Actually, we zero the content, but you should not |
|
254 ** make any assumptions about the content nevertheless.) If the |
|
255 ** content is needed in the future, it should be read from the |
|
256 ** original database file. |
|
257 */ |
|
258 struct PgHdr { |
|
259 Pager *pPager; /* The pager to which this page belongs */ |
|
260 Pgno pgno; /* The page number for this page */ |
|
261 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ |
|
262 PagerLruLink free; /* Next and previous free pages */ |
|
263 PgHdr *pNextAll; /* A list of all pages */ |
|
264 u8 inJournal; /* TRUE if has been written to journal */ |
|
265 u8 dirty; /* TRUE if we need to write back changes */ |
|
266 u8 needSync; /* Sync journal before writing this page */ |
|
267 u8 alwaysRollback; /* Disable DontRollback() for this page */ |
|
268 u8 needRead; /* Read content if PagerWrite() is called */ |
|
269 short int nRef; /* Number of users of this page */ |
|
270 PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ |
|
271 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
272 PagerLruLink gfree; /* Global list of nRef==0 pages */ |
|
273 #endif |
|
274 #ifdef SQLITE_CHECK_PAGES |
|
275 u32 pageHash; |
|
276 #endif |
|
277 void *pData; /* Page data */ |
|
278 /* Pager.nExtra bytes of local data appended to this header */ |
|
279 }; |
|
280 |
|
281 /* |
|
282 ** For an in-memory only database, some extra information is recorded about |
|
283 ** each page so that changes can be rolled back. (Journal files are not |
|
284 ** used for in-memory databases.) The following information is added to |
|
285 ** the end of every EXTRA block for in-memory databases. |
|
286 ** |
|
287 ** This information could have been added directly to the PgHdr structure. |
|
288 ** But then it would take up an extra 8 bytes of storage on every PgHdr |
|
289 ** even for disk-based databases. Splitting it out saves 8 bytes. This |
|
290 ** is only a savings of 0.8% but those percentages add up. |
|
291 */ |
|
292 typedef struct PgHistory PgHistory; |
|
293 struct PgHistory { |
|
294 u8 *pOrig; /* Original page text. Restore to this on a full rollback */ |
|
295 u8 *pStmt; /* Text as it was at the beginning of the current statement */ |
|
296 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ |
|
297 u8 inStmt; /* TRUE if in the statement subjournal */ |
|
298 }; |
|
299 |
|
300 /* |
|
301 ** A macro used for invoking the codec if there is one |
|
302 */ |
|
303 #ifdef SQLITE_HAS_CODEC |
|
304 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } |
|
305 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) |
|
306 #else |
|
307 # define CODEC1(P,D,N,X) /* NO-OP */ |
|
308 # define CODEC2(P,D,N,X) ((char*)D) |
|
309 #endif |
|
310 |
|
311 /* |
|
312 ** Convert a pointer to a PgHdr into a pointer to its data |
|
313 ** and back again. |
|
314 */ |
|
315 #define PGHDR_TO_DATA(P) ((P)->pData) |
|
316 #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1])) |
|
317 #define PGHDR_TO_HIST(P,PGR) \ |
|
318 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra]) |
|
319 |
|
320 /* |
|
321 ** A open page cache is an instance of the following structure. |
|
322 ** |
|
323 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or |
|
324 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists |
|
325 ** and is returned as the result of every major pager API call. The |
|
326 ** SQLITE_FULL return code is slightly different. It persists only until the |
|
327 ** next successful rollback is performed on the pager cache. Also, |
|
328 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() |
|
329 ** APIs, they may still be used successfully. |
|
330 */ |
|
331 struct Pager { |
|
332 sqlite3_vfs *pVfs; /* OS functions to use for IO */ |
|
333 u8 journalOpen; /* True if journal file descriptors is valid */ |
|
334 u8 journalStarted; /* True if header of journal is synced */ |
|
335 u8 useJournal; /* Use a rollback journal on this file */ |
|
336 u8 noReadlock; /* Do not bother to obtain readlocks */ |
|
337 u8 stmtOpen; /* True if the statement subjournal is open */ |
|
338 u8 stmtInUse; /* True we are in a statement subtransaction */ |
|
339 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ |
|
340 u8 noSync; /* Do not sync the journal if true */ |
|
341 u8 fullSync; /* Do extra syncs of the journal for robustness */ |
|
342 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ |
|
343 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ |
|
344 u8 tempFile; /* zFilename is a temporary file */ |
|
345 u8 readOnly; /* True for a read-only database */ |
|
346 u8 needSync; /* True if an fsync() is needed on the journal */ |
|
347 u8 dirtyCache; /* True if cached pages have changed */ |
|
348 u8 alwaysRollback; /* Disable DontRollback() for all pages */ |
|
349 u8 memDb; /* True to inhibit all file I/O */ |
|
350 u8 setMaster; /* True if a m-j name has been written to jrnl */ |
|
351 u8 doNotSync; /* Boolean. While true, do not spill the cache */ |
|
352 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ |
|
353 u8 changeCountDone; /* Set after incrementing the change-counter */ |
|
354 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ |
|
355 int errCode; /* One of several kinds of errors */ |
|
356 int dbSize; /* Number of pages in the file */ |
|
357 int origDbSize; /* dbSize before the current change */ |
|
358 int stmtSize; /* Size of database (in pages) at stmt_begin() */ |
|
359 int nRec; /* Number of pages written to the journal */ |
|
360 u32 cksumInit; /* Quasi-random value added to every checksum */ |
|
361 int stmtNRec; /* Number of records in stmt subjournal */ |
|
362 int nExtra; /* Add this many bytes to each in-memory page */ |
|
363 int pageSize; /* Number of bytes in a page */ |
|
364 int nPage; /* Total number of in-memory pages */ |
|
365 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ |
|
366 int mxPage; /* Maximum number of pages to hold in cache */ |
|
367 Pgno mxPgno; /* Maximum allowed size of the database */ |
|
368 u8 *aInJournal; /* One bit for each page in the database file */ |
|
369 u8 *aInStmt; /* One bit for each page in the database */ |
|
370 char *zFilename; /* Name of the database file */ |
|
371 char *zJournal; /* Name of the journal file */ |
|
372 char *zDirectory; /* Directory hold database and journal files */ |
|
373 char *zStmtJrnl; /* Name of the statement journal file */ |
|
374 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ |
|
375 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ |
|
376 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ |
|
377 PagerLruList lru; /* LRU list of free pages */ |
|
378 PgHdr *pAll; /* List of all pages */ |
|
379 PgHdr *pStmt; /* List of pages in the statement subjournal */ |
|
380 PgHdr *pDirty; /* List of all dirty pages */ |
|
381 i64 journalOff; /* Current byte offset in the journal file */ |
|
382 i64 journalHdr; /* Byte offset to previous journal header */ |
|
383 i64 stmtHdrOff; /* First journal header written this statement */ |
|
384 i64 stmtCksum; /* cksumInit when statement was started */ |
|
385 i64 stmtJSize; /* Size of journal at stmt_begin() */ |
|
386 int sectorSize; /* Assumed sector size during rollback */ |
|
387 #ifdef SQLITE_TEST |
|
388 int nHit, nMiss; /* Cache hits and missing */ |
|
389 int nRead, nWrite; /* Database pages read/written */ |
|
390 #endif |
|
391 void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */ |
|
392 void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */ |
|
393 #ifdef SQLITE_HAS_CODEC |
|
394 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ |
|
395 void *pCodecArg; /* First argument to xCodec() */ |
|
396 #endif |
|
397 int nHash; /* Size of the pager hash table */ |
|
398 PgHdr **aHash; /* Hash table to map page number to PgHdr */ |
|
399 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
400 Pager *pNext; /* Doubly linked list of pagers on which */ |
|
401 Pager *pPrev; /* sqlite3_release_memory() will work */ |
|
402 int iInUseMM; /* Non-zero if unavailable to MM */ |
|
403 int iInUseDB; /* Non-zero if in sqlite3_release_memory() */ |
|
404 #endif |
|
405 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ |
|
406 char dbFileVers[16]; /* Changes whenever database file changes */ |
|
407 }; |
|
408 |
|
409 /* |
|
410 ** The following global variables hold counters used for |
|
411 ** testing purposes only. These variables do not exist in |
|
412 ** a non-testing build. These variables are not thread-safe. |
|
413 */ |
|
414 #ifdef SQLITE_TEST |
|
415 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ |
|
416 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ |
|
417 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ |
|
418 int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */ |
|
419 # define PAGER_INCR(v) v++ |
|
420 #else |
|
421 # define PAGER_INCR(v) |
|
422 #endif |
|
423 |
|
424 /* |
|
425 ** The following variable points to the head of a double-linked list |
|
426 ** of all pagers that are eligible for page stealing by the |
|
427 ** sqlite3_release_memory() interface. Access to this list is |
|
428 ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex. |
|
429 */ |
|
430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
431 static Pager *sqlite3PagerList = 0; |
|
432 static PagerLruList sqlite3LruPageList = {0, 0, 0}; |
|
433 #endif |
|
434 |
|
435 |
|
436 /* |
|
437 ** Journal files begin with the following magic string. The data |
|
438 ** was obtained from /dev/random. It is used only as a sanity check. |
|
439 ** |
|
440 ** Since version 2.8.0, the journal format contains additional sanity |
|
441 ** checking information. If the power fails while the journal is begin |
|
442 ** written, semi-random garbage data might appear in the journal |
|
443 ** file after power is restored. If an attempt is then made |
|
444 ** to roll the journal back, the database could be corrupted. The additional |
|
445 ** sanity checking data is an attempt to discover the garbage in the |
|
446 ** journal and ignore it. |
|
447 ** |
|
448 ** The sanity checking information for the new journal format consists |
|
449 ** of a 32-bit checksum on each page of data. The checksum covers both |
|
450 ** the page number and the pPager->pageSize bytes of data for the page. |
|
451 ** This cksum is initialized to a 32-bit random value that appears in the |
|
452 ** journal file right after the header. The random initializer is important, |
|
453 ** because garbage data that appears at the end of a journal is likely |
|
454 ** data that was once in other files that have now been deleted. If the |
|
455 ** garbage data came from an obsolete journal file, the checksums might |
|
456 ** be correct. But by initializing the checksum to random value which |
|
457 ** is different for every journal, we minimize that risk. |
|
458 */ |
|
459 static const unsigned char aJournalMagic[] = { |
|
460 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, |
|
461 }; |
|
462 |
|
463 /* |
|
464 ** The size of the header and of each page in the journal is determined |
|
465 ** by the following macros. |
|
466 */ |
|
467 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) |
|
468 |
|
469 /* |
|
470 ** The journal header size for this pager. In the future, this could be |
|
471 ** set to some value read from the disk controller. The important |
|
472 ** characteristic is that it is the same size as a disk sector. |
|
473 */ |
|
474 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) |
|
475 |
|
476 /* |
|
477 ** The macro MEMDB is true if we are dealing with an in-memory database. |
|
478 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, |
|
479 ** the value of MEMDB will be a constant and the compiler will optimize |
|
480 ** out code that would never execute. |
|
481 */ |
|
482 #ifdef SQLITE_OMIT_MEMORYDB |
|
483 # define MEMDB 0 |
|
484 #else |
|
485 # define MEMDB pPager->memDb |
|
486 #endif |
|
487 |
|
488 /* |
|
489 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is |
|
490 ** reserved for working around a windows/posix incompatibility). It is |
|
491 ** used in the journal to signify that the remainder of the journal file |
|
492 ** is devoted to storing a master journal name - there are no more pages to |
|
493 ** roll back. See comments for function writeMasterJournal() for details. |
|
494 */ |
|
495 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ |
|
496 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) |
|
497 |
|
498 /* |
|
499 ** The maximum legal page number is (2^31 - 1). |
|
500 */ |
|
501 #define PAGER_MAX_PGNO 2147483647 |
|
502 |
|
503 /* |
|
504 ** The pagerEnter() and pagerLeave() routines acquire and release |
|
505 ** a mutex on each pager. The mutex is recursive. |
|
506 ** |
|
507 ** This is a special-purpose mutex. It only provides mutual exclusion |
|
508 ** between the Btree and the Memory Management sqlite3_release_memory() |
|
509 ** function. It does not prevent, for example, two Btrees from accessing |
|
510 ** the same pager at the same time. Other general-purpose mutexes in |
|
511 ** the btree layer handle that chore. |
|
512 */ |
|
513 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
514 static void pagerEnter(Pager *p){ |
|
515 p->iInUseDB++; |
|
516 if( p->iInUseMM && p->iInUseDB==1 ){ |
|
517 sqlite3_mutex *mutex; |
|
518 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); |
|
519 p->iInUseDB = 0; |
|
520 sqlite3_mutex_enter(mutex); |
|
521 p->iInUseDB = 1; |
|
522 sqlite3_mutex_leave(mutex); |
|
523 } |
|
524 assert( p->iInUseMM==0 ); |
|
525 } |
|
526 static void pagerLeave(Pager *p){ |
|
527 p->iInUseDB--; |
|
528 assert( p->iInUseDB>=0 ); |
|
529 } |
|
530 #else |
|
531 # define pagerEnter(X) |
|
532 # define pagerLeave(X) |
|
533 #endif |
|
534 |
|
535 /* |
|
536 ** Enable reference count tracking (for debugging) here: |
|
537 */ |
|
538 #ifdef SQLITE_DEBUG |
|
539 int pager3_refinfo_enable = 0; |
|
540 static void pager_refinfo(PgHdr *p){ |
|
541 static int cnt = 0; |
|
542 if( !pager3_refinfo_enable ) return; |
|
543 sqlite3DebugPrintf( |
|
544 "REFCNT: %4d addr=%p nRef=%-3d total=%d\n", |
|
545 p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef |
|
546 ); |
|
547 cnt++; /* Something to set a breakpoint on */ |
|
548 } |
|
549 # define REFINFO(X) pager_refinfo(X) |
|
550 #else |
|
551 # define REFINFO(X) |
|
552 #endif |
|
553 |
|
554 /* |
|
555 ** Add page pPg to the end of the linked list managed by structure |
|
556 ** pList (pPg becomes the last entry in the list - the most recently |
|
557 ** used). Argument pLink should point to either pPg->free or pPg->gfree, |
|
558 ** depending on whether pPg is being added to the pager-specific or |
|
559 ** global LRU list. |
|
560 */ |
|
561 static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ |
|
562 pLink->pNext = 0; |
|
563 pLink->pPrev = pList->pLast; |
|
564 |
|
565 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
566 assert(pLink==&pPg->free || pLink==&pPg->gfree); |
|
567 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); |
|
568 #endif |
|
569 |
|
570 if( pList->pLast ){ |
|
571 int iOff = (char *)pLink - (char *)pPg; |
|
572 PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]); |
|
573 pLastLink->pNext = pPg; |
|
574 }else{ |
|
575 assert(!pList->pFirst); |
|
576 pList->pFirst = pPg; |
|
577 } |
|
578 |
|
579 pList->pLast = pPg; |
|
580 if( !pList->pFirstSynced && pPg->needSync==0 ){ |
|
581 pList->pFirstSynced = pPg; |
|
582 } |
|
583 } |
|
584 |
|
585 /* |
|
586 ** Remove pPg from the list managed by the structure pointed to by pList. |
|
587 ** |
|
588 ** Argument pLink should point to either pPg->free or pPg->gfree, depending |
|
589 ** on whether pPg is being added to the pager-specific or global LRU list. |
|
590 */ |
|
591 static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ |
|
592 int iOff = (char *)pLink - (char *)pPg; |
|
593 |
|
594 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
595 assert(pLink==&pPg->free || pLink==&pPg->gfree); |
|
596 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); |
|
597 #endif |
|
598 |
|
599 if( pPg==pList->pFirst ){ |
|
600 pList->pFirst = pLink->pNext; |
|
601 } |
|
602 if( pPg==pList->pLast ){ |
|
603 pList->pLast = pLink->pPrev; |
|
604 } |
|
605 if( pLink->pPrev ){ |
|
606 PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]); |
|
607 pPrevLink->pNext = pLink->pNext; |
|
608 } |
|
609 if( pLink->pNext ){ |
|
610 PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]); |
|
611 pNextLink->pPrev = pLink->pPrev; |
|
612 } |
|
613 if( pPg==pList->pFirstSynced ){ |
|
614 PgHdr *p = pLink->pNext; |
|
615 while( p && p->needSync ){ |
|
616 PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]); |
|
617 p = pL->pNext; |
|
618 } |
|
619 pList->pFirstSynced = p; |
|
620 } |
|
621 |
|
622 pLink->pNext = pLink->pPrev = 0; |
|
623 } |
|
624 |
|
625 /* |
|
626 ** Add page pPg to the list of free pages for the pager. If |
|
627 ** memory-management is enabled, also add the page to the global |
|
628 ** list of free pages. |
|
629 */ |
|
630 static void lruListAdd(PgHdr *pPg){ |
|
631 listAdd(&pPg->pPager->lru, &pPg->free, pPg); |
|
632 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
633 if( !pPg->pPager->memDb ){ |
|
634 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
635 listAdd(&sqlite3LruPageList, &pPg->gfree, pPg); |
|
636 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
637 } |
|
638 #endif |
|
639 } |
|
640 |
|
641 /* |
|
642 ** Remove page pPg from the list of free pages for the associated pager. |
|
643 ** If memory-management is enabled, also remove pPg from the global list |
|
644 ** of free pages. |
|
645 */ |
|
646 static void lruListRemove(PgHdr *pPg){ |
|
647 listRemove(&pPg->pPager->lru, &pPg->free, pPg); |
|
648 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
649 if( !pPg->pPager->memDb ){ |
|
650 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
651 listRemove(&sqlite3LruPageList, &pPg->gfree, pPg); |
|
652 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
653 } |
|
654 #endif |
|
655 } |
|
656 |
|
657 /* |
|
658 ** This function is called just after the needSync flag has been cleared |
|
659 ** from all pages managed by pPager (usually because the journal file |
|
660 ** has just been synced). It updates the pPager->lru.pFirstSynced variable |
|
661 ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced |
|
662 ** variable also. |
|
663 */ |
|
664 static void lruListSetFirstSynced(Pager *pPager){ |
|
665 pPager->lru.pFirstSynced = pPager->lru.pFirst; |
|
666 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
667 if( !pPager->memDb ){ |
|
668 PgHdr *p; |
|
669 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
670 for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext); |
|
671 assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced); |
|
672 sqlite3LruPageList.pFirstSynced = p; |
|
673 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
674 } |
|
675 #endif |
|
676 } |
|
677 |
|
678 /* |
|
679 ** Return true if page *pPg has already been written to the statement |
|
680 ** journal (or statement snapshot has been created, if *pPg is part |
|
681 ** of an in-memory database). |
|
682 */ |
|
683 static int pageInStatement(PgHdr *pPg){ |
|
684 Pager *pPager = pPg->pPager; |
|
685 if( MEMDB ){ |
|
686 return PGHDR_TO_HIST(pPg, pPager)->inStmt; |
|
687 }else{ |
|
688 Pgno pgno = pPg->pgno; |
|
689 u8 *a = pPager->aInStmt; |
|
690 return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7)))); |
|
691 } |
|
692 } |
|
693 |
|
694 /* |
|
695 ** Change the size of the pager hash table to N. N must be a power |
|
696 ** of two. |
|
697 */ |
|
698 static void pager_resize_hash_table(Pager *pPager, int N){ |
|
699 PgHdr **aHash, *pPg; |
|
700 assert( N>0 && (N&(N-1))==0 ); |
|
701 pagerLeave(pPager); |
|
702 sqlite3MallocBenignFailure((int)pPager->aHash); |
|
703 aHash = (PgHdr**)sqlite3MallocZero( sizeof(aHash[0])*N ); |
|
704 pagerEnter(pPager); |
|
705 if( aHash==0 ){ |
|
706 /* Failure to rehash is not an error. It is only a performance hit. */ |
|
707 return; |
|
708 } |
|
709 sqlite3_free(pPager->aHash); |
|
710 pPager->nHash = N; |
|
711 pPager->aHash = aHash; |
|
712 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
713 int h; |
|
714 if( pPg->pgno==0 ){ |
|
715 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); |
|
716 continue; |
|
717 } |
|
718 h = pPg->pgno & (N-1); |
|
719 pPg->pNextHash = aHash[h]; |
|
720 if( aHash[h] ){ |
|
721 aHash[h]->pPrevHash = pPg; |
|
722 } |
|
723 aHash[h] = pPg; |
|
724 pPg->pPrevHash = 0; |
|
725 } |
|
726 } |
|
727 |
|
728 /* |
|
729 ** Read a 32-bit integer from the given file descriptor. Store the integer |
|
730 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an |
|
731 ** error code is something goes wrong. |
|
732 ** |
|
733 ** All values are stored on disk as big-endian. |
|
734 */ |
|
735 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ |
|
736 unsigned char ac[4]; |
|
737 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); |
|
738 if( rc==SQLITE_OK ){ |
|
739 *pRes = sqlite3Get4byte(ac); |
|
740 } |
|
741 return rc; |
|
742 } |
|
743 |
|
744 /* |
|
745 ** Write a 32-bit integer into a string buffer in big-endian byte order. |
|
746 */ |
|
747 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) |
|
748 |
|
749 /* |
|
750 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK |
|
751 ** on success or an error code is something goes wrong. |
|
752 */ |
|
753 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ |
|
754 char ac[4]; |
|
755 put32bits(ac, val); |
|
756 return sqlite3OsWrite(fd, ac, 4, offset); |
|
757 } |
|
758 |
|
759 /* |
|
760 ** If file pFd is open, call sqlite3OsUnlock() on it. |
|
761 */ |
|
762 static int osUnlock(sqlite3_file *pFd, int eLock){ |
|
763 if( !pFd->isOpen ){ |
|
764 return SQLITE_OK; |
|
765 } |
|
766 return sqlite3OsUnlock(pFd, eLock); |
|
767 } |
|
768 |
|
769 /* |
|
770 ** This function determines whether or not the atomic-write optimization |
|
771 ** can be used with this pager. The optimization can be used if: |
|
772 ** |
|
773 ** (a) the value returned by OsDeviceCharacteristics() indicates that |
|
774 ** a database page may be written atomically, and |
|
775 ** (b) the value returned by OsSectorSize() is less than or equal |
|
776 ** to the page size. |
|
777 ** |
|
778 ** If the optimization cannot be used, 0 is returned. If it can be used, |
|
779 ** then the value returned is the size of the journal file when it |
|
780 ** contains rollback data for exactly one page. |
|
781 */ |
|
782 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
783 static int jrnlBufferSize(Pager *pPager){ |
|
784 int dc; /* Device characteristics */ |
|
785 int nSector; /* Sector size */ |
|
786 int nPage; /* Page size */ |
|
787 sqlite3_file *fd = pPager->fd; |
|
788 |
|
789 if( fd->pMethods ){ |
|
790 dc = sqlite3OsDeviceCharacteristics(fd); |
|
791 nSector = sqlite3OsSectorSize(fd); |
|
792 nPage = pPager->pageSize; |
|
793 } |
|
794 |
|
795 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
|
796 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); |
|
797 |
|
798 if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){ |
|
799 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); |
|
800 } |
|
801 return 0; |
|
802 } |
|
803 #endif |
|
804 |
|
805 /* |
|
806 ** This function should be called when an error occurs within the pager |
|
807 ** code. The first argument is a pointer to the pager structure, the |
|
808 ** second the error-code about to be returned by a pager API function. |
|
809 ** The value returned is a copy of the second argument to this function. |
|
810 ** |
|
811 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL |
|
812 ** the error becomes persistent. Until the persisten error is cleared, |
|
813 ** subsequent API calls on this Pager will immediately return the same |
|
814 ** error code. |
|
815 ** |
|
816 ** A persistent error indicates that the contents of the pager-cache |
|
817 ** cannot be trusted. This state can be cleared by completely discarding |
|
818 ** the contents of the pager-cache. If a transaction was active when |
|
819 ** the persistent error occured, then the rollback journal may need |
|
820 ** to be replayed. |
|
821 */ |
|
822 static void pager_unlock(Pager *pPager); |
|
823 static int pager_error(Pager *pPager, int rc){ |
|
824 int rc2 = rc & 0xff; |
|
825 assert( |
|
826 pPager->errCode==SQLITE_FULL || |
|
827 pPager->errCode==SQLITE_OK || |
|
828 (pPager->errCode & 0xff)==SQLITE_IOERR |
|
829 ); |
|
830 if( |
|
831 rc2==SQLITE_FULL || |
|
832 rc2==SQLITE_IOERR || |
|
833 rc2==SQLITE_CORRUPT |
|
834 ){ |
|
835 pPager->errCode = rc; |
|
836 if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){ |
|
837 /* If the pager is already unlocked, call pager_unlock() now to |
|
838 ** clear the error state and ensure that the pager-cache is |
|
839 ** completely empty. |
|
840 */ |
|
841 pager_unlock(pPager); |
|
842 } |
|
843 } |
|
844 return rc; |
|
845 } |
|
846 |
|
847 /* |
|
848 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking |
|
849 ** on the cache using a hash function. This is used for testing |
|
850 ** and debugging only. |
|
851 */ |
|
852 #ifdef SQLITE_CHECK_PAGES |
|
853 /* |
|
854 ** Return a 32-bit hash of the page data for pPage. |
|
855 */ |
|
856 static u32 pager_datahash(int nByte, unsigned char *pData){ |
|
857 u32 hash = 0; |
|
858 int i; |
|
859 for(i=0; i<nByte; i++){ |
|
860 hash = (hash*1039) + pData[i]; |
|
861 } |
|
862 return hash; |
|
863 } |
|
864 static u32 pager_pagehash(PgHdr *pPage){ |
|
865 return pager_datahash(pPage->pPager->pageSize, |
|
866 (unsigned char *)PGHDR_TO_DATA(pPage)); |
|
867 } |
|
868 |
|
869 /* |
|
870 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES |
|
871 ** is defined, and NDEBUG is not defined, an assert() statement checks |
|
872 ** that the page is either dirty or still matches the calculated page-hash. |
|
873 */ |
|
874 #define CHECK_PAGE(x) checkPage(x) |
|
875 static void checkPage(PgHdr *pPg){ |
|
876 Pager *pPager = pPg->pPager; |
|
877 assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || |
|
878 pPg->pageHash==pager_pagehash(pPg) ); |
|
879 } |
|
880 |
|
881 #else |
|
882 #define pager_datahash(X,Y) 0 |
|
883 #define pager_pagehash(X) 0 |
|
884 #define CHECK_PAGE(x) |
|
885 #endif |
|
886 |
|
887 /* |
|
888 ** When this is called the journal file for pager pPager must be open. |
|
889 ** The master journal file name is read from the end of the file and |
|
890 ** written into memory supplied by the caller. |
|
891 ** |
|
892 ** zMaster must point to a buffer of at least nMaster bytes allocated by |
|
893 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is |
|
894 ** enough space to write the master journal name). If the master journal |
|
895 ** name in the journal is longer than nMaster bytes (including a |
|
896 ** nul-terminator), then this is handled as if no master journal name |
|
897 ** were present in the journal. |
|
898 ** |
|
899 ** If no master journal file name is present zMaster[0] is set to 0 and |
|
900 ** SQLITE_OK returned. |
|
901 */ |
|
902 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ |
|
903 int rc; |
|
904 u32 len; |
|
905 i64 szJ; |
|
906 u32 cksum; |
|
907 int i; |
|
908 unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
|
909 |
|
910 zMaster[0] = '\0'; |
|
911 |
|
912 rc = sqlite3OsFileSize(pJrnl, &szJ); |
|
913 if( rc!=SQLITE_OK || szJ<16 ) return rc; |
|
914 |
|
915 rc = read32bits(pJrnl, szJ-16, &len); |
|
916 if( rc!=SQLITE_OK ) return rc; |
|
917 |
|
918 if( len>=nMaster ){ |
|
919 return SQLITE_OK; |
|
920 } |
|
921 |
|
922 rc = read32bits(pJrnl, szJ-12, &cksum); |
|
923 if( rc!=SQLITE_OK ) return rc; |
|
924 |
|
925 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); |
|
926 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; |
|
927 |
|
928 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); |
|
929 if( rc!=SQLITE_OK ){ |
|
930 return rc; |
|
931 } |
|
932 zMaster[len] = '\0'; |
|
933 |
|
934 /* See if the checksum matches the master journal name */ |
|
935 for(i=0; i<len; i++){ |
|
936 cksum -= zMaster[i]; |
|
937 } |
|
938 if( cksum ){ |
|
939 /* If the checksum doesn't add up, then one or more of the disk sectors |
|
940 ** containing the master journal filename is corrupted. This means |
|
941 ** definitely roll back, so just return SQLITE_OK and report a (nul) |
|
942 ** master-journal filename. |
|
943 */ |
|
944 zMaster[0] = '\0'; |
|
945 } |
|
946 |
|
947 return SQLITE_OK; |
|
948 } |
|
949 |
|
950 /* |
|
951 ** Seek the journal file descriptor to the next sector boundary where a |
|
952 ** journal header may be read or written. Pager.journalOff is updated with |
|
953 ** the new seek offset. |
|
954 ** |
|
955 ** i.e for a sector size of 512: |
|
956 ** |
|
957 ** Input Offset Output Offset |
|
958 ** --------------------------------------- |
|
959 ** 0 0 |
|
960 ** 512 512 |
|
961 ** 100 512 |
|
962 ** 2000 2048 |
|
963 ** |
|
964 */ |
|
965 static void seekJournalHdr(Pager *pPager){ |
|
966 i64 offset = 0; |
|
967 i64 c = pPager->journalOff; |
|
968 if( c ){ |
|
969 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); |
|
970 } |
|
971 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); |
|
972 assert( offset>=c ); |
|
973 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); |
|
974 pPager->journalOff = offset; |
|
975 } |
|
976 |
|
977 /* |
|
978 ** The journal file must be open when this routine is called. A journal |
|
979 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the |
|
980 ** current location. |
|
981 ** |
|
982 ** The format for the journal header is as follows: |
|
983 ** - 8 bytes: Magic identifying journal format. |
|
984 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. |
|
985 ** - 4 bytes: Random number used for page hash. |
|
986 ** - 4 bytes: Initial database page count. |
|
987 ** - 4 bytes: Sector size used by the process that wrote this journal. |
|
988 ** |
|
989 ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space. |
|
990 */ |
|
991 static int writeJournalHdr(Pager *pPager){ |
|
992 char zHeader[sizeof(aJournalMagic)+16]; |
|
993 int rc; |
|
994 |
|
995 if( pPager->stmtHdrOff==0 ){ |
|
996 pPager->stmtHdrOff = pPager->journalOff; |
|
997 } |
|
998 |
|
999 seekJournalHdr(pPager); |
|
1000 pPager->journalHdr = pPager->journalOff; |
|
1001 |
|
1002 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); |
|
1003 |
|
1004 /* |
|
1005 ** Write the nRec Field - the number of page records that follow this |
|
1006 ** journal header. Normally, zero is written to this value at this time. |
|
1007 ** After the records are added to the journal (and the journal synced, |
|
1008 ** if in full-sync mode), the zero is overwritten with the true number |
|
1009 ** of records (see syncJournal()). |
|
1010 ** |
|
1011 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When |
|
1012 ** reading the journal this value tells SQLite to assume that the |
|
1013 ** rest of the journal file contains valid page records. This assumption |
|
1014 ** is dangerous, as if a failure occured whilst writing to the journal |
|
1015 ** file it may contain some garbage data. There are two scenarios |
|
1016 ** where this risk can be ignored: |
|
1017 ** |
|
1018 ** * When the pager is in no-sync mode. Corruption can follow a |
|
1019 ** power failure in this case anyway. |
|
1020 ** |
|
1021 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees |
|
1022 ** that garbage data is never appended to the journal file. |
|
1023 */ |
|
1024 assert(pPager->fd->pMethods||pPager->noSync); |
|
1025 if( (pPager->noSync) |
|
1026 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) |
|
1027 ){ |
|
1028 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); |
|
1029 }else{ |
|
1030 put32bits(&zHeader[sizeof(aJournalMagic)], 0); |
|
1031 } |
|
1032 |
|
1033 /* The random check-hash initialiser */ |
|
1034 sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); |
|
1035 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); |
|
1036 /* The initial database size */ |
|
1037 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); |
|
1038 /* The assumed sector size for this process */ |
|
1039 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); |
|
1040 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader))) |
|
1041 rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff); |
|
1042 pPager->journalOff += JOURNAL_HDR_SZ(pPager); |
|
1043 |
|
1044 /* The journal header has been written successfully. Seek the journal |
|
1045 ** file descriptor to the end of the journal header sector. |
|
1046 */ |
|
1047 if( rc==SQLITE_OK ){ |
|
1048 IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1)) |
|
1049 rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1); |
|
1050 } |
|
1051 return rc; |
|
1052 } |
|
1053 |
|
1054 /* |
|
1055 ** The journal file must be open when this is called. A journal header file |
|
1056 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal |
|
1057 ** file. See comments above function writeJournalHdr() for a description of |
|
1058 ** the journal header format. |
|
1059 ** |
|
1060 ** If the header is read successfully, *nRec is set to the number of |
|
1061 ** page records following this header and *dbSize is set to the size of the |
|
1062 ** database before the transaction began, in pages. Also, pPager->cksumInit |
|
1063 ** is set to the value read from the journal header. SQLITE_OK is returned |
|
1064 ** in this case. |
|
1065 ** |
|
1066 ** If the journal header file appears to be corrupted, SQLITE_DONE is |
|
1067 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes |
|
1068 ** cannot be read from the journal file an error code is returned. |
|
1069 */ |
|
1070 static int readJournalHdr( |
|
1071 Pager *pPager, |
|
1072 i64 journalSize, |
|
1073 u32 *pNRec, |
|
1074 u32 *pDbSize |
|
1075 ){ |
|
1076 int rc; |
|
1077 unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
|
1078 i64 jrnlOff; |
|
1079 |
|
1080 seekJournalHdr(pPager); |
|
1081 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ |
|
1082 return SQLITE_DONE; |
|
1083 } |
|
1084 jrnlOff = pPager->journalOff; |
|
1085 |
|
1086 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); |
|
1087 if( rc ) return rc; |
|
1088 jrnlOff += sizeof(aMagic); |
|
1089 |
|
1090 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ |
|
1091 return SQLITE_DONE; |
|
1092 } |
|
1093 |
|
1094 rc = read32bits(pPager->jfd, jrnlOff, pNRec); |
|
1095 if( rc ) return rc; |
|
1096 |
|
1097 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); |
|
1098 if( rc ) return rc; |
|
1099 |
|
1100 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); |
|
1101 if( rc ) return rc; |
|
1102 |
|
1103 /* Update the assumed sector-size to match the value used by |
|
1104 ** the process that created this journal. If this journal was |
|
1105 ** created by a process other than this one, then this routine |
|
1106 ** is being called from within pager_playback(). The local value |
|
1107 ** of Pager.sectorSize is restored at the end of that routine. |
|
1108 */ |
|
1109 rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); |
|
1110 if( rc ) return rc; |
|
1111 |
|
1112 pPager->journalOff += JOURNAL_HDR_SZ(pPager); |
|
1113 return SQLITE_OK; |
|
1114 } |
|
1115 |
|
1116 |
|
1117 /* |
|
1118 ** Write the supplied master journal name into the journal file for pager |
|
1119 ** pPager at the current location. The master journal name must be the last |
|
1120 ** thing written to a journal file. If the pager is in full-sync mode, the |
|
1121 ** journal file descriptor is advanced to the next sector boundary before |
|
1122 ** anything is written. The format is: |
|
1123 ** |
|
1124 ** + 4 bytes: PAGER_MJ_PGNO. |
|
1125 ** + N bytes: length of master journal name. |
|
1126 ** + 4 bytes: N |
|
1127 ** + 4 bytes: Master journal name checksum. |
|
1128 ** + 8 bytes: aJournalMagic[]. |
|
1129 ** |
|
1130 ** The master journal page checksum is the sum of the bytes in the master |
|
1131 ** journal name. |
|
1132 ** |
|
1133 ** If zMaster is a NULL pointer (occurs for a single database transaction), |
|
1134 ** this call is a no-op. |
|
1135 */ |
|
1136 static int writeMasterJournal(Pager *pPager, const char *zMaster){ |
|
1137 int rc; |
|
1138 int len; |
|
1139 int i; |
|
1140 i64 jrnlOff; |
|
1141 u32 cksum = 0; |
|
1142 char zBuf[sizeof(aJournalMagic)+2*4]; |
|
1143 |
|
1144 if( !zMaster || pPager->setMaster) return SQLITE_OK; |
|
1145 pPager->setMaster = 1; |
|
1146 |
|
1147 len = strlen(zMaster); |
|
1148 for(i=0; i<len; i++){ |
|
1149 cksum += zMaster[i]; |
|
1150 } |
|
1151 |
|
1152 /* If in full-sync mode, advance to the next disk sector before writing |
|
1153 ** the master journal name. This is in case the previous page written to |
|
1154 ** the journal has already been synced. |
|
1155 */ |
|
1156 if( pPager->fullSync ){ |
|
1157 seekJournalHdr(pPager); |
|
1158 } |
|
1159 jrnlOff = pPager->journalOff; |
|
1160 pPager->journalOff += (len+20); |
|
1161 |
|
1162 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); |
|
1163 if( rc!=SQLITE_OK ) return rc; |
|
1164 jrnlOff += 4; |
|
1165 |
|
1166 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); |
|
1167 if( rc!=SQLITE_OK ) return rc; |
|
1168 jrnlOff += len; |
|
1169 |
|
1170 put32bits(zBuf, len); |
|
1171 put32bits(&zBuf[4], cksum); |
|
1172 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); |
|
1173 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); |
|
1174 pPager->needSync = !pPager->noSync; |
|
1175 return rc; |
|
1176 } |
|
1177 |
|
1178 /* |
|
1179 ** Add or remove a page from the list of all pages that are in the |
|
1180 ** statement journal. |
|
1181 ** |
|
1182 ** The Pager keeps a separate list of pages that are currently in |
|
1183 ** the statement journal. This helps the sqlite3PagerStmtCommit() |
|
1184 ** routine run MUCH faster for the common case where there are many |
|
1185 ** pages in memory but only a few are in the statement journal. |
|
1186 */ |
|
1187 static void page_add_to_stmt_list(PgHdr *pPg){ |
|
1188 Pager *pPager = pPg->pPager; |
|
1189 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
1190 assert( MEMDB ); |
|
1191 if( !pHist->inStmt ){ |
|
1192 assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 ); |
|
1193 if( pPager->pStmt ){ |
|
1194 PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg; |
|
1195 } |
|
1196 pHist->pNextStmt = pPager->pStmt; |
|
1197 pPager->pStmt = pPg; |
|
1198 pHist->inStmt = 1; |
|
1199 } |
|
1200 } |
|
1201 |
|
1202 /* |
|
1203 ** Find a page in the hash table given its page number. Return |
|
1204 ** a pointer to the page or NULL if not found. |
|
1205 */ |
|
1206 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ |
|
1207 PgHdr *p; |
|
1208 if( pPager->aHash==0 ) return 0; |
|
1209 p = pPager->aHash[pgno & (pPager->nHash-1)]; |
|
1210 while( p && p->pgno!=pgno ){ |
|
1211 p = p->pNextHash; |
|
1212 } |
|
1213 return p; |
|
1214 } |
|
1215 |
|
1216 /* |
|
1217 ** Clear the in-memory cache. This routine |
|
1218 ** sets the state of the pager back to what it was when it was first |
|
1219 ** opened. Any outstanding pages are invalidated and subsequent attempts |
|
1220 ** to access those pages will likely result in a coredump. |
|
1221 */ |
|
1222 static void pager_reset(Pager *pPager){ |
|
1223 PgHdr *pPg, *pNext; |
|
1224 if( pPager->errCode ) return; |
|
1225 for(pPg=pPager->pAll; pPg; pPg=pNext){ |
|
1226 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); |
|
1227 PAGER_INCR(sqlite3_pager_pgfree_count); |
|
1228 pNext = pPg->pNextAll; |
|
1229 lruListRemove(pPg); |
|
1230 sqlite3_free(pPg); |
|
1231 } |
|
1232 assert(pPager->lru.pFirst==0); |
|
1233 assert(pPager->lru.pFirstSynced==0); |
|
1234 assert(pPager->lru.pLast==0); |
|
1235 pPager->pStmt = 0; |
|
1236 pPager->pAll = 0; |
|
1237 pPager->pDirty = 0; |
|
1238 pPager->nHash = 0; |
|
1239 sqlite3_free(pPager->aHash); |
|
1240 pPager->nPage = 0; |
|
1241 pPager->aHash = 0; |
|
1242 pPager->nRef = 0; |
|
1243 } |
|
1244 |
|
1245 /* |
|
1246 ** Unlock the database file. |
|
1247 ** |
|
1248 ** If the pager is currently in error state, discard the contents of |
|
1249 ** the cache and reset the Pager structure internal state. If there is |
|
1250 ** an open journal-file, then the next time a shared-lock is obtained |
|
1251 ** on the pager file (by this or any other process), it will be |
|
1252 ** treated as a hot-journal and rolled back. |
|
1253 */ |
|
1254 static void pager_unlock(Pager *pPager){ |
|
1255 if( !pPager->exclusiveMode ){ |
|
1256 if( !MEMDB ){ |
|
1257 if( pPager->fd->isOpen ){ |
|
1258 osUnlock(pPager->fd, NO_LOCK); |
|
1259 } |
|
1260 pPager->dbSize = -1; |
|
1261 IOTRACE(("UNLOCK %p\n", pPager)) |
|
1262 |
|
1263 /* If Pager.errCode is set, the contents of the pager cache cannot be |
|
1264 ** trusted. Now that the pager file is unlocked, the contents of the |
|
1265 ** cache can be discarded and the error code safely cleared. |
|
1266 */ |
|
1267 if( pPager->errCode ){ |
|
1268 pPager->errCode = SQLITE_OK; |
|
1269 pager_reset(pPager); |
|
1270 if( pPager->stmtOpen ){ |
|
1271 sqlite3OsClose(pPager->stfd); |
|
1272 sqlite3_free(pPager->aInStmt); |
|
1273 pPager->aInStmt = 0; |
|
1274 } |
|
1275 if( pPager->journalOpen ){ |
|
1276 sqlite3OsClose(pPager->jfd); |
|
1277 pPager->journalOpen = 0; |
|
1278 sqlite3_free(pPager->aInJournal); |
|
1279 pPager->aInJournal = 0; |
|
1280 } |
|
1281 pPager->stmtOpen = 0; |
|
1282 pPager->stmtInUse = 0; |
|
1283 pPager->journalOff = 0; |
|
1284 pPager->journalStarted = 0; |
|
1285 pPager->stmtAutoopen = 0; |
|
1286 pPager->origDbSize = 0; |
|
1287 } |
|
1288 } |
|
1289 |
|
1290 if( !MEMDB || pPager->errCode==SQLITE_OK ){ |
|
1291 pPager->state = PAGER_UNLOCK; |
|
1292 pPager->changeCountDone = 0; |
|
1293 } |
|
1294 } |
|
1295 } |
|
1296 |
|
1297 /* |
|
1298 ** Execute a rollback if a transaction is active and unlock the |
|
1299 ** database file. If the pager has already entered the error state, |
|
1300 ** do not attempt the rollback. |
|
1301 */ |
|
1302 static void pagerUnlockAndRollback(Pager *p){ |
|
1303 assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); |
|
1304 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ |
|
1305 sqlite3PagerRollback(p); |
|
1306 } |
|
1307 pager_unlock(p); |
|
1308 assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) ); |
|
1309 assert( p->errCode || !p->stmtOpen || p->exclusiveMode ); |
|
1310 } |
|
1311 |
|
1312 /* |
|
1313 ** This routine ends a transaction. A transaction is ended by either |
|
1314 ** a COMMIT or a ROLLBACK. |
|
1315 ** |
|
1316 ** When this routine is called, the pager has the journal file open and |
|
1317 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release |
|
1318 ** the database lock and acquires a SHARED lock in its place if that is |
|
1319 ** the appropriate thing to do. Release locks usually is appropriate, |
|
1320 ** unless we are in exclusive access mode or unless this is a |
|
1321 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. |
|
1322 ** |
|
1323 ** The journal file is either deleted or truncated. |
|
1324 ** |
|
1325 ** TODO: Consider keeping the journal file open for temporary databases. |
|
1326 ** This might give a performance improvement on windows where opening |
|
1327 ** a file is an expensive operation. |
|
1328 */ |
|
1329 static int pager_end_transaction(Pager *pPager){ |
|
1330 PgHdr *pPg; |
|
1331 int rc = SQLITE_OK; |
|
1332 int rc2 = SQLITE_OK; |
|
1333 assert( !MEMDB ); |
|
1334 if( pPager->state<PAGER_RESERVED ){ |
|
1335 return SQLITE_OK; |
|
1336 } |
|
1337 sqlite3PagerStmtCommit(pPager); |
|
1338 if( pPager->stmtOpen && !pPager->exclusiveMode ){ |
|
1339 sqlite3OsClose(pPager->stfd); |
|
1340 pPager->stmtOpen = 0; |
|
1341 } |
|
1342 if( pPager->journalOpen ){ |
|
1343 if( pPager->exclusiveMode |
|
1344 && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){; |
|
1345 pPager->journalOff = 0; |
|
1346 pPager->journalStarted = 0; |
|
1347 }else{ |
|
1348 sqlite3OsClose(pPager->jfd); |
|
1349 pPager->journalOpen = 0; |
|
1350 if( rc==SQLITE_OK ){ |
|
1351 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); |
|
1352 } |
|
1353 } |
|
1354 sqlite3_free( pPager->aInJournal ); |
|
1355 pPager->aInJournal = 0; |
|
1356 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
1357 pPg->inJournal = 0; |
|
1358 pPg->dirty = 0; |
|
1359 pPg->needSync = 0; |
|
1360 pPg->alwaysRollback = 0; |
|
1361 #ifdef SQLITE_CHECK_PAGES |
|
1362 pPg->pageHash = pager_pagehash(pPg); |
|
1363 #endif |
|
1364 } |
|
1365 pPager->pDirty = 0; |
|
1366 pPager->dirtyCache = 0; |
|
1367 pPager->nRec = 0; |
|
1368 }else{ |
|
1369 assert( pPager->aInJournal==0 ); |
|
1370 assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); |
|
1371 } |
|
1372 |
|
1373 if( !pPager->exclusiveMode ){ |
|
1374 rc2 = osUnlock(pPager->fd, SHARED_LOCK); |
|
1375 pPager->state = PAGER_SHARED; |
|
1376 }else if( pPager->state==PAGER_SYNCED ){ |
|
1377 pPager->state = PAGER_EXCLUSIVE; |
|
1378 } |
|
1379 pPager->origDbSize = 0; |
|
1380 pPager->setMaster = 0; |
|
1381 pPager->needSync = 0; |
|
1382 lruListSetFirstSynced(pPager); |
|
1383 pPager->dbSize = -1; |
|
1384 |
|
1385 return (rc==SQLITE_OK?rc2:rc); |
|
1386 } |
|
1387 |
|
1388 /* |
|
1389 ** Compute and return a checksum for the page of data. |
|
1390 ** |
|
1391 ** This is not a real checksum. It is really just the sum of the |
|
1392 ** random initial value and the page number. We experimented with |
|
1393 ** a checksum of the entire data, but that was found to be too slow. |
|
1394 ** |
|
1395 ** Note that the page number is stored at the beginning of data and |
|
1396 ** the checksum is stored at the end. This is important. If journal |
|
1397 ** corruption occurs due to a power failure, the most likely scenario |
|
1398 ** is that one end or the other of the record will be changed. It is |
|
1399 ** much less likely that the two ends of the journal record will be |
|
1400 ** correct and the middle be corrupt. Thus, this "checksum" scheme, |
|
1401 ** though fast and simple, catches the mostly likely kind of corruption. |
|
1402 ** |
|
1403 ** FIX ME: Consider adding every 200th (or so) byte of the data to the |
|
1404 ** checksum. That way if a single page spans 3 or more disk sectors and |
|
1405 ** only the middle sector is corrupt, we will still have a reasonable |
|
1406 ** chance of failing the checksum and thus detecting the problem. |
|
1407 */ |
|
1408 static u32 pager_cksum(Pager *pPager, const u8 *aData){ |
|
1409 u32 cksum = pPager->cksumInit; |
|
1410 int i = pPager->pageSize-200; |
|
1411 while( i>0 ){ |
|
1412 cksum += aData[i]; |
|
1413 i -= 200; |
|
1414 } |
|
1415 return cksum; |
|
1416 } |
|
1417 |
|
1418 /* Forward declaration */ |
|
1419 static void makeClean(PgHdr*); |
|
1420 |
|
1421 /* |
|
1422 ** Read a single page from the journal file opened on file descriptor |
|
1423 ** jfd. Playback this one page. |
|
1424 ** |
|
1425 ** If useCksum==0 it means this journal does not use checksums. Checksums |
|
1426 ** are not used in statement journals because statement journals do not |
|
1427 ** need to survive power failures. |
|
1428 */ |
|
1429 static int pager_playback_one_page( |
|
1430 Pager *pPager, |
|
1431 sqlite3_file *jfd, |
|
1432 i64 offset, |
|
1433 int useCksum |
|
1434 ){ |
|
1435 int rc; |
|
1436 PgHdr *pPg; /* An existing page in the cache */ |
|
1437 Pgno pgno; /* The page number of a page in journal */ |
|
1438 u32 cksum; /* Checksum used for sanity checking */ |
|
1439 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ |
|
1440 |
|
1441 /* useCksum should be true for the main journal and false for |
|
1442 ** statement journals. Verify that this is always the case |
|
1443 */ |
|
1444 assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); |
|
1445 assert( aData ); |
|
1446 |
|
1447 rc = read32bits(jfd, offset, &pgno); |
|
1448 if( rc!=SQLITE_OK ) return rc; |
|
1449 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); |
|
1450 if( rc!=SQLITE_OK ) return rc; |
|
1451 pPager->journalOff += pPager->pageSize + 4; |
|
1452 |
|
1453 /* Sanity checking on the page. This is more important that I originally |
|
1454 ** thought. If a power failure occurs while the journal is being written, |
|
1455 ** it could cause invalid data to be written into the journal. We need to |
|
1456 ** detect this invalid data (with high probability) and ignore it. |
|
1457 */ |
|
1458 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
|
1459 return SQLITE_DONE; |
|
1460 } |
|
1461 if( pgno>(unsigned)pPager->dbSize ){ |
|
1462 return SQLITE_OK; |
|
1463 } |
|
1464 if( useCksum ){ |
|
1465 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); |
|
1466 if( rc ) return rc; |
|
1467 pPager->journalOff += 4; |
|
1468 if( pager_cksum(pPager, aData)!=cksum ){ |
|
1469 return SQLITE_DONE; |
|
1470 } |
|
1471 } |
|
1472 |
|
1473 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); |
|
1474 |
|
1475 /* If the pager is in RESERVED state, then there must be a copy of this |
|
1476 ** page in the pager cache. In this case just update the pager cache, |
|
1477 ** not the database file. The page is left marked dirty in this case. |
|
1478 ** |
|
1479 ** An exception to the above rule: If the database is in no-sync mode |
|
1480 ** and a page is moved during an incremental vacuum then the page may |
|
1481 ** not be in the pager cache. Later: if a malloc() or IO error occurs |
|
1482 ** during a Movepage() call, then the page may not be in the cache |
|
1483 ** either. So the condition described in the above paragraph is not |
|
1484 ** assert()able. |
|
1485 ** |
|
1486 ** If in EXCLUSIVE state, then we update the pager cache if it exists |
|
1487 ** and the main file. The page is then marked not dirty. |
|
1488 ** |
|
1489 ** Ticket #1171: The statement journal might contain page content that is |
|
1490 ** different from the page content at the start of the transaction. |
|
1491 ** This occurs when a page is changed prior to the start of a statement |
|
1492 ** then changed again within the statement. When rolling back such a |
|
1493 ** statement we must not write to the original database unless we know |
|
1494 ** for certain that original page contents are synced into the main rollback |
|
1495 ** journal. Otherwise, a power loss might leave modified data in the |
|
1496 ** database file without an entry in the rollback journal that can |
|
1497 ** restore the database to its original form. Two conditions must be |
|
1498 ** met before writing to the database files. (1) the database must be |
|
1499 ** locked. (2) we know that the original page content is fully synced |
|
1500 ** in the main journal either because the page is not in cache or else |
|
1501 ** the page is marked as needSync==0. |
|
1502 */ |
|
1503 pPg = pager_lookup(pPager, pgno); |
|
1504 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", |
|
1505 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); |
|
1506 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){ |
|
1507 i64 offset = (pgno-1)*(i64)pPager->pageSize; |
|
1508 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset); |
|
1509 if( pPg ){ |
|
1510 makeClean(pPg); |
|
1511 } |
|
1512 } |
|
1513 if( pPg ){ |
|
1514 /* No page should ever be explicitly rolled back that is in use, except |
|
1515 ** for page 1 which is held in use in order to keep the lock on the |
|
1516 ** database active. However such a page may be rolled back as a result |
|
1517 ** of an internal error resulting in an automatic call to |
|
1518 ** sqlite3PagerRollback(). |
|
1519 */ |
|
1520 void *pData; |
|
1521 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ |
|
1522 pData = PGHDR_TO_DATA(pPg); |
|
1523 memcpy(pData, aData, pPager->pageSize); |
|
1524 if( pPager->xReiniter ){ |
|
1525 pPager->xReiniter(pPg, pPager->pageSize); |
|
1526 } |
|
1527 #ifdef SQLITE_CHECK_PAGES |
|
1528 pPg->pageHash = pager_pagehash(pPg); |
|
1529 #endif |
|
1530 /* If this was page 1, then restore the value of Pager.dbFileVers. |
|
1531 ** Do this before any decoding. */ |
|
1532 if( pgno==1 ){ |
|
1533 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); |
|
1534 } |
|
1535 |
|
1536 /* Decode the page just read from disk */ |
|
1537 CODEC1(pPager, pData, pPg->pgno, 3); |
|
1538 } |
|
1539 return rc; |
|
1540 } |
|
1541 |
|
1542 /* |
|
1543 ** Parameter zMaster is the name of a master journal file. A single journal |
|
1544 ** file that referred to the master journal file has just been rolled back. |
|
1545 ** This routine checks if it is possible to delete the master journal file, |
|
1546 ** and does so if it is. |
|
1547 ** |
|
1548 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not |
|
1549 ** available for use within this function. |
|
1550 ** |
|
1551 ** |
|
1552 ** The master journal file contains the names of all child journals. |
|
1553 ** To tell if a master journal can be deleted, check to each of the |
|
1554 ** children. If all children are either missing or do not refer to |
|
1555 ** a different master journal, then this master journal can be deleted. |
|
1556 */ |
|
1557 static int pager_delmaster(Pager *pPager, const char *zMaster){ |
|
1558 sqlite3_vfs *pVfs = pPager->pVfs; |
|
1559 int rc; |
|
1560 int master_open = 0; |
|
1561 sqlite3_file *pMaster; |
|
1562 sqlite3_file *pJournal; |
|
1563 char *zMasterJournal = 0; /* Contents of master journal file */ |
|
1564 i64 nMasterJournal; /* Size of master journal file */ |
|
1565 |
|
1566 /* Open the master journal file exclusively in case some other process |
|
1567 ** is running this routine also. Not that it makes too much difference. |
|
1568 */ |
|
1569 pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2); |
|
1570 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); |
|
1571 if( !pMaster ){ |
|
1572 rc = SQLITE_NOMEM; |
|
1573 }else{ |
|
1574 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); |
|
1575 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); |
|
1576 } |
|
1577 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1578 master_open = 1; |
|
1579 |
|
1580 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); |
|
1581 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1582 |
|
1583 if( nMasterJournal>0 ){ |
|
1584 char *zJournal; |
|
1585 char *zMasterPtr = 0; |
|
1586 int nMasterPtr = pPager->pVfs->mxPathname+1; |
|
1587 |
|
1588 /* Load the entire master journal file into space obtained from |
|
1589 ** sqlite3_malloc() and pointed to by zMasterJournal. |
|
1590 */ |
|
1591 zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr); |
|
1592 if( !zMasterJournal ){ |
|
1593 rc = SQLITE_NOMEM; |
|
1594 goto delmaster_out; |
|
1595 } |
|
1596 zMasterPtr = &zMasterJournal[nMasterJournal]; |
|
1597 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); |
|
1598 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1599 |
|
1600 zJournal = zMasterJournal; |
|
1601 while( (zJournal-zMasterJournal)<nMasterJournal ){ |
|
1602 if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){ |
|
1603 /* One of the journals pointed to by the master journal exists. |
|
1604 ** Open it and check if it points at the master journal. If |
|
1605 ** so, return without deleting the master journal file. |
|
1606 */ |
|
1607 int c; |
|
1608 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); |
|
1609 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); |
|
1610 if( rc!=SQLITE_OK ){ |
|
1611 goto delmaster_out; |
|
1612 } |
|
1613 |
|
1614 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); |
|
1615 sqlite3OsClose(pJournal); |
|
1616 if( rc!=SQLITE_OK ){ |
|
1617 goto delmaster_out; |
|
1618 } |
|
1619 |
|
1620 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; |
|
1621 if( c ){ |
|
1622 /* We have a match. Do not delete the master journal file. */ |
|
1623 goto delmaster_out; |
|
1624 } |
|
1625 } |
|
1626 zJournal += (strlen(zJournal)+1); |
|
1627 } |
|
1628 } |
|
1629 |
|
1630 rc = sqlite3OsDelete(pVfs, zMaster, 0); |
|
1631 |
|
1632 delmaster_out: |
|
1633 if( zMasterJournal ){ |
|
1634 sqlite3_free(zMasterJournal); |
|
1635 } |
|
1636 if( master_open ){ |
|
1637 sqlite3OsClose(pMaster); |
|
1638 } |
|
1639 sqlite3_free(pMaster); |
|
1640 return rc; |
|
1641 } |
|
1642 |
|
1643 |
|
1644 static void pager_truncate_cache(Pager *pPager); |
|
1645 |
|
1646 /* |
|
1647 ** Truncate the main file of the given pager to the number of pages |
|
1648 ** indicated. Also truncate the cached representation of the file. |
|
1649 ** |
|
1650 ** Might might be the case that the file on disk is smaller than nPage. |
|
1651 ** This can happen, for example, if we are in the middle of a transaction |
|
1652 ** which has extended the file size and the new pages are still all held |
|
1653 ** in cache, then an INSERT or UPDATE does a statement rollback. Some |
|
1654 ** operating system implementations can get confused if you try to |
|
1655 ** truncate a file to some size that is larger than it currently is, |
|
1656 ** so detect this case and do not do the truncation. |
|
1657 */ |
|
1658 static int pager_truncate(Pager *pPager, int nPage){ |
|
1659 int rc = SQLITE_OK; |
|
1660 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->isOpen ){ |
|
1661 i64 currentSize, newSize; |
|
1662 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); |
|
1663 newSize = pPager->pageSize*(i64)nPage; |
|
1664 if( rc==SQLITE_OK && currentSize>newSize ){ |
|
1665 rc = sqlite3OsTruncate(pPager->fd, newSize); |
|
1666 } |
|
1667 } |
|
1668 if( rc==SQLITE_OK ){ |
|
1669 pPager->dbSize = nPage; |
|
1670 pager_truncate_cache(pPager); |
|
1671 } |
|
1672 return rc; |
|
1673 } |
|
1674 |
|
1675 /* |
|
1676 ** Set the sectorSize for the given pager. |
|
1677 ** |
|
1678 ** The sector size is the larger of the sector size reported |
|
1679 ** by sqlite3OsSectorSize() and the pageSize. |
|
1680 */ |
|
1681 static void setSectorSize(Pager *pPager){ |
|
1682 assert(pPager->fd->pMethods||pPager->tempFile); |
|
1683 if( !pPager->tempFile ){ |
|
1684 /* Sector size doesn't matter for temporary files. Also, the file |
|
1685 ** may not have been opened yet, in whcih case the OsSectorSize() |
|
1686 ** call will segfault. |
|
1687 */ |
|
1688 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); |
|
1689 } |
|
1690 if( pPager->sectorSize<pPager->pageSize ){ |
|
1691 pPager->sectorSize = pPager->pageSize; |
|
1692 } |
|
1693 } |
|
1694 |
|
1695 /* |
|
1696 ** Playback the journal and thus restore the database file to |
|
1697 ** the state it was in before we started making changes. |
|
1698 ** |
|
1699 ** The journal file format is as follows: |
|
1700 ** |
|
1701 ** (1) 8 byte prefix. A copy of aJournalMagic[]. |
|
1702 ** (2) 4 byte big-endian integer which is the number of valid page records |
|
1703 ** in the journal. If this value is 0xffffffff, then compute the |
|
1704 ** number of page records from the journal size. |
|
1705 ** (3) 4 byte big-endian integer which is the initial value for the |
|
1706 ** sanity checksum. |
|
1707 ** (4) 4 byte integer which is the number of pages to truncate the |
|
1708 ** database to during a rollback. |
|
1709 ** (5) 4 byte integer which is the number of bytes in the master journal |
|
1710 ** name. The value may be zero (indicate that there is no master |
|
1711 ** journal.) |
|
1712 ** (6) N bytes of the master journal name. The name will be nul-terminated |
|
1713 ** and might be shorter than the value read from (5). If the first byte |
|
1714 ** of the name is \000 then there is no master journal. The master |
|
1715 ** journal name is stored in UTF-8. |
|
1716 ** (7) Zero or more pages instances, each as follows: |
|
1717 ** + 4 byte page number. |
|
1718 ** + pPager->pageSize bytes of data. |
|
1719 ** + 4 byte checksum |
|
1720 ** |
|
1721 ** When we speak of the journal header, we mean the first 6 items above. |
|
1722 ** Each entry in the journal is an instance of the 7th item. |
|
1723 ** |
|
1724 ** Call the value from the second bullet "nRec". nRec is the number of |
|
1725 ** valid page entries in the journal. In most cases, you can compute the |
|
1726 ** value of nRec from the size of the journal file. But if a power |
|
1727 ** failure occurred while the journal was being written, it could be the |
|
1728 ** case that the size of the journal file had already been increased but |
|
1729 ** the extra entries had not yet made it safely to disk. In such a case, |
|
1730 ** the value of nRec computed from the file size would be too large. For |
|
1731 ** that reason, we always use the nRec value in the header. |
|
1732 ** |
|
1733 ** If the nRec value is 0xffffffff it means that nRec should be computed |
|
1734 ** from the file size. This value is used when the user selects the |
|
1735 ** no-sync option for the journal. A power failure could lead to corruption |
|
1736 ** in this case. But for things like temporary table (which will be |
|
1737 ** deleted when the power is restored) we don't care. |
|
1738 ** |
|
1739 ** If the file opened as the journal file is not a well-formed |
|
1740 ** journal file then all pages up to the first corrupted page are rolled |
|
1741 ** back (or no pages if the journal header is corrupted). The journal file |
|
1742 ** is then deleted and SQLITE_OK returned, just as if no corruption had |
|
1743 ** been encountered. |
|
1744 ** |
|
1745 ** If an I/O or malloc() error occurs, the journal-file is not deleted |
|
1746 ** and an error code is returned. |
|
1747 */ |
|
1748 static int pager_playback(Pager *pPager, int isHot){ |
|
1749 sqlite3_vfs *pVfs = pPager->pVfs; |
|
1750 i64 szJ; /* Size of the journal file in bytes */ |
|
1751 u32 nRec; /* Number of Records in the journal */ |
|
1752 int i; /* Loop counter */ |
|
1753 Pgno mxPg = 0; /* Size of the original file in pages */ |
|
1754 int rc; /* Result code of a subroutine */ |
|
1755 char *zMaster = 0; /* Name of master journal file if any */ |
|
1756 |
|
1757 /* Figure out how many records are in the journal. Abort early if |
|
1758 ** the journal is empty. |
|
1759 */ |
|
1760 assert( pPager->journalOpen ); |
|
1761 rc = sqlite3OsFileSize(pPager->jfd, &szJ); |
|
1762 if( rc!=SQLITE_OK || szJ==0 ){ |
|
1763 goto end_playback; |
|
1764 } |
|
1765 |
|
1766 /* Read the master journal name from the journal, if it is present. |
|
1767 ** If a master journal file name is specified, but the file is not |
|
1768 ** present on disk, then the journal is not hot and does not need to be |
|
1769 ** played back. |
|
1770 */ |
|
1771 zMaster = pPager->pTmpSpace; |
|
1772 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); |
|
1773 assert( rc!=SQLITE_DONE ); |
|
1774 if( rc!=SQLITE_OK |
|
1775 || (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS)) |
|
1776 ){ |
|
1777 zMaster = 0; |
|
1778 if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
|
1779 goto end_playback; |
|
1780 } |
|
1781 pPager->journalOff = 0; |
|
1782 zMaster = 0; |
|
1783 |
|
1784 /* This loop terminates either when the readJournalHdr() call returns |
|
1785 ** SQLITE_DONE or an IO error occurs. */ |
|
1786 while( 1 ){ |
|
1787 |
|
1788 /* Read the next journal header from the journal file. If there are |
|
1789 ** not enough bytes left in the journal file for a complete header, or |
|
1790 ** it is corrupted, then a process must of failed while writing it. |
|
1791 ** This indicates nothing more needs to be rolled back. |
|
1792 */ |
|
1793 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); |
|
1794 if( rc!=SQLITE_OK ){ |
|
1795 if( rc==SQLITE_DONE ){ |
|
1796 rc = SQLITE_OK; |
|
1797 } |
|
1798 goto end_playback; |
|
1799 } |
|
1800 |
|
1801 /* If nRec is 0xffffffff, then this journal was created by a process |
|
1802 ** working in no-sync mode. This means that the rest of the journal |
|
1803 ** file consists of pages, there are no more journal headers. Compute |
|
1804 ** the value of nRec based on this assumption. |
|
1805 */ |
|
1806 if( nRec==0xffffffff ){ |
|
1807 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); |
|
1808 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); |
|
1809 } |
|
1810 |
|
1811 /* If nRec is 0 and this rollback is of a transaction created by this |
|
1812 ** process and if this is the final header in the journal, then it means |
|
1813 ** that this part of the journal was being filled but has not yet been |
|
1814 ** synced to disk. Compute the number of pages based on the remaining |
|
1815 ** size of the file. |
|
1816 ** |
|
1817 ** The third term of the test was added to fix ticket #2565. |
|
1818 */ |
|
1819 if( nRec==0 && !isHot && |
|
1820 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ |
|
1821 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); |
|
1822 } |
|
1823 |
|
1824 /* If this is the first header read from the journal, truncate the |
|
1825 ** database file back to its original size. |
|
1826 */ |
|
1827 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ |
|
1828 rc = pager_truncate(pPager, mxPg); |
|
1829 if( rc!=SQLITE_OK ){ |
|
1830 goto end_playback; |
|
1831 } |
|
1832 } |
|
1833 |
|
1834 /* Copy original pages out of the journal and back into the database file. |
|
1835 */ |
|
1836 for(i=0; i<nRec; i++){ |
|
1837 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); |
|
1838 if( rc!=SQLITE_OK ){ |
|
1839 if( rc==SQLITE_DONE ){ |
|
1840 rc = SQLITE_OK; |
|
1841 pPager->journalOff = szJ; |
|
1842 break; |
|
1843 }else{ |
|
1844 goto end_playback; |
|
1845 } |
|
1846 } |
|
1847 } |
|
1848 } |
|
1849 /*NOTREACHED*/ |
|
1850 assert( 0 ); |
|
1851 |
|
1852 end_playback: |
|
1853 if( rc==SQLITE_OK ){ |
|
1854 zMaster = pPager->pTmpSpace; |
|
1855 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); |
|
1856 } |
|
1857 if( rc==SQLITE_OK ){ |
|
1858 rc = pager_end_transaction(pPager); |
|
1859 } |
|
1860 if( rc==SQLITE_OK && zMaster[0] ){ |
|
1861 /* If there was a master journal and this routine will return success, |
|
1862 ** see if it is possible to delete the master journal. |
|
1863 */ |
|
1864 rc = pager_delmaster(pPager, zMaster); |
|
1865 } |
|
1866 |
|
1867 /* The Pager.sectorSize variable may have been updated while rolling |
|
1868 ** back a journal created by a process with a different sector size |
|
1869 ** value. Reset it to the correct value for this process. |
|
1870 */ |
|
1871 setSectorSize(pPager); |
|
1872 return rc; |
|
1873 } |
|
1874 |
|
1875 /* |
|
1876 ** Playback the statement journal. |
|
1877 ** |
|
1878 ** This is similar to playing back the transaction journal but with |
|
1879 ** a few extra twists. |
|
1880 ** |
|
1881 ** (1) The number of pages in the database file at the start of |
|
1882 ** the statement is stored in pPager->stmtSize, not in the |
|
1883 ** journal file itself. |
|
1884 ** |
|
1885 ** (2) In addition to playing back the statement journal, also |
|
1886 ** playback all pages of the transaction journal beginning |
|
1887 ** at offset pPager->stmtJSize. |
|
1888 */ |
|
1889 static int pager_stmt_playback(Pager *pPager){ |
|
1890 i64 szJ; /* Size of the full journal */ |
|
1891 i64 hdrOff; |
|
1892 int nRec; /* Number of Records */ |
|
1893 int i; /* Loop counter */ |
|
1894 int rc; |
|
1895 |
|
1896 szJ = pPager->journalOff; |
|
1897 #ifndef NDEBUG |
|
1898 { |
|
1899 i64 os_szJ; |
|
1900 rc = sqlite3OsFileSize(pPager->jfd, &os_szJ); |
|
1901 if( rc!=SQLITE_OK ) return rc; |
|
1902 assert( szJ==os_szJ ); |
|
1903 } |
|
1904 #endif |
|
1905 |
|
1906 /* Set hdrOff to be the offset just after the end of the last journal |
|
1907 ** page written before the first journal-header for this statement |
|
1908 ** transaction was written, or the end of the file if no journal |
|
1909 ** header was written. |
|
1910 */ |
|
1911 hdrOff = pPager->stmtHdrOff; |
|
1912 assert( pPager->fullSync || !hdrOff ); |
|
1913 if( !hdrOff ){ |
|
1914 hdrOff = szJ; |
|
1915 } |
|
1916 |
|
1917 /* Truncate the database back to its original size. |
|
1918 */ |
|
1919 rc = pager_truncate(pPager, pPager->stmtSize); |
|
1920 assert( pPager->state>=PAGER_SHARED ); |
|
1921 |
|
1922 /* Figure out how many records are in the statement journal. |
|
1923 */ |
|
1924 assert( pPager->stmtInUse && pPager->journalOpen ); |
|
1925 nRec = pPager->stmtNRec; |
|
1926 |
|
1927 /* Copy original pages out of the statement journal and back into the |
|
1928 ** database file. Note that the statement journal omits checksums from |
|
1929 ** each record since power-failure recovery is not important to statement |
|
1930 ** journals. |
|
1931 */ |
|
1932 for(i=0; i<nRec; i++){ |
|
1933 i64 offset = i*(4+pPager->pageSize); |
|
1934 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); |
|
1935 assert( rc!=SQLITE_DONE ); |
|
1936 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1937 } |
|
1938 |
|
1939 /* Now roll some pages back from the transaction journal. Pager.stmtJSize |
|
1940 ** was the size of the journal file when this statement was started, so |
|
1941 ** everything after that needs to be rolled back, either into the |
|
1942 ** database, the memory cache, or both. |
|
1943 ** |
|
1944 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start |
|
1945 ** of the first journal header written during this statement transaction. |
|
1946 */ |
|
1947 pPager->journalOff = pPager->stmtJSize; |
|
1948 pPager->cksumInit = pPager->stmtCksum; |
|
1949 while( pPager->journalOff < hdrOff ){ |
|
1950 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); |
|
1951 assert( rc!=SQLITE_DONE ); |
|
1952 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1953 } |
|
1954 |
|
1955 while( pPager->journalOff < szJ ){ |
|
1956 u32 nJRec; /* Number of Journal Records */ |
|
1957 u32 dummy; |
|
1958 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); |
|
1959 if( rc!=SQLITE_OK ){ |
|
1960 assert( rc!=SQLITE_DONE ); |
|
1961 goto end_stmt_playback; |
|
1962 } |
|
1963 if( nJRec==0 ){ |
|
1964 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); |
|
1965 } |
|
1966 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ |
|
1967 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); |
|
1968 assert( rc!=SQLITE_DONE ); |
|
1969 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1970 } |
|
1971 } |
|
1972 |
|
1973 pPager->journalOff = szJ; |
|
1974 |
|
1975 end_stmt_playback: |
|
1976 if( rc==SQLITE_OK) { |
|
1977 pPager->journalOff = szJ; |
|
1978 /* pager_reload_cache(pPager); */ |
|
1979 } |
|
1980 return rc; |
|
1981 } |
|
1982 |
|
1983 /* |
|
1984 ** Change the maximum number of in-memory pages that are allowed. |
|
1985 */ |
|
1986 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ |
|
1987 if( mxPage>10 ){ |
|
1988 pPager->mxPage = mxPage; |
|
1989 }else{ |
|
1990 pPager->mxPage = 10; |
|
1991 } |
|
1992 } |
|
1993 |
|
1994 /* |
|
1995 ** Adjust the robustness of the database to damage due to OS crashes |
|
1996 ** or power failures by changing the number of syncs()s when writing |
|
1997 ** the rollback journal. There are three levels: |
|
1998 ** |
|
1999 ** OFF sqlite3OsSync() is never called. This is the default |
|
2000 ** for temporary and transient files. |
|
2001 ** |
|
2002 ** NORMAL The journal is synced once before writes begin on the |
|
2003 ** database. This is normally adequate protection, but |
|
2004 ** it is theoretically possible, though very unlikely, |
|
2005 ** that an inopertune power failure could leave the journal |
|
2006 ** in a state which would cause damage to the database |
|
2007 ** when it is rolled back. |
|
2008 ** |
|
2009 ** FULL The journal is synced twice before writes begin on the |
|
2010 ** database (with some additional information - the nRec field |
|
2011 ** of the journal header - being written in between the two |
|
2012 ** syncs). If we assume that writing a |
|
2013 ** single disk sector is atomic, then this mode provides |
|
2014 ** assurance that the journal will not be corrupted to the |
|
2015 ** point of causing damage to the database during rollback. |
|
2016 ** |
|
2017 ** Numeric values associated with these states are OFF==1, NORMAL=2, |
|
2018 ** and FULL=3. |
|
2019 */ |
|
2020 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
|
2021 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){ |
|
2022 pPager->noSync = level==1 || pPager->tempFile; |
|
2023 pPager->fullSync = level==3 && !pPager->tempFile; |
|
2024 pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); |
|
2025 if( pPager->noSync ) pPager->needSync = 0; |
|
2026 } |
|
2027 #endif |
|
2028 |
|
2029 /* |
|
2030 ** The following global variable is incremented whenever the library |
|
2031 ** attempts to open a temporary file. This information is used for |
|
2032 ** testing and analysis only. |
|
2033 */ |
|
2034 #ifdef SQLITE_TEST |
|
2035 int sqlite3_opentemp_count = 0; |
|
2036 #endif |
|
2037 |
|
2038 /* |
|
2039 ** Open a temporary file. |
|
2040 ** |
|
2041 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some |
|
2042 ** other error code if we fail. The OS will automatically delete the temporary |
|
2043 ** file when it is closed. |
|
2044 */ |
|
2045 static int sqlite3PagerOpentemp( |
|
2046 sqlite3_vfs *pVfs, /* The virtual file system layer */ |
|
2047 sqlite3_file *pFile, /* Write the file descriptor here */ |
|
2048 char *zFilename, /* Name of the file. Might be NULL */ |
|
2049 int vfsFlags /* Flags passed through to the VFS */ |
|
2050 ){ |
|
2051 int rc; |
|
2052 assert( zFilename!=0 ); |
|
2053 |
|
2054 #ifdef SQLITE_TEST |
|
2055 sqlite3_opentemp_count++; /* Used for testing and analysis only */ |
|
2056 #endif |
|
2057 |
|
2058 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | |
|
2059 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; |
|
2060 rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0); |
|
2061 assert( rc!=SQLITE_OK || pFile->pMethods ); |
|
2062 return rc; |
|
2063 } |
|
2064 |
|
2065 |
|
2066 //void fopenTest() |
|
2067 //{ |
|
2068 // FILE *fp = fopen("c:\\data\\redfivelabs\\temp\\sqlite.log", "w+"); |
|
2069 // if (fp != NULL) |
|
2070 // { |
|
2071 // char tmp[256]; |
|
2072 // sprintf(tmp, "Hallo Welt"); |
|
2073 // fwrite(tmp, strlen(tmp), 1, fp); |
|
2074 // fclose(fp); |
|
2075 // } |
|
2076 // return 191280; |
|
2077 //} |
|
2078 |
|
2079 /* |
|
2080 ** Create a new page cache and put a pointer to the page cache in *ppPager. |
|
2081 ** The file to be cached need not exist. The file is not locked until |
|
2082 ** the first call to sqlite3PagerGet() and is only held open until the |
|
2083 ** last page is released using sqlite3PagerUnref(). |
|
2084 ** |
|
2085 ** If zFilename is NULL then a randomly-named temporary file is created |
|
2086 ** and used as the file to be cached. The file will be deleted |
|
2087 ** automatically when it is closed. |
|
2088 ** |
|
2089 ** If zFilename is ":memory:" then all information is held in cache. |
|
2090 ** It is never written to disk. This can be used to implement an |
|
2091 ** in-memory database. |
|
2092 */ |
|
2093 int sqlite3PagerOpen( |
|
2094 sqlite3_vfs *pVfs, /* The virtual file system to use */ |
|
2095 Pager **ppPager, /* Return the Pager structure here */ |
|
2096 const char *zFilename, /* Name of the database file to open */ |
|
2097 int nExtra, /* Extra bytes append to each in-memory page */ |
|
2098 int flags, /* flags controlling this file */ |
|
2099 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ |
|
2100 ){ |
|
2101 u8 *pPtr; |
|
2102 Pager *pPager = 0; |
|
2103 int rc = SQLITE_OK; |
|
2104 int i; |
|
2105 int tempFile = 0; |
|
2106 int memDb = 0; |
|
2107 int readOnly = 0; |
|
2108 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; |
|
2109 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; |
|
2110 int journalFileSize = sqlite3JournalSize(pVfs); |
|
2111 int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE; |
|
2112 char *zPathname; |
|
2113 int nPathname; |
|
2114 |
|
2115 |
|
2116 /* The default return is a NULL pointer */ |
|
2117 *ppPager = 0; |
|
2118 |
|
2119 /* Compute the full pathname */ |
|
2120 nPathname = pVfs->mxPathname+1; |
|
2121 zPathname = (char*)sqlite3_malloc(nPathname); |
|
2122 if( zPathname==0 ){ |
|
2123 return SQLITE_NOMEM; |
|
2124 } |
|
2125 if( zFilename && zFilename[0] ){ |
|
2126 #ifndef SQLITE_OMIT_MEMORYDB |
|
2127 if( strcmp(zFilename,":memory:")==0 ){ |
|
2128 memDb = 1; |
|
2129 zPathname[0] = 0; |
|
2130 }else |
|
2131 #endif |
|
2132 { |
|
2133 |
|
2134 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); |
|
2135 } |
|
2136 }else{ |
|
2137 rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname); |
|
2138 } |
|
2139 if( rc!=SQLITE_OK ){ |
|
2140 sqlite3_free(zPathname); |
|
2141 return rc; |
|
2142 } |
|
2143 |
|
2144 nPathname = strlen(zPathname); |
|
2145 |
|
2146 /* Allocate memory for the pager structure */ |
|
2147 pPager = (Pager*)sqlite3MallocZero( |
|
2148 sizeof(*pPager) + /* Pager structure */ |
|
2149 journalFileSize + /* The journal file structure */ |
|
2150 pVfs->szOsFile * 2 + /* The db and stmt journal files */ |
|
2151 4*nPathname + 40 /* zFilename, zDirectory, zJournal, zStmtJrnl */ |
|
2152 ); |
|
2153 if( !pPager ){ |
|
2154 sqlite3_free(zPathname); |
|
2155 return SQLITE_NOMEM; |
|
2156 } |
|
2157 pPtr = (u8 *)&pPager[1]; |
|
2158 pPager->vfsFlags = vfsFlags; |
|
2159 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; |
|
2160 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; |
|
2161 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; |
|
2162 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; |
|
2163 pPager->zDirectory = &pPager->zFilename[nPathname+1]; |
|
2164 pPager->zJournal = &pPager->zDirectory[nPathname+1]; |
|
2165 pPager->zStmtJrnl = &pPager->zJournal[nPathname+10]; |
|
2166 pPager->pVfs = pVfs; |
|
2167 memcpy(pPager->zFilename, zPathname, nPathname+1); |
|
2168 sqlite3_free(zPathname); |
|
2169 |
|
2170 |
|
2171 /* Open the pager file. |
|
2172 */ |
|
2173 if( zFilename && zFilename[0] && !memDb ){ |
|
2174 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ |
|
2175 rc = SQLITE_CANTOPEN; |
|
2176 }else{ |
|
2177 int fout = 0; |
|
2178 |
|
2179 rc = winOpen(pVfs, pPager->zFilename, pPager->fd, |
|
2180 pPager->vfsFlags, &fout); |
|
2181 readOnly = (fout&SQLITE_OPEN_READONLY); |
|
2182 |
|
2183 /* If the file was successfully opened for read/write access, |
|
2184 ** choose a default page size in case we have to create the |
|
2185 ** database file. The default page size is the maximum of: |
|
2186 ** |
|
2187 ** + SQLITE_DEFAULT_PAGE_SIZE, |
|
2188 ** + The value returned by sqlite3OsSectorSize() |
|
2189 ** + The largest page size that can be written atomically. |
|
2190 */ |
|
2191 if( rc==SQLITE_OK && !readOnly ){ |
|
2192 int iSectorSize = sqlite3OsSectorSize(pPager->fd); |
|
2193 if( nDefaultPage<iSectorSize ){ |
|
2194 nDefaultPage = iSectorSize; |
|
2195 } |
|
2196 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
2197 { |
|
2198 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
|
2199 int ii; |
|
2200 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
|
2201 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); |
|
2202 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); |
|
2203 for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ |
|
2204 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii; |
|
2205 } |
|
2206 } |
|
2207 #endif |
|
2208 if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ |
|
2209 nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE; |
|
2210 } |
|
2211 } |
|
2212 } |
|
2213 }else if( !memDb ){ |
|
2214 /* If a temporary file is requested, it is not opened immediately. |
|
2215 ** In this case we accept the default page size and delay actually |
|
2216 ** opening the file until the first call to OsWrite(). |
|
2217 */ |
|
2218 tempFile = 1; |
|
2219 pPager->state = PAGER_EXCLUSIVE; |
|
2220 } |
|
2221 |
|
2222 if( pPager && rc==SQLITE_OK ){ |
|
2223 pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage); |
|
2224 } |
|
2225 |
|
2226 /* If an error occured in either of the blocks above. |
|
2227 ** Free the Pager structure and close the file. |
|
2228 ** Since the pager is not allocated there is no need to set |
|
2229 ** any Pager.errMask variables. |
|
2230 */ |
|
2231 if( !pPager || !pPager->pTmpSpace ){ |
|
2232 sqlite3OsClose(pPager->fd); |
|
2233 sqlite3_free(pPager); |
|
2234 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); |
|
2235 } |
|
2236 |
|
2237 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); |
|
2238 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) |
|
2239 |
|
2240 /* Fill in Pager.zDirectory[] */ |
|
2241 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); |
|
2242 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} |
|
2243 if( i>0 ) pPager->zDirectory[i-1] = 0; |
|
2244 |
|
2245 /* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */ |
|
2246 memcpy(pPager->zJournal, pPager->zFilename, nPathname); |
|
2247 memcpy(&pPager->zJournal[nPathname], "-journal", 9); |
|
2248 memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname); |
|
2249 memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10); |
|
2250 |
|
2251 /* pPager->journalOpen = 0; */ |
|
2252 pPager->useJournal = useJournal && !memDb; |
|
2253 pPager->noReadlock = noReadlock && readOnly; |
|
2254 /* pPager->stmtOpen = 0; */ |
|
2255 /* pPager->stmtInUse = 0; */ |
|
2256 /* pPager->nRef = 0; */ |
|
2257 pPager->dbSize = memDb-1; |
|
2258 pPager->pageSize = nDefaultPage; |
|
2259 /* pPager->stmtSize = 0; */ |
|
2260 /* pPager->stmtJSize = 0; */ |
|
2261 /* pPager->nPage = 0; */ |
|
2262 pPager->mxPage = 100; |
|
2263 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; |
|
2264 /* pPager->state = PAGER_UNLOCK; */ |
|
2265 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); |
|
2266 /* pPager->errMask = 0; */ |
|
2267 pPager->tempFile = tempFile; |
|
2268 assert( tempFile==PAGER_LOCKINGMODE_NORMAL |
|
2269 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); |
|
2270 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); |
|
2271 pPager->exclusiveMode = tempFile; |
|
2272 pPager->memDb = memDb; |
|
2273 pPager->readOnly = readOnly; |
|
2274 /* pPager->needSync = 0; */ |
|
2275 pPager->noSync = pPager->tempFile || !useJournal; |
|
2276 pPager->fullSync = (pPager->noSync?0:1); |
|
2277 pPager->sync_flags = SQLITE_SYNC_NORMAL; |
|
2278 /* pPager->pFirst = 0; */ |
|
2279 /* pPager->pFirstSynced = 0; */ |
|
2280 /* pPager->pLast = 0; */ |
|
2281 pPager->nExtra = FORCE_ALIGNMENT(nExtra); |
|
2282 assert(pPager->fd->pMethods||memDb||tempFile); |
|
2283 if( !memDb ){ |
|
2284 setSectorSize(pPager); |
|
2285 } |
|
2286 /* pPager->pBusyHandler = 0; */ |
|
2287 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ |
|
2288 *ppPager = pPager; |
|
2289 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
2290 pPager->iInUseMM = 0; |
|
2291 pPager->iInUseDB = 0; |
|
2292 if( !memDb ){ |
|
2293 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); |
|
2294 sqlite3_mutex_enter(mutex); |
|
2295 pPager->pNext = sqlite3PagerList; |
|
2296 if( sqlite3PagerList ){ |
|
2297 assert( sqlite3PagerList->pPrev==0 ); |
|
2298 sqlite3PagerList->pPrev = pPager; |
|
2299 } |
|
2300 pPager->pPrev = 0; |
|
2301 sqlite3PagerList = pPager; |
|
2302 sqlite3_mutex_leave(mutex); |
|
2303 } |
|
2304 #endif |
|
2305 return SQLITE_OK; |
|
2306 } |
|
2307 |
|
2308 /* |
|
2309 ** Set the busy handler function. |
|
2310 */ |
|
2311 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ |
|
2312 pPager->pBusyHandler = pBusyHandler; |
|
2313 } |
|
2314 |
|
2315 /* |
|
2316 ** Set the destructor for this pager. If not NULL, the destructor is called |
|
2317 ** when the reference count on each page reaches zero. The destructor can |
|
2318 ** be used to clean up information in the extra segment appended to each page. |
|
2319 ** |
|
2320 ** The destructor is not called as a result sqlite3PagerClose(). |
|
2321 ** Destructors are only called by sqlite3PagerUnref(). |
|
2322 */ |
|
2323 void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){ |
|
2324 pPager->xDestructor = xDesc; |
|
2325 } |
|
2326 |
|
2327 /* |
|
2328 ** Set the reinitializer for this pager. If not NULL, the reinitializer |
|
2329 ** is called when the content of a page in cache is restored to its original |
|
2330 ** value as a result of a rollback. The callback gives higher-level code |
|
2331 ** an opportunity to restore the EXTRA section to agree with the restored |
|
2332 ** page data. |
|
2333 */ |
|
2334 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){ |
|
2335 pPager->xReiniter = xReinit; |
|
2336 } |
|
2337 |
|
2338 /* |
|
2339 ** Set the page size to *pPageSize. If the suggest new page size is |
|
2340 ** inappropriate, then an alternative page size is set to that |
|
2341 ** value before returning. |
|
2342 */ |
|
2343 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ |
|
2344 int rc = SQLITE_OK; |
|
2345 u16 pageSize = *pPageSize; |
|
2346 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); |
|
2347 if( pageSize && pageSize!=pPager->pageSize |
|
2348 && !pPager->memDb && pPager->nRef==0 |
|
2349 ){ |
|
2350 char *pNew = (char *)sqlite3_malloc(pageSize); |
|
2351 if( !pNew ){ |
|
2352 rc = SQLITE_NOMEM; |
|
2353 }else{ |
|
2354 pagerEnter(pPager); |
|
2355 pager_reset(pPager); |
|
2356 pPager->pageSize = pageSize; |
|
2357 setSectorSize(pPager); |
|
2358 sqlite3_free(pPager->pTmpSpace); |
|
2359 pPager->pTmpSpace = pNew; |
|
2360 pagerLeave(pPager); |
|
2361 } |
|
2362 } |
|
2363 *pPageSize = pPager->pageSize; |
|
2364 return rc; |
|
2365 } |
|
2366 |
|
2367 /* |
|
2368 ** Return a pointer to the "temporary page" buffer held internally |
|
2369 ** by the pager. This is a buffer that is big enough to hold the |
|
2370 ** entire content of a database page. This buffer is used internally |
|
2371 ** during rollback and will be overwritten whenever a rollback |
|
2372 ** occurs. But other modules are free to use it too, as long as |
|
2373 ** no rollbacks are happening. |
|
2374 */ |
|
2375 void *sqlite3PagerTempSpace(Pager *pPager){ |
|
2376 return pPager->pTmpSpace; |
|
2377 } |
|
2378 |
|
2379 /* |
|
2380 ** Attempt to set the maximum database page count if mxPage is positive. |
|
2381 ** Make no changes if mxPage is zero or negative. And never reduce the |
|
2382 ** maximum page count below the current size of the database. |
|
2383 ** |
|
2384 ** Regardless of mxPage, return the current maximum page count. |
|
2385 */ |
|
2386 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ |
|
2387 if( mxPage>0 ){ |
|
2388 pPager->mxPgno = mxPage; |
|
2389 } |
|
2390 sqlite3PagerPagecount(pPager); |
|
2391 return pPager->mxPgno; |
|
2392 } |
|
2393 |
|
2394 /* |
|
2395 ** The following set of routines are used to disable the simulated |
|
2396 ** I/O error mechanism. These routines are used to avoid simulated |
|
2397 ** errors in places where we do not care about errors. |
|
2398 ** |
|
2399 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops |
|
2400 ** and generate no code. |
|
2401 */ |
|
2402 #ifdef SQLITE_TEST |
|
2403 extern int sqlite3_io_error_pending; |
|
2404 extern int sqlite3_io_error_hit; |
|
2405 static int saved_cnt; |
|
2406 void disable_simulated_io_errors(void){ |
|
2407 saved_cnt = sqlite3_io_error_pending; |
|
2408 sqlite3_io_error_pending = -1; |
|
2409 } |
|
2410 void enable_simulated_io_errors(void){ |
|
2411 sqlite3_io_error_pending = saved_cnt; |
|
2412 } |
|
2413 #else |
|
2414 # define disable_simulated_io_errors() |
|
2415 # define enable_simulated_io_errors() |
|
2416 #endif |
|
2417 |
|
2418 /* |
|
2419 ** Read the first N bytes from the beginning of the file into memory |
|
2420 ** that pDest points to. |
|
2421 ** |
|
2422 ** No error checking is done. The rational for this is that this function |
|
2423 ** may be called even if the file does not exist or contain a header. In |
|
2424 ** these cases sqlite3OsRead() will return an error, to which the correct |
|
2425 ** response is to zero the memory at pDest and continue. A real IO error |
|
2426 ** will presumably recur and be picked up later (Todo: Think about this). |
|
2427 */ |
|
2428 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ |
|
2429 int rc = SQLITE_OK; |
|
2430 memset(pDest, 0, N); |
|
2431 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); |
|
2432 if( pPager->fd->isOpen ){ |
|
2433 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) |
|
2434 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); |
|
2435 if( rc==SQLITE_IOERR_SHORT_READ ){ |
|
2436 rc = SQLITE_OK; |
|
2437 } |
|
2438 } |
|
2439 return rc; |
|
2440 } |
|
2441 |
|
2442 /* |
|
2443 ** Return the total number of pages in the disk file associated with |
|
2444 ** pPager. |
|
2445 ** |
|
2446 ** If the PENDING_BYTE lies on the page directly after the end of the |
|
2447 ** file, then consider this page part of the file too. For example, if |
|
2448 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the |
|
2449 ** file is 4096 bytes, 5 is returned instead of 4. |
|
2450 */ |
|
2451 int sqlite3PagerPagecount(Pager *pPager){ |
|
2452 i64 n = 0; |
|
2453 int rc; |
|
2454 assert( pPager!=0 ); |
|
2455 if( pPager->errCode ){ |
|
2456 return 0; |
|
2457 } |
|
2458 if( pPager->dbSize>=0 ){ |
|
2459 n = pPager->dbSize; |
|
2460 } else { |
|
2461 assert(pPager->fd->pMethods||pPager->tempFile); |
|
2462 if( (pPager->fd->isOpen) |
|
2463 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ |
|
2464 pPager->nRef++; |
|
2465 pager_error(pPager, rc); |
|
2466 pPager->nRef--; |
|
2467 return 0; |
|
2468 } |
|
2469 if( n>0 && n<pPager->pageSize ){ |
|
2470 n = 1; |
|
2471 }else{ |
|
2472 n /= pPager->pageSize; |
|
2473 } |
|
2474 if( pPager->state!=PAGER_UNLOCK ){ |
|
2475 pPager->dbSize = n; |
|
2476 } |
|
2477 } |
|
2478 if( n==(PENDING_BYTE/pPager->pageSize) ){ |
|
2479 n++; |
|
2480 } |
|
2481 if( n>pPager->mxPgno ){ |
|
2482 pPager->mxPgno = n; |
|
2483 } |
|
2484 return n; |
|
2485 } |
|
2486 |
|
2487 |
|
2488 #ifndef SQLITE_OMIT_MEMORYDB |
|
2489 /* |
|
2490 ** Clear a PgHistory block |
|
2491 */ |
|
2492 static void clearHistory(PgHistory *pHist){ |
|
2493 sqlite3_free(pHist->pOrig); |
|
2494 sqlite3_free(pHist->pStmt); |
|
2495 pHist->pOrig = 0; |
|
2496 pHist->pStmt = 0; |
|
2497 } |
|
2498 #else |
|
2499 #define clearHistory(x) |
|
2500 #endif |
|
2501 |
|
2502 /* |
|
2503 ** Forward declaration |
|
2504 */ |
|
2505 static int syncJournal(Pager*); |
|
2506 |
|
2507 /* |
|
2508 ** Unlink pPg from its hash chain. Also set the page number to 0 to indicate |
|
2509 ** that the page is not part of any hash chain. This is required because the |
|
2510 ** sqlite3PagerMovepage() routine can leave a page in the |
|
2511 ** pNextFree/pPrevFree list that is not a part of any hash-chain. |
|
2512 */ |
|
2513 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ |
|
2514 if( pPg->pgno==0 ){ |
|
2515 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); |
|
2516 return; |
|
2517 } |
|
2518 if( pPg->pNextHash ){ |
|
2519 pPg->pNextHash->pPrevHash = pPg->pPrevHash; |
|
2520 } |
|
2521 if( pPg->pPrevHash ){ |
|
2522 assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); |
|
2523 pPg->pPrevHash->pNextHash = pPg->pNextHash; |
|
2524 }else{ |
|
2525 int h = pPg->pgno & (pPager->nHash-1); |
|
2526 pPager->aHash[h] = pPg->pNextHash; |
|
2527 } |
|
2528 if( MEMDB ){ |
|
2529 clearHistory(PGHDR_TO_HIST(pPg, pPager)); |
|
2530 } |
|
2531 pPg->pgno = 0; |
|
2532 pPg->pNextHash = pPg->pPrevHash = 0; |
|
2533 } |
|
2534 |
|
2535 /* |
|
2536 ** Unlink a page from the free list (the list of all pages where nRef==0) |
|
2537 ** and from its hash collision chain. |
|
2538 */ |
|
2539 static void unlinkPage(PgHdr *pPg){ |
|
2540 Pager *pPager = pPg->pPager; |
|
2541 |
|
2542 /* Unlink from free page list */ |
|
2543 lruListRemove(pPg); |
|
2544 |
|
2545 /* Unlink from the pgno hash table */ |
|
2546 unlinkHashChain(pPager, pPg); |
|
2547 } |
|
2548 |
|
2549 /* |
|
2550 ** This routine is used to truncate the cache when a database |
|
2551 ** is truncated. Drop from the cache all pages whose pgno is |
|
2552 ** larger than pPager->dbSize and is unreferenced. |
|
2553 ** |
|
2554 ** Referenced pages larger than pPager->dbSize are zeroed. |
|
2555 ** |
|
2556 ** Actually, at the point this routine is called, it would be |
|
2557 ** an error to have a referenced page. But rather than delete |
|
2558 ** that page and guarantee a subsequent segfault, it seems better |
|
2559 ** to zero it and hope that we error out sanely. |
|
2560 */ |
|
2561 static void pager_truncate_cache(Pager *pPager){ |
|
2562 PgHdr *pPg; |
|
2563 PgHdr **ppPg; |
|
2564 int dbSize = pPager->dbSize; |
|
2565 |
|
2566 ppPg = &pPager->pAll; |
|
2567 while( (pPg = *ppPg)!=0 ){ |
|
2568 if( pPg->pgno<=dbSize ){ |
|
2569 ppPg = &pPg->pNextAll; |
|
2570 }else if( pPg->nRef>0 ){ |
|
2571 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); |
|
2572 ppPg = &pPg->pNextAll; |
|
2573 }else{ |
|
2574 *ppPg = pPg->pNextAll; |
|
2575 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); |
|
2576 PAGER_INCR(sqlite3_pager_pgfree_count); |
|
2577 unlinkPage(pPg); |
|
2578 makeClean(pPg); |
|
2579 sqlite3_free(pPg); |
|
2580 pPager->nPage--; |
|
2581 } |
|
2582 } |
|
2583 } |
|
2584 |
|
2585 /* |
|
2586 ** Try to obtain a lock on a file. Invoke the busy callback if the lock |
|
2587 ** is currently not available. Repeat until the busy callback returns |
|
2588 ** false or until the lock succeeds. |
|
2589 ** |
|
2590 ** Return SQLITE_OK on success and an error code if we cannot obtain |
|
2591 ** the lock. |
|
2592 */ |
|
2593 static int pager_wait_on_lock(Pager *pPager, int locktype){ |
|
2594 int rc; |
|
2595 |
|
2596 /* The OS lock values must be the same as the Pager lock values */ |
|
2597 assert( PAGER_SHARED==SHARED_LOCK ); |
|
2598 assert( PAGER_RESERVED==RESERVED_LOCK ); |
|
2599 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); |
|
2600 |
|
2601 /* If the file is currently unlocked then the size must be unknown */ |
|
2602 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); |
|
2603 |
|
2604 if( pPager->state>=locktype ){ |
|
2605 rc = SQLITE_OK; |
|
2606 }else{ |
|
2607 do { |
|
2608 rc = sqlite3OsLock(pPager->fd, locktype); |
|
2609 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); |
|
2610 if( rc==SQLITE_OK ){ |
|
2611 pPager->state = locktype; |
|
2612 IOTRACE(("LOCK %p %d\n", pPager, locktype)) |
|
2613 } |
|
2614 } |
|
2615 return rc; |
|
2616 } |
|
2617 |
|
2618 /* |
|
2619 ** Truncate the file to the number of pages specified. |
|
2620 */ |
|
2621 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ |
|
2622 int rc; |
|
2623 assert( pPager->state>=PAGER_SHARED || MEMDB ); |
|
2624 sqlite3PagerPagecount(pPager); |
|
2625 if( pPager->errCode ){ |
|
2626 rc = pPager->errCode; |
|
2627 return rc; |
|
2628 } |
|
2629 if( nPage>=(unsigned)pPager->dbSize ){ |
|
2630 return SQLITE_OK; |
|
2631 } |
|
2632 if( MEMDB ){ |
|
2633 pPager->dbSize = nPage; |
|
2634 pager_truncate_cache(pPager); |
|
2635 return SQLITE_OK; |
|
2636 } |
|
2637 pagerEnter(pPager); |
|
2638 rc = syncJournal(pPager); |
|
2639 pagerLeave(pPager); |
|
2640 if( rc!=SQLITE_OK ){ |
|
2641 return rc; |
|
2642 } |
|
2643 |
|
2644 /* Get an exclusive lock on the database before truncating. */ |
|
2645 pagerEnter(pPager); |
|
2646 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
2647 pagerLeave(pPager); |
|
2648 if( rc!=SQLITE_OK ){ |
|
2649 return rc; |
|
2650 } |
|
2651 |
|
2652 rc = pager_truncate(pPager, nPage); |
|
2653 return rc; |
|
2654 } |
|
2655 |
|
2656 /* |
|
2657 ** Shutdown the page cache. Free all memory and close all files. |
|
2658 ** |
|
2659 ** If a transaction was in progress when this routine is called, that |
|
2660 ** transaction is rolled back. All outstanding pages are invalidated |
|
2661 ** and their memory is freed. Any attempt to use a page associated |
|
2662 ** with this page cache after this function returns will likely |
|
2663 ** result in a coredump. |
|
2664 ** |
|
2665 ** This function always succeeds. If a transaction is active an attempt |
|
2666 ** is made to roll it back. If an error occurs during the rollback |
|
2667 ** a hot journal may be left in the filesystem but no error is returned |
|
2668 ** to the caller. |
|
2669 */ |
|
2670 int sqlite3PagerClose(Pager *pPager){ |
|
2671 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
2672 if( !MEMDB ){ |
|
2673 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); |
|
2674 sqlite3_mutex_enter(mutex); |
|
2675 if( pPager->pPrev ){ |
|
2676 pPager->pPrev->pNext = pPager->pNext; |
|
2677 }else{ |
|
2678 sqlite3PagerList = pPager->pNext; |
|
2679 } |
|
2680 if( pPager->pNext ){ |
|
2681 pPager->pNext->pPrev = pPager->pPrev; |
|
2682 } |
|
2683 sqlite3_mutex_leave(mutex); |
|
2684 } |
|
2685 #endif |
|
2686 |
|
2687 disable_simulated_io_errors(); |
|
2688 pPager->errCode = 0; |
|
2689 pPager->exclusiveMode = 0; |
|
2690 pager_reset(pPager); |
|
2691 pagerUnlockAndRollback(pPager); |
|
2692 enable_simulated_io_errors(); |
|
2693 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); |
|
2694 IOTRACE(("CLOSE %p\n", pPager)) |
|
2695 assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) ); |
|
2696 if( pPager->journalOpen ){ |
|
2697 sqlite3OsClose(pPager->jfd); |
|
2698 } |
|
2699 sqlite3_free(pPager->aInJournal); |
|
2700 if( pPager->stmtOpen ){ |
|
2701 sqlite3OsClose(pPager->stfd); |
|
2702 } |
|
2703 sqlite3OsClose(pPager->fd); |
|
2704 /* Temp files are automatically deleted by the OS |
|
2705 ** if( pPager->tempFile ){ |
|
2706 ** sqlite3OsDelete(pPager->zFilename); |
|
2707 ** } |
|
2708 */ |
|
2709 |
|
2710 sqlite3_free(pPager->aHash); |
|
2711 sqlite3_free(pPager->pTmpSpace); |
|
2712 sqlite3_free(pPager); |
|
2713 return SQLITE_OK; |
|
2714 } |
|
2715 |
|
2716 #if !defined(NDEBUG) || defined(SQLITE_TEST) |
|
2717 /* |
|
2718 ** Return the page number for the given page data. |
|
2719 */ |
|
2720 Pgno sqlite3PagerPagenumber(DbPage *p){ |
|
2721 return p->pgno; |
|
2722 } |
|
2723 #endif |
|
2724 |
|
2725 /* |
|
2726 ** The page_ref() function increments the reference count for a page. |
|
2727 ** If the page is currently on the freelist (the reference count is zero) then |
|
2728 ** remove it from the freelist. |
|
2729 ** |
|
2730 ** For non-test systems, page_ref() is a macro that calls _page_ref() |
|
2731 ** online of the reference count is zero. For test systems, page_ref() |
|
2732 ** is a real function so that we can set breakpoints and trace it. |
|
2733 */ |
|
2734 static void _page_ref(PgHdr *pPg){ |
|
2735 if( pPg->nRef==0 ){ |
|
2736 /* The page is currently on the freelist. Remove it. */ |
|
2737 lruListRemove(pPg); |
|
2738 pPg->pPager->nRef++; |
|
2739 } |
|
2740 pPg->nRef++; |
|
2741 REFINFO(pPg); |
|
2742 } |
|
2743 #ifdef SQLITE_DEBUG |
|
2744 static void page_ref(PgHdr *pPg){ |
|
2745 if( pPg->nRef==0 ){ |
|
2746 _page_ref(pPg); |
|
2747 }else{ |
|
2748 pPg->nRef++; |
|
2749 REFINFO(pPg); |
|
2750 } |
|
2751 } |
|
2752 #else |
|
2753 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) |
|
2754 #endif |
|
2755 |
|
2756 /* |
|
2757 ** Increment the reference count for a page. The input pointer is |
|
2758 ** a reference to the page data. |
|
2759 */ |
|
2760 int sqlite3PagerRef(DbPage *pPg){ |
|
2761 pagerEnter(pPg->pPager); |
|
2762 page_ref(pPg); |
|
2763 pagerLeave(pPg->pPager); |
|
2764 return SQLITE_OK; |
|
2765 } |
|
2766 |
|
2767 /* |
|
2768 ** Sync the journal. In other words, make sure all the pages that have |
|
2769 ** been written to the journal have actually reached the surface of the |
|
2770 ** disk. It is not safe to modify the original database file until after |
|
2771 ** the journal has been synced. If the original database is modified before |
|
2772 ** the journal is synced and a power failure occurs, the unsynced journal |
|
2773 ** data would be lost and we would be unable to completely rollback the |
|
2774 ** database changes. Database corruption would occur. |
|
2775 ** |
|
2776 ** This routine also updates the nRec field in the header of the journal. |
|
2777 ** (See comments on the pager_playback() routine for additional information.) |
|
2778 ** If the sync mode is FULL, two syncs will occur. First the whole journal |
|
2779 ** is synced, then the nRec field is updated, then a second sync occurs. |
|
2780 ** |
|
2781 ** For temporary databases, we do not care if we are able to rollback |
|
2782 ** after a power failure, so no sync occurs. |
|
2783 ** |
|
2784 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which |
|
2785 ** the database is stored, then OsSync() is never called on the journal |
|
2786 ** file. In this case all that is required is to update the nRec field in |
|
2787 ** the journal header. |
|
2788 ** |
|
2789 ** This routine clears the needSync field of every page current held in |
|
2790 ** memory. |
|
2791 */ |
|
2792 static int syncJournal(Pager *pPager){ |
|
2793 PgHdr *pPg; |
|
2794 int rc = SQLITE_OK; |
|
2795 |
|
2796 |
|
2797 /* Sync the journal before modifying the main database |
|
2798 ** (assuming there is a journal and it needs to be synced.) |
|
2799 */ |
|
2800 if( pPager->needSync ){ |
|
2801 if( !pPager->tempFile ){ |
|
2802 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
|
2803 assert( pPager->journalOpen ); |
|
2804 |
|
2805 /* assert( !pPager->noSync ); // noSync might be set if synchronous |
|
2806 ** was turned off after the transaction was started. Ticket #615 */ |
|
2807 #ifndef NDEBUG |
|
2808 { |
|
2809 /* Make sure the pPager->nRec counter we are keeping agrees |
|
2810 ** with the nRec computed from the size of the journal file. |
|
2811 */ |
|
2812 i64 jSz; |
|
2813 rc = sqlite3OsFileSize(pPager->jfd, &jSz); |
|
2814 if( rc!=0 ) return rc; |
|
2815 assert( pPager->journalOff==jSz ); |
|
2816 } |
|
2817 #endif |
|
2818 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ |
|
2819 /* Write the nRec value into the journal file header. If in |
|
2820 ** full-synchronous mode, sync the journal first. This ensures that |
|
2821 ** all data has really hit the disk before nRec is updated to mark |
|
2822 ** it as a candidate for rollback. |
|
2823 ** |
|
2824 ** This is not required if the persistent media supports the |
|
2825 ** SAFE_APPEND property. Because in this case it is not possible |
|
2826 ** for garbage data to be appended to the file, the nRec field |
|
2827 ** is populated with 0xFFFFFFFF when the journal header is written |
|
2828 ** and never needs to be updated. |
|
2829 */ |
|
2830 i64 jrnlOff; |
|
2831 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ |
|
2832 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); |
|
2833 IOTRACE(("JSYNC %p\n", pPager)) |
|
2834 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); |
|
2835 if( rc!=0 ) return rc; |
|
2836 } |
|
2837 |
|
2838 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); |
|
2839 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); |
|
2840 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); |
|
2841 if( rc ) return rc; |
|
2842 } |
|
2843 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ |
|
2844 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); |
|
2845 IOTRACE(("JSYNC %p\n", pPager)) |
|
2846 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| |
|
2847 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) |
|
2848 ); |
|
2849 if( rc!=0 ) return rc; |
|
2850 } |
|
2851 pPager->journalStarted = 1; |
|
2852 } |
|
2853 pPager->needSync = 0; |
|
2854 |
|
2855 /* Erase the needSync flag from every page. |
|
2856 */ |
|
2857 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
2858 pPg->needSync = 0; |
|
2859 } |
|
2860 lruListSetFirstSynced(pPager); |
|
2861 } |
|
2862 |
|
2863 #ifndef NDEBUG |
|
2864 /* If the Pager.needSync flag is clear then the PgHdr.needSync |
|
2865 ** flag must also be clear for all pages. Verify that this |
|
2866 ** invariant is true. |
|
2867 */ |
|
2868 else{ |
|
2869 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
2870 assert( pPg->needSync==0 ); |
|
2871 } |
|
2872 assert( pPager->lru.pFirstSynced==pPager->lru.pFirst ); |
|
2873 } |
|
2874 #endif |
|
2875 |
|
2876 return rc; |
|
2877 } |
|
2878 |
|
2879 /* |
|
2880 ** Merge two lists of pages connected by pDirty and in pgno order. |
|
2881 ** Do not both fixing the pPrevDirty pointers. |
|
2882 */ |
|
2883 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ |
|
2884 PgHdr result, *pTail; |
|
2885 pTail = &result; |
|
2886 while( pA && pB ){ |
|
2887 if( pA->pgno<pB->pgno ){ |
|
2888 pTail->pDirty = pA; |
|
2889 pTail = pA; |
|
2890 pA = pA->pDirty; |
|
2891 }else{ |
|
2892 pTail->pDirty = pB; |
|
2893 pTail = pB; |
|
2894 pB = pB->pDirty; |
|
2895 } |
|
2896 } |
|
2897 if( pA ){ |
|
2898 pTail->pDirty = pA; |
|
2899 }else if( pB ){ |
|
2900 pTail->pDirty = pB; |
|
2901 }else{ |
|
2902 pTail->pDirty = 0; |
|
2903 } |
|
2904 return result.pDirty; |
|
2905 } |
|
2906 |
|
2907 /* |
|
2908 ** Sort the list of pages in accending order by pgno. Pages are |
|
2909 ** connected by pDirty pointers. The pPrevDirty pointers are |
|
2910 ** corrupted by this sort. |
|
2911 */ |
|
2912 #define N_SORT_BUCKET_ALLOC 25 |
|
2913 #define N_SORT_BUCKET 25 |
|
2914 #ifdef SQLITE_TEST |
|
2915 int sqlite3_pager_n_sort_bucket = 0; |
|
2916 #undef N_SORT_BUCKET |
|
2917 #define N_SORT_BUCKET \ |
|
2918 (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC) |
|
2919 #endif |
|
2920 static PgHdr *sort_pagelist(PgHdr *pIn){ |
|
2921 PgHdr *a[N_SORT_BUCKET_ALLOC], *p; |
|
2922 int i; |
|
2923 memset(a, 0, sizeof(a)); |
|
2924 while( pIn ){ |
|
2925 p = pIn; |
|
2926 pIn = p->pDirty; |
|
2927 p->pDirty = 0; |
|
2928 for(i=0; i<N_SORT_BUCKET-1; i++){ |
|
2929 if( a[i]==0 ){ |
|
2930 a[i] = p; |
|
2931 break; |
|
2932 }else{ |
|
2933 p = merge_pagelist(a[i], p); |
|
2934 a[i] = 0; |
|
2935 } |
|
2936 } |
|
2937 if( i==N_SORT_BUCKET-1 ){ |
|
2938 /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) |
|
2939 ** elements in the input list. This is possible, but impractical. |
|
2940 ** Testing this line is the point of global variable |
|
2941 ** sqlite3_pager_n_sort_bucket. |
|
2942 */ |
|
2943 a[i] = merge_pagelist(a[i], p); |
|
2944 } |
|
2945 } |
|
2946 p = a[0]; |
|
2947 for(i=1; i<N_SORT_BUCKET; i++){ |
|
2948 p = merge_pagelist(p, a[i]); |
|
2949 } |
|
2950 return p; |
|
2951 } |
|
2952 |
|
2953 /* |
|
2954 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write |
|
2955 ** every one of those pages out to the database file and mark them all |
|
2956 ** as clean. |
|
2957 */ |
|
2958 static int pager_write_pagelist(PgHdr *pList){ |
|
2959 Pager *pPager; |
|
2960 PgHdr *p; |
|
2961 int rc; |
|
2962 |
|
2963 if( pList==0 ) return SQLITE_OK; |
|
2964 pPager = pList->pPager; |
|
2965 |
|
2966 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the |
|
2967 ** database file. If there is already an EXCLUSIVE lock, the following |
|
2968 ** calls to sqlite3OsLock() are no-ops. |
|
2969 ** |
|
2970 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going |
|
2971 ** through an intermediate state PENDING. A PENDING lock prevents new |
|
2972 ** readers from attaching to the database but is unsufficient for us to |
|
2973 ** write. The idea of a PENDING lock is to prevent new readers from |
|
2974 ** coming in while we wait for existing readers to clear. |
|
2975 ** |
|
2976 ** While the pager is in the RESERVED state, the original database file |
|
2977 ** is unchanged and we can rollback without having to playback the |
|
2978 ** journal into the original database file. Once we transition to |
|
2979 ** EXCLUSIVE, it means the database file has been changed and any rollback |
|
2980 ** will require a journal playback. |
|
2981 */ |
|
2982 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
2983 if( rc!=SQLITE_OK ){ |
|
2984 return rc; |
|
2985 } |
|
2986 |
|
2987 pList = sort_pagelist(pList); |
|
2988 for(p=pList; p; p=p->pDirty){ |
|
2989 assert( p->dirty ); |
|
2990 p->dirty = 0; |
|
2991 } |
|
2992 while( pList ){ |
|
2993 |
|
2994 /* If the file has not yet been opened, open it now. */ |
|
2995 if( !pPager->fd->isOpen ){ |
|
2996 assert(pPager->tempFile); |
|
2997 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename, |
|
2998 pPager->vfsFlags); |
|
2999 if( rc ) return rc; |
|
3000 } |
|
3001 |
|
3002 /* If there are dirty pages in the page cache with page numbers greater |
|
3003 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to |
|
3004 ** make the file smaller (presumably by auto-vacuum code). Do not write |
|
3005 ** any such pages to the file. |
|
3006 */ |
|
3007 if( pList->pgno<=pPager->dbSize ){ |
|
3008 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; |
|
3009 char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); |
|
3010 PAGERTRACE4("STORE %d page %d hash(%08x)\n", |
|
3011 PAGERID(pPager), pList->pgno, pager_pagehash(pList)); |
|
3012 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); |
|
3013 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); |
|
3014 PAGER_INCR(sqlite3_pager_writedb_count); |
|
3015 PAGER_INCR(pPager->nWrite); |
|
3016 if( pList->pgno==1 ){ |
|
3017 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); |
|
3018 } |
|
3019 } |
|
3020 #ifndef NDEBUG |
|
3021 else{ |
|
3022 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); |
|
3023 } |
|
3024 #endif |
|
3025 if( rc ) return rc; |
|
3026 #ifdef SQLITE_CHECK_PAGES |
|
3027 pList->pageHash = pager_pagehash(pList); |
|
3028 #endif |
|
3029 pList = pList->pDirty; |
|
3030 } |
|
3031 return SQLITE_OK; |
|
3032 } |
|
3033 |
|
3034 /* |
|
3035 ** Collect every dirty page into a dirty list and |
|
3036 ** return a pointer to the head of that list. All pages are |
|
3037 ** collected even if they are still in use. |
|
3038 */ |
|
3039 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ |
|
3040 return pPager->pDirty; |
|
3041 } |
|
3042 |
|
3043 /* |
|
3044 ** Return TRUE if there is a hot journal on the given pager. |
|
3045 ** A hot journal is one that needs to be played back. |
|
3046 ** |
|
3047 ** If the current size of the database file is 0 but a journal file |
|
3048 ** exists, that is probably an old journal left over from a prior |
|
3049 ** database with the same name. Just delete the journal. |
|
3050 */ |
|
3051 static int hasHotJournal(Pager *pPager){ |
|
3052 sqlite3_vfs *pVfs = pPager->pVfs; |
|
3053 if( !pPager->useJournal ) return 0; |
|
3054 if( !pPager->fd->isOpen ) return 0; |
|
3055 if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ |
|
3056 return 0; |
|
3057 } |
|
3058 if( sqlite3OsCheckReservedLock(pPager->fd) ){ |
|
3059 return 0; |
|
3060 } |
|
3061 if( sqlite3PagerPagecount(pPager)==0 ){ |
|
3062 sqlite3OsDelete(pVfs, pPager->zJournal, 0); |
|
3063 return 0; |
|
3064 }else{ |
|
3065 return 1; |
|
3066 } |
|
3067 } |
|
3068 |
|
3069 /* |
|
3070 ** Try to find a page in the cache that can be recycled. |
|
3071 ** |
|
3072 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It |
|
3073 ** does not set the pPager->errCode variable. |
|
3074 */ |
|
3075 static int pager_recycle(Pager *pPager, PgHdr **ppPg){ |
|
3076 PgHdr *pPg; |
|
3077 *ppPg = 0; |
|
3078 |
|
3079 /* It is illegal to call this function unless the pager object |
|
3080 ** pointed to by pPager has at least one free page (page with nRef==0). |
|
3081 */ |
|
3082 assert(!MEMDB); |
|
3083 assert(pPager->lru.pFirst); |
|
3084 |
|
3085 /* Find a page to recycle. Try to locate a page that does not |
|
3086 ** require us to do an fsync() on the journal. |
|
3087 */ |
|
3088 pPg = pPager->lru.pFirstSynced; |
|
3089 |
|
3090 /* If we could not find a page that does not require an fsync() |
|
3091 ** on the journal file then fsync the journal file. This is a |
|
3092 ** very slow operation, so we work hard to avoid it. But sometimes |
|
3093 ** it can't be helped. |
|
3094 */ |
|
3095 if( pPg==0 && pPager->lru.pFirst){ |
|
3096 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
|
3097 int rc = syncJournal(pPager); |
|
3098 if( rc!=0 ){ |
|
3099 return rc; |
|
3100 } |
|
3101 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ |
|
3102 /* If in full-sync mode, write a new journal header into the |
|
3103 ** journal file. This is done to avoid ever modifying a journal |
|
3104 ** header that is involved in the rollback of pages that have |
|
3105 ** already been written to the database (in case the header is |
|
3106 ** trashed when the nRec field is updated). |
|
3107 */ |
|
3108 pPager->nRec = 0; |
|
3109 assert( pPager->journalOff > 0 ); |
|
3110 assert( pPager->doNotSync==0 ); |
|
3111 rc = writeJournalHdr(pPager); |
|
3112 if( rc!=0 ){ |
|
3113 return rc; |
|
3114 } |
|
3115 } |
|
3116 pPg = pPager->lru.pFirst; |
|
3117 } |
|
3118 |
|
3119 assert( pPg->nRef==0 ); |
|
3120 |
|
3121 /* Write the page to the database file if it is dirty. |
|
3122 */ |
|
3123 if( pPg->dirty ){ |
|
3124 int rc; |
|
3125 assert( pPg->needSync==0 ); |
|
3126 makeClean(pPg); |
|
3127 pPg->dirty = 1; |
|
3128 pPg->pDirty = 0; |
|
3129 rc = pager_write_pagelist( pPg ); |
|
3130 pPg->dirty = 0; |
|
3131 if( rc!=SQLITE_OK ){ |
|
3132 return rc; |
|
3133 } |
|
3134 } |
|
3135 assert( pPg->dirty==0 ); |
|
3136 |
|
3137 /* If the page we are recycling is marked as alwaysRollback, then |
|
3138 ** set the global alwaysRollback flag, thus disabling the |
|
3139 ** sqlite3PagerDontRollback() optimization for the rest of this transaction. |
|
3140 ** It is necessary to do this because the page marked alwaysRollback |
|
3141 ** might be reloaded at a later time but at that point we won't remember |
|
3142 ** that is was marked alwaysRollback. This means that all pages must |
|
3143 ** be marked as alwaysRollback from here on out. |
|
3144 */ |
|
3145 if( pPg->alwaysRollback ){ |
|
3146 IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) |
|
3147 pPager->alwaysRollback = 1; |
|
3148 } |
|
3149 |
|
3150 /* Unlink the old page from the free list and the hash table |
|
3151 */ |
|
3152 unlinkPage(pPg); |
|
3153 assert( pPg->pgno==0 ); |
|
3154 |
|
3155 *ppPg = pPg; |
|
3156 return SQLITE_OK; |
|
3157 } |
|
3158 |
|
3159 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
3160 /* |
|
3161 ** This function is called to free superfluous dynamically allocated memory |
|
3162 ** held by the pager system. Memory in use by any SQLite pager allocated |
|
3163 ** by the current thread may be sqlite3_free()ed. |
|
3164 ** |
|
3165 ** nReq is the number of bytes of memory required. Once this much has |
|
3166 ** been released, the function returns. The return value is the total number |
|
3167 ** of bytes of memory released. |
|
3168 */ |
|
3169 int sqlite3PagerReleaseMemory(int nReq){ |
|
3170 int nReleased = 0; /* Bytes of memory released so far */ |
|
3171 sqlite3_mutex *mutex; /* The MEM2 mutex */ |
|
3172 Pager *pPager; /* For looping over pagers */ |
|
3173 BusyHandler *savedBusy; /* Saved copy of the busy handler */ |
|
3174 int rc = SQLITE_OK; |
|
3175 |
|
3176 /* Acquire the memory-management mutex |
|
3177 */ |
|
3178 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); |
|
3179 sqlite3_mutex_enter(mutex); |
|
3180 |
|
3181 /* Signal all database connections that memory management wants |
|
3182 ** to have access to the pagers. |
|
3183 */ |
|
3184 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ |
|
3185 pPager->iInUseMM = 1; |
|
3186 } |
|
3187 |
|
3188 while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){ |
|
3189 PgHdr *pPg; |
|
3190 PgHdr *pRecycled; |
|
3191 |
|
3192 /* Try to find a page to recycle that does not require a sync(). If |
|
3193 ** this is not possible, find one that does require a sync(). |
|
3194 */ |
|
3195 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
3196 pPg = sqlite3LruPageList.pFirstSynced; |
|
3197 while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){ |
|
3198 pPg = pPg->gfree.pNext; |
|
3199 } |
|
3200 if( !pPg ){ |
|
3201 pPg = sqlite3LruPageList.pFirst; |
|
3202 while( pPg && pPg->pPager->iInUseDB ){ |
|
3203 pPg = pPg->gfree.pNext; |
|
3204 } |
|
3205 } |
|
3206 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); |
|
3207 |
|
3208 /* If pPg==0, then the block above has failed to find a page to |
|
3209 ** recycle. In this case return early - no further memory will |
|
3210 ** be released. |
|
3211 */ |
|
3212 if( !pPg ) break; |
|
3213 |
|
3214 pPager = pPg->pPager; |
|
3215 assert(!pPg->needSync || pPg==pPager->lru.pFirst); |
|
3216 assert(pPg->needSync || pPg==pPager->lru.pFirstSynced); |
|
3217 |
|
3218 savedBusy = pPager->pBusyHandler; |
|
3219 pPager->pBusyHandler = 0; |
|
3220 rc = pager_recycle(pPager, &pRecycled); |
|
3221 pPager->pBusyHandler = savedBusy; |
|
3222 assert(pRecycled==pPg || rc!=SQLITE_OK); |
|
3223 if( rc==SQLITE_OK ){ |
|
3224 /* We've found a page to free. At this point the page has been |
|
3225 ** removed from the page hash-table, free-list and synced-list |
|
3226 ** (pFirstSynced). It is still in the all pages (pAll) list. |
|
3227 ** Remove it from this list before freeing. |
|
3228 ** |
|
3229 ** Todo: Check the Pager.pStmt list to make sure this is Ok. It |
|
3230 ** probably is though. |
|
3231 */ |
|
3232 PgHdr *pTmp; |
|
3233 assert( pPg ); |
|
3234 if( pPg==pPager->pAll ){ |
|
3235 pPager->pAll = pPg->pNextAll; |
|
3236 }else{ |
|
3237 for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} |
|
3238 pTmp->pNextAll = pPg->pNextAll; |
|
3239 } |
|
3240 nReleased += ( |
|
3241 sizeof(*pPg) + pPager->pageSize |
|
3242 + sizeof(u32) + pPager->nExtra |
|
3243 + MEMDB*sizeof(PgHistory) |
|
3244 ); |
|
3245 IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno)); |
|
3246 PAGER_INCR(sqlite3_pager_pgfree_count); |
|
3247 sqlite3_free(pPg); |
|
3248 pPager->nPage--; |
|
3249 }else{ |
|
3250 /* An error occured whilst writing to the database file or |
|
3251 ** journal in pager_recycle(). The error is not returned to the |
|
3252 ** caller of this function. Instead, set the Pager.errCode variable. |
|
3253 ** The error will be returned to the user (or users, in the case |
|
3254 ** of a shared pager cache) of the pager for which the error occured. |
|
3255 */ |
|
3256 assert( |
|
3257 (rc&0xff)==SQLITE_IOERR || |
|
3258 rc==SQLITE_FULL || |
|
3259 rc==SQLITE_BUSY |
|
3260 ); |
|
3261 assert( pPager->state>=PAGER_RESERVED ); |
|
3262 pager_error(pPager, rc); |
|
3263 } |
|
3264 } |
|
3265 |
|
3266 /* Clear the memory management flags and release the mutex |
|
3267 */ |
|
3268 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ |
|
3269 pPager->iInUseMM = 0; |
|
3270 } |
|
3271 sqlite3_mutex_leave(mutex); |
|
3272 |
|
3273 /* Return the number of bytes released |
|
3274 */ |
|
3275 return nReleased; |
|
3276 } |
|
3277 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
|
3278 |
|
3279 /* |
|
3280 ** Read the content of page pPg out of the database file. |
|
3281 */ |
|
3282 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ |
|
3283 int rc; |
|
3284 i64 offset; |
|
3285 assert( MEMDB==0 ); |
|
3286 assert(pPager->fd->pMethods||pPager->tempFile); |
|
3287 if( !pPager->fd->isOpen ){ |
|
3288 return SQLITE_IOERR_SHORT_READ; |
|
3289 } |
|
3290 offset = (pgno-1)*(i64)pPager->pageSize; |
|
3291 rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset); |
|
3292 PAGER_INCR(sqlite3_pager_readdb_count); |
|
3293 PAGER_INCR(pPager->nRead); |
|
3294 IOTRACE(("PGIN %p %d\n", pPager, pgno)); |
|
3295 if( pgno==1 ){ |
|
3296 memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24], |
|
3297 sizeof(pPager->dbFileVers)); |
|
3298 } |
|
3299 CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); |
|
3300 PAGERTRACE4("FETCH %d page %d hash(%08x)\n", |
|
3301 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); |
|
3302 return rc; |
|
3303 } |
|
3304 |
|
3305 |
|
3306 /* |
|
3307 ** This function is called to obtain the shared lock required before |
|
3308 ** data may be read from the pager cache. If the shared lock has already |
|
3309 ** been obtained, this function is a no-op. |
|
3310 ** |
|
3311 ** Immediately after obtaining the shared lock (if required), this function |
|
3312 ** checks for a hot-journal file. If one is found, an emergency rollback |
|
3313 ** is performed immediately. |
|
3314 */ |
|
3315 static int pagerSharedLock(Pager *pPager){ |
|
3316 int rc = SQLITE_OK; |
|
3317 int isHot = 0; |
|
3318 |
|
3319 /* If this database is opened for exclusive access, has no outstanding |
|
3320 ** page references and is in an error-state, now is the chance to clear |
|
3321 ** the error. Discard the contents of the pager-cache and treat any |
|
3322 ** open journal file as a hot-journal. |
|
3323 */ |
|
3324 if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){ |
|
3325 if( pPager->journalOpen ){ |
|
3326 isHot = 1; |
|
3327 } |
|
3328 pager_reset(pPager); |
|
3329 pPager->errCode = SQLITE_OK; |
|
3330 } |
|
3331 |
|
3332 /* If the pager is still in an error state, do not proceed. The error |
|
3333 ** state will be cleared at some point in the future when all page |
|
3334 ** references are dropped and the cache can be discarded. |
|
3335 */ |
|
3336 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
3337 return pPager->errCode; |
|
3338 } |
|
3339 |
|
3340 if( pPager->state==PAGER_UNLOCK || isHot ){ |
|
3341 sqlite3_vfs *pVfs = pPager->pVfs; |
|
3342 if( !MEMDB ){ |
|
3343 assert( pPager->nRef==0 ); |
|
3344 if( !pPager->noReadlock ){ |
|
3345 rc = pager_wait_on_lock(pPager, SHARED_LOCK); |
|
3346 if( rc!=SQLITE_OK ){ |
|
3347 return pager_error(pPager, rc); |
|
3348 } |
|
3349 assert( pPager->state>=SHARED_LOCK ); |
|
3350 } |
|
3351 |
|
3352 /* If a journal file exists, and there is no RESERVED lock on the |
|
3353 ** database file, then it either needs to be played back or deleted. |
|
3354 */ |
|
3355 if( hasHotJournal(pPager) || isHot ){ |
|
3356 /* Get an EXCLUSIVE lock on the database file. At this point it is |
|
3357 ** important that a RESERVED lock is not obtained on the way to the |
|
3358 ** EXCLUSIVE lock. If it were, another process might open the |
|
3359 ** database file, detect the RESERVED lock, and conclude that the |
|
3360 ** database is safe to read while this process is still rolling it |
|
3361 ** back. |
|
3362 ** |
|
3363 ** Because the intermediate RESERVED lock is not requested, the |
|
3364 ** second process will get to this point in the code and fail to |
|
3365 ** obtain its own EXCLUSIVE lock on the database file. |
|
3366 */ |
|
3367 if( pPager->state<EXCLUSIVE_LOCK ){ |
|
3368 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); |
|
3369 if( rc!=SQLITE_OK ){ |
|
3370 pager_unlock(pPager); |
|
3371 return pager_error(pPager, rc); |
|
3372 } |
|
3373 pPager->state = PAGER_EXCLUSIVE; |
|
3374 } |
|
3375 |
|
3376 /* Open the journal for reading only. Return SQLITE_BUSY if |
|
3377 ** we are unable to open the journal file. |
|
3378 ** |
|
3379 ** The journal file does not need to be locked itself. The |
|
3380 ** journal file is never open unless the main database file holds |
|
3381 ** a write lock, so there is never any chance of two or more |
|
3382 ** processes opening the journal at the same time. |
|
3383 ** |
|
3384 ** Open the journal for read/write access. This is because in |
|
3385 ** exclusive-access mode the file descriptor will be kept open and |
|
3386 ** possibly used for a transaction later on. On some systems, the |
|
3387 ** OsTruncate() call used in exclusive-access mode also requires |
|
3388 ** a read/write file handle. |
|
3389 */ |
|
3390 if( !isHot ){ |
|
3391 rc = SQLITE_BUSY; |
|
3392 if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ |
|
3393 int fout = 0; |
|
3394 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; |
|
3395 assert( !pPager->tempFile ); |
|
3396 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); |
|
3397 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); |
|
3398 if( fout&SQLITE_OPEN_READONLY ){ |
|
3399 rc = SQLITE_BUSY; |
|
3400 sqlite3OsClose(pPager->jfd); |
|
3401 } |
|
3402 } |
|
3403 } |
|
3404 if( rc!=SQLITE_OK ){ |
|
3405 pager_unlock(pPager); |
|
3406 return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY); |
|
3407 } |
|
3408 pPager->journalOpen = 1; |
|
3409 pPager->journalStarted = 0; |
|
3410 pPager->journalOff = 0; |
|
3411 pPager->setMaster = 0; |
|
3412 pPager->journalHdr = 0; |
|
3413 |
|
3414 /* Playback and delete the journal. Drop the database write |
|
3415 ** lock and reacquire the read lock. |
|
3416 */ |
|
3417 rc = pager_playback(pPager, 1); |
|
3418 if( rc!=SQLITE_OK ){ |
|
3419 return pager_error(pPager, rc); |
|
3420 } |
|
3421 assert(pPager->state==PAGER_SHARED || |
|
3422 (pPager->exclusiveMode && pPager->state>PAGER_SHARED) |
|
3423 ); |
|
3424 } |
|
3425 |
|
3426 if( pPager->pAll ){ |
|
3427 /* The shared-lock has just been acquired on the database file |
|
3428 ** and there are already pages in the cache (from a previous |
|
3429 ** read or write transaction). Check to see if the database |
|
3430 ** has been modified. If the database has changed, flush the |
|
3431 ** cache. |
|
3432 ** |
|
3433 ** Database changes is detected by looking at 15 bytes beginning |
|
3434 ** at offset 24 into the file. The first 4 of these 16 bytes are |
|
3435 ** a 32-bit counter that is incremented with each change. The |
|
3436 ** other bytes change randomly with each file change when |
|
3437 ** a codec is in use. |
|
3438 ** |
|
3439 ** There is a vanishingly small chance that a change will not be |
|
3440 ** detected. The chance of an undetected change is so small that |
|
3441 ** it can be neglected. |
|
3442 */ |
|
3443 char dbFileVers[sizeof(pPager->dbFileVers)]; |
|
3444 sqlite3PagerPagecount(pPager); |
|
3445 |
|
3446 if( pPager->errCode ){ |
|
3447 return pPager->errCode; |
|
3448 } |
|
3449 |
|
3450 if( pPager->dbSize>0 ){ |
|
3451 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); |
|
3452 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); |
|
3453 if( rc!=SQLITE_OK ){ |
|
3454 return rc; |
|
3455 } |
|
3456 }else{ |
|
3457 memset(dbFileVers, 0, sizeof(dbFileVers)); |
|
3458 } |
|
3459 |
|
3460 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ |
|
3461 pager_reset(pPager); |
|
3462 } |
|
3463 } |
|
3464 } |
|
3465 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); |
|
3466 if( pPager->state==PAGER_UNLOCK ){ |
|
3467 pPager->state = PAGER_SHARED; |
|
3468 } |
|
3469 } |
|
3470 |
|
3471 return rc; |
|
3472 } |
|
3473 |
|
3474 /* |
|
3475 ** Allocate a PgHdr object. Either create a new one or reuse |
|
3476 ** an existing one that is not otherwise in use. |
|
3477 ** |
|
3478 ** A new PgHdr structure is created if any of the following are |
|
3479 ** true: |
|
3480 ** |
|
3481 ** (1) We have not exceeded our maximum allocated cache size |
|
3482 ** as set by the "PRAGMA cache_size" command. |
|
3483 ** |
|
3484 ** (2) There are no unused PgHdr objects available at this time. |
|
3485 ** |
|
3486 ** (3) This is an in-memory database. |
|
3487 ** |
|
3488 ** (4) There are no PgHdr objects that do not require a journal |
|
3489 ** file sync and a sync of the journal file is currently |
|
3490 ** prohibited. |
|
3491 ** |
|
3492 ** Otherwise, reuse an existing PgHdr. In other words, reuse an |
|
3493 ** existing PgHdr if all of the following are true: |
|
3494 ** |
|
3495 ** (1) We have reached or exceeded the maximum cache size |
|
3496 ** allowed by "PRAGMA cache_size". |
|
3497 ** |
|
3498 ** (2) There is a PgHdr available with PgHdr->nRef==0 |
|
3499 ** |
|
3500 ** (3) We are not in an in-memory database |
|
3501 ** |
|
3502 ** (4) Either there is an available PgHdr that does not need |
|
3503 ** to be synced to disk or else disk syncing is currently |
|
3504 ** allowed. |
|
3505 */ |
|
3506 static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){ |
|
3507 int rc = SQLITE_OK; |
|
3508 PgHdr *pPg; |
|
3509 int nByteHdr; |
|
3510 |
|
3511 /* Create a new PgHdr if any of the four conditions defined |
|
3512 ** above are met: */ |
|
3513 if( pPager->nPage<pPager->mxPage |
|
3514 || pPager->lru.pFirst==0 |
|
3515 || MEMDB |
|
3516 || (pPager->lru.pFirstSynced==0 && pPager->doNotSync) |
|
3517 ){ |
|
3518 if( pPager->nPage>=pPager->nHash ){ |
|
3519 pager_resize_hash_table(pPager, |
|
3520 pPager->nHash<256 ? 256 : pPager->nHash*2); |
|
3521 if( pPager->nHash==0 ){ |
|
3522 rc = SQLITE_NOMEM; |
|
3523 goto pager_allocate_out; |
|
3524 } |
|
3525 } |
|
3526 pagerLeave(pPager); |
|
3527 nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra |
|
3528 + MEMDB*sizeof(PgHistory); |
|
3529 pPg = (PgHdr*)sqlite3_malloc( nByteHdr + pPager->pageSize ); |
|
3530 pagerEnter(pPager); |
|
3531 if( pPg==0 ){ |
|
3532 rc = SQLITE_NOMEM; |
|
3533 goto pager_allocate_out; |
|
3534 } |
|
3535 memset(pPg, 0, nByteHdr); |
|
3536 pPg->pData = (void*)(nByteHdr + (char*)pPg); |
|
3537 pPg->pPager = pPager; |
|
3538 pPg->pNextAll = pPager->pAll; |
|
3539 pPager->pAll = pPg; |
|
3540 pPager->nPage++; |
|
3541 }else{ |
|
3542 /* Recycle an existing page with a zero ref-count. */ |
|
3543 rc = pager_recycle(pPager, &pPg); |
|
3544 if( rc==SQLITE_BUSY ){ |
|
3545 rc = SQLITE_IOERR_BLOCKED; |
|
3546 } |
|
3547 if( rc!=SQLITE_OK ){ |
|
3548 goto pager_allocate_out; |
|
3549 } |
|
3550 assert( pPager->state>=SHARED_LOCK ); |
|
3551 assert(pPg); |
|
3552 } |
|
3553 *ppPg = pPg; |
|
3554 |
|
3555 pager_allocate_out: |
|
3556 return rc; |
|
3557 } |
|
3558 |
|
3559 /* |
|
3560 ** Make sure we have the content for a page. If the page was |
|
3561 ** previously acquired with noContent==1, then the content was |
|
3562 ** just initialized to zeros instead of being read from disk. |
|
3563 ** But now we need the real data off of disk. So make sure we |
|
3564 ** have it. Read it in if we do not have it already. |
|
3565 */ |
|
3566 static int pager_get_content(PgHdr *pPg){ |
|
3567 if( pPg->needRead ){ |
|
3568 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); |
|
3569 if( rc==SQLITE_OK ){ |
|
3570 pPg->needRead = 0; |
|
3571 }else{ |
|
3572 return rc; |
|
3573 } |
|
3574 } |
|
3575 return SQLITE_OK; |
|
3576 } |
|
3577 |
|
3578 /* |
|
3579 ** Acquire a page. |
|
3580 ** |
|
3581 ** A read lock on the disk file is obtained when the first page is acquired. |
|
3582 ** This read lock is dropped when the last page is released. |
|
3583 ** |
|
3584 ** This routine works for any page number greater than 0. If the database |
|
3585 ** file is smaller than the requested page, then no actual disk |
|
3586 ** read occurs and the memory image of the page is initialized to |
|
3587 ** all zeros. The extra data appended to a page is always initialized |
|
3588 ** to zeros the first time a page is loaded into memory. |
|
3589 ** |
|
3590 ** The acquisition might fail for several reasons. In all cases, |
|
3591 ** an appropriate error code is returned and *ppPage is set to NULL. |
|
3592 ** |
|
3593 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt |
|
3594 ** to find a page in the in-memory cache first. If the page is not already |
|
3595 ** in memory, this routine goes to disk to read it in whereas Lookup() |
|
3596 ** just returns 0. This routine acquires a read-lock the first time it |
|
3597 ** has to go to disk, and could also playback an old journal if necessary. |
|
3598 ** Since Lookup() never goes to disk, it never has to deal with locks |
|
3599 ** or journal files. |
|
3600 ** |
|
3601 ** If noContent is false, the page contents are actually read from disk. |
|
3602 ** If noContent is true, it means that we do not care about the contents |
|
3603 ** of the page at this time, so do not do a disk read. Just fill in the |
|
3604 ** page content with zeros. But mark the fact that we have not read the |
|
3605 ** content by setting the PgHdr.needRead flag. Later on, if |
|
3606 ** sqlite3PagerWrite() is called on this page or if this routine is |
|
3607 ** called again with noContent==0, that means that the content is needed |
|
3608 ** and the disk read should occur at that point. |
|
3609 */ |
|
3610 static int pagerAcquire( |
|
3611 Pager *pPager, /* The pager open on the database file */ |
|
3612 Pgno pgno, /* Page number to fetch */ |
|
3613 DbPage **ppPage, /* Write a pointer to the page here */ |
|
3614 int noContent /* Do not bother reading content from disk if true */ |
|
3615 ){ |
|
3616 PgHdr *pPg; |
|
3617 int rc; |
|
3618 |
|
3619 assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 ); |
|
3620 |
|
3621 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page |
|
3622 ** number greater than this, or zero, is requested. |
|
3623 */ |
|
3624 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
|
3625 return SQLITE_CORRUPT_BKPT; |
|
3626 } |
|
3627 |
|
3628 /* Make sure we have not hit any critical errors. |
|
3629 */ |
|
3630 assert( pPager!=0 ); |
|
3631 *ppPage = 0; |
|
3632 |
|
3633 /* If this is the first page accessed, then get a SHARED lock |
|
3634 ** on the database file. pagerSharedLock() is a no-op if |
|
3635 ** a database lock is already held. |
|
3636 */ |
|
3637 rc = pagerSharedLock(pPager); |
|
3638 if( rc!=SQLITE_OK ){ |
|
3639 return rc; |
|
3640 } |
|
3641 assert( pPager->state!=PAGER_UNLOCK ); |
|
3642 |
|
3643 pPg = pager_lookup(pPager, pgno); |
|
3644 if( pPg==0 ){ |
|
3645 /* The requested page is not in the page cache. */ |
|
3646 int nMax; |
|
3647 int h; |
|
3648 PAGER_INCR(pPager->nMiss); |
|
3649 rc = pagerAllocatePage(pPager, &pPg); |
|
3650 if( rc!=SQLITE_OK ){ |
|
3651 return rc; |
|
3652 } |
|
3653 |
|
3654 pPg->pgno = pgno; |
|
3655 assert( !MEMDB || pgno>pPager->stmtSize ); |
|
3656 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ |
|
3657 #if 0 |
|
3658 sqlite3CheckMemory(pPager->aInJournal, pgno/8); |
|
3659 #endif |
|
3660 assert( pPager->journalOpen ); |
|
3661 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; |
|
3662 pPg->needSync = 0; |
|
3663 }else{ |
|
3664 pPg->inJournal = 0; |
|
3665 pPg->needSync = 0; |
|
3666 } |
|
3667 |
|
3668 makeClean(pPg); |
|
3669 pPg->nRef = 1; |
|
3670 REFINFO(pPg); |
|
3671 |
|
3672 pPager->nRef++; |
|
3673 if( pPager->nExtra>0 ){ |
|
3674 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); |
|
3675 } |
|
3676 nMax = sqlite3PagerPagecount(pPager); |
|
3677 if( pPager->errCode ){ |
|
3678 rc = pPager->errCode; |
|
3679 sqlite3PagerUnref(pPg); |
|
3680 return rc; |
|
3681 } |
|
3682 |
|
3683 /* Populate the page with data, either by reading from the database |
|
3684 ** file, or by setting the entire page to zero. |
|
3685 */ |
|
3686 if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){ |
|
3687 if( pgno>pPager->mxPgno ){ |
|
3688 sqlite3PagerUnref(pPg); |
|
3689 return SQLITE_FULL; |
|
3690 } |
|
3691 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); |
|
3692 pPg->needRead = noContent && !pPager->alwaysRollback; |
|
3693 IOTRACE(("ZERO %p %d\n", pPager, pgno)); |
|
3694 }else{ |
|
3695 rc = readDbPage(pPager, pPg, pgno); |
|
3696 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ |
|
3697 pPg->pgno = 0; |
|
3698 sqlite3PagerUnref(pPg); |
|
3699 return rc; |
|
3700 } |
|
3701 pPg->needRead = 0; |
|
3702 } |
|
3703 |
|
3704 /* Link the page into the page hash table */ |
|
3705 h = pgno & (pPager->nHash-1); |
|
3706 assert( pgno!=0 ); |
|
3707 pPg->pNextHash = pPager->aHash[h]; |
|
3708 pPager->aHash[h] = pPg; |
|
3709 if( pPg->pNextHash ){ |
|
3710 assert( pPg->pNextHash->pPrevHash==0 ); |
|
3711 pPg->pNextHash->pPrevHash = pPg; |
|
3712 } |
|
3713 |
|
3714 #ifdef SQLITE_CHECK_PAGES |
|
3715 pPg->pageHash = pager_pagehash(pPg); |
|
3716 #endif |
|
3717 }else{ |
|
3718 /* The requested page is in the page cache. */ |
|
3719 assert(pPager->nRef>0 || pgno==1); |
|
3720 PAGER_INCR(pPager->nHit); |
|
3721 if( !noContent ){ |
|
3722 rc = pager_get_content(pPg); |
|
3723 if( rc ){ |
|
3724 return rc; |
|
3725 } |
|
3726 } |
|
3727 page_ref(pPg); |
|
3728 } |
|
3729 *ppPage = pPg; |
|
3730 return SQLITE_OK; |
|
3731 } |
|
3732 int sqlite3PagerAcquire( |
|
3733 Pager *pPager, /* The pager open on the database file */ |
|
3734 Pgno pgno, /* Page number to fetch */ |
|
3735 DbPage **ppPage, /* Write a pointer to the page here */ |
|
3736 int noContent /* Do not bother reading content from disk if true */ |
|
3737 ){ |
|
3738 int rc; |
|
3739 pagerEnter(pPager); |
|
3740 rc = pagerAcquire(pPager, pgno, ppPage, noContent); |
|
3741 pagerLeave(pPager); |
|
3742 return rc; |
|
3743 } |
|
3744 |
|
3745 |
|
3746 /* |
|
3747 ** Acquire a page if it is already in the in-memory cache. Do |
|
3748 ** not read the page from disk. Return a pointer to the page, |
|
3749 ** or 0 if the page is not in cache. |
|
3750 ** |
|
3751 ** See also sqlite3PagerGet(). The difference between this routine |
|
3752 ** and sqlite3PagerGet() is that _get() will go to the disk and read |
|
3753 ** in the page if the page is not already in cache. This routine |
|
3754 ** returns NULL if the page is not in cache or if a disk I/O error |
|
3755 ** has ever happened. |
|
3756 */ |
|
3757 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ |
|
3758 PgHdr *pPg = 0; |
|
3759 |
|
3760 assert( pPager!=0 ); |
|
3761 assert( pgno!=0 ); |
|
3762 |
|
3763 pagerEnter(pPager); |
|
3764 if( pPager->state==PAGER_UNLOCK ){ |
|
3765 assert( !pPager->pAll || pPager->exclusiveMode ); |
|
3766 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
3767 /* Do nothing */ |
|
3768 }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){ |
|
3769 page_ref(pPg); |
|
3770 } |
|
3771 pagerLeave(pPager); |
|
3772 return pPg; |
|
3773 } |
|
3774 |
|
3775 /* |
|
3776 ** Release a page. |
|
3777 ** |
|
3778 ** If the number of references to the page drop to zero, then the |
|
3779 ** page is added to the LRU list. When all references to all pages |
|
3780 ** are released, a rollback occurs and the lock on the database is |
|
3781 ** removed. |
|
3782 */ |
|
3783 int sqlite3PagerUnref(DbPage *pPg){ |
|
3784 Pager *pPager = pPg->pPager; |
|
3785 |
|
3786 /* Decrement the reference count for this page |
|
3787 */ |
|
3788 assert( pPg->nRef>0 ); |
|
3789 pagerEnter(pPg->pPager); |
|
3790 pPg->nRef--; |
|
3791 REFINFO(pPg); |
|
3792 |
|
3793 CHECK_PAGE(pPg); |
|
3794 |
|
3795 /* When the number of references to a page reach 0, call the |
|
3796 ** destructor and add the page to the freelist. |
|
3797 */ |
|
3798 if( pPg->nRef==0 ){ |
|
3799 |
|
3800 lruListAdd(pPg); |
|
3801 if( pPager->xDestructor ){ |
|
3802 pPager->xDestructor(pPg, pPager->pageSize); |
|
3803 } |
|
3804 |
|
3805 /* When all pages reach the freelist, drop the read lock from |
|
3806 ** the database file. |
|
3807 */ |
|
3808 pPager->nRef--; |
|
3809 assert( pPager->nRef>=0 ); |
|
3810 if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){ |
|
3811 pagerUnlockAndRollback(pPager); |
|
3812 } |
|
3813 } |
|
3814 pagerLeave(pPager); |
|
3815 return SQLITE_OK; |
|
3816 } |
|
3817 |
|
3818 /* |
|
3819 ** Create a journal file for pPager. There should already be a RESERVED |
|
3820 ** or EXCLUSIVE lock on the database file when this routine is called. |
|
3821 ** |
|
3822 ** Return SQLITE_OK if everything. Return an error code and release the |
|
3823 ** write lock if anything goes wrong. |
|
3824 */ |
|
3825 static int pager_open_journal(Pager *pPager){ |
|
3826 sqlite3_vfs *pVfs = pPager->pVfs; |
|
3827 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); |
|
3828 |
|
3829 int rc; |
|
3830 assert( !MEMDB ); |
|
3831 assert( pPager->state>=PAGER_RESERVED ); |
|
3832 assert( pPager->journalOpen==0 ); |
|
3833 assert( pPager->useJournal ); |
|
3834 assert( pPager->aInJournal==0 ); |
|
3835 sqlite3PagerPagecount(pPager); |
|
3836 pagerLeave(pPager); |
|
3837 pPager->aInJournal = (u8*)sqlite3MallocZero( pPager->dbSize/8 + 1 ); |
|
3838 pagerEnter(pPager); |
|
3839 if( pPager->aInJournal==0 ){ |
|
3840 rc = SQLITE_NOMEM; |
|
3841 goto failed_to_open_journal; |
|
3842 } |
|
3843 |
|
3844 if( pPager->tempFile ){ |
|
3845 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); |
|
3846 }else{ |
|
3847 flags |= (SQLITE_OPEN_MAIN_JOURNAL); |
|
3848 } |
|
3849 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
3850 rc = sqlite3JournalOpen( |
|
3851 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) |
|
3852 ); |
|
3853 #else |
|
3854 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); |
|
3855 #endif |
|
3856 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); |
|
3857 pPager->journalOff = 0; |
|
3858 pPager->setMaster = 0; |
|
3859 pPager->journalHdr = 0; |
|
3860 if( rc!=SQLITE_OK ){ |
|
3861 if( rc==SQLITE_NOMEM ){ |
|
3862 sqlite3OsDelete(pVfs, pPager->zJournal, 0); |
|
3863 } |
|
3864 goto failed_to_open_journal; |
|
3865 } |
|
3866 pPager->journalOpen = 1; |
|
3867 pPager->journalStarted = 0; |
|
3868 pPager->needSync = 0; |
|
3869 pPager->alwaysRollback = 0; |
|
3870 pPager->nRec = 0; |
|
3871 if( pPager->errCode ){ |
|
3872 rc = pPager->errCode; |
|
3873 goto failed_to_open_journal; |
|
3874 } |
|
3875 pPager->origDbSize = pPager->dbSize; |
|
3876 |
|
3877 rc = writeJournalHdr(pPager); |
|
3878 |
|
3879 if( pPager->stmtAutoopen && rc==SQLITE_OK ){ |
|
3880 rc = sqlite3PagerStmtBegin(pPager); |
|
3881 } |
|
3882 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ |
|
3883 rc = pager_end_transaction(pPager); |
|
3884 if( rc==SQLITE_OK ){ |
|
3885 rc = SQLITE_FULL; |
|
3886 } |
|
3887 } |
|
3888 return rc; |
|
3889 |
|
3890 failed_to_open_journal: |
|
3891 sqlite3_free(pPager->aInJournal); |
|
3892 pPager->aInJournal = 0; |
|
3893 return rc; |
|
3894 } |
|
3895 |
|
3896 /* |
|
3897 ** Acquire a write-lock on the database. The lock is removed when |
|
3898 ** the any of the following happen: |
|
3899 ** |
|
3900 ** * sqlite3PagerCommitPhaseTwo() is called. |
|
3901 ** * sqlite3PagerRollback() is called. |
|
3902 ** * sqlite3PagerClose() is called. |
|
3903 ** * sqlite3PagerUnref() is called to on every outstanding page. |
|
3904 ** |
|
3905 ** The first parameter to this routine is a pointer to any open page of the |
|
3906 ** database file. Nothing changes about the page - it is used merely to |
|
3907 ** acquire a pointer to the Pager structure and as proof that there is |
|
3908 ** already a read-lock on the database. |
|
3909 ** |
|
3910 ** The second parameter indicates how much space in bytes to reserve for a |
|
3911 ** master journal file-name at the start of the journal when it is created. |
|
3912 ** |
|
3913 ** A journal file is opened if this is not a temporary file. For temporary |
|
3914 ** files, the opening of the journal file is deferred until there is an |
|
3915 ** actual need to write to the journal. |
|
3916 ** |
|
3917 ** If the database is already reserved for writing, this routine is a no-op. |
|
3918 ** |
|
3919 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file |
|
3920 ** immediately instead of waiting until we try to flush the cache. The |
|
3921 ** exFlag is ignored if a transaction is already active. |
|
3922 */ |
|
3923 int sqlite3PagerBegin(DbPage *pPg, int exFlag){ |
|
3924 Pager *pPager = pPg->pPager; |
|
3925 int rc = SQLITE_OK; |
|
3926 pagerEnter(pPager); |
|
3927 assert( pPg->nRef>0 ); |
|
3928 assert( pPager->state!=PAGER_UNLOCK ); |
|
3929 if( pPager->state==PAGER_SHARED ){ |
|
3930 assert( pPager->aInJournal==0 ); |
|
3931 if( MEMDB ){ |
|
3932 pPager->state = PAGER_EXCLUSIVE; |
|
3933 pPager->origDbSize = pPager->dbSize; |
|
3934 }else{ |
|
3935 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); |
|
3936 if( rc==SQLITE_OK ){ |
|
3937 pPager->state = PAGER_RESERVED; |
|
3938 if( exFlag ){ |
|
3939 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
3940 } |
|
3941 } |
|
3942 if( rc!=SQLITE_OK ){ |
|
3943 pagerLeave(pPager); |
|
3944 return rc; |
|
3945 } |
|
3946 pPager->dirtyCache = 0; |
|
3947 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); |
|
3948 if( pPager->useJournal && !pPager->tempFile ){ |
|
3949 rc = pager_open_journal(pPager); |
|
3950 } |
|
3951 } |
|
3952 }else if( pPager->journalOpen && pPager->journalOff==0 ){ |
|
3953 /* This happens when the pager was in exclusive-access mode last |
|
3954 ** time a (read or write) transaction was successfully concluded |
|
3955 ** by this connection. Instead of deleting the journal file it was |
|
3956 ** kept open and truncated to 0 bytes. |
|
3957 */ |
|
3958 assert( pPager->nRec==0 ); |
|
3959 assert( pPager->origDbSize==0 ); |
|
3960 assert( pPager->aInJournal==0 ); |
|
3961 sqlite3PagerPagecount(pPager); |
|
3962 pagerLeave(pPager); |
|
3963 pPager->aInJournal = (u8*)sqlite3MallocZero( pPager->dbSize/8 + 1 ); |
|
3964 pagerEnter(pPager); |
|
3965 if( !pPager->aInJournal ){ |
|
3966 rc = SQLITE_NOMEM; |
|
3967 }else{ |
|
3968 pPager->origDbSize = pPager->dbSize; |
|
3969 rc = writeJournalHdr(pPager); |
|
3970 } |
|
3971 } |
|
3972 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); |
|
3973 pagerLeave(pPager); |
|
3974 return rc; |
|
3975 } |
|
3976 |
|
3977 /* |
|
3978 ** Make a page dirty. Set its dirty flag and add it to the dirty |
|
3979 ** page list. |
|
3980 */ |
|
3981 static void makeDirty(PgHdr *pPg){ |
|
3982 if( pPg->dirty==0 ){ |
|
3983 Pager *pPager = pPg->pPager; |
|
3984 pPg->dirty = 1; |
|
3985 pPg->pDirty = pPager->pDirty; |
|
3986 if( pPager->pDirty ){ |
|
3987 pPager->pDirty->pPrevDirty = pPg; |
|
3988 } |
|
3989 pPg->pPrevDirty = 0; |
|
3990 pPager->pDirty = pPg; |
|
3991 } |
|
3992 } |
|
3993 |
|
3994 /* |
|
3995 ** Make a page clean. Clear its dirty bit and remove it from the |
|
3996 ** dirty page list. |
|
3997 */ |
|
3998 static void makeClean(PgHdr *pPg){ |
|
3999 if( pPg->dirty ){ |
|
4000 pPg->dirty = 0; |
|
4001 if( pPg->pDirty ){ |
|
4002 assert( pPg->pDirty->pPrevDirty==pPg ); |
|
4003 pPg->pDirty->pPrevDirty = pPg->pPrevDirty; |
|
4004 } |
|
4005 if( pPg->pPrevDirty ){ |
|
4006 assert( pPg->pPrevDirty->pDirty==pPg ); |
|
4007 pPg->pPrevDirty->pDirty = pPg->pDirty; |
|
4008 }else{ |
|
4009 assert( pPg->pPager->pDirty==pPg ); |
|
4010 pPg->pPager->pDirty = pPg->pDirty; |
|
4011 } |
|
4012 } |
|
4013 } |
|
4014 |
|
4015 |
|
4016 /* |
|
4017 ** Mark a data page as writeable. The page is written into the journal |
|
4018 ** if it is not there already. This routine must be called before making |
|
4019 ** changes to a page. |
|
4020 ** |
|
4021 ** The first time this routine is called, the pager creates a new |
|
4022 ** journal and acquires a RESERVED lock on the database. If the RESERVED |
|
4023 ** lock could not be acquired, this routine returns SQLITE_BUSY. The |
|
4024 ** calling routine must check for that return value and be careful not to |
|
4025 ** change any page data until this routine returns SQLITE_OK. |
|
4026 ** |
|
4027 ** If the journal file could not be written because the disk is full, |
|
4028 ** then this routine returns SQLITE_FULL and does an immediate rollback. |
|
4029 ** All subsequent write attempts also return SQLITE_FULL until there |
|
4030 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to |
|
4031 ** reset. |
|
4032 */ |
|
4033 static int pager_write(PgHdr *pPg){ |
|
4034 void *pData = PGHDR_TO_DATA(pPg); |
|
4035 Pager *pPager = pPg->pPager; |
|
4036 int rc = SQLITE_OK; |
|
4037 |
|
4038 /* Check for errors |
|
4039 */ |
|
4040 if( pPager->errCode ){ |
|
4041 return pPager->errCode; |
|
4042 } |
|
4043 if( pPager->readOnly ){ |
|
4044 return SQLITE_PERM; |
|
4045 } |
|
4046 |
|
4047 assert( !pPager->setMaster ); |
|
4048 |
|
4049 CHECK_PAGE(pPg); |
|
4050 |
|
4051 /* If this page was previously acquired with noContent==1, that means |
|
4052 ** we didn't really read in the content of the page. This can happen |
|
4053 ** (for example) when the page is being moved to the freelist. But |
|
4054 ** now we are (perhaps) moving the page off of the freelist for |
|
4055 ** reuse and we need to know its original content so that content |
|
4056 ** can be stored in the rollback journal. So do the read at this |
|
4057 ** time. |
|
4058 */ |
|
4059 rc = pager_get_content(pPg); |
|
4060 if( rc ){ |
|
4061 return rc; |
|
4062 } |
|
4063 |
|
4064 /* Mark the page as dirty. If the page has already been written |
|
4065 ** to the journal then we can return right away. |
|
4066 */ |
|
4067 makeDirty(pPg); |
|
4068 if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){ |
|
4069 pPager->dirtyCache = 1; |
|
4070 }else{ |
|
4071 |
|
4072 /* If we get this far, it means that the page needs to be |
|
4073 ** written to the transaction journal or the ckeckpoint journal |
|
4074 ** or both. |
|
4075 ** |
|
4076 ** First check to see that the transaction journal exists and |
|
4077 ** create it if it does not. |
|
4078 */ |
|
4079 assert( pPager->state!=PAGER_UNLOCK ); |
|
4080 rc = sqlite3PagerBegin(pPg, 0); |
|
4081 if( rc!=SQLITE_OK ){ |
|
4082 return rc; |
|
4083 } |
|
4084 assert( pPager->state>=PAGER_RESERVED ); |
|
4085 if( !pPager->journalOpen && pPager->useJournal ){ |
|
4086 rc = pager_open_journal(pPager); |
|
4087 if( rc!=SQLITE_OK ) return rc; |
|
4088 } |
|
4089 assert( pPager->journalOpen || !pPager->useJournal ); |
|
4090 pPager->dirtyCache = 1; |
|
4091 |
|
4092 /* The transaction journal now exists and we have a RESERVED or an |
|
4093 ** EXCLUSIVE lock on the main database file. Write the current page to |
|
4094 ** the transaction journal if it is not there already. |
|
4095 */ |
|
4096 if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){ |
|
4097 if( (int)pPg->pgno <= pPager->origDbSize ){ |
|
4098 if( MEMDB ){ |
|
4099 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
4100 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
4101 assert( pHist->pOrig==0 ); |
|
4102 pHist->pOrig = (u8*)sqlite3_malloc( pPager->pageSize ); |
|
4103 if( !pHist->pOrig ){ |
|
4104 return SQLITE_NOMEM; |
|
4105 } |
|
4106 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); |
|
4107 }else{ |
|
4108 u32 cksum; |
|
4109 char *pData2; |
|
4110 |
|
4111 /* We should never write to the journal file the page that |
|
4112 ** contains the database locks. The following assert verifies |
|
4113 ** that we do not. */ |
|
4114 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); |
|
4115 pData2 = CODEC2(pPager, pData, pPg->pgno, 7); |
|
4116 cksum = pager_cksum(pPager, (u8*)pData2); |
|
4117 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); |
|
4118 if( rc==SQLITE_OK ){ |
|
4119 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, |
|
4120 pPager->journalOff + 4); |
|
4121 pPager->journalOff += pPager->pageSize+4; |
|
4122 } |
|
4123 if( rc==SQLITE_OK ){ |
|
4124 rc = write32bits(pPager->jfd, pPager->journalOff, cksum); |
|
4125 pPager->journalOff += 4; |
|
4126 } |
|
4127 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, |
|
4128 pPager->journalOff, pPager->pageSize)); |
|
4129 PAGER_INCR(sqlite3_pager_writej_count); |
|
4130 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", |
|
4131 PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg)); |
|
4132 |
|
4133 /* An error has occured writing to the journal file. The |
|
4134 ** transaction will be rolled back by the layer above. |
|
4135 */ |
|
4136 if( rc!=SQLITE_OK ){ |
|
4137 return rc; |
|
4138 } |
|
4139 |
|
4140 pPager->nRec++; |
|
4141 assert( pPager->aInJournal!=0 ); |
|
4142 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
4143 pPg->needSync = !pPager->noSync; |
|
4144 if( pPager->stmtInUse ){ |
|
4145 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
4146 } |
|
4147 } |
|
4148 }else{ |
|
4149 pPg->needSync = !pPager->journalStarted && !pPager->noSync; |
|
4150 PAGERTRACE4("APPEND %d page %d needSync=%d\n", |
|
4151 PAGERID(pPager), pPg->pgno, pPg->needSync); |
|
4152 } |
|
4153 if( pPg->needSync ){ |
|
4154 pPager->needSync = 1; |
|
4155 } |
|
4156 pPg->inJournal = 1; |
|
4157 } |
|
4158 |
|
4159 /* If the statement journal is open and the page is not in it, |
|
4160 ** then write the current page to the statement journal. Note that |
|
4161 ** the statement journal format differs from the standard journal format |
|
4162 ** in that it omits the checksums and the header. |
|
4163 */ |
|
4164 if( pPager->stmtInUse |
|
4165 && !pageInStatement(pPg) |
|
4166 && (int)pPg->pgno<=pPager->stmtSize |
|
4167 ){ |
|
4168 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); |
|
4169 if( MEMDB ){ |
|
4170 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
4171 assert( pHist->pStmt==0 ); |
|
4172 pHist->pStmt = (u8*)sqlite3_malloc( pPager->pageSize ); |
|
4173 if( pHist->pStmt ){ |
|
4174 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); |
|
4175 } |
|
4176 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
4177 page_add_to_stmt_list(pPg); |
|
4178 }else{ |
|
4179 i64 offset = pPager->stmtNRec*(4+pPager->pageSize); |
|
4180 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); |
|
4181 rc = write32bits(pPager->stfd, offset, pPg->pgno); |
|
4182 if( rc==SQLITE_OK ){ |
|
4183 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); |
|
4184 } |
|
4185 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
4186 if( rc!=SQLITE_OK ){ |
|
4187 return rc; |
|
4188 } |
|
4189 pPager->stmtNRec++; |
|
4190 assert( pPager->aInStmt!=0 ); |
|
4191 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
4192 } |
|
4193 } |
|
4194 } |
|
4195 |
|
4196 /* Update the database size and return. |
|
4197 */ |
|
4198 assert( pPager->state>=PAGER_SHARED ); |
|
4199 if( pPager->dbSize<(int)pPg->pgno ){ |
|
4200 pPager->dbSize = pPg->pgno; |
|
4201 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ |
|
4202 pPager->dbSize++; |
|
4203 } |
|
4204 } |
|
4205 return rc; |
|
4206 } |
|
4207 |
|
4208 /* |
|
4209 ** This function is used to mark a data-page as writable. It uses |
|
4210 ** pager_write() to open a journal file (if it is not already open) |
|
4211 ** and write the page *pData to the journal. |
|
4212 ** |
|
4213 ** The difference between this function and pager_write() is that this |
|
4214 ** function also deals with the special case where 2 or more pages |
|
4215 ** fit on a single disk sector. In this case all co-resident pages |
|
4216 ** must have been written to the journal file before returning. |
|
4217 */ |
|
4218 int sqlite3PagerWrite(DbPage *pDbPage){ |
|
4219 int rc = SQLITE_OK; |
|
4220 |
|
4221 PgHdr *pPg = pDbPage; |
|
4222 Pager *pPager = pPg->pPager; |
|
4223 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); |
|
4224 |
|
4225 pagerEnter(pPager); |
|
4226 if( !MEMDB && nPagePerSector>1 ){ |
|
4227 Pgno nPageCount; /* Total number of pages in database file */ |
|
4228 Pgno pg1; /* First page of the sector pPg is located on. */ |
|
4229 int nPage; /* Number of pages starting at pg1 to journal */ |
|
4230 int ii; |
|
4231 int needSync = 0; |
|
4232 |
|
4233 /* Set the doNotSync flag to 1. This is because we cannot allow a journal |
|
4234 ** header to be written between the pages journaled by this function. |
|
4235 */ |
|
4236 assert( pPager->doNotSync==0 ); |
|
4237 pPager->doNotSync = 1; |
|
4238 |
|
4239 /* This trick assumes that both the page-size and sector-size are |
|
4240 ** an integer power of 2. It sets variable pg1 to the identifier |
|
4241 ** of the first page of the sector pPg is located on. |
|
4242 */ |
|
4243 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; |
|
4244 |
|
4245 nPageCount = sqlite3PagerPagecount(pPager); |
|
4246 if( pPg->pgno>nPageCount ){ |
|
4247 nPage = (pPg->pgno - pg1)+1; |
|
4248 }else if( (pg1+nPagePerSector-1)>nPageCount ){ |
|
4249 nPage = nPageCount+1-pg1; |
|
4250 }else{ |
|
4251 nPage = nPagePerSector; |
|
4252 } |
|
4253 assert(nPage>0); |
|
4254 assert(pg1<=pPg->pgno); |
|
4255 assert((pg1+nPage)>pPg->pgno); |
|
4256 |
|
4257 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ |
|
4258 Pgno pg = pg1+ii; |
|
4259 PgHdr *pPage; |
|
4260 if( !pPager->aInJournal || pg==pPg->pgno || |
|
4261 pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7))) |
|
4262 ) { |
|
4263 if( pg!=PAGER_MJ_PGNO(pPager) ){ |
|
4264 rc = sqlite3PagerGet(pPager, pg, &pPage); |
|
4265 if( rc==SQLITE_OK ){ |
|
4266 rc = pager_write(pPage); |
|
4267 if( pPage->needSync ){ |
|
4268 needSync = 1; |
|
4269 } |
|
4270 sqlite3PagerUnref(pPage); |
|
4271 } |
|
4272 } |
|
4273 }else if( (pPage = pager_lookup(pPager, pg)) ){ |
|
4274 if( pPage->needSync ){ |
|
4275 needSync = 1; |
|
4276 } |
|
4277 } |
|
4278 } |
|
4279 |
|
4280 /* If the PgHdr.needSync flag is set for any of the nPage pages |
|
4281 ** starting at pg1, then it needs to be set for all of them. Because |
|
4282 ** writing to any of these nPage pages may damage the others, the |
|
4283 ** journal file must contain sync()ed copies of all of them |
|
4284 ** before any of them can be written out to the database file. |
|
4285 */ |
|
4286 if( needSync ){ |
|
4287 for(ii=0; ii<nPage && needSync; ii++){ |
|
4288 PgHdr *pPage = pager_lookup(pPager, pg1+ii); |
|
4289 if( pPage ) pPage->needSync = 1; |
|
4290 } |
|
4291 assert(pPager->needSync); |
|
4292 } |
|
4293 |
|
4294 assert( pPager->doNotSync==1 ); |
|
4295 pPager->doNotSync = 0; |
|
4296 }else{ |
|
4297 rc = pager_write(pDbPage); |
|
4298 } |
|
4299 pagerLeave(pPager); |
|
4300 return rc; |
|
4301 } |
|
4302 |
|
4303 /* |
|
4304 ** Return TRUE if the page given in the argument was previously passed |
|
4305 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok |
|
4306 ** to change the content of the page. |
|
4307 */ |
|
4308 #ifndef NDEBUG |
|
4309 int sqlite3PagerIswriteable(DbPage *pPg){ |
|
4310 return pPg->dirty; |
|
4311 } |
|
4312 #endif |
|
4313 |
|
4314 #ifndef SQLITE_OMIT_VACUUM |
|
4315 /* |
|
4316 ** Replace the content of a single page with the information in the third |
|
4317 ** argument. |
|
4318 */ |
|
4319 int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){ |
|
4320 PgHdr *pPg; |
|
4321 int rc; |
|
4322 |
|
4323 pagerEnter(pPager); |
|
4324 rc = sqlite3PagerGet(pPager, pgno, &pPg); |
|
4325 if( rc==SQLITE_OK ){ |
|
4326 rc = sqlite3PagerWrite(pPg); |
|
4327 if( rc==SQLITE_OK ){ |
|
4328 memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize); |
|
4329 } |
|
4330 sqlite3PagerUnref(pPg); |
|
4331 } |
|
4332 pagerLeave(pPager); |
|
4333 return rc; |
|
4334 } |
|
4335 #endif |
|
4336 |
|
4337 /* |
|
4338 ** A call to this routine tells the pager that it is not necessary to |
|
4339 ** write the information on page pPg back to the disk, even though |
|
4340 ** that page might be marked as dirty. |
|
4341 ** |
|
4342 ** The overlying software layer calls this routine when all of the data |
|
4343 ** on the given page is unused. The pager marks the page as clean so |
|
4344 ** that it does not get written to disk. |
|
4345 ** |
|
4346 ** Tests show that this optimization, together with the |
|
4347 ** sqlite3PagerDontRollback() below, more than double the speed |
|
4348 ** of large INSERT operations and quadruple the speed of large DELETEs. |
|
4349 ** |
|
4350 ** When this routine is called, set the alwaysRollback flag to true. |
|
4351 ** Subsequent calls to sqlite3PagerDontRollback() for the same page |
|
4352 ** will thereafter be ignored. This is necessary to avoid a problem |
|
4353 ** where a page with data is added to the freelist during one part of |
|
4354 ** a transaction then removed from the freelist during a later part |
|
4355 ** of the same transaction and reused for some other purpose. When it |
|
4356 ** is first added to the freelist, this routine is called. When reused, |
|
4357 ** the sqlite3PagerDontRollback() routine is called. But because the |
|
4358 ** page contains critical data, we still need to be sure it gets |
|
4359 ** rolled back in spite of the sqlite3PagerDontRollback() call. |
|
4360 */ |
|
4361 void sqlite3PagerDontWrite(DbPage *pDbPage){ |
|
4362 PgHdr *pPg = pDbPage; |
|
4363 Pager *pPager = pPg->pPager; |
|
4364 |
|
4365 if( MEMDB ) return; |
|
4366 pagerEnter(pPager); |
|
4367 pPg->alwaysRollback = 1; |
|
4368 if( pPg->dirty && !pPager->stmtInUse ){ |
|
4369 assert( pPager->state>=PAGER_SHARED ); |
|
4370 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ |
|
4371 /* If this pages is the last page in the file and the file has grown |
|
4372 ** during the current transaction, then do NOT mark the page as clean. |
|
4373 ** When the database file grows, we must make sure that the last page |
|
4374 ** gets written at least once so that the disk file will be the correct |
|
4375 ** size. If you do not write this page and the size of the file |
|
4376 ** on the disk ends up being too small, that can lead to database |
|
4377 ** corruption during the next transaction. |
|
4378 */ |
|
4379 }else{ |
|
4380 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); |
|
4381 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) |
|
4382 makeClean(pPg); |
|
4383 #ifdef SQLITE_CHECK_PAGES |
|
4384 pPg->pageHash = pager_pagehash(pPg); |
|
4385 #endif |
|
4386 } |
|
4387 } |
|
4388 pagerLeave(pPager); |
|
4389 } |
|
4390 |
|
4391 /* |
|
4392 ** A call to this routine tells the pager that if a rollback occurs, |
|
4393 ** it is not necessary to restore the data on the given page. This |
|
4394 ** means that the pager does not have to record the given page in the |
|
4395 ** rollback journal. |
|
4396 ** |
|
4397 ** If we have not yet actually read the content of this page (if |
|
4398 ** the PgHdr.needRead flag is set) then this routine acts as a promise |
|
4399 ** that we will never need to read the page content in the future. |
|
4400 ** so the needRead flag can be cleared at this point. |
|
4401 */ |
|
4402 void sqlite3PagerDontRollback(DbPage *pPg){ |
|
4403 Pager *pPager = pPg->pPager; |
|
4404 |
|
4405 pagerEnter(pPager); |
|
4406 assert( pPager->state>=PAGER_RESERVED ); |
|
4407 if( pPager->journalOpen==0 ) return; |
|
4408 if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return; |
|
4409 if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ |
|
4410 assert( pPager->aInJournal!=0 ); |
|
4411 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
4412 pPg->inJournal = 1; |
|
4413 pPg->needRead = 0; |
|
4414 if( pPager->stmtInUse ){ |
|
4415 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
4416 } |
|
4417 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); |
|
4418 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) |
|
4419 } |
|
4420 if( pPager->stmtInUse |
|
4421 && !pageInStatement(pPg) |
|
4422 && (int)pPg->pgno<=pPager->stmtSize |
|
4423 ){ |
|
4424 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); |
|
4425 assert( pPager->aInStmt!=0 ); |
|
4426 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
4427 } |
|
4428 pagerLeave(pPager); |
|
4429 } |
|
4430 |
|
4431 |
|
4432 /* |
|
4433 ** This routine is called to increment the database file change-counter, |
|
4434 ** stored at byte 24 of the pager file. |
|
4435 */ |
|
4436 static int pager_incr_changecounter(Pager *pPager, int isDirect){ |
|
4437 PgHdr *pPgHdr; |
|
4438 u32 change_counter; |
|
4439 int rc = SQLITE_OK; |
|
4440 |
|
4441 if( !pPager->changeCountDone ){ |
|
4442 /* Open page 1 of the file for writing. */ |
|
4443 rc = sqlite3PagerGet(pPager, 1, &pPgHdr); |
|
4444 if( rc!=SQLITE_OK ) return rc; |
|
4445 |
|
4446 if( !isDirect ){ |
|
4447 rc = sqlite3PagerWrite(pPgHdr); |
|
4448 if( rc!=SQLITE_OK ){ |
|
4449 sqlite3PagerUnref(pPgHdr); |
|
4450 return rc; |
|
4451 } |
|
4452 } |
|
4453 |
|
4454 /* Increment the value just read and write it back to byte 24. */ |
|
4455 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); |
|
4456 change_counter++; |
|
4457 put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); |
|
4458 |
|
4459 if( isDirect && pPager->fd->isOpen ){ |
|
4460 const void *zBuf = PGHDR_TO_DATA(pPgHdr); |
|
4461 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); |
|
4462 } |
|
4463 |
|
4464 /* Release the page reference. */ |
|
4465 sqlite3PagerUnref(pPgHdr); |
|
4466 pPager->changeCountDone = 1; |
|
4467 } |
|
4468 return rc; |
|
4469 } |
|
4470 |
|
4471 /* |
|
4472 ** Sync the database file for the pager pPager. zMaster points to the name |
|
4473 ** of a master journal file that should be written into the individual |
|
4474 ** journal file. zMaster may be NULL, which is interpreted as no master |
|
4475 ** journal (a single database transaction). |
|
4476 ** |
|
4477 ** This routine ensures that the journal is synced, all dirty pages written |
|
4478 ** to the database file and the database file synced. The only thing that |
|
4479 ** remains to commit the transaction is to delete the journal file (or |
|
4480 ** master journal file if specified). |
|
4481 ** |
|
4482 ** Note that if zMaster==NULL, this does not overwrite a previous value |
|
4483 ** passed to an sqlite3PagerCommitPhaseOne() call. |
|
4484 ** |
|
4485 ** If parameter nTrunc is non-zero, then the pager file is truncated to |
|
4486 ** nTrunc pages (this is used by auto-vacuum databases). |
|
4487 */ |
|
4488 int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){ |
|
4489 int rc = SQLITE_OK; |
|
4490 |
|
4491 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", |
|
4492 pPager->zFilename, zMaster, nTrunc); |
|
4493 pagerEnter(pPager); |
|
4494 |
|
4495 /* If this is an in-memory db, or no pages have been written to, or this |
|
4496 ** function has already been called, it is a no-op. |
|
4497 */ |
|
4498 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ |
|
4499 PgHdr *pPg; |
|
4500 |
|
4501 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
4502 /* The atomic-write optimization can be used if all of the |
|
4503 ** following are true: |
|
4504 ** |
|
4505 ** + The file-system supports the atomic-write property for |
|
4506 ** blocks of size page-size, and |
|
4507 ** + This commit is not part of a multi-file transaction, and |
|
4508 ** + Exactly one page has been modified and store in the journal file. |
|
4509 ** |
|
4510 ** If the optimization can be used, then the journal file will never |
|
4511 ** be created for this transaction. |
|
4512 */ |
|
4513 int useAtomicWrite = ( |
|
4514 !zMaster && |
|
4515 pPager->journalOff==jrnlBufferSize(pPager) && |
|
4516 nTrunc==0 && |
|
4517 (0==pPager->pDirty || 0==pPager->pDirty->pDirty) |
|
4518 ); |
|
4519 if( useAtomicWrite ){ |
|
4520 /* Update the nRec field in the journal file. */ |
|
4521 int offset = pPager->journalHdr + sizeof(aJournalMagic); |
|
4522 assert(pPager->nRec==1); |
|
4523 rc = write32bits(pPager->jfd, offset, pPager->nRec); |
|
4524 |
|
4525 /* Update the db file change counter. The following call will modify |
|
4526 ** the in-memory representation of page 1 to include the updated |
|
4527 ** change counter and then write page 1 directly to the database |
|
4528 ** file. Because of the atomic-write property of the host file-system, |
|
4529 ** this is safe. |
|
4530 */ |
|
4531 if( rc==SQLITE_OK ){ |
|
4532 rc = pager_incr_changecounter(pPager, 1); |
|
4533 } |
|
4534 }else{ |
|
4535 rc = sqlite3JournalCreate(pPager->jfd); |
|
4536 } |
|
4537 |
|
4538 if( !useAtomicWrite && rc==SQLITE_OK ) |
|
4539 #endif |
|
4540 |
|
4541 /* If a master journal file name has already been written to the |
|
4542 ** journal file, then no sync is required. This happens when it is |
|
4543 ** written, then the process fails to upgrade from a RESERVED to an |
|
4544 ** EXCLUSIVE lock. The next time the process tries to commit the |
|
4545 ** transaction the m-j name will have already been written. |
|
4546 */ |
|
4547 if( !pPager->setMaster ){ |
|
4548 assert( pPager->journalOpen ); |
|
4549 rc = pager_incr_changecounter(pPager, 0); |
|
4550 if( rc!=SQLITE_OK ) goto sync_exit; |
|
4551 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4552 if( nTrunc!=0 ){ |
|
4553 /* If this transaction has made the database smaller, then all pages |
|
4554 ** being discarded by the truncation must be written to the journal |
|
4555 ** file. |
|
4556 */ |
|
4557 Pgno i; |
|
4558 int iSkip = PAGER_MJ_PGNO(pPager); |
|
4559 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ |
|
4560 if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){ |
|
4561 rc = sqlite3PagerGet(pPager, i, &pPg); |
|
4562 if( rc!=SQLITE_OK ) goto sync_exit; |
|
4563 rc = sqlite3PagerWrite(pPg); |
|
4564 sqlite3PagerUnref(pPg); |
|
4565 if( rc!=SQLITE_OK ) goto sync_exit; |
|
4566 } |
|
4567 } |
|
4568 } |
|
4569 #endif |
|
4570 rc = writeMasterJournal(pPager, zMaster); |
|
4571 if( rc!=SQLITE_OK ) goto sync_exit; |
|
4572 rc = syncJournal(pPager); |
|
4573 } |
|
4574 if( rc!=SQLITE_OK ) goto sync_exit; |
|
4575 |
|
4576 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4577 if( nTrunc!=0 ){ |
|
4578 rc = sqlite3PagerTruncate(pPager, nTrunc); |
|
4579 if( rc!=SQLITE_OK ) goto sync_exit; |
|
4580 } |
|
4581 #endif |
|
4582 |
|
4583 /* Write all dirty pages to the database file */ |
|
4584 pPg = pager_get_all_dirty_pages(pPager); |
|
4585 rc = pager_write_pagelist(pPg); |
|
4586 if( rc!=SQLITE_OK ){ |
|
4587 while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; } |
|
4588 pPager->pDirty = pPg; |
|
4589 goto sync_exit; |
|
4590 } |
|
4591 pPager->pDirty = 0; |
|
4592 |
|
4593 /* Sync the database file. */ |
|
4594 if( !pPager->noSync ){ |
|
4595 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); |
|
4596 } |
|
4597 IOTRACE(("DBSYNC %p\n", pPager)) |
|
4598 |
|
4599 pPager->state = PAGER_SYNCED; |
|
4600 }else if( MEMDB && nTrunc!=0 ){ |
|
4601 rc = sqlite3PagerTruncate(pPager, nTrunc); |
|
4602 } |
|
4603 |
|
4604 sync_exit: |
|
4605 if( rc==SQLITE_IOERR_BLOCKED ){ |
|
4606 /* pager_incr_changecounter() may attempt to obtain an exclusive |
|
4607 * lock to spill the cache and return IOERR_BLOCKED. But since |
|
4608 * there is no chance the cache is inconsistent, it is |
|
4609 * better to return SQLITE_BUSY. |
|
4610 */ |
|
4611 rc = SQLITE_BUSY; |
|
4612 } |
|
4613 pagerLeave(pPager); |
|
4614 return rc; |
|
4615 } |
|
4616 |
|
4617 |
|
4618 /* |
|
4619 ** Commit all changes to the database and release the write lock. |
|
4620 ** |
|
4621 ** If the commit fails for any reason, a rollback attempt is made |
|
4622 ** and an error code is returned. If the commit worked, SQLITE_OK |
|
4623 ** is returned. |
|
4624 */ |
|
4625 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ |
|
4626 int rc; |
|
4627 PgHdr *pPg; |
|
4628 |
|
4629 if( pPager->errCode ){ |
|
4630 return pPager->errCode; |
|
4631 } |
|
4632 if( pPager->state<PAGER_RESERVED ){ |
|
4633 return SQLITE_ERROR; |
|
4634 } |
|
4635 pagerEnter(pPager); |
|
4636 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager)); |
|
4637 if( MEMDB ){ |
|
4638 pPg = pager_get_all_dirty_pages(pPager); |
|
4639 while( pPg ){ |
|
4640 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
4641 clearHistory(pHist); |
|
4642 pPg->dirty = 0; |
|
4643 pPg->inJournal = 0; |
|
4644 pHist->inStmt = 0; |
|
4645 pPg->needSync = 0; |
|
4646 pHist->pPrevStmt = pHist->pNextStmt = 0; |
|
4647 pPg = pPg->pDirty; |
|
4648 } |
|
4649 pPager->pDirty = 0; |
|
4650 #ifndef NDEBUG |
|
4651 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
4652 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
4653 assert( !pPg->alwaysRollback ); |
|
4654 assert( !pHist->pOrig ); |
|
4655 assert( !pHist->pStmt ); |
|
4656 } |
|
4657 #endif |
|
4658 pPager->pStmt = 0; |
|
4659 pPager->state = PAGER_SHARED; |
|
4660 return SQLITE_OK; |
|
4661 } |
|
4662 assert( pPager->journalOpen || !pPager->dirtyCache ); |
|
4663 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); |
|
4664 rc = pager_end_transaction(pPager); |
|
4665 rc = pager_error(pPager, rc); |
|
4666 pagerLeave(pPager); |
|
4667 return rc; |
|
4668 } |
|
4669 |
|
4670 /* |
|
4671 ** Rollback all changes. The database falls back to PAGER_SHARED mode. |
|
4672 ** All in-memory cache pages revert to their original data contents. |
|
4673 ** The journal is deleted. |
|
4674 ** |
|
4675 ** This routine cannot fail unless some other process is not following |
|
4676 ** the correct locking protocol or unless some other |
|
4677 ** process is writing trash into the journal file (SQLITE_CORRUPT) or |
|
4678 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error |
|
4679 ** codes are returned for all these occasions. Otherwise, |
|
4680 ** SQLITE_OK is returned. |
|
4681 */ |
|
4682 int sqlite3PagerRollback(Pager *pPager){ |
|
4683 int rc; |
|
4684 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); |
|
4685 if( MEMDB ){ |
|
4686 PgHdr *p; |
|
4687 for(p=pPager->pAll; p; p=p->pNextAll){ |
|
4688 PgHistory *pHist; |
|
4689 assert( !p->alwaysRollback ); |
|
4690 if( !p->dirty ){ |
|
4691 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); |
|
4692 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); |
|
4693 continue; |
|
4694 } |
|
4695 |
|
4696 pHist = PGHDR_TO_HIST(p, pPager); |
|
4697 if( pHist->pOrig ){ |
|
4698 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); |
|
4699 PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); |
|
4700 }else{ |
|
4701 PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); |
|
4702 } |
|
4703 clearHistory(pHist); |
|
4704 p->dirty = 0; |
|
4705 p->inJournal = 0; |
|
4706 pHist->inStmt = 0; |
|
4707 pHist->pPrevStmt = pHist->pNextStmt = 0; |
|
4708 if( pPager->xReiniter ){ |
|
4709 pPager->xReiniter(p, pPager->pageSize); |
|
4710 } |
|
4711 } |
|
4712 pPager->pDirty = 0; |
|
4713 pPager->pStmt = 0; |
|
4714 pPager->dbSize = pPager->origDbSize; |
|
4715 pager_truncate_cache(pPager); |
|
4716 pPager->stmtInUse = 0; |
|
4717 pPager->state = PAGER_SHARED; |
|
4718 return SQLITE_OK; |
|
4719 } |
|
4720 |
|
4721 pagerEnter(pPager); |
|
4722 if( !pPager->dirtyCache || !pPager->journalOpen ){ |
|
4723 rc = pager_end_transaction(pPager); |
|
4724 pagerLeave(pPager); |
|
4725 return rc; |
|
4726 } |
|
4727 |
|
4728 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
4729 if( pPager->state>=PAGER_EXCLUSIVE ){ |
|
4730 pager_playback(pPager, 0); |
|
4731 } |
|
4732 pagerLeave(pPager); |
|
4733 return pPager->errCode; |
|
4734 } |
|
4735 if( pPager->state==PAGER_RESERVED ){ |
|
4736 int rc2; |
|
4737 rc = pager_playback(pPager, 0); |
|
4738 rc2 = pager_end_transaction(pPager); |
|
4739 if( rc==SQLITE_OK ){ |
|
4740 rc = rc2; |
|
4741 } |
|
4742 }else{ |
|
4743 rc = pager_playback(pPager, 0); |
|
4744 } |
|
4745 /* pager_reset(pPager); */ |
|
4746 pPager->dbSize = -1; |
|
4747 |
|
4748 /* If an error occurs during a ROLLBACK, we can no longer trust the pager |
|
4749 ** cache. So call pager_error() on the way out to make any error |
|
4750 ** persistent. |
|
4751 */ |
|
4752 rc = pager_error(pPager, rc); |
|
4753 pagerLeave(pPager); |
|
4754 return rc; |
|
4755 } |
|
4756 |
|
4757 /* |
|
4758 ** Return TRUE if the database file is opened read-only. Return FALSE |
|
4759 ** if the database is (in theory) writable. |
|
4760 */ |
|
4761 int sqlite3PagerIsreadonly(Pager *pPager){ |
|
4762 return pPager->readOnly; |
|
4763 } |
|
4764 |
|
4765 /* |
|
4766 ** Return the number of references to the pager. |
|
4767 */ |
|
4768 int sqlite3PagerRefcount(Pager *pPager){ |
|
4769 return pPager->nRef; |
|
4770 } |
|
4771 |
|
4772 #ifdef SQLITE_TEST |
|
4773 /* |
|
4774 ** This routine is used for testing and analysis only. |
|
4775 */ |
|
4776 int *sqlite3PagerStats(Pager *pPager){ |
|
4777 static int a[11]; |
|
4778 a[0] = pPager->nRef; |
|
4779 a[1] = pPager->nPage; |
|
4780 a[2] = pPager->mxPage; |
|
4781 a[3] = pPager->dbSize; |
|
4782 a[4] = pPager->state; |
|
4783 a[5] = pPager->errCode; |
|
4784 a[6] = pPager->nHit; |
|
4785 a[7] = pPager->nMiss; |
|
4786 a[8] = 0; /* Used to be pPager->nOvfl */ |
|
4787 a[9] = pPager->nRead; |
|
4788 a[10] = pPager->nWrite; |
|
4789 return a; |
|
4790 } |
|
4791 #endif |
|
4792 |
|
4793 /* |
|
4794 ** Set the statement rollback point. |
|
4795 ** |
|
4796 ** This routine should be called with the transaction journal already |
|
4797 ** open. A new statement journal is created that can be used to rollback |
|
4798 ** changes of a single SQL command within a larger transaction. |
|
4799 */ |
|
4800 static int pagerStmtBegin(Pager *pPager){ |
|
4801 int rc; |
|
4802 assert( !pPager->stmtInUse ); |
|
4803 assert( pPager->state>=PAGER_SHARED ); |
|
4804 assert( pPager->dbSize>=0 ); |
|
4805 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); |
|
4806 if( MEMDB ){ |
|
4807 pPager->stmtInUse = 1; |
|
4808 pPager->stmtSize = pPager->dbSize; |
|
4809 return SQLITE_OK; |
|
4810 } |
|
4811 if( !pPager->journalOpen ){ |
|
4812 pPager->stmtAutoopen = 1; |
|
4813 return SQLITE_OK; |
|
4814 } |
|
4815 assert( pPager->journalOpen ); |
|
4816 pagerLeave(pPager); |
|
4817 assert( pPager->aInStmt==0 ); |
|
4818 pPager->aInStmt = (u8*)sqlite3MallocZero( pPager->dbSize/8 + 1 ); |
|
4819 pagerEnter(pPager); |
|
4820 if( pPager->aInStmt==0 ){ |
|
4821 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ |
|
4822 return SQLITE_NOMEM; |
|
4823 } |
|
4824 #ifndef NDEBUG |
|
4825 rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize); |
|
4826 if( rc ) goto stmt_begin_failed; |
|
4827 assert( pPager->stmtJSize == pPager->journalOff ); |
|
4828 #endif |
|
4829 pPager->stmtJSize = pPager->journalOff; |
|
4830 pPager->stmtSize = pPager->dbSize; |
|
4831 pPager->stmtHdrOff = 0; |
|
4832 pPager->stmtCksum = pPager->cksumInit; |
|
4833 if( !pPager->stmtOpen ){ |
|
4834 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl, |
|
4835 SQLITE_OPEN_SUBJOURNAL); |
|
4836 if( rc ){ |
|
4837 goto stmt_begin_failed; |
|
4838 } |
|
4839 pPager->stmtOpen = 1; |
|
4840 pPager->stmtNRec = 0; |
|
4841 } |
|
4842 pPager->stmtInUse = 1; |
|
4843 return SQLITE_OK; |
|
4844 |
|
4845 stmt_begin_failed: |
|
4846 if( pPager->aInStmt ){ |
|
4847 sqlite3_free(pPager->aInStmt); |
|
4848 pPager->aInStmt = 0; |
|
4849 } |
|
4850 return rc; |
|
4851 } |
|
4852 int sqlite3PagerStmtBegin(Pager *pPager){ |
|
4853 int rc; |
|
4854 pagerEnter(pPager); |
|
4855 rc = pagerStmtBegin(pPager); |
|
4856 pagerLeave(pPager); |
|
4857 return rc; |
|
4858 } |
|
4859 |
|
4860 /* |
|
4861 ** Commit a statement. |
|
4862 */ |
|
4863 int sqlite3PagerStmtCommit(Pager *pPager){ |
|
4864 pagerEnter(pPager); |
|
4865 if( pPager->stmtInUse ){ |
|
4866 PgHdr *pPg, *pNext; |
|
4867 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); |
|
4868 if( !MEMDB ){ |
|
4869 /* sqlite3OsTruncate(pPager->stfd, 0); */ |
|
4870 sqlite3_free( pPager->aInStmt ); |
|
4871 pPager->aInStmt = 0; |
|
4872 }else{ |
|
4873 for(pPg=pPager->pStmt; pPg; pPg=pNext){ |
|
4874 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
4875 pNext = pHist->pNextStmt; |
|
4876 assert( pHist->inStmt ); |
|
4877 pHist->inStmt = 0; |
|
4878 pHist->pPrevStmt = pHist->pNextStmt = 0; |
|
4879 sqlite3_free(pHist->pStmt); |
|
4880 pHist->pStmt = 0; |
|
4881 } |
|
4882 } |
|
4883 pPager->stmtNRec = 0; |
|
4884 pPager->stmtInUse = 0; |
|
4885 pPager->pStmt = 0; |
|
4886 } |
|
4887 pPager->stmtAutoopen = 0; |
|
4888 pagerLeave(pPager); |
|
4889 return SQLITE_OK; |
|
4890 } |
|
4891 |
|
4892 /* |
|
4893 ** Rollback a statement. |
|
4894 */ |
|
4895 int sqlite3PagerStmtRollback(Pager *pPager){ |
|
4896 int rc; |
|
4897 pagerEnter(pPager); |
|
4898 if( pPager->stmtInUse ){ |
|
4899 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); |
|
4900 if( MEMDB ){ |
|
4901 PgHdr *pPg; |
|
4902 PgHistory *pHist; |
|
4903 for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){ |
|
4904 pHist = PGHDR_TO_HIST(pPg, pPager); |
|
4905 if( pHist->pStmt ){ |
|
4906 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); |
|
4907 sqlite3_free(pHist->pStmt); |
|
4908 pHist->pStmt = 0; |
|
4909 } |
|
4910 } |
|
4911 pPager->dbSize = pPager->stmtSize; |
|
4912 pager_truncate_cache(pPager); |
|
4913 rc = SQLITE_OK; |
|
4914 }else{ |
|
4915 rc = pager_stmt_playback(pPager); |
|
4916 } |
|
4917 sqlite3PagerStmtCommit(pPager); |
|
4918 }else{ |
|
4919 rc = SQLITE_OK; |
|
4920 } |
|
4921 pPager->stmtAutoopen = 0; |
|
4922 pagerLeave(pPager); |
|
4923 return rc; |
|
4924 } |
|
4925 |
|
4926 /* |
|
4927 ** Return the full pathname of the database file. |
|
4928 */ |
|
4929 const char *sqlite3PagerFilename(Pager *pPager){ |
|
4930 return pPager->zFilename; |
|
4931 } |
|
4932 |
|
4933 /* |
|
4934 ** Return the VFS structure for the pager. |
|
4935 */ |
|
4936 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ |
|
4937 return pPager->pVfs; |
|
4938 } |
|
4939 |
|
4940 /* |
|
4941 ** Return the file handle for the database file associated |
|
4942 ** with the pager. This might return NULL if the file has |
|
4943 ** not yet been opened. |
|
4944 */ |
|
4945 sqlite3_file *sqlite3PagerFile(Pager *pPager){ |
|
4946 return pPager->fd; |
|
4947 } |
|
4948 |
|
4949 /* |
|
4950 ** Return the directory of the database file. |
|
4951 */ |
|
4952 const char *sqlite3PagerDirname(Pager *pPager){ |
|
4953 return pPager->zDirectory; |
|
4954 } |
|
4955 |
|
4956 /* |
|
4957 ** Return the full pathname of the journal file. |
|
4958 */ |
|
4959 const char *sqlite3PagerJournalname(Pager *pPager){ |
|
4960 return pPager->zJournal; |
|
4961 } |
|
4962 |
|
4963 /* |
|
4964 ** Return true if fsync() calls are disabled for this pager. Return FALSE |
|
4965 ** if fsync()s are executed normally. |
|
4966 */ |
|
4967 int sqlite3PagerNosync(Pager *pPager){ |
|
4968 return pPager->noSync; |
|
4969 } |
|
4970 |
|
4971 #ifdef SQLITE_HAS_CODEC |
|
4972 /* |
|
4973 ** Set the codec for this pager |
|
4974 */ |
|
4975 void sqlite3PagerSetCodec( |
|
4976 Pager *pPager, |
|
4977 void *(*xCodec)(void*,void*,Pgno,int), |
|
4978 void *pCodecArg |
|
4979 ){ |
|
4980 pPager->xCodec = xCodec; |
|
4981 pPager->pCodecArg = pCodecArg; |
|
4982 } |
|
4983 #endif |
|
4984 |
|
4985 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4986 /* |
|
4987 ** Move the page pPg to location pgno in the file. |
|
4988 ** |
|
4989 ** There must be no references to the page previously located at |
|
4990 ** pgno (which we call pPgOld) though that page is allowed to be |
|
4991 ** in cache. If the page previous located at pgno is not already |
|
4992 ** in the rollback journal, it is not put there by by this routine. |
|
4993 ** |
|
4994 ** References to the page pPg remain valid. Updating any |
|
4995 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes |
|
4996 ** allocated along with the page) is the responsibility of the caller. |
|
4997 ** |
|
4998 ** A transaction must be active when this routine is called. It used to be |
|
4999 ** required that a statement transaction was not active, but this restriction |
|
5000 ** has been removed (CREATE INDEX needs to move a page when a statement |
|
5001 ** transaction is active). |
|
5002 */ |
|
5003 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){ |
|
5004 PgHdr *pPgOld; /* The page being overwritten. */ |
|
5005 int h; |
|
5006 Pgno needSyncPgno = 0; |
|
5007 |
|
5008 pagerEnter(pPager); |
|
5009 assert( pPg->nRef>0 ); |
|
5010 |
|
5011 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", |
|
5012 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); |
|
5013 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) |
|
5014 |
|
5015 pager_get_content(pPg); |
|
5016 if( pPg->needSync ){ |
|
5017 needSyncPgno = pPg->pgno; |
|
5018 assert( pPg->inJournal || (int)pgno>pPager->origDbSize ); |
|
5019 assert( pPg->dirty ); |
|
5020 assert( pPager->needSync ); |
|
5021 } |
|
5022 |
|
5023 /* Unlink pPg from its hash-chain */ |
|
5024 unlinkHashChain(pPager, pPg); |
|
5025 |
|
5026 /* If the cache contains a page with page-number pgno, remove it |
|
5027 ** from its hash chain. Also, if the PgHdr.needSync was set for |
|
5028 ** page pgno before the 'move' operation, it needs to be retained |
|
5029 ** for the page moved there. |
|
5030 */ |
|
5031 pPg->needSync = 0; |
|
5032 pPgOld = pager_lookup(pPager, pgno); |
|
5033 if( pPgOld ){ |
|
5034 assert( pPgOld->nRef==0 ); |
|
5035 unlinkHashChain(pPager, pPgOld); |
|
5036 makeClean(pPgOld); |
|
5037 pPg->needSync = pPgOld->needSync; |
|
5038 }else{ |
|
5039 pPg->needSync = 0; |
|
5040 } |
|
5041 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ |
|
5042 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; |
|
5043 }else{ |
|
5044 pPg->inJournal = 0; |
|
5045 assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize ); |
|
5046 } |
|
5047 |
|
5048 /* Change the page number for pPg and insert it into the new hash-chain. */ |
|
5049 assert( pgno!=0 ); |
|
5050 pPg->pgno = pgno; |
|
5051 h = pgno & (pPager->nHash-1); |
|
5052 if( pPager->aHash[h] ){ |
|
5053 assert( pPager->aHash[h]->pPrevHash==0 ); |
|
5054 pPager->aHash[h]->pPrevHash = pPg; |
|
5055 } |
|
5056 pPg->pNextHash = pPager->aHash[h]; |
|
5057 pPager->aHash[h] = pPg; |
|
5058 pPg->pPrevHash = 0; |
|
5059 |
|
5060 makeDirty(pPg); |
|
5061 pPager->dirtyCache = 1; |
|
5062 |
|
5063 if( needSyncPgno ){ |
|
5064 /* If needSyncPgno is non-zero, then the journal file needs to be |
|
5065 ** sync()ed before any data is written to database file page needSyncPgno. |
|
5066 ** Currently, no such page exists in the page-cache and the |
|
5067 ** Pager.aInJournal bit has been set. This needs to be remedied by loading |
|
5068 ** the page into the pager-cache and setting the PgHdr.needSync flag. |
|
5069 ** |
|
5070 ** The sqlite3PagerGet() call may cause the journal to sync. So make |
|
5071 ** sure the Pager.needSync flag is set too. |
|
5072 */ |
|
5073 int rc; |
|
5074 PgHdr *pPgHdr; |
|
5075 assert( pPager->needSync ); |
|
5076 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); |
|
5077 if( rc!=SQLITE_OK ) return rc; |
|
5078 pPager->needSync = 1; |
|
5079 pPgHdr->needSync = 1; |
|
5080 pPgHdr->inJournal = 1; |
|
5081 makeDirty(pPgHdr); |
|
5082 sqlite3PagerUnref(pPgHdr); |
|
5083 } |
|
5084 |
|
5085 pagerLeave(pPager); |
|
5086 return SQLITE_OK; |
|
5087 } |
|
5088 #endif |
|
5089 |
|
5090 /* |
|
5091 ** Return a pointer to the data for the specified page. |
|
5092 */ |
|
5093 void *sqlite3PagerGetData(DbPage *pPg){ |
|
5094 return PGHDR_TO_DATA(pPg); |
|
5095 } |
|
5096 |
|
5097 /* |
|
5098 ** Return a pointer to the Pager.nExtra bytes of "extra" space |
|
5099 ** allocated along with the specified page. |
|
5100 */ |
|
5101 void *sqlite3PagerGetExtra(DbPage *pPg){ |
|
5102 Pager *pPager = pPg->pPager; |
|
5103 return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0); |
|
5104 } |
|
5105 |
|
5106 /* |
|
5107 ** Get/set the locking-mode for this pager. Parameter eMode must be one |
|
5108 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or |
|
5109 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then |
|
5110 ** the locking-mode is set to the value specified. |
|
5111 ** |
|
5112 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or |
|
5113 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) |
|
5114 ** locking-mode. |
|
5115 */ |
|
5116 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ |
|
5117 assert( eMode==PAGER_LOCKINGMODE_QUERY |
|
5118 || eMode==PAGER_LOCKINGMODE_NORMAL |
|
5119 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); |
|
5120 assert( PAGER_LOCKINGMODE_QUERY<0 ); |
|
5121 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); |
|
5122 if( eMode>=0 && !pPager->tempFile ){ |
|
5123 pPager->exclusiveMode = eMode; |
|
5124 } |
|
5125 return (int)pPager->exclusiveMode; |
|
5126 } |
|
5127 |
|
5128 #ifdef SQLITE_TEST |
|
5129 /* |
|
5130 ** Print a listing of all referenced pages and their ref count. |
|
5131 */ |
|
5132 void sqlite3PagerRefdump(Pager *pPager){ |
|
5133 PgHdr *pPg; |
|
5134 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
5135 if( pPg->nRef<=0 ) continue; |
|
5136 sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", |
|
5137 pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); |
|
5138 } |
|
5139 } |
|
5140 #endif |
|
5141 |
|
5142 #endif /* SQLITE_OMIT_DISKIO */ |