|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains C code routines that are called by the parser |
|
13 ** to handle SELECT statements in SQLite. |
|
14 ** |
|
15 ** $Id: select.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 |
|
19 |
|
20 /* |
|
21 ** Delete all the content of a Select structure but do not deallocate |
|
22 ** the select structure itself. |
|
23 */ |
|
24 static void clearSelect(Select *p){ |
|
25 sqlite3ExprListDelete(p->pEList); |
|
26 sqlite3SrcListDelete(p->pSrc); |
|
27 sqlite3ExprDelete(p->pWhere); |
|
28 sqlite3ExprListDelete(p->pGroupBy); |
|
29 sqlite3ExprDelete(p->pHaving); |
|
30 sqlite3ExprListDelete(p->pOrderBy); |
|
31 sqlite3SelectDelete(p->pPrior); |
|
32 sqlite3ExprDelete(p->pLimit); |
|
33 sqlite3ExprDelete(p->pOffset); |
|
34 } |
|
35 |
|
36 |
|
37 /* |
|
38 ** Allocate a new Select structure and return a pointer to that |
|
39 ** structure. |
|
40 */ |
|
41 Select *sqlite3SelectNew( |
|
42 Parse *pParse, /* Parsing context */ |
|
43 ExprList *pEList, /* which columns to include in the result */ |
|
44 SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
|
45 Expr *pWhere, /* the WHERE clause */ |
|
46 ExprList *pGroupBy, /* the GROUP BY clause */ |
|
47 Expr *pHaving, /* the HAVING clause */ |
|
48 ExprList *pOrderBy, /* the ORDER BY clause */ |
|
49 int isDistinct, /* true if the DISTINCT keyword is present */ |
|
50 Expr *pLimit, /* LIMIT value. NULL means not used */ |
|
51 Expr *pOffset /* OFFSET value. NULL means no offset */ |
|
52 ){ |
|
53 Select *pNew; |
|
54 Select standin; |
|
55 sqlite3 *db = pParse->db; |
|
56 pNew = (Select*)sqlite3DbMallocZero(db, sizeof(*pNew) ); |
|
57 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ |
|
58 if( pNew==0 ){ |
|
59 pNew = &standin; |
|
60 memset(pNew, 0, sizeof(*pNew)); |
|
61 } |
|
62 if( pEList==0 ){ |
|
63 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); |
|
64 } |
|
65 pNew->pEList = pEList; |
|
66 pNew->pSrc = pSrc; |
|
67 pNew->pWhere = pWhere; |
|
68 pNew->pGroupBy = pGroupBy; |
|
69 pNew->pHaving = pHaving; |
|
70 pNew->pOrderBy = pOrderBy; |
|
71 pNew->isDistinct = isDistinct; |
|
72 pNew->op = TK_SELECT; |
|
73 assert( pOffset==0 || pLimit!=0 ); |
|
74 pNew->pLimit = pLimit; |
|
75 pNew->pOffset = pOffset; |
|
76 pNew->iLimit = -1; |
|
77 pNew->iOffset = -1; |
|
78 pNew->addrOpenEphm[0] = -1; |
|
79 pNew->addrOpenEphm[1] = -1; |
|
80 pNew->addrOpenEphm[2] = -1; |
|
81 if( pNew==&standin) { |
|
82 clearSelect(pNew); |
|
83 pNew = 0; |
|
84 } |
|
85 return pNew; |
|
86 } |
|
87 |
|
88 /* |
|
89 ** Delete the given Select structure and all of its substructures. |
|
90 */ |
|
91 void sqlite3SelectDelete(Select *p){ |
|
92 if( p ){ |
|
93 clearSelect(p); |
|
94 sqlite3_free(p); |
|
95 } |
|
96 } |
|
97 |
|
98 /* |
|
99 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the |
|
100 ** type of join. Return an integer constant that expresses that type |
|
101 ** in terms of the following bit values: |
|
102 ** |
|
103 ** JT_INNER |
|
104 ** JT_CROSS |
|
105 ** JT_OUTER |
|
106 ** JT_NATURAL |
|
107 ** JT_LEFT |
|
108 ** JT_RIGHT |
|
109 ** |
|
110 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
|
111 ** |
|
112 ** If an illegal or unsupported join type is seen, then still return |
|
113 ** a join type, but put an error in the pParse structure. |
|
114 */ |
|
115 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
|
116 int jointype = 0; |
|
117 Token *apAll[3]; |
|
118 Token *p; |
|
119 static const struct { |
|
120 const char zKeyword[8]; |
|
121 u8 nChar; |
|
122 u8 code; |
|
123 } keywords[] = { |
|
124 { "natural", 7, JT_NATURAL }, |
|
125 { "left", 4, JT_LEFT|JT_OUTER }, |
|
126 { "right", 5, JT_RIGHT|JT_OUTER }, |
|
127 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
|
128 { "outer", 5, JT_OUTER }, |
|
129 { "inner", 5, JT_INNER }, |
|
130 { "cross", 5, JT_INNER|JT_CROSS }, |
|
131 }; |
|
132 int i, j; |
|
133 apAll[0] = pA; |
|
134 apAll[1] = pB; |
|
135 apAll[2] = pC; |
|
136 for(i=0; i<3 && apAll[i]; i++){ |
|
137 p = apAll[i]; |
|
138 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ |
|
139 if( p->n==keywords[j].nChar |
|
140 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ |
|
141 jointype |= keywords[j].code; |
|
142 break; |
|
143 } |
|
144 } |
|
145 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ |
|
146 jointype |= JT_ERROR; |
|
147 break; |
|
148 } |
|
149 } |
|
150 if( |
|
151 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
|
152 (jointype & JT_ERROR)!=0 |
|
153 ){ |
|
154 const char *zSp1 = " "; |
|
155 const char *zSp2 = " "; |
|
156 if( pB==0 ){ zSp1++; } |
|
157 if( pC==0 ){ zSp2++; } |
|
158 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " |
|
159 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); |
|
160 jointype = JT_INNER; |
|
161 }else if( jointype & JT_RIGHT ){ |
|
162 sqlite3ErrorMsg(pParse, |
|
163 "RIGHT and FULL OUTER JOINs are not currently supported"); |
|
164 jointype = JT_INNER; |
|
165 } |
|
166 return jointype; |
|
167 } |
|
168 |
|
169 /* |
|
170 ** Return the index of a column in a table. Return -1 if the column |
|
171 ** is not contained in the table. |
|
172 */ |
|
173 static int columnIndex(Table *pTab, const char *zCol){ |
|
174 int i; |
|
175 for(i=0; i<pTab->nCol; i++){ |
|
176 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; |
|
177 } |
|
178 return -1; |
|
179 } |
|
180 |
|
181 /* |
|
182 ** Set the value of a token to a '\000'-terminated string. |
|
183 */ |
|
184 static void setToken(Token *p, const char *z){ |
|
185 p->z = (u8*)z; |
|
186 p->n = z ? strlen(z) : 0; |
|
187 p->dyn = 0; |
|
188 } |
|
189 |
|
190 /* |
|
191 ** Set the token to the double-quoted and escaped version of the string pointed |
|
192 ** to by z. For example; |
|
193 ** |
|
194 ** {a"bc} -> {"a""bc"} |
|
195 */ |
|
196 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ |
|
197 p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z); |
|
198 p->dyn = 1; |
|
199 if( p->z ){ |
|
200 p->n = strlen((char *)p->z); |
|
201 }else{ |
|
202 pParse->db->mallocFailed = 1; |
|
203 } |
|
204 } |
|
205 |
|
206 /* |
|
207 ** Create an expression node for an identifier with the name of zName |
|
208 */ |
|
209 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ |
|
210 Token dummy; |
|
211 setToken(&dummy, zName); |
|
212 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); |
|
213 } |
|
214 |
|
215 |
|
216 /* |
|
217 ** Add a term to the WHERE expression in *ppExpr that requires the |
|
218 ** zCol column to be equal in the two tables pTab1 and pTab2. |
|
219 */ |
|
220 static void addWhereTerm( |
|
221 Parse *pParse, /* Parsing context */ |
|
222 const char *zCol, /* Name of the column */ |
|
223 const Table *pTab1, /* First table */ |
|
224 const char *zAlias1, /* Alias for first table. May be NULL */ |
|
225 const Table *pTab2, /* Second table */ |
|
226 const char *zAlias2, /* Alias for second table. May be NULL */ |
|
227 int iRightJoinTable, /* VDBE cursor for the right table */ |
|
228 Expr **ppExpr /* Add the equality term to this expression */ |
|
229 ){ |
|
230 Expr *pE1a, *pE1b, *pE1c; |
|
231 Expr *pE2a, *pE2b, *pE2c; |
|
232 Expr *pE; |
|
233 |
|
234 pE1a = sqlite3CreateIdExpr(pParse, zCol); |
|
235 pE2a = sqlite3CreateIdExpr(pParse, zCol); |
|
236 if( zAlias1==0 ){ |
|
237 zAlias1 = pTab1->zName; |
|
238 } |
|
239 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); |
|
240 if( zAlias2==0 ){ |
|
241 zAlias2 = pTab2->zName; |
|
242 } |
|
243 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); |
|
244 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); |
|
245 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); |
|
246 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); |
|
247 if( pE ){ |
|
248 ExprSetProperty(pE, EP_FromJoin); |
|
249 pE->iRightJoinTable = iRightJoinTable; |
|
250 } |
|
251 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); |
|
252 } |
|
253 |
|
254 /* |
|
255 ** Set the EP_FromJoin property on all terms of the given expression. |
|
256 ** And set the Expr.iRightJoinTable to iTable for every term in the |
|
257 ** expression. |
|
258 ** |
|
259 ** The EP_FromJoin property is used on terms of an expression to tell |
|
260 ** the LEFT OUTER JOIN processing logic that this term is part of the |
|
261 ** join restriction specified in the ON or USING clause and not a part |
|
262 ** of the more general WHERE clause. These terms are moved over to the |
|
263 ** WHERE clause during join processing but we need to remember that they |
|
264 ** originated in the ON or USING clause. |
|
265 ** |
|
266 ** The Expr.iRightJoinTable tells the WHERE clause processing that the |
|
267 ** expression depends on table iRightJoinTable even if that table is not |
|
268 ** explicitly mentioned in the expression. That information is needed |
|
269 ** for cases like this: |
|
270 ** |
|
271 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
|
272 ** |
|
273 ** The where clause needs to defer the handling of the t1.x=5 |
|
274 ** term until after the t2 loop of the join. In that way, a |
|
275 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
|
276 ** defer the handling of t1.x=5, it will be processed immediately |
|
277 ** after the t1 loop and rows with t1.x!=5 will never appear in |
|
278 ** the output, which is incorrect. |
|
279 */ |
|
280 static void setJoinExpr(Expr *p, int iTable){ |
|
281 while( p ){ |
|
282 ExprSetProperty(p, EP_FromJoin); |
|
283 p->iRightJoinTable = iTable; |
|
284 setJoinExpr(p->pLeft, iTable); |
|
285 p = p->pRight; |
|
286 } |
|
287 } |
|
288 |
|
289 /* |
|
290 ** This routine processes the join information for a SELECT statement. |
|
291 ** ON and USING clauses are converted into extra terms of the WHERE clause. |
|
292 ** NATURAL joins also create extra WHERE clause terms. |
|
293 ** |
|
294 ** The terms of a FROM clause are contained in the Select.pSrc structure. |
|
295 ** The left most table is the first entry in Select.pSrc. The right-most |
|
296 ** table is the last entry. The join operator is held in the entry to |
|
297 ** the left. Thus entry 0 contains the join operator for the join between |
|
298 ** entries 0 and 1. Any ON or USING clauses associated with the join are |
|
299 ** also attached to the left entry. |
|
300 ** |
|
301 ** This routine returns the number of errors encountered. |
|
302 */ |
|
303 static int sqliteProcessJoin(Parse *pParse, Select *p){ |
|
304 SrcList *pSrc; /* All tables in the FROM clause */ |
|
305 int i, j; /* Loop counters */ |
|
306 SrcList::SrcList_item *pLeft; /* Left table being joined */ |
|
307 SrcList::SrcList_item *pRight; /* Right table being joined */ |
|
308 |
|
309 pSrc = p->pSrc; |
|
310 pLeft = &pSrc->a[0]; |
|
311 pRight = &pLeft[1]; |
|
312 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
|
313 Table *pLeftTab = pLeft->pTab; |
|
314 Table *pRightTab = pRight->pTab; |
|
315 |
|
316 if( pLeftTab==0 || pRightTab==0 ) continue; |
|
317 |
|
318 /* When the NATURAL keyword is present, add WHERE clause terms for |
|
319 ** every column that the two tables have in common. |
|
320 */ |
|
321 if( pRight->jointype & JT_NATURAL ){ |
|
322 if( pRight->pOn || pRight->pUsing ){ |
|
323 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
|
324 "an ON or USING clause", 0); |
|
325 return 1; |
|
326 } |
|
327 for(j=0; j<pLeftTab->nCol; j++){ |
|
328 char *zName = pLeftTab->aCol[j].zName; |
|
329 if( columnIndex(pRightTab, zName)>=0 ){ |
|
330 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, |
|
331 pRightTab, pRight->zAlias, |
|
332 pRight->iCursor, &p->pWhere); |
|
333 |
|
334 } |
|
335 } |
|
336 } |
|
337 |
|
338 /* Disallow both ON and USING clauses in the same join |
|
339 */ |
|
340 if( pRight->pOn && pRight->pUsing ){ |
|
341 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " |
|
342 "clauses in the same join"); |
|
343 return 1; |
|
344 } |
|
345 |
|
346 /* Add the ON clause to the end of the WHERE clause, connected by |
|
347 ** an AND operator. |
|
348 */ |
|
349 if( pRight->pOn ){ |
|
350 setJoinExpr(pRight->pOn, pRight->iCursor); |
|
351 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); |
|
352 pRight->pOn = 0; |
|
353 } |
|
354 |
|
355 /* Create extra terms on the WHERE clause for each column named |
|
356 ** in the USING clause. Example: If the two tables to be joined are |
|
357 ** A and B and the USING clause names X, Y, and Z, then add this |
|
358 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
|
359 ** Report an error if any column mentioned in the USING clause is |
|
360 ** not contained in both tables to be joined. |
|
361 */ |
|
362 if( pRight->pUsing ){ |
|
363 IdList *pList = pRight->pUsing; |
|
364 for(j=0; j<pList->nId; j++){ |
|
365 char *zName = pList->a[j].zName; |
|
366 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ |
|
367 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
|
368 "not present in both tables", zName); |
|
369 return 1; |
|
370 } |
|
371 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, |
|
372 pRightTab, pRight->zAlias, |
|
373 pRight->iCursor, &p->pWhere); |
|
374 } |
|
375 } |
|
376 } |
|
377 return 0; |
|
378 } |
|
379 |
|
380 /* |
|
381 ** Insert code into "v" that will push the record on the top of the |
|
382 ** stack into the sorter. |
|
383 */ |
|
384 static void pushOntoSorter( |
|
385 Parse *pParse, /* Parser context */ |
|
386 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
387 Select *pSelect /* The whole SELECT statement */ |
|
388 ){ |
|
389 Vdbe *v = pParse->pVdbe; |
|
390 sqlite3ExprCodeExprList(pParse, pOrderBy); |
|
391 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); |
|
392 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); |
|
393 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); |
|
394 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); |
|
395 if( pSelect->iLimit>=0 ){ |
|
396 int addr1, addr2; |
|
397 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); |
|
398 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); |
|
399 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
|
400 sqlite3VdbeJumpHere(v, addr1); |
|
401 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); |
|
402 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); |
|
403 sqlite3VdbeJumpHere(v, addr2); |
|
404 pSelect->iLimit = -1; |
|
405 } |
|
406 } |
|
407 |
|
408 /* |
|
409 ** Add code to implement the OFFSET |
|
410 */ |
|
411 static void codeOffset( |
|
412 Vdbe *v, /* Generate code into this VM */ |
|
413 Select *p, /* The SELECT statement being coded */ |
|
414 int iContinue, /* Jump here to skip the current record */ |
|
415 int nPop /* Number of times to pop stack when jumping */ |
|
416 ){ |
|
417 if( p->iOffset>=0 && iContinue!=0 ){ |
|
418 int addr; |
|
419 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); |
|
420 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); |
|
421 if( nPop>0 ){ |
|
422 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); |
|
423 } |
|
424 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); |
|
425 VdbeComment((v, "# skip OFFSET records")); |
|
426 sqlite3VdbeJumpHere(v, addr); |
|
427 } |
|
428 } |
|
429 |
|
430 /* |
|
431 ** Add code that will check to make sure the top N elements of the |
|
432 ** stack are distinct. iTab is a sorting index that holds previously |
|
433 ** seen combinations of the N values. A new entry is made in iTab |
|
434 ** if the current N values are new. |
|
435 ** |
|
436 ** A jump to addrRepeat is made and the N+1 values are popped from the |
|
437 ** stack if the top N elements are not distinct. |
|
438 */ |
|
439 static void codeDistinct( |
|
440 Vdbe *v, /* Generate code into this VM */ |
|
441 int iTab, /* A sorting index used to test for distinctness */ |
|
442 int addrRepeat, /* Jump to here if not distinct */ |
|
443 int N /* The top N elements of the stack must be distinct */ |
|
444 ){ |
|
445 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); |
|
446 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); |
|
447 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); |
|
448 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); |
|
449 VdbeComment((v, "# skip indistinct records")); |
|
450 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); |
|
451 } |
|
452 |
|
453 /* |
|
454 ** Generate an error message when a SELECT is used within a subexpression |
|
455 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result |
|
456 ** column. We do this in a subroutine because the error occurs in multiple |
|
457 ** places. |
|
458 */ |
|
459 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){ |
|
460 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ |
|
461 sqlite3ErrorMsg(pParse, "only a single result allowed for " |
|
462 "a SELECT that is part of an expression"); |
|
463 return 1; |
|
464 }else{ |
|
465 return 0; |
|
466 } |
|
467 } |
|
468 |
|
469 /* |
|
470 ** This routine generates the code for the inside of the inner loop |
|
471 ** of a SELECT. |
|
472 ** |
|
473 ** If srcTab and nColumn are both zero, then the pEList expressions |
|
474 ** are evaluated in order to get the data for this row. If nColumn>0 |
|
475 ** then data is pulled from srcTab and pEList is used only to get the |
|
476 ** datatypes for each column. |
|
477 */ |
|
478 static int selectInnerLoop( |
|
479 Parse *pParse, /* The parser context */ |
|
480 Select *p, /* The complete select statement being coded */ |
|
481 ExprList *pEList, /* List of values being extracted */ |
|
482 int srcTab, /* Pull data from this table */ |
|
483 int nColumn, /* Number of columns in the source table */ |
|
484 ExprList *pOrderBy, /* If not NULL, sort results using this key */ |
|
485 int distinct, /* If >=0, make sure results are distinct */ |
|
486 int eDest, /* How to dispose of the results */ |
|
487 int iParm, /* An argument to the disposal method */ |
|
488 int iContinue, /* Jump here to continue with next row */ |
|
489 int iBreak, /* Jump here to break out of the inner loop */ |
|
490 char *aff /* affinity string if eDest is SRT_Union */ |
|
491 ){ |
|
492 Vdbe *v = pParse->pVdbe; |
|
493 int i; |
|
494 int hasDistinct; /* True if the DISTINCT keyword is present */ |
|
495 |
|
496 if( v==0 ) return 0; |
|
497 assert( pEList!=0 ); |
|
498 |
|
499 /* If there was a LIMIT clause on the SELECT statement, then do the check |
|
500 ** to see if this row should be output. |
|
501 */ |
|
502 hasDistinct = distinct>=0 && pEList->nExpr>0; |
|
503 if( pOrderBy==0 && !hasDistinct ){ |
|
504 codeOffset(v, p, iContinue, 0); |
|
505 } |
|
506 |
|
507 /* Pull the requested columns. |
|
508 */ |
|
509 if( nColumn>0 ){ |
|
510 for(i=0; i<nColumn; i++){ |
|
511 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); |
|
512 } |
|
513 }else{ |
|
514 nColumn = pEList->nExpr; |
|
515 sqlite3ExprCodeExprList(pParse, pEList); |
|
516 } |
|
517 |
|
518 /* If the DISTINCT keyword was present on the SELECT statement |
|
519 ** and this row has been seen before, then do not make this row |
|
520 ** part of the result. |
|
521 */ |
|
522 if( hasDistinct ){ |
|
523 assert( pEList!=0 ); |
|
524 assert( pEList->nExpr==nColumn ); |
|
525 codeDistinct(v, distinct, iContinue, nColumn); |
|
526 if( pOrderBy==0 ){ |
|
527 codeOffset(v, p, iContinue, nColumn); |
|
528 } |
|
529 } |
|
530 |
|
531 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ |
|
532 return 0; |
|
533 } |
|
534 |
|
535 switch( eDest ){ |
|
536 /* In this mode, write each query result to the key of the temporary |
|
537 ** table iParm. |
|
538 */ |
|
539 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
540 case SRT_Union: { |
|
541 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
542 if( aff ){ |
|
543 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); |
|
544 } |
|
545 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); |
|
546 break; |
|
547 } |
|
548 |
|
549 /* Construct a record from the query result, but instead of |
|
550 ** saving that record, use it as a key to delete elements from |
|
551 ** the temporary table iParm. |
|
552 */ |
|
553 case SRT_Except: { |
|
554 int addr; |
|
555 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
556 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); |
|
557 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); |
|
558 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); |
|
559 break; |
|
560 } |
|
561 #endif |
|
562 |
|
563 /* Store the result as data using a unique key. |
|
564 */ |
|
565 case SRT_Table: |
|
566 case SRT_EphemTab: { |
|
567 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
568 if( pOrderBy ){ |
|
569 pushOntoSorter(pParse, pOrderBy, p); |
|
570 }else{ |
|
571 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); |
|
572 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
|
573 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); |
|
574 } |
|
575 break; |
|
576 } |
|
577 |
|
578 #ifndef SQLITE_OMIT_SUBQUERY |
|
579 /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
|
580 ** then there should be a single item on the stack. Write this |
|
581 ** item into the set table with bogus data. |
|
582 */ |
|
583 case SRT_Set: { |
|
584 int addr1 = sqlite3VdbeCurrentAddr(v); |
|
585 int addr2; |
|
586 |
|
587 assert( nColumn==1 ); |
|
588 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); |
|
589 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
590 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
|
591 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); |
|
592 if( pOrderBy ){ |
|
593 /* At first glance you would think we could optimize out the |
|
594 ** ORDER BY in this case since the order of entries in the set |
|
595 ** does not matter. But there might be a LIMIT clause, in which |
|
596 ** case the order does matter */ |
|
597 pushOntoSorter(pParse, pOrderBy, p); |
|
598 }else{ |
|
599 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); |
|
600 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); |
|
601 } |
|
602 sqlite3VdbeJumpHere(v, addr2); |
|
603 break; |
|
604 } |
|
605 |
|
606 /* If any row exist in the result set, record that fact and abort. |
|
607 */ |
|
608 case SRT_Exists: { |
|
609 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); |
|
610 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
|
611 /* The LIMIT clause will terminate the loop for us */ |
|
612 break; |
|
613 } |
|
614 |
|
615 /* If this is a scalar select that is part of an expression, then |
|
616 ** store the results in the appropriate memory cell and break out |
|
617 ** of the scan loop. |
|
618 */ |
|
619 case SRT_Mem: { |
|
620 assert( nColumn==1 ); |
|
621 if( pOrderBy ){ |
|
622 pushOntoSorter(pParse, pOrderBy, p); |
|
623 }else{ |
|
624 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); |
|
625 /* The LIMIT clause will jump out of the loop for us */ |
|
626 } |
|
627 break; |
|
628 } |
|
629 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
|
630 |
|
631 /* Send the data to the callback function or to a subroutine. In the |
|
632 ** case of a subroutine, the subroutine itself is responsible for |
|
633 ** popping the data from the stack. |
|
634 */ |
|
635 case SRT_Subroutine: |
|
636 case SRT_Callback: { |
|
637 if( pOrderBy ){ |
|
638 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
639 pushOntoSorter(pParse, pOrderBy, p); |
|
640 }else if( eDest==SRT_Subroutine ){ |
|
641 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); |
|
642 }else{ |
|
643 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); |
|
644 } |
|
645 break; |
|
646 } |
|
647 |
|
648 #if !defined(SQLITE_OMIT_TRIGGER) |
|
649 /* Discard the results. This is used for SELECT statements inside |
|
650 ** the body of a TRIGGER. The purpose of such selects is to call |
|
651 ** user-defined functions that have side effects. We do not care |
|
652 ** about the actual results of the select. |
|
653 */ |
|
654 default: { |
|
655 assert( eDest==SRT_Discard ); |
|
656 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
|
657 break; |
|
658 } |
|
659 #endif |
|
660 } |
|
661 |
|
662 /* Jump to the end of the loop if the LIMIT is reached. |
|
663 */ |
|
664 if( p->iLimit>=0 && pOrderBy==0 ){ |
|
665 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); |
|
666 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); |
|
667 } |
|
668 return 0; |
|
669 } |
|
670 |
|
671 /* |
|
672 ** Given an expression list, generate a KeyInfo structure that records |
|
673 ** the collating sequence for each expression in that expression list. |
|
674 ** |
|
675 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
|
676 ** KeyInfo structure is appropriate for initializing a virtual index to |
|
677 ** implement that clause. If the ExprList is the result set of a SELECT |
|
678 ** then the KeyInfo structure is appropriate for initializing a virtual |
|
679 ** index to implement a DISTINCT test. |
|
680 ** |
|
681 ** Space to hold the KeyInfo structure is obtain from malloc. The calling |
|
682 ** function is responsible for seeing that this structure is eventually |
|
683 ** freed. Add the KeyInfo structure to the P3 field of an opcode using |
|
684 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. |
|
685 */ |
|
686 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ |
|
687 sqlite3 *db = pParse->db; |
|
688 int nExpr; |
|
689 KeyInfo *pInfo; |
|
690 ExprList::ExprList_item *pItem; |
|
691 int i; |
|
692 |
|
693 nExpr = pList->nExpr; |
|
694 pInfo = (KeyInfo*)sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); |
|
695 if( pInfo ){ |
|
696 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; |
|
697 pInfo->nField = nExpr; |
|
698 pInfo->enc = ENC(db); |
|
699 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ |
|
700 CollSeq *pColl; |
|
701 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
|
702 if( !pColl ){ |
|
703 pColl = db->pDfltColl; |
|
704 } |
|
705 pInfo->aColl[i] = pColl; |
|
706 pInfo->aSortOrder[i] = pItem->sortOrder; |
|
707 } |
|
708 } |
|
709 return pInfo; |
|
710 } |
|
711 |
|
712 |
|
713 /* |
|
714 ** If the inner loop was generated using a non-null pOrderBy argument, |
|
715 ** then the results were placed in a sorter. After the loop is terminated |
|
716 ** we need to run the sorter and output the results. The following |
|
717 ** routine generates the code needed to do that. |
|
718 */ |
|
719 static void generateSortTail( |
|
720 Parse *pParse, /* Parsing context */ |
|
721 Select *p, /* The SELECT statement */ |
|
722 Vdbe *v, /* Generate code into this VDBE */ |
|
723 int nColumn, /* Number of columns of data */ |
|
724 int eDest, /* Write the sorted results here */ |
|
725 int iParm /* Optional parameter associated with eDest */ |
|
726 ){ |
|
727 int brk = sqlite3VdbeMakeLabel(v); |
|
728 int cont = sqlite3VdbeMakeLabel(v); |
|
729 int addr; |
|
730 int iTab; |
|
731 int pseudoTab = 0; |
|
732 ExprList *pOrderBy = p->pOrderBy; |
|
733 |
|
734 iTab = pOrderBy->iECursor; |
|
735 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
|
736 pseudoTab = pParse->nTab++; |
|
737 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); |
|
738 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); |
|
739 } |
|
740 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); |
|
741 codeOffset(v, p, cont, 0); |
|
742 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
|
743 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
|
744 } |
|
745 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); |
|
746 switch( eDest ){ |
|
747 case SRT_Table: |
|
748 case SRT_EphemTab: { |
|
749 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); |
|
750 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
|
751 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); |
|
752 break; |
|
753 } |
|
754 #ifndef SQLITE_OMIT_SUBQUERY |
|
755 case SRT_Set: { |
|
756 assert( nColumn==1 ); |
|
757 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); |
|
758 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
759 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); |
|
760 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); |
|
761 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); |
|
762 break; |
|
763 } |
|
764 case SRT_Mem: { |
|
765 assert( nColumn==1 ); |
|
766 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); |
|
767 /* The LIMIT clause will terminate the loop for us */ |
|
768 break; |
|
769 } |
|
770 #endif |
|
771 case SRT_Callback: |
|
772 case SRT_Subroutine: { |
|
773 int i; |
|
774 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); |
|
775 for(i=0; i<nColumn; i++){ |
|
776 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); |
|
777 } |
|
778 if( eDest==SRT_Callback ){ |
|
779 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); |
|
780 }else{ |
|
781 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); |
|
782 } |
|
783 break; |
|
784 } |
|
785 default: { |
|
786 /* Do nothing */ |
|
787 break; |
|
788 } |
|
789 } |
|
790 |
|
791 /* Jump to the end of the loop when the LIMIT is reached |
|
792 */ |
|
793 if( p->iLimit>=0 ){ |
|
794 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); |
|
795 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); |
|
796 } |
|
797 |
|
798 /* The bottom of the loop |
|
799 */ |
|
800 sqlite3VdbeResolveLabel(v, cont); |
|
801 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); |
|
802 sqlite3VdbeResolveLabel(v, brk); |
|
803 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
|
804 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); |
|
805 } |
|
806 |
|
807 } |
|
808 |
|
809 /* |
|
810 ** Return a pointer to a string containing the 'declaration type' of the |
|
811 ** expression pExpr. The string may be treated as static by the caller. |
|
812 ** |
|
813 ** The declaration type is the exact datatype definition extracted from the |
|
814 ** original CREATE TABLE statement if the expression is a column. The |
|
815 ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
|
816 ** is considered a column can be complex in the presence of subqueries. The |
|
817 ** result-set expression in all of the following SELECT statements is |
|
818 ** considered a column by this function. |
|
819 ** |
|
820 ** SELECT col FROM tbl; |
|
821 ** SELECT (SELECT col FROM tbl; |
|
822 ** SELECT (SELECT col FROM tbl); |
|
823 ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
|
824 ** |
|
825 ** The declaration type for any expression other than a column is NULL. |
|
826 */ |
|
827 static const char *columnType( |
|
828 NameContext *pNC, |
|
829 Expr *pExpr, |
|
830 const char **pzOriginDb, |
|
831 const char **pzOriginTab, |
|
832 const char **pzOriginCol |
|
833 ){ |
|
834 char const *zType = 0; |
|
835 char const *zOriginDb = 0; |
|
836 char const *zOriginTab = 0; |
|
837 char const *zOriginCol = 0; |
|
838 int j; |
|
839 if( pExpr==0 || pNC->pSrcList==0 ) return 0; |
|
840 |
|
841 switch( pExpr->op ){ |
|
842 case TK_AGG_COLUMN: |
|
843 case TK_COLUMN: { |
|
844 /* The expression is a column. Locate the table the column is being |
|
845 ** extracted from in NameContext.pSrcList. This table may be real |
|
846 ** database table or a subquery. |
|
847 */ |
|
848 Table *pTab = 0; /* Table structure column is extracted from */ |
|
849 Select *pS = 0; /* Select the column is extracted from */ |
|
850 int iCol = pExpr->iColumn; /* Index of column in pTab */ |
|
851 while( pNC && !pTab ){ |
|
852 SrcList *pTabList = pNC->pSrcList; |
|
853 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
|
854 if( j<pTabList->nSrc ){ |
|
855 pTab = pTabList->a[j].pTab; |
|
856 pS = pTabList->a[j].pSelect; |
|
857 }else{ |
|
858 pNC = pNC->pNext; |
|
859 } |
|
860 } |
|
861 |
|
862 if( pTab==0 ){ |
|
863 /* FIX ME: |
|
864 ** This can occurs if you have something like "SELECT new.x;" inside |
|
865 ** a trigger. In other words, if you reference the special "new" |
|
866 ** table in the result set of a select. We do not have a good way |
|
867 ** to find the actual table type, so call it "TEXT". This is really |
|
868 ** something of a bug, but I do not know how to fix it. |
|
869 ** |
|
870 ** This code does not produce the correct answer - it just prevents |
|
871 ** a segfault. See ticket #1229. |
|
872 */ |
|
873 zType = "TEXT"; |
|
874 break; |
|
875 } |
|
876 |
|
877 assert( pTab ); |
|
878 if( pS ){ |
|
879 /* The "table" is actually a sub-select or a view in the FROM clause |
|
880 ** of the SELECT statement. Return the declaration type and origin |
|
881 ** data for the result-set column of the sub-select. |
|
882 */ |
|
883 if( iCol>=0 && iCol<pS->pEList->nExpr ){ |
|
884 /* If iCol is less than zero, then the expression requests the |
|
885 ** rowid of the sub-select or view. This expression is legal (see |
|
886 ** test case misc2.2.2) - it always evaluates to NULL. |
|
887 */ |
|
888 NameContext sNC; |
|
889 Expr *p = pS->pEList->a[iCol].pExpr; |
|
890 sNC.pSrcList = pS->pSrc; |
|
891 sNC.pNext = 0; |
|
892 sNC.pParse = pNC->pParse; |
|
893 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
|
894 } |
|
895 }else if( pTab->pSchema ){ |
|
896 /* A real table */ |
|
897 assert( !pS ); |
|
898 if( iCol<0 ) iCol = pTab->iPKey; |
|
899 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
|
900 if( iCol<0 ){ |
|
901 zType = "INTEGER"; |
|
902 zOriginCol = "rowid"; |
|
903 }else{ |
|
904 zType = pTab->aCol[iCol].zType; |
|
905 zOriginCol = pTab->aCol[iCol].zName; |
|
906 } |
|
907 zOriginTab = pTab->zName; |
|
908 if( pNC->pParse ){ |
|
909 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
|
910 zOriginDb = pNC->pParse->db->aDb[iDb].zName; |
|
911 } |
|
912 } |
|
913 break; |
|
914 } |
|
915 #ifndef SQLITE_OMIT_SUBQUERY |
|
916 case TK_SELECT: { |
|
917 /* The expression is a sub-select. Return the declaration type and |
|
918 ** origin info for the single column in the result set of the SELECT |
|
919 ** statement. |
|
920 */ |
|
921 NameContext sNC; |
|
922 Select *pS = pExpr->pSelect; |
|
923 Expr *p = pS->pEList->a[0].pExpr; |
|
924 sNC.pSrcList = pS->pSrc; |
|
925 sNC.pNext = pNC; |
|
926 sNC.pParse = pNC->pParse; |
|
927 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
|
928 break; |
|
929 } |
|
930 #endif |
|
931 } |
|
932 |
|
933 if( pzOriginDb ){ |
|
934 assert( pzOriginTab && pzOriginCol ); |
|
935 *pzOriginDb = zOriginDb; |
|
936 *pzOriginTab = zOriginTab; |
|
937 *pzOriginCol = zOriginCol; |
|
938 } |
|
939 return zType; |
|
940 } |
|
941 |
|
942 /* |
|
943 ** Generate code that will tell the VDBE the declaration types of columns |
|
944 ** in the result set. |
|
945 */ |
|
946 static void generateColumnTypes( |
|
947 Parse *pParse, /* Parser context */ |
|
948 SrcList *pTabList, /* List of tables */ |
|
949 ExprList *pEList /* Expressions defining the result set */ |
|
950 ){ |
|
951 Vdbe *v = pParse->pVdbe; |
|
952 int i; |
|
953 NameContext sNC; |
|
954 sNC.pSrcList = pTabList; |
|
955 sNC.pParse = pParse; |
|
956 for(i=0; i<pEList->nExpr; i++){ |
|
957 Expr *p = pEList->a[i].pExpr; |
|
958 const char *zOrigDb = 0; |
|
959 const char *zOrigTab = 0; |
|
960 const char *zOrigCol = 0; |
|
961 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); |
|
962 |
|
963 /* The vdbe must make its own copy of the column-type and other |
|
964 ** column specific strings, in case the schema is reset before this |
|
965 ** virtual machine is deleted. |
|
966 */ |
|
967 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); |
|
968 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); |
|
969 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); |
|
970 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); |
|
971 } |
|
972 } |
|
973 |
|
974 /* |
|
975 ** Generate code that will tell the VDBE the names of columns |
|
976 ** in the result set. This information is used to provide the |
|
977 ** azCol[] values in the callback. |
|
978 */ |
|
979 static void generateColumnNames( |
|
980 Parse *pParse, /* Parser context */ |
|
981 SrcList *pTabList, /* List of tables */ |
|
982 ExprList *pEList /* Expressions defining the result set */ |
|
983 ){ |
|
984 Vdbe *v = pParse->pVdbe; |
|
985 int i, j; |
|
986 sqlite3 *db = pParse->db; |
|
987 int fullNames, shortNames; |
|
988 |
|
989 #ifndef SQLITE_OMIT_EXPLAIN |
|
990 /* If this is an EXPLAIN, skip this step */ |
|
991 if( pParse->explain ){ |
|
992 return; |
|
993 } |
|
994 #endif |
|
995 |
|
996 assert( v!=0 ); |
|
997 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; |
|
998 pParse->colNamesSet = 1; |
|
999 fullNames = (db->flags & SQLITE_FullColNames)!=0; |
|
1000 shortNames = (db->flags & SQLITE_ShortColNames)!=0; |
|
1001 sqlite3VdbeSetNumCols(v, pEList->nExpr); |
|
1002 for(i=0; i<pEList->nExpr; i++){ |
|
1003 Expr *p; |
|
1004 p = pEList->a[i].pExpr; |
|
1005 if( p==0 ) continue; |
|
1006 if( pEList->a[i].zName ){ |
|
1007 char *zName = pEList->a[i].zName; |
|
1008 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); |
|
1009 continue; |
|
1010 } |
|
1011 if( p->op==TK_COLUMN && pTabList ){ |
|
1012 Table *pTab; |
|
1013 char *zCol; |
|
1014 int iCol = p->iColumn; |
|
1015 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} |
|
1016 assert( j<pTabList->nSrc ); |
|
1017 pTab = pTabList->a[j].pTab; |
|
1018 if( iCol<0 ) iCol = pTab->iPKey; |
|
1019 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
|
1020 if( iCol<0 ){ |
|
1021 zCol = "rowid"; |
|
1022 }else{ |
|
1023 zCol = pTab->aCol[iCol].zName; |
|
1024 } |
|
1025 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ |
|
1026 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
|
1027 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ |
|
1028 char *zName = 0; |
|
1029 char *zTab; |
|
1030 |
|
1031 zTab = pTabList->a[j].zAlias; |
|
1032 if( fullNames || zTab==0 ) zTab = pTab->zName; |
|
1033 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); |
|
1034 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); |
|
1035 }else{ |
|
1036 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); |
|
1037 } |
|
1038 }else if( p->span.z && p->span.z[0] ){ |
|
1039 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
|
1040 /* sqlite3VdbeCompressSpace(v, addr); */ |
|
1041 }else{ |
|
1042 char zName[30]; |
|
1043 assert( p->op!=TK_COLUMN || pTabList==0 ); |
|
1044 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); |
|
1045 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); |
|
1046 } |
|
1047 } |
|
1048 generateColumnTypes(pParse, pTabList, pEList); |
|
1049 } |
|
1050 |
|
1051 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1052 /* |
|
1053 ** Name of the connection operator, used for error messages. |
|
1054 */ |
|
1055 static const char *selectOpName(int id){ |
|
1056 char *z; |
|
1057 switch( id ){ |
|
1058 case TK_ALL: z = "UNION ALL"; break; |
|
1059 case TK_INTERSECT: z = "INTERSECT"; break; |
|
1060 case TK_EXCEPT: z = "EXCEPT"; break; |
|
1061 default: z = "UNION"; break; |
|
1062 } |
|
1063 return z; |
|
1064 } |
|
1065 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1066 |
|
1067 /* |
|
1068 ** Forward declaration |
|
1069 */ |
|
1070 static int prepSelectStmt(Parse*, Select*); |
|
1071 |
|
1072 /* |
|
1073 ** Given a SELECT statement, generate a Table structure that describes |
|
1074 ** the result set of that SELECT. |
|
1075 */ |
|
1076 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ |
|
1077 Table *pTab; |
|
1078 int i, j; |
|
1079 ExprList *pEList; |
|
1080 Column *aCol, *pCol; |
|
1081 sqlite3 *db = pParse->db; |
|
1082 |
|
1083 while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
|
1084 if( prepSelectStmt(pParse, pSelect) ){ |
|
1085 return 0; |
|
1086 } |
|
1087 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ |
|
1088 return 0; |
|
1089 } |
|
1090 pTab = (Table*)sqlite3DbMallocZero(db, sizeof(Table) ); |
|
1091 if( pTab==0 ){ |
|
1092 return 0; |
|
1093 } |
|
1094 pTab->nRef = 1; |
|
1095 pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; |
|
1096 pEList = pSelect->pEList; |
|
1097 pTab->nCol = pEList->nExpr; |
|
1098 assert( pTab->nCol>0 ); |
|
1099 pTab->aCol = aCol = (Column*)sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); |
|
1100 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ |
|
1101 Expr *p, *pR; |
|
1102 char *zType; |
|
1103 char *zName; |
|
1104 int nName; |
|
1105 CollSeq *pColl; |
|
1106 int cnt; |
|
1107 NameContext sNC; |
|
1108 |
|
1109 /* Get an appropriate name for the column |
|
1110 */ |
|
1111 p = pEList->a[i].pExpr; |
|
1112 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); |
|
1113 if( (zName = pEList->a[i].zName)!=0 ){ |
|
1114 /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
|
1115 zName = sqlite3DbStrDup(db, zName); |
|
1116 }else if( p->op==TK_DOT |
|
1117 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ |
|
1118 /* For columns of the from A.B use B as the name */ |
|
1119 zName = sqlite3MPrintf(db, "%T", &pR->token); |
|
1120 }else if( p->span.z && p->span.z[0] ){ |
|
1121 /* Use the original text of the column expression as its name */ |
|
1122 zName = sqlite3MPrintf(db, "%T", &p->span); |
|
1123 }else{ |
|
1124 /* If all else fails, make up a name */ |
|
1125 zName = sqlite3MPrintf(db, "column%d", i+1); |
|
1126 } |
|
1127 if( !zName || db->mallocFailed ){ |
|
1128 db->mallocFailed = 1; |
|
1129 sqlite3_free(zName); |
|
1130 sqlite3DeleteTable(pTab); |
|
1131 return 0; |
|
1132 } |
|
1133 sqlite3Dequote(zName); |
|
1134 |
|
1135 /* Make sure the column name is unique. If the name is not unique, |
|
1136 ** append a integer to the name so that it becomes unique. |
|
1137 */ |
|
1138 nName = strlen(zName); |
|
1139 for(j=cnt=0; j<i; j++){ |
|
1140 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
|
1141 zName[nName] = 0; |
|
1142 zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt); |
|
1143 j = -1; |
|
1144 if( zName==0 ) break; |
|
1145 } |
|
1146 } |
|
1147 pCol->zName = zName; |
|
1148 |
|
1149 /* Get the typename, type affinity, and collating sequence for the |
|
1150 ** column. |
|
1151 */ |
|
1152 memset(&sNC, 0, sizeof(sNC)); |
|
1153 sNC.pSrcList = pSelect->pSrc; |
|
1154 zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); |
|
1155 pCol->zType = zType; |
|
1156 pCol->affinity = sqlite3ExprAffinity(p); |
|
1157 pColl = sqlite3ExprCollSeq(pParse, p); |
|
1158 if( pColl ){ |
|
1159 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); |
|
1160 } |
|
1161 } |
|
1162 pTab->iPKey = -1; |
|
1163 return pTab; |
|
1164 } |
|
1165 |
|
1166 /* |
|
1167 ** Prepare a SELECT statement for processing by doing the following |
|
1168 ** things: |
|
1169 ** |
|
1170 ** (1) Make sure VDBE cursor numbers have been assigned to every |
|
1171 ** element of the FROM clause. |
|
1172 ** |
|
1173 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
|
1174 ** defines FROM clause. When views appear in the FROM clause, |
|
1175 ** fill pTabList->a[].pSelect with a copy of the SELECT statement |
|
1176 ** that implements the view. A copy is made of the view's SELECT |
|
1177 ** statement so that we can freely modify or delete that statement |
|
1178 ** without worrying about messing up the presistent representation |
|
1179 ** of the view. |
|
1180 ** |
|
1181 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword |
|
1182 ** on joins and the ON and USING clause of joins. |
|
1183 ** |
|
1184 ** (4) Scan the list of columns in the result set (pEList) looking |
|
1185 ** for instances of the "*" operator or the TABLE.* operator. |
|
1186 ** If found, expand each "*" to be every column in every table |
|
1187 ** and TABLE.* to be every column in TABLE. |
|
1188 ** |
|
1189 ** Return 0 on success. If there are problems, leave an error message |
|
1190 ** in pParse and return non-zero. |
|
1191 */ |
|
1192 static int prepSelectStmt(Parse *pParse, Select *p){ |
|
1193 int i, j, k, rc; |
|
1194 SrcList *pTabList; |
|
1195 ExprList *pEList; |
|
1196 SrcList::SrcList_item *pFrom; |
|
1197 sqlite3 *db = pParse->db; |
|
1198 |
|
1199 if( p==0 || p->pSrc==0 || db->mallocFailed ){ |
|
1200 return 1; |
|
1201 } |
|
1202 pTabList = p->pSrc; |
|
1203 pEList = p->pEList; |
|
1204 |
|
1205 /* Make sure cursor numbers have been assigned to all entries in |
|
1206 ** the FROM clause of the SELECT statement. |
|
1207 */ |
|
1208 sqlite3SrcListAssignCursors(pParse, p->pSrc); |
|
1209 |
|
1210 /* Look up every table named in the FROM clause of the select. If |
|
1211 ** an entry of the FROM clause is a subquery instead of a table or view, |
|
1212 ** then create a transient table structure to describe the subquery. |
|
1213 */ |
|
1214 Table *pTab; |
|
1215 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
|
1216 if( pFrom->pTab!=0 ){ |
|
1217 /* This statement has already been prepared. There is no need |
|
1218 ** to go further. */ |
|
1219 assert( i==0 ); |
|
1220 return 0; |
|
1221 } |
|
1222 if( pFrom->zName==0 ){ |
|
1223 #ifndef SQLITE_OMIT_SUBQUERY |
|
1224 /* A sub-query in the FROM clause of a SELECT */ |
|
1225 assert( pFrom->pSelect!=0 ); |
|
1226 if( pFrom->zAlias==0 ){ |
|
1227 pFrom->zAlias = |
|
1228 sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); |
|
1229 } |
|
1230 assert( pFrom->pTab==0 ); |
|
1231 pFrom->pTab = pTab = |
|
1232 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); |
|
1233 if( pTab==0 ){ |
|
1234 return 1; |
|
1235 } |
|
1236 /* The isEphem flag indicates that the Table structure has been |
|
1237 ** dynamically allocated and may be freed at any time. In other words, |
|
1238 ** pTab is not pointing to a persistent table structure that defines |
|
1239 ** part of the schema. */ |
|
1240 pTab->isEphem = 1; |
|
1241 #endif |
|
1242 }else{ |
|
1243 /* An ordinary table or view name in the FROM clause */ |
|
1244 assert( pFrom->pTab==0 ); |
|
1245 pFrom->pTab = pTab = |
|
1246 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); |
|
1247 if( pTab==0 ){ |
|
1248 return 1; |
|
1249 } |
|
1250 pTab->nRef++; |
|
1251 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) |
|
1252 if( pTab->pSelect || IsVirtual(pTab) ){ |
|
1253 /* We reach here if the named table is a really a view */ |
|
1254 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
|
1255 return 1; |
|
1256 } |
|
1257 /* If pFrom->pSelect!=0 it means we are dealing with a |
|
1258 ** view within a view. The SELECT structure has already been |
|
1259 ** copied by the outer view so we can skip the copy step here |
|
1260 ** in the inner view. |
|
1261 */ |
|
1262 if( pFrom->pSelect==0 ){ |
|
1263 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); |
|
1264 } |
|
1265 } |
|
1266 #endif |
|
1267 } |
|
1268 } |
|
1269 |
|
1270 /* Process NATURAL keywords, and ON and USING clauses of joins. |
|
1271 */ |
|
1272 if( sqliteProcessJoin(pParse, p) ) return 1; |
|
1273 |
|
1274 /* For every "*" that occurs in the column list, insert the names of |
|
1275 ** all columns in all tables. And for every TABLE.* insert the names |
|
1276 ** of all columns in TABLE. The parser inserted a special expression |
|
1277 ** with the TK_ALL operator for each "*" that it found in the column list. |
|
1278 ** The following code just has to locate the TK_ALL expressions and expand |
|
1279 ** each one to the list of all columns in all tables. |
|
1280 ** |
|
1281 ** The first loop just checks to see if there are any "*" operators |
|
1282 ** that need expanding. |
|
1283 */ |
|
1284 for(k=0; k<pEList->nExpr; k++){ |
|
1285 Expr *pE = pEList->a[k].pExpr; |
|
1286 if( pE->op==TK_ALL ) break; |
|
1287 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL |
|
1288 && pE->pLeft && pE->pLeft->op==TK_ID ) break; |
|
1289 } |
|
1290 rc = 0; |
|
1291 if( k<pEList->nExpr ){ |
|
1292 /* |
|
1293 ** If we get here it means the result set contains one or more "*" |
|
1294 ** operators that need to be expanded. Loop through each expression |
|
1295 ** in the result set and expand them one by one. |
|
1296 */ |
|
1297 ExprList::ExprList_item *a = pEList->a; |
|
1298 ExprList *pNew = 0; |
|
1299 int flags = pParse->db->flags; |
|
1300 int longNames = (flags & SQLITE_FullColNames)!=0 && |
|
1301 (flags & SQLITE_ShortColNames)==0; |
|
1302 |
|
1303 for(k=0; k<pEList->nExpr; k++){ |
|
1304 Expr *pE = a[k].pExpr; |
|
1305 if( pE->op!=TK_ALL && |
|
1306 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ |
|
1307 /* This particular expression does not need to be expanded. |
|
1308 */ |
|
1309 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); |
|
1310 if( pNew ){ |
|
1311 pNew->a[pNew->nExpr-1].zName = a[k].zName; |
|
1312 }else{ |
|
1313 rc = 1; |
|
1314 } |
|
1315 a[k].pExpr = 0; |
|
1316 a[k].zName = 0; |
|
1317 }else{ |
|
1318 /* This expression is a "*" or a "TABLE.*" and needs to be |
|
1319 ** expanded. */ |
|
1320 int tableSeen = 0; /* Set to 1 when TABLE matches */ |
|
1321 char *zTName; /* text of name of TABLE */ |
|
1322 if( pE->op==TK_DOT && pE->pLeft ){ |
|
1323 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); |
|
1324 }else{ |
|
1325 zTName = 0; |
|
1326 } |
|
1327 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
|
1328 Table *pTab = pFrom->pTab; |
|
1329 char *zTabName = pFrom->zAlias; |
|
1330 if( zTabName==0 || zTabName[0]==0 ){ |
|
1331 zTabName = pTab->zName; |
|
1332 } |
|
1333 if( zTName && (zTabName==0 || zTabName[0]==0 || |
|
1334 sqlite3StrICmp(zTName, zTabName)!=0) ){ |
|
1335 continue; |
|
1336 } |
|
1337 tableSeen = 1; |
|
1338 for(j=0; j<pTab->nCol; j++){ |
|
1339 Expr *pExpr, *pRight; |
|
1340 char *zName = pTab->aCol[j].zName; |
|
1341 |
|
1342 /* If a column is marked as 'hidden' (currently only possible |
|
1343 ** for virtual tables), do not include it in the expanded |
|
1344 ** result-set list. |
|
1345 */ |
|
1346 if( IsHiddenColumn(&pTab->aCol[j]) ){ |
|
1347 assert(IsVirtual(pTab)); |
|
1348 continue; |
|
1349 } |
|
1350 |
|
1351 if( i>0 ){ |
|
1352 SrcList::SrcList_item *pLeft = &pTabList->a[i-1]; |
|
1353 if( (pLeft[1].jointype & JT_NATURAL)!=0 && |
|
1354 columnIndex(pLeft->pTab, zName)>=0 ){ |
|
1355 /* In a NATURAL join, omit the join columns from the |
|
1356 ** table on the right */ |
|
1357 continue; |
|
1358 } |
|
1359 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ |
|
1360 /* In a join with a USING clause, omit columns in the |
|
1361 ** using clause from the table on the right. */ |
|
1362 continue; |
|
1363 } |
|
1364 } |
|
1365 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); |
|
1366 if( pRight==0 ) break; |
|
1367 setQuotedToken(pParse, &pRight->token, zName); |
|
1368 if( zTabName && (longNames || pTabList->nSrc>1) ){ |
|
1369 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); |
|
1370 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); |
|
1371 if( pExpr==0 ) break; |
|
1372 setQuotedToken(pParse, &pLeft->token, zTabName); |
|
1373 setToken(&pExpr->span, |
|
1374 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); |
|
1375 pExpr->span.dyn = 1; |
|
1376 pExpr->token.z = 0; |
|
1377 pExpr->token.n = 0; |
|
1378 pExpr->token.dyn = 0; |
|
1379 }else{ |
|
1380 pExpr = pRight; |
|
1381 pExpr->span = pExpr->token; |
|
1382 pExpr->span.dyn = 0; |
|
1383 } |
|
1384 if( longNames ){ |
|
1385 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); |
|
1386 }else{ |
|
1387 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); |
|
1388 } |
|
1389 } |
|
1390 } |
|
1391 if( !tableSeen ){ |
|
1392 if( zTName ){ |
|
1393 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
|
1394 }else{ |
|
1395 sqlite3ErrorMsg(pParse, "no tables specified"); |
|
1396 } |
|
1397 rc = 1; |
|
1398 } |
|
1399 sqlite3_free(zTName); |
|
1400 } |
|
1401 } |
|
1402 sqlite3ExprListDelete(pEList); |
|
1403 p->pEList = pNew; |
|
1404 } |
|
1405 if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){ |
|
1406 sqlite3ErrorMsg(pParse, "too many columns in result set"); |
|
1407 rc = SQLITE_ERROR; |
|
1408 } |
|
1409 if( db->mallocFailed ){ |
|
1410 rc = SQLITE_NOMEM; |
|
1411 } |
|
1412 return rc; |
|
1413 } |
|
1414 |
|
1415 /* |
|
1416 ** pE is a pointer to an expression which is a single term in |
|
1417 ** ORDER BY or GROUP BY clause. |
|
1418 ** |
|
1419 ** If pE evaluates to an integer constant i, then return i. |
|
1420 ** This is an indication to the caller that it should sort |
|
1421 ** by the i-th column of the result set. |
|
1422 ** |
|
1423 ** If pE is a well-formed expression and the SELECT statement |
|
1424 ** is not compound, then return 0. This indicates to the |
|
1425 ** caller that it should sort by the value of the ORDER BY |
|
1426 ** expression. |
|
1427 ** |
|
1428 ** If the SELECT is compound, then attempt to match pE against |
|
1429 ** result set columns in the left-most SELECT statement. Return |
|
1430 ** the index i of the matching column, as an indication to the |
|
1431 ** caller that it should sort by the i-th column. If there is |
|
1432 ** no match, return -1 and leave an error message in pParse. |
|
1433 */ |
|
1434 static int matchOrderByTermToExprList( |
|
1435 Parse *pParse, /* Parsing context for error messages */ |
|
1436 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ |
|
1437 Expr *pE, /* The specific ORDER BY term */ |
|
1438 int idx, /* When ORDER BY term is this */ |
|
1439 int isCompound, /* True if this is a compound SELECT */ |
|
1440 u8 *pHasAgg /* True if expression contains aggregate functions */ |
|
1441 ){ |
|
1442 int i; /* Loop counter */ |
|
1443 ExprList *pEList; /* The columns of the result set */ |
|
1444 NameContext nc; /* Name context for resolving pE */ |
|
1445 |
|
1446 |
|
1447 /* If the term is an integer constant, return the value of that |
|
1448 ** constant */ |
|
1449 pEList = pSelect->pEList; |
|
1450 if( sqlite3ExprIsInteger(pE, &i) ){ |
|
1451 if( i<=0 ){ |
|
1452 /* If i is too small, make it too big. That way the calling |
|
1453 ** function still sees a value that is out of range, but does |
|
1454 ** not confuse the column number with 0 or -1 result code. |
|
1455 */ |
|
1456 i = pEList->nExpr+1; |
|
1457 } |
|
1458 return i; |
|
1459 } |
|
1460 |
|
1461 /* If the term is a simple identifier that try to match that identifier |
|
1462 ** against a column name in the result set. |
|
1463 */ |
|
1464 if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ |
|
1465 sqlite3 *db = pParse->db; |
|
1466 char *zCol = sqlite3NameFromToken(db, &pE->token); |
|
1467 if( zCol==0 ){ |
|
1468 return -1; |
|
1469 } |
|
1470 for(i=0; i<pEList->nExpr; i++){ |
|
1471 char *zAs = pEList->a[i].zName; |
|
1472 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
|
1473 sqlite3_free(zCol); |
|
1474 return i+1; |
|
1475 } |
|
1476 } |
|
1477 sqlite3_free(zCol); |
|
1478 } |
|
1479 |
|
1480 /* Resolve all names in the ORDER BY term expression |
|
1481 */ |
|
1482 memset(&nc, 0, sizeof(nc)); |
|
1483 nc.pParse = pParse; |
|
1484 nc.pSrcList = pSelect->pSrc; |
|
1485 nc.pEList = pEList; |
|
1486 nc.allowAgg = 1; |
|
1487 nc.nErr = 0; |
|
1488 if( sqlite3ExprResolveNames(&nc, pE) ){ |
|
1489 if( isCompound ){ |
|
1490 sqlite3ErrorClear(pParse); |
|
1491 return 0; |
|
1492 }else{ |
|
1493 return -1; |
|
1494 } |
|
1495 } |
|
1496 if( nc.hasAgg && pHasAgg ){ |
|
1497 *pHasAgg = 1; |
|
1498 } |
|
1499 |
|
1500 /* For a compound SELECT, we need to try to match the ORDER BY |
|
1501 ** expression against an expression in the result set |
|
1502 */ |
|
1503 if( isCompound ){ |
|
1504 for(i=0; i<pEList->nExpr; i++){ |
|
1505 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ |
|
1506 return i+1; |
|
1507 } |
|
1508 } |
|
1509 } |
|
1510 return 0; |
|
1511 } |
|
1512 |
|
1513 |
|
1514 /* |
|
1515 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. |
|
1516 ** Return the number of errors seen. |
|
1517 ** |
|
1518 ** Every term of the ORDER BY or GROUP BY clause needs to be an |
|
1519 ** expression. If any expression is an integer constant, then |
|
1520 ** that expression is replaced by the corresponding |
|
1521 ** expression from the result set. |
|
1522 */ |
|
1523 static int processOrderGroupBy( |
|
1524 Parse *pParse, /* Parsing context. Leave error messages here */ |
|
1525 Select *pSelect, /* The SELECT statement containing the clause */ |
|
1526 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ |
|
1527 int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ |
|
1528 u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ |
|
1529 ){ |
|
1530 int i; |
|
1531 sqlite3 *db = pParse->db; |
|
1532 ExprList *pEList; |
|
1533 |
|
1534 if( pOrderBy==0 ) return 0; |
|
1535 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ |
|
1536 const char *zType = isOrder ? "ORDER" : "GROUP"; |
|
1537 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); |
|
1538 return 1; |
|
1539 } |
|
1540 pEList = pSelect->pEList; |
|
1541 if( pEList==0 ){ |
|
1542 return 0; |
|
1543 } |
|
1544 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1545 int iCol; |
|
1546 Expr *pE = pOrderBy->a[i].pExpr; |
|
1547 iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); |
|
1548 if( iCol<0 ){ |
|
1549 return 1; |
|
1550 } |
|
1551 if( iCol>pEList->nExpr ){ |
|
1552 const char *zType = isOrder ? "ORDER" : "GROUP"; |
|
1553 sqlite3ErrorMsg(pParse, |
|
1554 "%r %s BY term out of range - should be " |
|
1555 "between 1 and %d", i+1, zType, pEList->nExpr); |
|
1556 return 1; |
|
1557 } |
|
1558 if( iCol>0 ){ |
|
1559 CollSeq *pColl = pE->pColl; |
|
1560 int flags = pE->flags & EP_ExpCollate; |
|
1561 sqlite3ExprDelete(pE); |
|
1562 pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); |
|
1563 pOrderBy->a[i].pExpr = pE; |
|
1564 if( pColl && flags ){ |
|
1565 pE->pColl = pColl; |
|
1566 pE->flags |= flags; |
|
1567 } |
|
1568 } |
|
1569 } |
|
1570 return 0; |
|
1571 } |
|
1572 |
|
1573 /* |
|
1574 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return |
|
1575 ** the number of errors seen. |
|
1576 ** |
|
1577 ** The processing depends on whether the SELECT is simple or compound. |
|
1578 ** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY |
|
1579 ** clause needs to be an expression. If any expression is an integer |
|
1580 ** constant, then that expression is replaced by the corresponding |
|
1581 ** expression from the result set. |
|
1582 ** |
|
1583 ** For compound SELECT statements, every expression needs to be of |
|
1584 ** type TK_COLUMN with a iTable value as given in the 4th parameter. |
|
1585 ** If any expression is an integer, that becomes the column number. |
|
1586 ** Otherwise, match the expression against result set columns from |
|
1587 ** the left-most SELECT. |
|
1588 */ |
|
1589 static int processCompoundOrderBy( |
|
1590 Parse *pParse, /* Parsing context. Leave error messages here */ |
|
1591 Select *pSelect, /* The SELECT statement containing the ORDER BY */ |
|
1592 int iTable /* Output table for compound SELECT statements */ |
|
1593 ){ |
|
1594 int i; |
|
1595 ExprList *pOrderBy; |
|
1596 ExprList *pEList; |
|
1597 sqlite3 *db; |
|
1598 int moreToDo = 1; |
|
1599 |
|
1600 pOrderBy = pSelect->pOrderBy; |
|
1601 if( pOrderBy==0 ) return 0; |
|
1602 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ |
|
1603 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); |
|
1604 return 1; |
|
1605 } |
|
1606 db = pParse->db; |
|
1607 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1608 pOrderBy->a[i].done = 0; |
|
1609 } |
|
1610 while( pSelect->pPrior ){ |
|
1611 pSelect = pSelect->pPrior; |
|
1612 } |
|
1613 while( pSelect && moreToDo ){ |
|
1614 moreToDo = 0; |
|
1615 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1616 int iCol; |
|
1617 Expr *pE, *pDup; |
|
1618 if( pOrderBy->a[i].done ) continue; |
|
1619 pE = pOrderBy->a[i].pExpr; |
|
1620 pDup = sqlite3ExprDup(db, pE); |
|
1621 if( pDup==0 ){ |
|
1622 return 1; |
|
1623 } |
|
1624 iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); |
|
1625 sqlite3ExprDelete(pDup); |
|
1626 if( iCol<0 ){ |
|
1627 return 1; |
|
1628 } |
|
1629 pEList = pSelect->pEList; |
|
1630 if( pEList==0 ){ |
|
1631 return 1; |
|
1632 } |
|
1633 if( iCol>pEList->nExpr ){ |
|
1634 sqlite3ErrorMsg(pParse, |
|
1635 "%r ORDER BY term out of range - should be " |
|
1636 "between 1 and %d", i+1, pEList->nExpr); |
|
1637 return 1; |
|
1638 } |
|
1639 if( iCol>0 ){ |
|
1640 pE->op = TK_COLUMN; |
|
1641 pE->iTable = iTable; |
|
1642 pE->iAgg = -1; |
|
1643 pE->iColumn = iCol-1; |
|
1644 pE->pTab = 0; |
|
1645 pOrderBy->a[i].done = 1; |
|
1646 }else{ |
|
1647 moreToDo = 1; |
|
1648 } |
|
1649 } |
|
1650 pSelect = pSelect->pNext; |
|
1651 } |
|
1652 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1653 if( pOrderBy->a[i].done==0 ){ |
|
1654 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " |
|
1655 "column in the result set", i+1); |
|
1656 return 1; |
|
1657 } |
|
1658 } |
|
1659 return 0; |
|
1660 } |
|
1661 |
|
1662 /* |
|
1663 ** Get a VDBE for the given parser context. Create a new one if necessary. |
|
1664 ** If an error occurs, return NULL and leave a message in pParse. |
|
1665 */ |
|
1666 Vdbe *sqlite3GetVdbe(Parse *pParse){ |
|
1667 Vdbe *v = pParse->pVdbe; |
|
1668 if( v==0 ){ |
|
1669 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); |
|
1670 } |
|
1671 return v; |
|
1672 } |
|
1673 |
|
1674 |
|
1675 /* |
|
1676 ** Compute the iLimit and iOffset fields of the SELECT based on the |
|
1677 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
|
1678 ** that appear in the original SQL statement after the LIMIT and OFFSET |
|
1679 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
|
1680 ** are the integer memory register numbers for counters used to compute |
|
1681 ** the limit and offset. If there is no limit and/or offset, then |
|
1682 ** iLimit and iOffset are negative. |
|
1683 ** |
|
1684 ** This routine changes the values of iLimit and iOffset only if |
|
1685 ** a limit or offset is defined by pLimit and pOffset. iLimit and |
|
1686 ** iOffset should have been preset to appropriate default values |
|
1687 ** (usually but not always -1) prior to calling this routine. |
|
1688 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
|
1689 ** redefined. The UNION ALL operator uses this property to force |
|
1690 ** the reuse of the same limit and offset registers across multiple |
|
1691 ** SELECT statements. |
|
1692 */ |
|
1693 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
|
1694 Vdbe *v = 0; |
|
1695 int iLimit = 0; |
|
1696 int iOffset; |
|
1697 int addr1, addr2; |
|
1698 |
|
1699 /* |
|
1700 ** "LIMIT -1" always shows all rows. There is some |
|
1701 ** contraversy about what the correct behavior should be. |
|
1702 ** The current implementation interprets "LIMIT 0" to mean |
|
1703 ** no rows. |
|
1704 */ |
|
1705 if( p->pLimit ){ |
|
1706 p->iLimit = iLimit = pParse->nMem; |
|
1707 pParse->nMem += 2; |
|
1708 v = sqlite3GetVdbe(pParse); |
|
1709 if( v==0 ) return; |
|
1710 sqlite3ExprCode(pParse, p->pLimit); |
|
1711 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
|
1712 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1); |
|
1713 VdbeComment((v, "# LIMIT counter")); |
|
1714 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); |
|
1715 sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0); |
|
1716 } |
|
1717 if( p->pOffset ){ |
|
1718 p->iOffset = iOffset = pParse->nMem++; |
|
1719 v = sqlite3GetVdbe(pParse); |
|
1720 if( v==0 ) return; |
|
1721 sqlite3ExprCode(pParse, p->pOffset); |
|
1722 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
|
1723 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); |
|
1724 VdbeComment((v, "# OFFSET counter")); |
|
1725 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); |
|
1726 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
1727 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
|
1728 sqlite3VdbeJumpHere(v, addr1); |
|
1729 if( p->pLimit ){ |
|
1730 sqlite3VdbeAddOp(v, OP_Add, 0, 0); |
|
1731 } |
|
1732 } |
|
1733 if( p->pLimit ){ |
|
1734 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); |
|
1735 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
1736 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); |
|
1737 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
|
1738 sqlite3VdbeJumpHere(v, addr1); |
|
1739 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); |
|
1740 VdbeComment((v, "# LIMIT+OFFSET")); |
|
1741 sqlite3VdbeJumpHere(v, addr2); |
|
1742 } |
|
1743 } |
|
1744 |
|
1745 /* |
|
1746 ** Allocate a virtual index to use for sorting. |
|
1747 */ |
|
1748 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ |
|
1749 if( pOrderBy ){ |
|
1750 int addr; |
|
1751 assert( pOrderBy->iECursor==0 ); |
|
1752 pOrderBy->iECursor = pParse->nTab++; |
|
1753 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, |
|
1754 pOrderBy->iECursor, pOrderBy->nExpr+1); |
|
1755 assert( p->addrOpenEphm[2] == -1 ); |
|
1756 p->addrOpenEphm[2] = addr; |
|
1757 } |
|
1758 } |
|
1759 |
|
1760 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1761 /* |
|
1762 ** Return the appropriate collating sequence for the iCol-th column of |
|
1763 ** the result set for the compound-select statement "p". Return NULL if |
|
1764 ** the column has no default collating sequence. |
|
1765 ** |
|
1766 ** The collating sequence for the compound select is taken from the |
|
1767 ** left-most term of the select that has a collating sequence. |
|
1768 */ |
|
1769 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
|
1770 CollSeq *pRet; |
|
1771 if( p->pPrior ){ |
|
1772 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
|
1773 }else{ |
|
1774 pRet = 0; |
|
1775 } |
|
1776 if( pRet==0 ){ |
|
1777 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
|
1778 } |
|
1779 return pRet; |
|
1780 } |
|
1781 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1782 |
|
1783 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1784 /* |
|
1785 ** This routine is called to process a query that is really the union |
|
1786 ** or intersection of two or more separate queries. |
|
1787 ** |
|
1788 ** "p" points to the right-most of the two queries. the query on the |
|
1789 ** left is p->pPrior. The left query could also be a compound query |
|
1790 ** in which case this routine will be called recursively. |
|
1791 ** |
|
1792 ** The results of the total query are to be written into a destination |
|
1793 ** of type eDest with parameter iParm. |
|
1794 ** |
|
1795 ** Example 1: Consider a three-way compound SQL statement. |
|
1796 ** |
|
1797 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
|
1798 ** |
|
1799 ** This statement is parsed up as follows: |
|
1800 ** |
|
1801 ** SELECT c FROM t3 |
|
1802 ** | |
|
1803 ** `-----> SELECT b FROM t2 |
|
1804 ** | |
|
1805 ** `------> SELECT a FROM t1 |
|
1806 ** |
|
1807 ** The arrows in the diagram above represent the Select.pPrior pointer. |
|
1808 ** So if this routine is called with p equal to the t3 query, then |
|
1809 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
|
1810 ** |
|
1811 ** Notice that because of the way SQLite parses compound SELECTs, the |
|
1812 ** individual selects always group from left to right. |
|
1813 */ |
|
1814 static int multiSelect( |
|
1815 Parse *pParse, /* Parsing context */ |
|
1816 Select *p, /* The right-most of SELECTs to be coded */ |
|
1817 int eDest, /* \___ Store query results as specified */ |
|
1818 int iParm, /* / by these two parameters. */ |
|
1819 char *aff /* If eDest is SRT_Union, the affinity string */ |
|
1820 ){ |
|
1821 int rc = SQLITE_OK; /* Success code from a subroutine */ |
|
1822 Select *pPrior; /* Another SELECT immediately to our left */ |
|
1823 Vdbe *v; /* Generate code to this VDBE */ |
|
1824 int nCol; /* Number of columns in the result set */ |
|
1825 ExprList *pOrderBy; /* The ORDER BY clause on p */ |
|
1826 int aSetP2[2]; /* Set P2 value of these op to number of columns */ |
|
1827 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ |
|
1828 |
|
1829 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
|
1830 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
|
1831 */ |
|
1832 if( p==0 || p->pPrior==0 ){ |
|
1833 rc = 1; |
|
1834 goto multi_select_end; |
|
1835 } |
|
1836 pPrior = p->pPrior; |
|
1837 assert( pPrior->pRightmost!=pPrior ); |
|
1838 assert( pPrior->pRightmost==p->pRightmost ); |
|
1839 if( pPrior->pOrderBy ){ |
|
1840 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
|
1841 selectOpName(p->op)); |
|
1842 rc = 1; |
|
1843 goto multi_select_end; |
|
1844 } |
|
1845 if( pPrior->pLimit ){ |
|
1846 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
|
1847 selectOpName(p->op)); |
|
1848 rc = 1; |
|
1849 goto multi_select_end; |
|
1850 } |
|
1851 |
|
1852 /* Make sure we have a valid query engine. If not, create a new one. |
|
1853 */ |
|
1854 v = sqlite3GetVdbe(pParse); |
|
1855 if( v==0 ){ |
|
1856 rc = 1; |
|
1857 goto multi_select_end; |
|
1858 } |
|
1859 |
|
1860 /* Create the destination temporary table if necessary |
|
1861 */ |
|
1862 if( eDest==SRT_EphemTab ){ |
|
1863 assert( p->pEList ); |
|
1864 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); |
|
1865 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); |
|
1866 eDest = SRT_Table; |
|
1867 } |
|
1868 |
|
1869 /* Generate code for the left and right SELECT statements. |
|
1870 */ |
|
1871 pOrderBy = p->pOrderBy; |
|
1872 switch( p->op ){ |
|
1873 case TK_ALL: { |
|
1874 if( pOrderBy==0 ){ |
|
1875 int addr = 0; |
|
1876 assert( !pPrior->pLimit ); |
|
1877 pPrior->pLimit = p->pLimit; |
|
1878 pPrior->pOffset = p->pOffset; |
|
1879 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); |
|
1880 p->pLimit = 0; |
|
1881 p->pOffset = 0; |
|
1882 if( rc ){ |
|
1883 goto multi_select_end; |
|
1884 } |
|
1885 p->pPrior = 0; |
|
1886 p->iLimit = pPrior->iLimit; |
|
1887 p->iOffset = pPrior->iOffset; |
|
1888 if( p->iLimit>=0 ){ |
|
1889 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); |
|
1890 VdbeComment((v, "# Jump ahead if LIMIT reached")); |
|
1891 } |
|
1892 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); |
|
1893 p->pPrior = pPrior; |
|
1894 if( rc ){ |
|
1895 goto multi_select_end; |
|
1896 } |
|
1897 if( addr ){ |
|
1898 sqlite3VdbeJumpHere(v, addr); |
|
1899 } |
|
1900 break; |
|
1901 } |
|
1902 /* For UNION ALL ... ORDER BY fall through to the next case */ |
|
1903 } |
|
1904 case TK_EXCEPT: |
|
1905 case TK_UNION: { |
|
1906 int unionTab; /* Cursor number of the temporary table holding result */ |
|
1907 int op = 0; /* One of the SRT_ operations to apply to self */ |
|
1908 int priorOp; /* The SRT_ operation to apply to prior selects */ |
|
1909 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
|
1910 int addr; |
|
1911 |
|
1912 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; |
|
1913 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ |
|
1914 /* We can reuse a temporary table generated by a SELECT to our |
|
1915 ** right. |
|
1916 */ |
|
1917 unionTab = iParm; |
|
1918 }else{ |
|
1919 /* We will need to create our own temporary table to hold the |
|
1920 ** intermediate results. |
|
1921 */ |
|
1922 unionTab = pParse->nTab++; |
|
1923 if( processCompoundOrderBy(pParse, p, unionTab) ){ |
|
1924 rc = 1; |
|
1925 goto multi_select_end; |
|
1926 } |
|
1927 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); |
|
1928 if( priorOp==SRT_Table ){ |
|
1929 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); |
|
1930 aSetP2[nSetP2++] = addr; |
|
1931 }else{ |
|
1932 assert( p->addrOpenEphm[0] == -1 ); |
|
1933 p->addrOpenEphm[0] = addr; |
|
1934 p->pRightmost->usesEphm = 1; |
|
1935 } |
|
1936 createSortingIndex(pParse, p, pOrderBy); |
|
1937 assert( p->pEList ); |
|
1938 } |
|
1939 |
|
1940 /* Code the SELECT statements to our left |
|
1941 */ |
|
1942 assert( !pPrior->pOrderBy ); |
|
1943 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); |
|
1944 if( rc ){ |
|
1945 goto multi_select_end; |
|
1946 } |
|
1947 |
|
1948 /* Code the current SELECT statement |
|
1949 */ |
|
1950 switch( p->op ){ |
|
1951 case TK_EXCEPT: op = SRT_Except; break; |
|
1952 case TK_UNION: op = SRT_Union; break; |
|
1953 case TK_ALL: op = SRT_Table; break; |
|
1954 } |
|
1955 p->pPrior = 0; |
|
1956 p->pOrderBy = 0; |
|
1957 p->disallowOrderBy = pOrderBy!=0; |
|
1958 pLimit = p->pLimit; |
|
1959 p->pLimit = 0; |
|
1960 pOffset = p->pOffset; |
|
1961 p->pOffset = 0; |
|
1962 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); |
|
1963 /* Query flattening in sqlite3Select() might refill p->pOrderBy. |
|
1964 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ |
|
1965 sqlite3ExprListDelete(p->pOrderBy); |
|
1966 p->pPrior = pPrior; |
|
1967 p->pOrderBy = pOrderBy; |
|
1968 sqlite3ExprDelete(p->pLimit); |
|
1969 p->pLimit = pLimit; |
|
1970 p->pOffset = pOffset; |
|
1971 p->iLimit = -1; |
|
1972 p->iOffset = -1; |
|
1973 if( rc ){ |
|
1974 goto multi_select_end; |
|
1975 } |
|
1976 |
|
1977 |
|
1978 /* Convert the data in the temporary table into whatever form |
|
1979 ** it is that we currently need. |
|
1980 */ |
|
1981 if( eDest!=priorOp || unionTab!=iParm ){ |
|
1982 int iCont, iBreak, iStart; |
|
1983 assert( p->pEList ); |
|
1984 if( eDest==SRT_Callback ){ |
|
1985 Select *pFirst = p; |
|
1986 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
1987 generateColumnNames(pParse, 0, pFirst->pEList); |
|
1988 } |
|
1989 iBreak = sqlite3VdbeMakeLabel(v); |
|
1990 iCont = sqlite3VdbeMakeLabel(v); |
|
1991 computeLimitRegisters(pParse, p, iBreak); |
|
1992 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); |
|
1993 iStart = sqlite3VdbeCurrentAddr(v); |
|
1994 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, |
|
1995 pOrderBy, -1, eDest, iParm, |
|
1996 iCont, iBreak, 0); |
|
1997 if( rc ){ |
|
1998 rc = 1; |
|
1999 goto multi_select_end; |
|
2000 } |
|
2001 sqlite3VdbeResolveLabel(v, iCont); |
|
2002 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); |
|
2003 sqlite3VdbeResolveLabel(v, iBreak); |
|
2004 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); |
|
2005 } |
|
2006 break; |
|
2007 } |
|
2008 case TK_INTERSECT: { |
|
2009 int tab1, tab2; |
|
2010 int iCont, iBreak, iStart; |
|
2011 Expr *pLimit, *pOffset; |
|
2012 int addr; |
|
2013 |
|
2014 /* INTERSECT is different from the others since it requires |
|
2015 ** two temporary tables. Hence it has its own case. Begin |
|
2016 ** by allocating the tables we will need. |
|
2017 */ |
|
2018 tab1 = pParse->nTab++; |
|
2019 tab2 = pParse->nTab++; |
|
2020 if( processCompoundOrderBy(pParse, p, tab1) ){ |
|
2021 rc = 1; |
|
2022 goto multi_select_end; |
|
2023 } |
|
2024 createSortingIndex(pParse, p, pOrderBy); |
|
2025 |
|
2026 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); |
|
2027 assert( p->addrOpenEphm[0] == -1 ); |
|
2028 p->addrOpenEphm[0] = addr; |
|
2029 p->pRightmost->usesEphm = 1; |
|
2030 assert( p->pEList ); |
|
2031 |
|
2032 /* Code the SELECTs to our left into temporary table "tab1". |
|
2033 */ |
|
2034 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); |
|
2035 if( rc ){ |
|
2036 goto multi_select_end; |
|
2037 } |
|
2038 |
|
2039 /* Code the current SELECT into temporary table "tab2" |
|
2040 */ |
|
2041 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); |
|
2042 assert( p->addrOpenEphm[1] == -1 ); |
|
2043 p->addrOpenEphm[1] = addr; |
|
2044 p->pPrior = 0; |
|
2045 pLimit = p->pLimit; |
|
2046 p->pLimit = 0; |
|
2047 pOffset = p->pOffset; |
|
2048 p->pOffset = 0; |
|
2049 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); |
|
2050 p->pPrior = pPrior; |
|
2051 sqlite3ExprDelete(p->pLimit); |
|
2052 p->pLimit = pLimit; |
|
2053 p->pOffset = pOffset; |
|
2054 if( rc ){ |
|
2055 goto multi_select_end; |
|
2056 } |
|
2057 |
|
2058 /* Generate code to take the intersection of the two temporary |
|
2059 ** tables. |
|
2060 */ |
|
2061 assert( p->pEList ); |
|
2062 if( eDest==SRT_Callback ){ |
|
2063 Select *pFirst = p; |
|
2064 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
2065 generateColumnNames(pParse, 0, pFirst->pEList); |
|
2066 } |
|
2067 iBreak = sqlite3VdbeMakeLabel(v); |
|
2068 iCont = sqlite3VdbeMakeLabel(v); |
|
2069 computeLimitRegisters(pParse, p, iBreak); |
|
2070 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); |
|
2071 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); |
|
2072 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); |
|
2073 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, |
|
2074 pOrderBy, -1, eDest, iParm, |
|
2075 iCont, iBreak, 0); |
|
2076 if( rc ){ |
|
2077 rc = 1; |
|
2078 goto multi_select_end; |
|
2079 } |
|
2080 sqlite3VdbeResolveLabel(v, iCont); |
|
2081 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); |
|
2082 sqlite3VdbeResolveLabel(v, iBreak); |
|
2083 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); |
|
2084 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); |
|
2085 break; |
|
2086 } |
|
2087 } |
|
2088 |
|
2089 /* Make sure all SELECTs in the statement have the same number of elements |
|
2090 ** in their result sets. |
|
2091 */ |
|
2092 assert( p->pEList && pPrior->pEList ); |
|
2093 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
|
2094 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
|
2095 " do not have the same number of result columns", selectOpName(p->op)); |
|
2096 rc = 1; |
|
2097 goto multi_select_end; |
|
2098 } |
|
2099 |
|
2100 /* Set the number of columns in temporary tables |
|
2101 */ |
|
2102 nCol = p->pEList->nExpr; |
|
2103 while( nSetP2 ){ |
|
2104 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); |
|
2105 } |
|
2106 |
|
2107 /* Compute collating sequences used by either the ORDER BY clause or |
|
2108 ** by any temporary tables needed to implement the compound select. |
|
2109 ** Attach the KeyInfo structure to all temporary tables. Invoke the |
|
2110 ** ORDER BY processing if there is an ORDER BY clause. |
|
2111 ** |
|
2112 ** This section is run by the right-most SELECT statement only. |
|
2113 ** SELECT statements to the left always skip this part. The right-most |
|
2114 ** SELECT might also skip this part if it has no ORDER BY clause and |
|
2115 ** no temp tables are required. |
|
2116 */ |
|
2117 if( pOrderBy || p->usesEphm ){ |
|
2118 int i; /* Loop counter */ |
|
2119 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
|
2120 Select *pLoop; /* For looping through SELECT statements */ |
|
2121 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ |
|
2122 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ |
|
2123 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ |
|
2124 |
|
2125 assert( p->pRightmost==p ); |
|
2126 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); |
|
2127 pKeyInfo = (KeyInfo*)sqlite3DbMallocZero(pParse->db, |
|
2128 sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); |
|
2129 if( !pKeyInfo ){ |
|
2130 rc = SQLITE_NOMEM; |
|
2131 goto multi_select_end; |
|
2132 } |
|
2133 |
|
2134 pKeyInfo->enc = ENC(pParse->db); |
|
2135 pKeyInfo->nField = nCol; |
|
2136 |
|
2137 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
|
2138 *apColl = multiSelectCollSeq(pParse, p, i); |
|
2139 if( 0==*apColl ){ |
|
2140 *apColl = pParse->db->pDfltColl; |
|
2141 } |
|
2142 } |
|
2143 |
|
2144 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
|
2145 for(i=0; i<2; i++){ |
|
2146 int addr = pLoop->addrOpenEphm[i]; |
|
2147 if( addr<0 ){ |
|
2148 /* If [0] is unused then [1] is also unused. So we can |
|
2149 ** always safely abort as soon as the first unused slot is found */ |
|
2150 assert( pLoop->addrOpenEphm[1]<0 ); |
|
2151 break; |
|
2152 } |
|
2153 sqlite3VdbeChangeP2(v, addr, nCol); |
|
2154 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); |
|
2155 pLoop->addrOpenEphm[i] = -1; |
|
2156 } |
|
2157 } |
|
2158 |
|
2159 if( pOrderBy ){ |
|
2160 ExprList::ExprList_item *pOTerm = pOrderBy->a; |
|
2161 int nOrderByExpr = pOrderBy->nExpr; |
|
2162 int addr; |
|
2163 u8 *pSortOrder; |
|
2164 |
|
2165 /* Reuse the same pKeyInfo for the ORDER BY as was used above for |
|
2166 ** the compound select statements. Except we have to change out the |
|
2167 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be |
|
2168 ** reused when constructing the pKeyInfo for the ORDER BY, so make |
|
2169 ** a copy. Sufficient space to hold both the nCol entries for |
|
2170 ** the compound select and the nOrderbyExpr entries for the ORDER BY |
|
2171 ** was allocated above. But we need to move the compound select |
|
2172 ** entries out of the way before constructing the ORDER BY entries. |
|
2173 ** Move the compound select entries into aCopy[] where they can be |
|
2174 ** accessed and reused when constructing the ORDER BY entries. |
|
2175 ** Because nCol might be greater than or less than nOrderByExpr |
|
2176 ** we have to use memmove() when doing the copy. |
|
2177 */ |
|
2178 aCopy = &pKeyInfo->aColl[nOrderByExpr]; |
|
2179 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; |
|
2180 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); |
|
2181 |
|
2182 apColl = pKeyInfo->aColl; |
|
2183 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ |
|
2184 Expr *pExpr = pOTerm->pExpr; |
|
2185 if( (pExpr->flags & EP_ExpCollate) ){ |
|
2186 assert( pExpr->pColl!=0 ); |
|
2187 *apColl = pExpr->pColl; |
|
2188 }else{ |
|
2189 *apColl = aCopy[pExpr->iColumn]; |
|
2190 } |
|
2191 *pSortOrder = pOTerm->sortOrder; |
|
2192 } |
|
2193 assert( p->pRightmost==p ); |
|
2194 assert( p->addrOpenEphm[2]>=0 ); |
|
2195 addr = p->addrOpenEphm[2]; |
|
2196 sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); |
|
2197 pKeyInfo->nField = nOrderByExpr; |
|
2198 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
2199 pKeyInfo = 0; |
|
2200 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); |
|
2201 } |
|
2202 |
|
2203 sqlite3_free(pKeyInfo); |
|
2204 } |
|
2205 |
|
2206 multi_select_end: |
|
2207 return rc; |
|
2208 } |
|
2209 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
2210 |
|
2211 #ifndef SQLITE_OMIT_VIEW |
|
2212 /* Forward Declarations */ |
|
2213 static void substExprList(sqlite3*, ExprList*, int, ExprList*); |
|
2214 static void substSelect(sqlite3*, Select *, int, ExprList *); |
|
2215 |
|
2216 /* |
|
2217 ** Scan through the expression pExpr. Replace every reference to |
|
2218 ** a column in table number iTable with a copy of the iColumn-th |
|
2219 ** entry in pEList. (But leave references to the ROWID column |
|
2220 ** unchanged.) |
|
2221 ** |
|
2222 ** This routine is part of the flattening procedure. A subquery |
|
2223 ** whose result set is defined by pEList appears as entry in the |
|
2224 ** FROM clause of a SELECT such that the VDBE cursor assigned to that |
|
2225 ** FORM clause entry is iTable. This routine make the necessary |
|
2226 ** changes to pExpr so that it refers directly to the source table |
|
2227 ** of the subquery rather the result set of the subquery. |
|
2228 */ |
|
2229 static void substExpr( |
|
2230 sqlite3 *db, /* Report malloc errors to this connection */ |
|
2231 Expr *pExpr, /* Expr in which substitution occurs */ |
|
2232 int iTable, /* Table to be substituted */ |
|
2233 ExprList *pEList /* Substitute expressions */ |
|
2234 ){ |
|
2235 if( pExpr==0 ) return; |
|
2236 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
|
2237 if( pExpr->iColumn<0 ){ |
|
2238 pExpr->op = TK_NULL; |
|
2239 }else{ |
|
2240 Expr *pNew; |
|
2241 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
|
2242 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); |
|
2243 pNew = pEList->a[pExpr->iColumn].pExpr; |
|
2244 assert( pNew!=0 ); |
|
2245 pExpr->op = pNew->op; |
|
2246 assert( pExpr->pLeft==0 ); |
|
2247 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); |
|
2248 assert( pExpr->pRight==0 ); |
|
2249 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); |
|
2250 assert( pExpr->pList==0 ); |
|
2251 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); |
|
2252 pExpr->iTable = pNew->iTable; |
|
2253 pExpr->pTab = pNew->pTab; |
|
2254 pExpr->iColumn = pNew->iColumn; |
|
2255 pExpr->iAgg = pNew->iAgg; |
|
2256 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); |
|
2257 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); |
|
2258 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); |
|
2259 pExpr->flags = pNew->flags; |
|
2260 } |
|
2261 }else{ |
|
2262 substExpr(db, pExpr->pLeft, iTable, pEList); |
|
2263 substExpr(db, pExpr->pRight, iTable, pEList); |
|
2264 substSelect(db, pExpr->pSelect, iTable, pEList); |
|
2265 substExprList(db, pExpr->pList, iTable, pEList); |
|
2266 } |
|
2267 } |
|
2268 static void substExprList( |
|
2269 sqlite3 *db, /* Report malloc errors here */ |
|
2270 ExprList *pList, /* List to scan and in which to make substitutes */ |
|
2271 int iTable, /* Table to be substituted */ |
|
2272 ExprList *pEList /* Substitute values */ |
|
2273 ){ |
|
2274 int i; |
|
2275 if( pList==0 ) return; |
|
2276 for(i=0; i<pList->nExpr; i++){ |
|
2277 substExpr(db, pList->a[i].pExpr, iTable, pEList); |
|
2278 } |
|
2279 } |
|
2280 static void substSelect( |
|
2281 sqlite3 *db, /* Report malloc errors here */ |
|
2282 Select *p, /* SELECT statement in which to make substitutions */ |
|
2283 int iTable, /* Table to be replaced */ |
|
2284 ExprList *pEList /* Substitute values */ |
|
2285 ){ |
|
2286 if( !p ) return; |
|
2287 substExprList(db, p->pEList, iTable, pEList); |
|
2288 substExprList(db, p->pGroupBy, iTable, pEList); |
|
2289 substExprList(db, p->pOrderBy, iTable, pEList); |
|
2290 substExpr(db, p->pHaving, iTable, pEList); |
|
2291 substExpr(db, p->pWhere, iTable, pEList); |
|
2292 substSelect(db, p->pPrior, iTable, pEList); |
|
2293 } |
|
2294 #endif /* !defined(SQLITE_OMIT_VIEW) */ |
|
2295 |
|
2296 #ifndef SQLITE_OMIT_VIEW |
|
2297 /* |
|
2298 ** This routine attempts to flatten subqueries in order to speed |
|
2299 ** execution. It returns 1 if it makes changes and 0 if no flattening |
|
2300 ** occurs. |
|
2301 ** |
|
2302 ** To understand the concept of flattening, consider the following |
|
2303 ** query: |
|
2304 ** |
|
2305 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
|
2306 ** |
|
2307 ** The default way of implementing this query is to execute the |
|
2308 ** subquery first and store the results in a temporary table, then |
|
2309 ** run the outer query on that temporary table. This requires two |
|
2310 ** passes over the data. Furthermore, because the temporary table |
|
2311 ** has no indices, the WHERE clause on the outer query cannot be |
|
2312 ** optimized. |
|
2313 ** |
|
2314 ** This routine attempts to rewrite queries such as the above into |
|
2315 ** a single flat select, like this: |
|
2316 ** |
|
2317 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
|
2318 ** |
|
2319 ** The code generated for this simpification gives the same result |
|
2320 ** but only has to scan the data once. And because indices might |
|
2321 ** exist on the table t1, a complete scan of the data might be |
|
2322 ** avoided. |
|
2323 ** |
|
2324 ** Flattening is only attempted if all of the following are true: |
|
2325 ** |
|
2326 ** (1) The subquery and the outer query do not both use aggregates. |
|
2327 ** |
|
2328 ** (2) The subquery is not an aggregate or the outer query is not a join. |
|
2329 ** |
|
2330 ** (3) The subquery is not the right operand of a left outer join, or |
|
2331 ** the subquery is not itself a join. (Ticket #306) |
|
2332 ** |
|
2333 ** (4) The subquery is not DISTINCT or the outer query is not a join. |
|
2334 ** |
|
2335 ** (5) The subquery is not DISTINCT or the outer query does not use |
|
2336 ** aggregates. |
|
2337 ** |
|
2338 ** (6) The subquery does not use aggregates or the outer query is not |
|
2339 ** DISTINCT. |
|
2340 ** |
|
2341 ** (7) The subquery has a FROM clause. |
|
2342 ** |
|
2343 ** (8) The subquery does not use LIMIT or the outer query is not a join. |
|
2344 ** |
|
2345 ** (9) The subquery does not use LIMIT or the outer query does not use |
|
2346 ** aggregates. |
|
2347 ** |
|
2348 ** (10) The subquery does not use aggregates or the outer query does not |
|
2349 ** use LIMIT. |
|
2350 ** |
|
2351 ** (11) The subquery and the outer query do not both have ORDER BY clauses. |
|
2352 ** |
|
2353 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the |
|
2354 ** subquery has no WHERE clause. (added by ticket #350) |
|
2355 ** |
|
2356 ** (13) The subquery and outer query do not both use LIMIT |
|
2357 ** |
|
2358 ** (14) The subquery does not use OFFSET |
|
2359 ** |
|
2360 ** (15) The outer query is not part of a compound select or the |
|
2361 ** subquery does not have both an ORDER BY and a LIMIT clause. |
|
2362 ** (See ticket #2339) |
|
2363 ** |
|
2364 ** In this routine, the "p" parameter is a pointer to the outer query. |
|
2365 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
|
2366 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
|
2367 ** |
|
2368 ** If flattening is not attempted, this routine is a no-op and returns 0. |
|
2369 ** If flattening is attempted this routine returns 1. |
|
2370 ** |
|
2371 ** All of the expression analysis must occur on both the outer query and |
|
2372 ** the subquery before this routine runs. |
|
2373 */ |
|
2374 static int flattenSubquery( |
|
2375 sqlite3 *db, /* Database connection */ |
|
2376 Select *p, /* The parent or outer SELECT statement */ |
|
2377 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
|
2378 int isAgg, /* True if outer SELECT uses aggregate functions */ |
|
2379 int subqueryIsAgg /* True if the subquery uses aggregate functions */ |
|
2380 ){ |
|
2381 Select *pSub; /* The inner query or "subquery" */ |
|
2382 SrcList *pSrc; /* The FROM clause of the outer query */ |
|
2383 SrcList *pSubSrc; /* The FROM clause of the subquery */ |
|
2384 ExprList *pList; /* The result set of the outer query */ |
|
2385 int iParent; /* VDBE cursor number of the pSub result set temp table */ |
|
2386 int i; /* Loop counter */ |
|
2387 Expr *pWhere; /* The WHERE clause */ |
|
2388 SrcList::SrcList_item *pSubitem; /* The subquery */ |
|
2389 |
|
2390 /* Check to see if flattening is permitted. Return 0 if not. |
|
2391 */ |
|
2392 if( p==0 ) return 0; |
|
2393 pSrc = p->pSrc; |
|
2394 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
|
2395 pSubitem = &pSrc->a[iFrom]; |
|
2396 pSub = pSubitem->pSelect; |
|
2397 assert( pSub!=0 ); |
|
2398 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
|
2399 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
|
2400 pSubSrc = pSub->pSrc; |
|
2401 assert( pSubSrc ); |
|
2402 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
|
2403 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET |
|
2404 ** because they could be computed at compile-time. But when LIMIT and OFFSET |
|
2405 ** became arbitrary expressions, we were forced to add restrictions (13) |
|
2406 ** and (14). */ |
|
2407 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
|
2408 if( pSub->pOffset ) return 0; /* Restriction (14) */ |
|
2409 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ |
|
2410 return 0; /* Restriction (15) */ |
|
2411 } |
|
2412 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
|
2413 if( (pSub->isDistinct || pSub->pLimit) |
|
2414 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ |
|
2415 return 0; |
|
2416 } |
|
2417 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ |
|
2418 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ |
|
2419 return 0; /* Restriction (11) */ |
|
2420 } |
|
2421 |
|
2422 /* Restriction 3: If the subquery is a join, make sure the subquery is |
|
2423 ** not used as the right operand of an outer join. Examples of why this |
|
2424 ** is not allowed: |
|
2425 ** |
|
2426 ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
|
2427 ** |
|
2428 ** If we flatten the above, we would get |
|
2429 ** |
|
2430 ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
|
2431 ** |
|
2432 ** which is not at all the same thing. |
|
2433 */ |
|
2434 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ |
|
2435 return 0; |
|
2436 } |
|
2437 |
|
2438 /* Restriction 12: If the subquery is the right operand of a left outer |
|
2439 ** join, make sure the subquery has no WHERE clause. |
|
2440 ** An examples of why this is not allowed: |
|
2441 ** |
|
2442 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
|
2443 ** |
|
2444 ** If we flatten the above, we would get |
|
2445 ** |
|
2446 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
|
2447 ** |
|
2448 ** But the t2.x>0 test will always fail on a NULL row of t2, which |
|
2449 ** effectively converts the OUTER JOIN into an INNER JOIN. |
|
2450 */ |
|
2451 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ |
|
2452 return 0; |
|
2453 } |
|
2454 |
|
2455 /* If we reach this point, it means flattening is permitted for the |
|
2456 ** iFrom-th entry of the FROM clause in the outer query. |
|
2457 */ |
|
2458 |
|
2459 /* Move all of the FROM elements of the subquery into the |
|
2460 ** the FROM clause of the outer query. Before doing this, remember |
|
2461 ** the cursor number for the original outer query FROM element in |
|
2462 ** iParent. The iParent cursor will never be used. Subsequent code |
|
2463 ** will scan expressions looking for iParent references and replace |
|
2464 ** those references with expressions that resolve to the subquery FROM |
|
2465 ** elements we are now copying in. |
|
2466 */ |
|
2467 iParent = pSubitem->iCursor; |
|
2468 { |
|
2469 int nSubSrc = pSubSrc->nSrc; |
|
2470 int jointype = pSubitem->jointype; |
|
2471 |
|
2472 sqlite3DeleteTable(pSubitem->pTab); |
|
2473 sqlite3_free(pSubitem->zDatabase); |
|
2474 sqlite3_free(pSubitem->zName); |
|
2475 sqlite3_free(pSubitem->zAlias); |
|
2476 pSubitem->pTab = 0; |
|
2477 pSubitem->zDatabase = 0; |
|
2478 pSubitem->zName = 0; |
|
2479 pSubitem->zAlias = 0; |
|
2480 if( nSubSrc>1 ){ |
|
2481 int extra = nSubSrc - 1; |
|
2482 for(i=1; i<nSubSrc; i++){ |
|
2483 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); |
|
2484 if( pSrc==0 ){ |
|
2485 p->pSrc = 0; |
|
2486 return 1; |
|
2487 } |
|
2488 } |
|
2489 p->pSrc = pSrc; |
|
2490 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ |
|
2491 pSrc->a[i] = pSrc->a[i-extra]; |
|
2492 } |
|
2493 } |
|
2494 for(i=0; i<nSubSrc; i++){ |
|
2495 pSrc->a[i+iFrom] = pSubSrc->a[i]; |
|
2496 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
|
2497 } |
|
2498 pSrc->a[iFrom].jointype = jointype; |
|
2499 } |
|
2500 |
|
2501 /* Now begin substituting subquery result set expressions for |
|
2502 ** references to the iParent in the outer query. |
|
2503 ** |
|
2504 ** Example: |
|
2505 ** |
|
2506 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
|
2507 ** \ \_____________ subquery __________/ / |
|
2508 ** \_____________________ outer query ______________________________/ |
|
2509 ** |
|
2510 ** We look at every expression in the outer query and every place we see |
|
2511 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
|
2512 */ |
|
2513 pList = p->pEList; |
|
2514 for(i=0; i<pList->nExpr; i++){ |
|
2515 Expr *pExpr; |
|
2516 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ |
|
2517 pList->a[i].zName = |
|
2518 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); |
|
2519 } |
|
2520 } |
|
2521 substExprList(db, p->pEList, iParent, pSub->pEList); |
|
2522 if( isAgg ){ |
|
2523 substExprList(db, p->pGroupBy, iParent, pSub->pEList); |
|
2524 substExpr(db, p->pHaving, iParent, pSub->pEList); |
|
2525 } |
|
2526 if( pSub->pOrderBy ){ |
|
2527 assert( p->pOrderBy==0 ); |
|
2528 p->pOrderBy = pSub->pOrderBy; |
|
2529 pSub->pOrderBy = 0; |
|
2530 }else if( p->pOrderBy ){ |
|
2531 substExprList(db, p->pOrderBy, iParent, pSub->pEList); |
|
2532 } |
|
2533 if( pSub->pWhere ){ |
|
2534 pWhere = sqlite3ExprDup(db, pSub->pWhere); |
|
2535 }else{ |
|
2536 pWhere = 0; |
|
2537 } |
|
2538 if( subqueryIsAgg ){ |
|
2539 assert( p->pHaving==0 ); |
|
2540 p->pHaving = p->pWhere; |
|
2541 p->pWhere = pWhere; |
|
2542 substExpr(db, p->pHaving, iParent, pSub->pEList); |
|
2543 p->pHaving = sqlite3ExprAnd(db, p->pHaving, |
|
2544 sqlite3ExprDup(db, pSub->pHaving)); |
|
2545 assert( p->pGroupBy==0 ); |
|
2546 p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); |
|
2547 }else{ |
|
2548 substExpr(db, p->pWhere, iParent, pSub->pEList); |
|
2549 p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere); |
|
2550 } |
|
2551 |
|
2552 /* The flattened query is distinct if either the inner or the |
|
2553 ** outer query is distinct. |
|
2554 */ |
|
2555 p->isDistinct = p->isDistinct || pSub->isDistinct; |
|
2556 |
|
2557 /* |
|
2558 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
|
2559 ** |
|
2560 ** One is tempted to try to add a and b to combine the limits. But this |
|
2561 ** does not work if either limit is negative. |
|
2562 */ |
|
2563 if( pSub->pLimit ){ |
|
2564 p->pLimit = pSub->pLimit; |
|
2565 pSub->pLimit = 0; |
|
2566 } |
|
2567 |
|
2568 /* Finially, delete what is left of the subquery and return |
|
2569 ** success. |
|
2570 */ |
|
2571 sqlite3SelectDelete(pSub); |
|
2572 return 1; |
|
2573 } |
|
2574 #endif /* SQLITE_OMIT_VIEW */ |
|
2575 |
|
2576 /* |
|
2577 ** Analyze the SELECT statement passed in as an argument to see if it |
|
2578 ** is a simple min() or max() query. If it is and this query can be |
|
2579 ** satisfied using a single seek to the beginning or end of an index, |
|
2580 ** then generate the code for this SELECT and return 1. If this is not a |
|
2581 ** simple min() or max() query, then return 0; |
|
2582 ** |
|
2583 ** A simply min() or max() query looks like this: |
|
2584 ** |
|
2585 ** SELECT min(a) FROM table; |
|
2586 ** SELECT max(a) FROM table; |
|
2587 ** |
|
2588 ** The query may have only a single table in its FROM argument. There |
|
2589 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must |
|
2590 ** be the min() or max() of a single column of the table. The column |
|
2591 ** in the min() or max() function must be indexed. |
|
2592 ** |
|
2593 ** The parameters to this routine are the same as for sqlite3Select(). |
|
2594 ** See the header comment on that routine for additional information. |
|
2595 */ |
|
2596 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ |
|
2597 Expr *pExpr; |
|
2598 int iCol; |
|
2599 Table *pTab; |
|
2600 Index *pIdx; |
|
2601 int base; |
|
2602 Vdbe *v; |
|
2603 int seekOp; |
|
2604 ExprList *pEList, *pList, eList; |
|
2605 ExprList::ExprList_item eListItem; |
|
2606 SrcList *pSrc; |
|
2607 int brk; |
|
2608 int iDb; |
|
2609 |
|
2610 /* Check to see if this query is a simple min() or max() query. Return |
|
2611 ** zero if it is not. |
|
2612 */ |
|
2613 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; |
|
2614 pSrc = p->pSrc; |
|
2615 if( pSrc->nSrc!=1 ) return 0; |
|
2616 pEList = p->pEList; |
|
2617 if( pEList->nExpr!=1 ) return 0; |
|
2618 pExpr = pEList->a[0].pExpr; |
|
2619 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
|
2620 pList = pExpr->pList; |
|
2621 if( pList==0 || pList->nExpr!=1 ) return 0; |
|
2622 if( pExpr->token.n!=3 ) return 0; |
|
2623 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ |
|
2624 seekOp = OP_Rewind; |
|
2625 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ |
|
2626 seekOp = OP_Last; |
|
2627 }else{ |
|
2628 return 0; |
|
2629 } |
|
2630 pExpr = pList->a[0].pExpr; |
|
2631 if( pExpr->op!=TK_COLUMN ) return 0; |
|
2632 iCol = pExpr->iColumn; |
|
2633 pTab = pSrc->a[0].pTab; |
|
2634 |
|
2635 /* This optimization cannot be used with virtual tables. */ |
|
2636 if( IsVirtual(pTab) ) return 0; |
|
2637 |
|
2638 /* If we get to here, it means the query is of the correct form. |
|
2639 ** Check to make sure we have an index and make pIdx point to the |
|
2640 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY |
|
2641 ** key column, no index is necessary so set pIdx to NULL. If no |
|
2642 ** usable index is found, return 0. |
|
2643 */ |
|
2644 if( iCol<0 ){ |
|
2645 pIdx = 0; |
|
2646 }else{ |
|
2647 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); |
|
2648 if( pColl==0 ) return 0; |
|
2649 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
2650 assert( pIdx->nColumn>=1 ); |
|
2651 if( pIdx->aiColumn[0]==iCol && |
|
2652 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ |
|
2653 break; |
|
2654 } |
|
2655 } |
|
2656 if( pIdx==0 ) return 0; |
|
2657 } |
|
2658 |
|
2659 /* Identify column types if we will be using the callback. This |
|
2660 ** step is skipped if the output is going to a table or a memory cell. |
|
2661 ** The column names have already been generated in the calling function. |
|
2662 */ |
|
2663 v = sqlite3GetVdbe(pParse); |
|
2664 if( v==0 ) return 0; |
|
2665 |
|
2666 /* If the output is destined for a temporary table, open that table. |
|
2667 */ |
|
2668 if( eDest==SRT_EphemTab ){ |
|
2669 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); |
|
2670 } |
|
2671 |
|
2672 /* Generating code to find the min or the max. Basically all we have |
|
2673 ** to do is find the first or the last entry in the chosen index. If |
|
2674 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first |
|
2675 ** or last entry in the main table. |
|
2676 */ |
|
2677 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
2678 assert( iDb>=0 || pTab->isEphem ); |
|
2679 sqlite3CodeVerifySchema(pParse, iDb); |
|
2680 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
|
2681 base = pSrc->a[0].iCursor; |
|
2682 brk = sqlite3VdbeMakeLabel(v); |
|
2683 computeLimitRegisters(pParse, p, brk); |
|
2684 if( pSrc->a[0].pSelect==0 ){ |
|
2685 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); |
|
2686 } |
|
2687 if( pIdx==0 ){ |
|
2688 sqlite3VdbeAddOp(v, seekOp, base, 0); |
|
2689 }else{ |
|
2690 /* Even though the cursor used to open the index here is closed |
|
2691 ** as soon as a single value has been read from it, allocate it |
|
2692 ** using (pParse->nTab++) to prevent the cursor id from being |
|
2693 ** reused. This is important for statements of the form |
|
2694 ** "INSERT INTO x SELECT max() FROM x". |
|
2695 */ |
|
2696 int iIdx; |
|
2697 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
|
2698 iIdx = pParse->nTab++; |
|
2699 assert( pIdx->pSchema==pTab->pSchema ); |
|
2700 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
|
2701 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, |
|
2702 (char*)pKey, P3_KEYINFO_HANDOFF); |
|
2703 if( seekOp==OP_Rewind ){ |
|
2704 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
2705 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); |
|
2706 seekOp = OP_MoveGt; |
|
2707 } |
|
2708 if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){ |
|
2709 /* Ticket #2514: invert the seek operator if we are using |
|
2710 ** a descending index. */ |
|
2711 if( seekOp==OP_Last ){ |
|
2712 seekOp = OP_Rewind; |
|
2713 }else{ |
|
2714 assert( seekOp==OP_MoveGt ); |
|
2715 seekOp = OP_MoveLt; |
|
2716 } |
|
2717 } |
|
2718 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); |
|
2719 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); |
|
2720 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); |
|
2721 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); |
|
2722 } |
|
2723 eList.nExpr = 1; |
|
2724 memset(&eListItem, 0, sizeof(eListItem)); |
|
2725 eList.a = &eListItem; |
|
2726 eList.a[0].pExpr = pExpr; |
|
2727 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); |
|
2728 sqlite3VdbeResolveLabel(v, brk); |
|
2729 sqlite3VdbeAddOp(v, OP_Close, base, 0); |
|
2730 |
|
2731 return 1; |
|
2732 } |
|
2733 |
|
2734 /* |
|
2735 ** This routine resolves any names used in the result set of the |
|
2736 ** supplied SELECT statement. If the SELECT statement being resolved |
|
2737 ** is a sub-select, then pOuterNC is a pointer to the NameContext |
|
2738 ** of the parent SELECT. |
|
2739 */ |
|
2740 int sqlite3SelectResolve( |
|
2741 Parse *pParse, /* The parser context */ |
|
2742 Select *p, /* The SELECT statement being coded. */ |
|
2743 NameContext *pOuterNC /* The outer name context. May be NULL. */ |
|
2744 ){ |
|
2745 ExprList *pEList; /* Result set. */ |
|
2746 int i; /* For-loop variable used in multiple places */ |
|
2747 NameContext sNC; /* Local name-context */ |
|
2748 ExprList *pGroupBy; /* The group by clause */ |
|
2749 |
|
2750 /* If this routine has run before, return immediately. */ |
|
2751 if( p->isResolved ){ |
|
2752 assert( !pOuterNC ); |
|
2753 return SQLITE_OK; |
|
2754 } |
|
2755 p->isResolved = 1; |
|
2756 |
|
2757 /* If there have already been errors, do nothing. */ |
|
2758 if( pParse->nErr>0 ){ |
|
2759 return SQLITE_ERROR; |
|
2760 } |
|
2761 |
|
2762 /* Prepare the select statement. This call will allocate all cursors |
|
2763 ** required to handle the tables and subqueries in the FROM clause. |
|
2764 */ |
|
2765 if( prepSelectStmt(pParse, p) ){ |
|
2766 return SQLITE_ERROR; |
|
2767 } |
|
2768 |
|
2769 /* Resolve the expressions in the LIMIT and OFFSET clauses. These |
|
2770 ** are not allowed to refer to any names, so pass an empty NameContext. |
|
2771 */ |
|
2772 memset(&sNC, 0, sizeof(sNC)); |
|
2773 sNC.pParse = pParse; |
|
2774 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || |
|
2775 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ |
|
2776 return SQLITE_ERROR; |
|
2777 } |
|
2778 |
|
2779 /* Set up the local name-context to pass to ExprResolveNames() to |
|
2780 ** resolve the expression-list. |
|
2781 */ |
|
2782 sNC.allowAgg = 1; |
|
2783 sNC.pSrcList = p->pSrc; |
|
2784 sNC.pNext = pOuterNC; |
|
2785 |
|
2786 /* Resolve names in the result set. */ |
|
2787 pEList = p->pEList; |
|
2788 if( !pEList ) return SQLITE_ERROR; |
|
2789 for(i=0; i<pEList->nExpr; i++){ |
|
2790 Expr *pX = pEList->a[i].pExpr; |
|
2791 if( sqlite3ExprResolveNames(&sNC, pX) ){ |
|
2792 return SQLITE_ERROR; |
|
2793 } |
|
2794 } |
|
2795 |
|
2796 /* If there are no aggregate functions in the result-set, and no GROUP BY |
|
2797 ** expression, do not allow aggregates in any of the other expressions. |
|
2798 */ |
|
2799 assert( !p->isAgg ); |
|
2800 pGroupBy = p->pGroupBy; |
|
2801 if( pGroupBy || sNC.hasAgg ){ |
|
2802 p->isAgg = 1; |
|
2803 }else{ |
|
2804 sNC.allowAgg = 0; |
|
2805 } |
|
2806 |
|
2807 /* If a HAVING clause is present, then there must be a GROUP BY clause. |
|
2808 */ |
|
2809 if( p->pHaving && !pGroupBy ){ |
|
2810 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); |
|
2811 return SQLITE_ERROR; |
|
2812 } |
|
2813 |
|
2814 /* Add the expression list to the name-context before parsing the |
|
2815 ** other expressions in the SELECT statement. This is so that |
|
2816 ** expressions in the WHERE clause (etc.) can refer to expressions by |
|
2817 ** aliases in the result set. |
|
2818 ** |
|
2819 ** Minor point: If this is the case, then the expression will be |
|
2820 ** re-evaluated for each reference to it. |
|
2821 */ |
|
2822 sNC.pEList = p->pEList; |
|
2823 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || |
|
2824 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ |
|
2825 return SQLITE_ERROR; |
|
2826 } |
|
2827 if( p->pPrior==0 ){ |
|
2828 if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ |
|
2829 return SQLITE_ERROR; |
|
2830 } |
|
2831 } |
|
2832 if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ |
|
2833 return SQLITE_ERROR; |
|
2834 } |
|
2835 |
|
2836 if( pParse->db->mallocFailed ){ |
|
2837 return SQLITE_NOMEM; |
|
2838 } |
|
2839 |
|
2840 /* Make sure the GROUP BY clause does not contain aggregate functions. |
|
2841 */ |
|
2842 if( pGroupBy ){ |
|
2843 ExprList::ExprList_item *pItem; |
|
2844 |
|
2845 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ |
|
2846 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ |
|
2847 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " |
|
2848 "the GROUP BY clause"); |
|
2849 return SQLITE_ERROR; |
|
2850 } |
|
2851 } |
|
2852 } |
|
2853 |
|
2854 /* If this is one SELECT of a compound, be sure to resolve names |
|
2855 ** in the other SELECTs. |
|
2856 */ |
|
2857 if( p->pPrior ){ |
|
2858 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); |
|
2859 }else{ |
|
2860 return SQLITE_OK; |
|
2861 } |
|
2862 } |
|
2863 |
|
2864 /* |
|
2865 ** Reset the aggregate accumulator. |
|
2866 ** |
|
2867 ** The aggregate accumulator is a set of memory cells that hold |
|
2868 ** intermediate results while calculating an aggregate. This |
|
2869 ** routine simply stores NULLs in all of those memory cells. |
|
2870 */ |
|
2871 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
|
2872 Vdbe *v = pParse->pVdbe; |
|
2873 int i=0; |
|
2874 AggInfo::AggInfo_func *pFunc; |
|
2875 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ |
|
2876 return; |
|
2877 } |
|
2878 for(i=0; i<pAggInfo->nColumn; i++){ |
|
2879 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); |
|
2880 } |
|
2881 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
|
2882 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); |
|
2883 if( pFunc->iDistinct>=0 ){ |
|
2884 Expr *pE = pFunc->pExpr; |
|
2885 if( pE->pList==0 || pE->pList->nExpr!=1 ){ |
|
2886 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " |
|
2887 "by an expression"); |
|
2888 pFunc->iDistinct = -1; |
|
2889 }else{ |
|
2890 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); |
|
2891 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, |
|
2892 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
2893 } |
|
2894 } |
|
2895 } |
|
2896 } |
|
2897 |
|
2898 /* |
|
2899 ** Invoke the OP_AggFinalize opcode for every aggregate function |
|
2900 ** in the AggInfo structure. |
|
2901 */ |
|
2902 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
|
2903 Vdbe *v = pParse->pVdbe; |
|
2904 int i; |
|
2905 AggInfo::AggInfo_func *pF; |
|
2906 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
|
2907 ExprList *pList = pF->pExpr->pList; |
|
2908 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, |
|
2909 (const char*)pF->pFunc, P3_FUNCDEF); |
|
2910 } |
|
2911 } |
|
2912 |
|
2913 /* |
|
2914 ** Update the accumulator memory cells for an aggregate based on |
|
2915 ** the current cursor position. |
|
2916 */ |
|
2917 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
|
2918 Vdbe *v = pParse->pVdbe; |
|
2919 int i; |
|
2920 AggInfo::AggInfo_func *pF; |
|
2921 AggInfo::AggInfo_col *pC; |
|
2922 |
|
2923 pAggInfo->directMode = 1; |
|
2924 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
|
2925 int nArg; |
|
2926 int addrNext = 0; |
|
2927 ExprList *pList = pF->pExpr->pList; |
|
2928 if( pList ){ |
|
2929 nArg = pList->nExpr; |
|
2930 sqlite3ExprCodeExprList(pParse, pList); |
|
2931 }else{ |
|
2932 nArg = 0; |
|
2933 } |
|
2934 if( pF->iDistinct>=0 ){ |
|
2935 addrNext = sqlite3VdbeMakeLabel(v); |
|
2936 assert( nArg==1 ); |
|
2937 codeDistinct(v, pF->iDistinct, addrNext, 1); |
|
2938 } |
|
2939 if( pF->pFunc->needCollSeq ){ |
|
2940 CollSeq *pColl = 0; |
|
2941 ExprList::ExprList_item *pItem; |
|
2942 int j; |
|
2943 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ |
|
2944 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
|
2945 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
|
2946 } |
|
2947 if( !pColl ){ |
|
2948 pColl = pParse->db->pDfltColl; |
|
2949 } |
|
2950 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); |
|
2951 } |
|
2952 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (const char*)pF->pFunc, P3_FUNCDEF); |
|
2953 if( addrNext ){ |
|
2954 sqlite3VdbeResolveLabel(v, addrNext); |
|
2955 } |
|
2956 } |
|
2957 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
|
2958 sqlite3ExprCode(pParse, pC->pExpr); |
|
2959 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); |
|
2960 } |
|
2961 pAggInfo->directMode = 0; |
|
2962 } |
|
2963 |
|
2964 |
|
2965 /* |
|
2966 ** Generate code for the given SELECT statement. |
|
2967 ** |
|
2968 ** The results are distributed in various ways depending on the |
|
2969 ** value of eDest and iParm. |
|
2970 ** |
|
2971 ** eDest Value Result |
|
2972 ** ------------ ------------------------------------------- |
|
2973 ** SRT_Callback Invoke the callback for each row of the result. |
|
2974 ** |
|
2975 ** SRT_Mem Store first result in memory cell iParm |
|
2976 ** |
|
2977 ** SRT_Set Store results as keys of table iParm. |
|
2978 ** |
|
2979 ** SRT_Union Store results as a key in a temporary table iParm |
|
2980 ** |
|
2981 ** SRT_Except Remove results from the temporary table iParm. |
|
2982 ** |
|
2983 ** SRT_Table Store results in temporary table iParm |
|
2984 ** |
|
2985 ** The table above is incomplete. Additional eDist value have be added |
|
2986 ** since this comment was written. See the selectInnerLoop() function for |
|
2987 ** a complete listing of the allowed values of eDest and their meanings. |
|
2988 ** |
|
2989 ** This routine returns the number of errors. If any errors are |
|
2990 ** encountered, then an appropriate error message is left in |
|
2991 ** pParse->zErrMsg. |
|
2992 ** |
|
2993 ** This routine does NOT free the Select structure passed in. The |
|
2994 ** calling function needs to do that. |
|
2995 ** |
|
2996 ** The pParent, parentTab, and *pParentAgg fields are filled in if this |
|
2997 ** SELECT is a subquery. This routine may try to combine this SELECT |
|
2998 ** with its parent to form a single flat query. In so doing, it might |
|
2999 ** change the parent query from a non-aggregate to an aggregate query. |
|
3000 ** For that reason, the pParentAgg flag is passed as a pointer, so it |
|
3001 ** can be changed. |
|
3002 ** |
|
3003 ** Example 1: The meaning of the pParent parameter. |
|
3004 ** |
|
3005 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; |
|
3006 ** \ \_______ subquery _______/ / |
|
3007 ** \ / |
|
3008 ** \____________________ outer query ___________________/ |
|
3009 ** |
|
3010 ** This routine is called for the outer query first. For that call, |
|
3011 ** pParent will be NULL. During the processing of the outer query, this |
|
3012 ** routine is called recursively to handle the subquery. For the recursive |
|
3013 ** call, pParent will point to the outer query. Because the subquery is |
|
3014 ** the second element in a three-way join, the parentTab parameter will |
|
3015 ** be 1 (the 2nd value of a 0-indexed array.) |
|
3016 */ |
|
3017 int sqlite3Select( |
|
3018 Parse *pParse, /* The parser context */ |
|
3019 Select *p, /* The SELECT statement being coded. */ |
|
3020 int eDest, /* How to dispose of the results */ |
|
3021 int iParm, /* A parameter used by the eDest disposal method */ |
|
3022 Select *pParent, /* Another SELECT for which this is a sub-query */ |
|
3023 int parentTab, /* Index in pParent->pSrc of this query */ |
|
3024 int *pParentAgg, /* True if pParent uses aggregate functions */ |
|
3025 char *aff /* If eDest is SRT_Union, the affinity string */ |
|
3026 ){ |
|
3027 int i, j; /* Loop counters */ |
|
3028 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
|
3029 Vdbe *v; /* The virtual machine under construction */ |
|
3030 int isAgg; /* True for select lists like "count(*)" */ |
|
3031 ExprList *pEList; /* List of columns to extract. */ |
|
3032 SrcList *pTabList; /* List of tables to select from */ |
|
3033 Expr *pWhere; /* The WHERE clause. May be NULL */ |
|
3034 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ |
|
3035 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
|
3036 Expr *pHaving; /* The HAVING clause. May be NULL */ |
|
3037 int isDistinct; /* True if the DISTINCT keyword is present */ |
|
3038 int distinct; /* Table to use for the distinct set */ |
|
3039 int rc = 1; /* Value to return from this function */ |
|
3040 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ |
|
3041 AggInfo sAggInfo; /* Information used by aggregate queries */ |
|
3042 int iEnd; /* Address of the end of the query */ |
|
3043 sqlite3 *db; /* The database connection */ |
|
3044 |
|
3045 db = pParse->db; |
|
3046 if( p==0 || db->mallocFailed || pParse->nErr ){ |
|
3047 return 1; |
|
3048 } |
|
3049 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
|
3050 memset(&sAggInfo, 0, sizeof(sAggInfo)); |
|
3051 |
|
3052 pOrderBy = p->pOrderBy; |
|
3053 if( IgnorableOrderby(eDest) ){ |
|
3054 p->pOrderBy = 0; |
|
3055 } |
|
3056 if( sqlite3SelectResolve(pParse, p, 0) ){ |
|
3057 goto select_end; |
|
3058 } |
|
3059 p->pOrderBy = pOrderBy; |
|
3060 |
|
3061 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
3062 /* If there is are a sequence of queries, do the earlier ones first. |
|
3063 */ |
|
3064 if( p->pPrior ){ |
|
3065 if( p->pRightmost==0 ){ |
|
3066 Select *pLoop, *pRight = 0; |
|
3067 int cnt = 0; |
|
3068 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ |
|
3069 pLoop->pRightmost = p; |
|
3070 pLoop->pNext = pRight; |
|
3071 pRight = pLoop; |
|
3072 } |
|
3073 if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){ |
|
3074 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); |
|
3075 return 1; |
|
3076 } |
|
3077 } |
|
3078 return multiSelect(pParse, p, eDest, iParm, aff); |
|
3079 } |
|
3080 #endif |
|
3081 |
|
3082 /* Make local copies of the parameters for this query. |
|
3083 */ |
|
3084 pTabList = p->pSrc; |
|
3085 pWhere = p->pWhere; |
|
3086 pGroupBy = p->pGroupBy; |
|
3087 pHaving = p->pHaving; |
|
3088 isAgg = p->isAgg; |
|
3089 isDistinct = p->isDistinct; |
|
3090 pEList = p->pEList; |
|
3091 if( pEList==0 ) goto select_end; |
|
3092 |
|
3093 /* |
|
3094 ** Do not even attempt to generate any code if we have already seen |
|
3095 ** errors before this routine starts. |
|
3096 */ |
|
3097 if( pParse->nErr>0 ) goto select_end; |
|
3098 |
|
3099 /* If writing to memory or generating a set |
|
3100 ** only a single column may be output. |
|
3101 */ |
|
3102 #ifndef SQLITE_OMIT_SUBQUERY |
|
3103 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ |
|
3104 goto select_end; |
|
3105 } |
|
3106 #endif |
|
3107 |
|
3108 /* ORDER BY is ignored for some destinations. |
|
3109 */ |
|
3110 if( IgnorableOrderby(eDest) ){ |
|
3111 pOrderBy = 0; |
|
3112 } |
|
3113 |
|
3114 /* Begin generating code. |
|
3115 */ |
|
3116 v = sqlite3GetVdbe(pParse); |
|
3117 if( v==0 ) goto select_end; |
|
3118 |
|
3119 /* Generate code for all sub-queries in the FROM clause |
|
3120 */ |
|
3121 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
|
3122 for(i=0; i<pTabList->nSrc; i++){ |
|
3123 const char *zSavedAuthContext = 0; |
|
3124 int needRestoreContext; |
|
3125 SrcList::SrcList_item *pItem = &pTabList->a[i]; |
|
3126 |
|
3127 if( pItem->pSelect==0 || pItem->isPopulated ) continue; |
|
3128 if( pItem->zName!=0 ){ |
|
3129 zSavedAuthContext = pParse->zAuthContext; |
|
3130 pParse->zAuthContext = pItem->zName; |
|
3131 needRestoreContext = 1; |
|
3132 }else{ |
|
3133 needRestoreContext = 0; |
|
3134 } |
|
3135 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 |
|
3136 /* Increment Parse.nHeight by the height of the largest expression |
|
3137 ** tree refered to by this, the parent select. The child select |
|
3138 ** may contain expression trees of at most |
|
3139 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
|
3140 ** more conservative than necessary, but much easier than enforcing |
|
3141 ** an exact limit. |
|
3142 */ |
|
3143 pParse->nHeight += sqlite3SelectExprHeight(p); |
|
3144 #endif |
|
3145 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, |
|
3146 pItem->iCursor, p, i, &isAgg, 0); |
|
3147 if( db->mallocFailed ){ |
|
3148 goto select_end; |
|
3149 } |
|
3150 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 |
|
3151 pParse->nHeight -= sqlite3SelectExprHeight(p); |
|
3152 #endif |
|
3153 if( needRestoreContext ){ |
|
3154 pParse->zAuthContext = zSavedAuthContext; |
|
3155 } |
|
3156 pTabList = p->pSrc; |
|
3157 pWhere = p->pWhere; |
|
3158 if( !IgnorableOrderby(eDest) ){ |
|
3159 pOrderBy = p->pOrderBy; |
|
3160 } |
|
3161 pGroupBy = p->pGroupBy; |
|
3162 pHaving = p->pHaving; |
|
3163 isDistinct = p->isDistinct; |
|
3164 } |
|
3165 #endif |
|
3166 |
|
3167 /* Check for the special case of a min() or max() function by itself |
|
3168 ** in the result set. |
|
3169 */ |
|
3170 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ |
|
3171 rc = 0; |
|
3172 goto select_end; |
|
3173 } |
|
3174 |
|
3175 /* Check to see if this is a subquery that can be "flattened" into its parent. |
|
3176 ** If flattening is a possiblity, do so and return immediately. |
|
3177 */ |
|
3178 #ifndef SQLITE_OMIT_VIEW |
|
3179 if( pParent && pParentAgg && |
|
3180 flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){ |
|
3181 if( isAgg ) *pParentAgg = 1; |
|
3182 goto select_end; |
|
3183 } |
|
3184 #endif |
|
3185 |
|
3186 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. |
|
3187 ** GROUP BY may use an index, DISTINCT never does. |
|
3188 */ |
|
3189 if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ |
|
3190 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); |
|
3191 pGroupBy = p->pGroupBy; |
|
3192 p->isDistinct = 0; |
|
3193 isDistinct = 0; |
|
3194 } |
|
3195 |
|
3196 /* If there is an ORDER BY clause, then this sorting |
|
3197 ** index might end up being unused if the data can be |
|
3198 ** extracted in pre-sorted order. If that is the case, then the |
|
3199 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
|
3200 ** we figure out that the sorting index is not needed. The addrSortIndex |
|
3201 ** variable is used to facilitate that change. |
|
3202 */ |
|
3203 if( pOrderBy ){ |
|
3204 KeyInfo *pKeyInfo; |
|
3205 if( pParse->nErr ){ |
|
3206 goto select_end; |
|
3207 } |
|
3208 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); |
|
3209 pOrderBy->iECursor = pParse->nTab++; |
|
3210 p->addrOpenEphm[2] = addrSortIndex = |
|
3211 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
3212 }else{ |
|
3213 addrSortIndex = -1; |
|
3214 } |
|
3215 |
|
3216 /* If the output is destined for a temporary table, open that table. |
|
3217 */ |
|
3218 if( eDest==SRT_EphemTab ){ |
|
3219 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); |
|
3220 } |
|
3221 |
|
3222 /* Set the limiter. |
|
3223 */ |
|
3224 iEnd = sqlite3VdbeMakeLabel(v); |
|
3225 computeLimitRegisters(pParse, p, iEnd); |
|
3226 |
|
3227 /* Open a virtual index to use for the distinct set. |
|
3228 */ |
|
3229 if( isDistinct ){ |
|
3230 KeyInfo *pKeyInfo; |
|
3231 assert( isAgg || pGroupBy ); |
|
3232 distinct = pParse->nTab++; |
|
3233 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); |
|
3234 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, |
|
3235 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
3236 }else{ |
|
3237 distinct = -1; |
|
3238 } |
|
3239 |
|
3240 /* Aggregate and non-aggregate queries are handled differently */ |
|
3241 if( !isAgg && pGroupBy==0 ){ |
|
3242 /* This case is for non-aggregate queries |
|
3243 ** Begin the database scan |
|
3244 */ |
|
3245 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); |
|
3246 if( pWInfo==0 ) goto select_end; |
|
3247 |
|
3248 /* If sorting index that was created by a prior OP_OpenEphemeral |
|
3249 ** instruction ended up not being needed, then change the OP_OpenEphemeral |
|
3250 ** into an OP_Noop. |
|
3251 */ |
|
3252 if( addrSortIndex>=0 && pOrderBy==0 ){ |
|
3253 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); |
|
3254 p->addrOpenEphm[2] = -1; |
|
3255 } |
|
3256 |
|
3257 /* Use the standard inner loop |
|
3258 */ |
|
3259 assert(!isDistinct); |
|
3260 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest, |
|
3261 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ |
|
3262 goto select_end; |
|
3263 } |
|
3264 |
|
3265 /* End the database scan loop. |
|
3266 */ |
|
3267 sqlite3WhereEnd(pWInfo); |
|
3268 }else{ |
|
3269 /* This is the processing for aggregate queries */ |
|
3270 NameContext sNC; /* Name context for processing aggregate information */ |
|
3271 int iAMem; /* First Mem address for storing current GROUP BY */ |
|
3272 int iBMem; /* First Mem address for previous GROUP BY */ |
|
3273 int iUseFlag; /* Mem address holding flag indicating that at least |
|
3274 ** one row of the input to the aggregator has been |
|
3275 ** processed */ |
|
3276 int iAbortFlag; /* Mem address which causes query abort if positive */ |
|
3277 int groupBySort; /* Rows come from source in GROUP BY order */ |
|
3278 |
|
3279 |
|
3280 /* The following variables hold addresses or labels for parts of the |
|
3281 ** virtual machine program we are putting together */ |
|
3282 int addrOutputRow; /* Start of subroutine that outputs a result row */ |
|
3283 int addrSetAbort; /* Set the abort flag and return */ |
|
3284 int addrInitializeLoop; /* Start of code that initializes the input loop */ |
|
3285 int addrTopOfLoop; /* Top of the input loop */ |
|
3286 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ |
|
3287 int addrProcessRow; /* Code to process a single input row */ |
|
3288 int addrEnd; /* End of all processing */ |
|
3289 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
|
3290 int addrReset; /* Subroutine for resetting the accumulator */ |
|
3291 |
|
3292 addrEnd = sqlite3VdbeMakeLabel(v); |
|
3293 |
|
3294 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
|
3295 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
|
3296 ** SELECT statement. |
|
3297 */ |
|
3298 memset(&sNC, 0, sizeof(sNC)); |
|
3299 sNC.pParse = pParse; |
|
3300 sNC.pSrcList = pTabList; |
|
3301 sNC.pAggInfo = &sAggInfo; |
|
3302 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; |
|
3303 sAggInfo.pGroupBy = pGroupBy; |
|
3304 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ |
|
3305 goto select_end; |
|
3306 } |
|
3307 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ |
|
3308 goto select_end; |
|
3309 } |
|
3310 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ |
|
3311 goto select_end; |
|
3312 } |
|
3313 sAggInfo.nAccumulator = sAggInfo.nColumn; |
|
3314 for(i=0; i<sAggInfo.nFunc; i++){ |
|
3315 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ |
|
3316 goto select_end; |
|
3317 } |
|
3318 } |
|
3319 if( db->mallocFailed ) goto select_end; |
|
3320 |
|
3321 /* Processing for aggregates with GROUP BY is very different and |
|
3322 ** much more complex than aggregates without a GROUP BY. |
|
3323 */ |
|
3324 if( pGroupBy ){ |
|
3325 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
|
3326 |
|
3327 /* Create labels that we will be needing |
|
3328 */ |
|
3329 |
|
3330 addrInitializeLoop = sqlite3VdbeMakeLabel(v); |
|
3331 addrGroupByChange = sqlite3VdbeMakeLabel(v); |
|
3332 addrProcessRow = sqlite3VdbeMakeLabel(v); |
|
3333 |
|
3334 /* If there is a GROUP BY clause we might need a sorting index to |
|
3335 ** implement it. Allocate that sorting index now. If it turns out |
|
3336 ** that we do not need it after all, the OpenEphemeral instruction |
|
3337 ** will be converted into a Noop. |
|
3338 */ |
|
3339 sAggInfo.sortingIdx = pParse->nTab++; |
|
3340 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); |
|
3341 addrSortingIdx = |
|
3342 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, |
|
3343 sAggInfo.nSortingColumn, |
|
3344 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
3345 |
|
3346 /* Initialize memory locations used by GROUP BY aggregate processing |
|
3347 */ |
|
3348 iUseFlag = pParse->nMem++; |
|
3349 iAbortFlag = pParse->nMem++; |
|
3350 iAMem = pParse->nMem; |
|
3351 pParse->nMem += pGroupBy->nExpr; |
|
3352 iBMem = pParse->nMem; |
|
3353 pParse->nMem += pGroupBy->nExpr; |
|
3354 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); |
|
3355 VdbeComment((v, "# clear abort flag")); |
|
3356 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); |
|
3357 VdbeComment((v, "# indicate accumulator empty")); |
|
3358 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); |
|
3359 |
|
3360 /* Generate a subroutine that outputs a single row of the result |
|
3361 ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
|
3362 ** is less than or equal to zero, the subroutine is a no-op. If |
|
3363 ** the processing calls for the query to abort, this subroutine |
|
3364 ** increments the iAbortFlag memory location before returning in |
|
3365 ** order to signal the caller to abort. |
|
3366 */ |
|
3367 addrSetAbort = sqlite3VdbeCurrentAddr(v); |
|
3368 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); |
|
3369 VdbeComment((v, "# set abort flag")); |
|
3370 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3371 addrOutputRow = sqlite3VdbeCurrentAddr(v); |
|
3372 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); |
|
3373 VdbeComment((v, "# Groupby result generator entry point")); |
|
3374 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3375 finalizeAggFunctions(pParse, &sAggInfo); |
|
3376 if( pHaving ){ |
|
3377 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); |
|
3378 } |
|
3379 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, |
|
3380 distinct, eDest, iParm, |
|
3381 addrOutputRow+1, addrSetAbort, aff); |
|
3382 if( rc ){ |
|
3383 goto select_end; |
|
3384 } |
|
3385 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3386 VdbeComment((v, "# end groupby result generator")); |
|
3387 |
|
3388 /* Generate a subroutine that will reset the group-by accumulator |
|
3389 */ |
|
3390 addrReset = sqlite3VdbeCurrentAddr(v); |
|
3391 resetAccumulator(pParse, &sAggInfo); |
|
3392 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3393 |
|
3394 /* Begin a loop that will extract all source rows in GROUP BY order. |
|
3395 ** This might involve two separate loops with an OP_Sort in between, or |
|
3396 ** it might be a single loop that uses an index to extract information |
|
3397 ** in the right order to begin with. |
|
3398 */ |
|
3399 sqlite3VdbeResolveLabel(v, addrInitializeLoop); |
|
3400 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); |
|
3401 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); |
|
3402 if( pWInfo==0 ) goto select_end; |
|
3403 if( pGroupBy==0 ){ |
|
3404 /* The optimizer is able to deliver rows in group by order so |
|
3405 ** we do not have to sort. The OP_OpenEphemeral table will be |
|
3406 ** cancelled later because we still need to use the pKeyInfo |
|
3407 */ |
|
3408 pGroupBy = p->pGroupBy; |
|
3409 groupBySort = 0; |
|
3410 }else{ |
|
3411 /* Rows are coming out in undetermined order. We have to push |
|
3412 ** each row into a sorting index, terminate the first loop, |
|
3413 ** then loop over the sorting index in order to get the output |
|
3414 ** in sorted order |
|
3415 */ |
|
3416 groupBySort = 1; |
|
3417 sqlite3ExprCodeExprList(pParse, pGroupBy); |
|
3418 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); |
|
3419 j = pGroupBy->nExpr+1; |
|
3420 for(i=0; i<sAggInfo.nColumn; i++){ |
|
3421 AggInfo::AggInfo_col *pCol = &sAggInfo.aCol[i]; |
|
3422 if( pCol->iSorterColumn<j ) continue; |
|
3423 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); |
|
3424 j++; |
|
3425 } |
|
3426 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); |
|
3427 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); |
|
3428 sqlite3WhereEnd(pWInfo); |
|
3429 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); |
|
3430 VdbeComment((v, "# GROUP BY sort")); |
|
3431 sAggInfo.useSortingIdx = 1; |
|
3432 } |
|
3433 |
|
3434 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
|
3435 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
|
3436 ** Then compare the current GROUP BY terms against the GROUP BY terms |
|
3437 ** from the previous row currently stored in a0, a1, a2... |
|
3438 */ |
|
3439 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
|
3440 for(j=0; j<pGroupBy->nExpr; j++){ |
|
3441 if( groupBySort ){ |
|
3442 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); |
|
3443 }else{ |
|
3444 sAggInfo.directMode = 1; |
|
3445 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); |
|
3446 } |
|
3447 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); |
|
3448 } |
|
3449 for(j=pGroupBy->nExpr-1; j>=0; j--){ |
|
3450 if( j<pGroupBy->nExpr-1 ){ |
|
3451 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); |
|
3452 } |
|
3453 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); |
|
3454 if( j==0 ){ |
|
3455 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); |
|
3456 }else{ |
|
3457 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); |
|
3458 } |
|
3459 sqlite3VdbeChangeP3(v, -1, (const char*)pKeyInfo->aColl[j], P3_COLLSEQ); |
|
3460 } |
|
3461 |
|
3462 /* Generate code that runs whenever the GROUP BY changes. |
|
3463 ** Change in the GROUP BY are detected by the previous code |
|
3464 ** block. If there were no changes, this block is skipped. |
|
3465 ** |
|
3466 ** This code copies current group by terms in b0,b1,b2,... |
|
3467 ** over to a0,a1,a2. It then calls the output subroutine |
|
3468 ** and resets the aggregate accumulator registers in preparation |
|
3469 ** for the next GROUP BY batch. |
|
3470 */ |
|
3471 sqlite3VdbeResolveLabel(v, addrGroupByChange); |
|
3472 for(j=0; j<pGroupBy->nExpr; j++){ |
|
3473 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); |
|
3474 } |
|
3475 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); |
|
3476 VdbeComment((v, "# output one row")); |
|
3477 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); |
|
3478 VdbeComment((v, "# check abort flag")); |
|
3479 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); |
|
3480 VdbeComment((v, "# reset accumulator")); |
|
3481 |
|
3482 /* Update the aggregate accumulators based on the content of |
|
3483 ** the current row |
|
3484 */ |
|
3485 sqlite3VdbeResolveLabel(v, addrProcessRow); |
|
3486 updateAccumulator(pParse, &sAggInfo); |
|
3487 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); |
|
3488 VdbeComment((v, "# indicate data in accumulator")); |
|
3489 |
|
3490 /* End of the loop |
|
3491 */ |
|
3492 if( groupBySort ){ |
|
3493 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); |
|
3494 }else{ |
|
3495 sqlite3WhereEnd(pWInfo); |
|
3496 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); |
|
3497 } |
|
3498 |
|
3499 /* Output the final row of result |
|
3500 */ |
|
3501 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); |
|
3502 VdbeComment((v, "# output final row")); |
|
3503 |
|
3504 } /* endif pGroupBy */ |
|
3505 else { |
|
3506 /* This case runs if the aggregate has no GROUP BY clause. The |
|
3507 ** processing is much simpler since there is only a single row |
|
3508 ** of output. |
|
3509 */ |
|
3510 resetAccumulator(pParse, &sAggInfo); |
|
3511 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); |
|
3512 if( pWInfo==0 ) goto select_end; |
|
3513 updateAccumulator(pParse, &sAggInfo); |
|
3514 sqlite3WhereEnd(pWInfo); |
|
3515 finalizeAggFunctions(pParse, &sAggInfo); |
|
3516 pOrderBy = 0; |
|
3517 if( pHaving ){ |
|
3518 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); |
|
3519 } |
|
3520 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, |
|
3521 eDest, iParm, addrEnd, addrEnd, aff); |
|
3522 } |
|
3523 sqlite3VdbeResolveLabel(v, addrEnd); |
|
3524 |
|
3525 } /* endif aggregate query */ |
|
3526 |
|
3527 /* If there is an ORDER BY clause, then we need to sort the results |
|
3528 ** and send them to the callback one by one. |
|
3529 */ |
|
3530 if( pOrderBy ){ |
|
3531 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); |
|
3532 } |
|
3533 |
|
3534 #ifndef SQLITE_OMIT_SUBQUERY |
|
3535 /* If this was a subquery, we have now converted the subquery into a |
|
3536 ** temporary table. So set the SrcList_item.isPopulated flag to prevent |
|
3537 ** this subquery from being evaluated again and to force the use of |
|
3538 ** the temporary table. |
|
3539 */ |
|
3540 if( pParent ){ |
|
3541 assert( pParent->pSrc->nSrc>parentTab ); |
|
3542 assert( pParent->pSrc->a[parentTab].pSelect==p ); |
|
3543 pParent->pSrc->a[parentTab].isPopulated = 1; |
|
3544 } |
|
3545 #endif |
|
3546 |
|
3547 /* Jump here to skip this query |
|
3548 */ |
|
3549 sqlite3VdbeResolveLabel(v, iEnd); |
|
3550 |
|
3551 /* The SELECT was successfully coded. Set the return code to 0 |
|
3552 ** to indicate no errors. |
|
3553 */ |
|
3554 rc = 0; |
|
3555 |
|
3556 /* Control jumps to here if an error is encountered above, or upon |
|
3557 ** successful coding of the SELECT. |
|
3558 */ |
|
3559 select_end: |
|
3560 |
|
3561 /* Identify column names if we will be using them in a callback. This |
|
3562 ** step is skipped if the output is going to some other destination. |
|
3563 */ |
|
3564 if( rc==SQLITE_OK && eDest==SRT_Callback ){ |
|
3565 generateColumnNames(pParse, pTabList, pEList); |
|
3566 } |
|
3567 |
|
3568 sqlite3_free(sAggInfo.aCol); |
|
3569 sqlite3_free(sAggInfo.aFunc); |
|
3570 return rc; |
|
3571 } |
|
3572 |
|
3573 #if defined(SQLITE_DEBUG) |
|
3574 /* |
|
3575 ******************************************************************************* |
|
3576 ** The following code is used for testing and debugging only. The code |
|
3577 ** that follows does not appear in normal builds. |
|
3578 ** |
|
3579 ** These routines are used to print out the content of all or part of a |
|
3580 ** parse structures such as Select or Expr. Such printouts are useful |
|
3581 ** for helping to understand what is happening inside the code generator |
|
3582 ** during the execution of complex SELECT statements. |
|
3583 ** |
|
3584 ** These routine are not called anywhere from within the normal |
|
3585 ** code base. Then are intended to be called from within the debugger |
|
3586 ** or from temporary "printf" statements inserted for debugging. |
|
3587 */ |
|
3588 void sqlite3PrintExpr(Expr *p){ |
|
3589 if( p->token.z && p->token.n>0 ){ |
|
3590 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); |
|
3591 }else{ |
|
3592 sqlite3DebugPrintf("(%d", p->op); |
|
3593 } |
|
3594 if( p->pLeft ){ |
|
3595 sqlite3DebugPrintf(" "); |
|
3596 sqlite3PrintExpr(p->pLeft); |
|
3597 } |
|
3598 if( p->pRight ){ |
|
3599 sqlite3DebugPrintf(" "); |
|
3600 sqlite3PrintExpr(p->pRight); |
|
3601 } |
|
3602 sqlite3DebugPrintf(")"); |
|
3603 } |
|
3604 void sqlite3PrintExprList(ExprList *pList){ |
|
3605 int i; |
|
3606 for(i=0; i<pList->nExpr; i++){ |
|
3607 sqlite3PrintExpr(pList->a[i].pExpr); |
|
3608 if( i<pList->nExpr-1 ){ |
|
3609 sqlite3DebugPrintf(", "); |
|
3610 } |
|
3611 } |
|
3612 } |
|
3613 void sqlite3PrintSelect(Select *p, int indent){ |
|
3614 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); |
|
3615 sqlite3PrintExprList(p->pEList); |
|
3616 sqlite3DebugPrintf("\n"); |
|
3617 if( p->pSrc ){ |
|
3618 char *zPrefix; |
|
3619 int i; |
|
3620 zPrefix = "FROM"; |
|
3621 for(i=0; i<p->pSrc->nSrc; i++){ |
|
3622 struct SrcList_item *pItem = &p->pSrc->a[i]; |
|
3623 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); |
|
3624 zPrefix = ""; |
|
3625 if( pItem->pSelect ){ |
|
3626 sqlite3DebugPrintf("(\n"); |
|
3627 sqlite3PrintSelect(pItem->pSelect, indent+10); |
|
3628 sqlite3DebugPrintf("%*s)", indent+8, ""); |
|
3629 }else if( pItem->zName ){ |
|
3630 sqlite3DebugPrintf("%s", pItem->zName); |
|
3631 } |
|
3632 if( pItem->pTab ){ |
|
3633 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); |
|
3634 } |
|
3635 if( pItem->zAlias ){ |
|
3636 sqlite3DebugPrintf(" AS %s", pItem->zAlias); |
|
3637 } |
|
3638 if( i<p->pSrc->nSrc-1 ){ |
|
3639 sqlite3DebugPrintf(","); |
|
3640 } |
|
3641 sqlite3DebugPrintf("\n"); |
|
3642 } |
|
3643 } |
|
3644 if( p->pWhere ){ |
|
3645 sqlite3DebugPrintf("%*s WHERE ", indent, ""); |
|
3646 sqlite3PrintExpr(p->pWhere); |
|
3647 sqlite3DebugPrintf("\n"); |
|
3648 } |
|
3649 if( p->pGroupBy ){ |
|
3650 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); |
|
3651 sqlite3PrintExprList(p->pGroupBy); |
|
3652 sqlite3DebugPrintf("\n"); |
|
3653 } |
|
3654 if( p->pHaving ){ |
|
3655 sqlite3DebugPrintf("%*s HAVING ", indent, ""); |
|
3656 sqlite3PrintExpr(p->pHaving); |
|
3657 sqlite3DebugPrintf("\n"); |
|
3658 } |
|
3659 if( p->pOrderBy ){ |
|
3660 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); |
|
3661 sqlite3PrintExprList(p->pOrderBy); |
|
3662 sqlite3DebugPrintf("\n"); |
|
3663 } |
|
3664 } |
|
3665 /* End of the structure debug printing code |
|
3666 *****************************************************************************/ |
|
3667 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ |