|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** Utility functions used throughout sqlite. |
|
13 ** |
|
14 ** This file contains functions for allocating memory, comparing |
|
15 ** strings, and stuff like that. |
|
16 ** |
|
17 ** $Id: util.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
18 */ |
|
19 #include "sqliteInt.h" |
|
20 #include <stdarg.h> |
|
21 #include <ctype.h> |
|
22 |
|
23 |
|
24 /* |
|
25 ** Set the most recent error code and error string for the sqlite |
|
26 ** handle "db". The error code is set to "err_code". |
|
27 ** |
|
28 ** If it is not NULL, string zFormat specifies the format of the |
|
29 ** error string in the style of the printf functions: The following |
|
30 ** format characters are allowed: |
|
31 ** |
|
32 ** %s Insert a string |
|
33 ** %z A string that should be freed after use |
|
34 ** %d Insert an integer |
|
35 ** %T Insert a token |
|
36 ** %S Insert the first element of a SrcList |
|
37 ** |
|
38 ** zFormat and any string tokens that follow it are assumed to be |
|
39 ** encoded in UTF-8. |
|
40 ** |
|
41 ** To clear the most recent error for sqlite handle "db", sqlite3Error |
|
42 ** should be called with err_code set to SQLITE_OK and zFormat set |
|
43 ** to NULL. |
|
44 */ |
|
45 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
|
46 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ |
|
47 db->errCode = err_code; |
|
48 if( zFormat ){ |
|
49 char *z; |
|
50 va_list ap; |
|
51 va_start(ap, zFormat); |
|
52 z = sqlite3VMPrintf(db, zFormat, ap); |
|
53 va_end(ap); |
|
54 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free); |
|
55 }else{ |
|
56 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
|
57 } |
|
58 } |
|
59 } |
|
60 |
|
61 /* |
|
62 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
|
63 ** The following formatting characters are allowed: |
|
64 ** |
|
65 ** %s Insert a string |
|
66 ** %z A string that should be freed after use |
|
67 ** %d Insert an integer |
|
68 ** %T Insert a token |
|
69 ** %S Insert the first element of a SrcList |
|
70 ** |
|
71 ** This function should be used to report any error that occurs whilst |
|
72 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
|
73 ** last thing the sqlite3_prepare() function does is copy the error |
|
74 ** stored by this function into the database handle using sqlite3Error(). |
|
75 ** Function sqlite3Error() should be used during statement execution |
|
76 ** (sqlite3_step() etc.). |
|
77 */ |
|
78 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
|
79 va_list ap; |
|
80 pParse->nErr++; |
|
81 sqlite3_free(pParse->zErrMsg); |
|
82 va_start(ap, zFormat); |
|
83 pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap); |
|
84 va_end(ap); |
|
85 if( pParse->rc==SQLITE_OK ){ |
|
86 pParse->rc = SQLITE_ERROR; |
|
87 } |
|
88 } |
|
89 |
|
90 /* |
|
91 ** Clear the error message in pParse, if any |
|
92 */ |
|
93 void sqlite3ErrorClear(Parse *pParse){ |
|
94 sqlite3_free(pParse->zErrMsg); |
|
95 pParse->zErrMsg = 0; |
|
96 pParse->nErr = 0; |
|
97 } |
|
98 |
|
99 /* |
|
100 ** Convert an SQL-style quoted string into a normal string by removing |
|
101 ** the quote characters. The conversion is done in-place. If the |
|
102 ** input does not begin with a quote character, then this routine |
|
103 ** is a no-op. |
|
104 ** |
|
105 ** 2002-Feb-14: This routine is extended to remove MS-Access style |
|
106 ** brackets from around identifers. For example: "[a-b-c]" becomes |
|
107 ** "a-b-c". |
|
108 */ |
|
109 void sqlite3Dequote(char *z){ |
|
110 int quote; |
|
111 int i, j; |
|
112 if( z==0 ) return; |
|
113 quote = z[0]; |
|
114 switch( quote ){ |
|
115 case '\'': break; |
|
116 case '"': break; |
|
117 case '`': break; /* For MySQL compatibility */ |
|
118 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
|
119 default: return; |
|
120 } |
|
121 for(i=1, j=0; z[i]; i++){ |
|
122 if( z[i]==quote ){ |
|
123 if( z[i+1]==quote ){ |
|
124 z[j++] = quote; |
|
125 i++; |
|
126 }else{ |
|
127 z[j++] = 0; |
|
128 break; |
|
129 } |
|
130 }else{ |
|
131 z[j++] = z[i]; |
|
132 } |
|
133 } |
|
134 } |
|
135 |
|
136 /* An array to map all upper-case characters into their corresponding |
|
137 ** lower-case character. |
|
138 */ |
|
139 const unsigned char sqlite3UpperToLower[] = { |
|
140 #ifdef SQLITE_ASCII |
|
141 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
|
142 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, |
|
143 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, |
|
144 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, |
|
145 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, |
|
146 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, |
|
147 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, |
|
148 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, |
|
149 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, |
|
150 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, |
|
151 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, |
|
152 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, |
|
153 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, |
|
154 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, |
|
155 252,253,254,255 |
|
156 #endif |
|
157 #ifdef SQLITE_EBCDIC |
|
158 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ |
|
159 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ |
|
160 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ |
|
161 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ |
|
162 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ |
|
163 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ |
|
164 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */ |
|
165 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */ |
|
166 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ |
|
167 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */ |
|
168 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ |
|
169 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ |
|
170 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ |
|
171 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ |
|
172 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */ |
|
173 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */ |
|
174 #endif |
|
175 }; |
|
176 #define UpperToLower sqlite3UpperToLower |
|
177 |
|
178 /* |
|
179 ** Some systems have stricmp(). Others have strcasecmp(). Because |
|
180 ** there is no consistency, we will define our own. |
|
181 */ |
|
182 int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
|
183 register unsigned char *a, *b; |
|
184 a = (unsigned char *)zLeft; |
|
185 b = (unsigned char *)zRight; |
|
186 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
|
187 return UpperToLower[*a] - UpperToLower[*b]; |
|
188 } |
|
189 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ |
|
190 register unsigned char *a, *b; |
|
191 a = (unsigned char *)zLeft; |
|
192 b = (unsigned char *)zRight; |
|
193 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
|
194 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
|
195 } |
|
196 |
|
197 /* |
|
198 ** Return TRUE if z is a pure numeric string. Return FALSE if the |
|
199 ** string contains any character which is not part of a number. If |
|
200 ** the string is numeric and contains the '.' character, set *realnum |
|
201 ** to TRUE (otherwise FALSE). |
|
202 ** |
|
203 ** An empty string is considered non-numeric. |
|
204 */ |
|
205 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
|
206 int incr = (enc==SQLITE_UTF8?1:2); |
|
207 if( enc==SQLITE_UTF16BE ) z++; |
|
208 if( *z=='-' || *z=='+' ) z += incr; |
|
209 if( !isdigit(*(u8*)z) ){ |
|
210 return 0; |
|
211 } |
|
212 z += incr; |
|
213 if( realnum ) *realnum = 0; |
|
214 while( isdigit(*(u8*)z) ){ z += incr; } |
|
215 if( *z=='.' ){ |
|
216 z += incr; |
|
217 if( !isdigit(*(u8*)z) ) return 0; |
|
218 while( isdigit(*(u8*)z) ){ z += incr; } |
|
219 if( realnum ) *realnum = 1; |
|
220 } |
|
221 if( *z=='e' || *z=='E' ){ |
|
222 z += incr; |
|
223 if( *z=='+' || *z=='-' ) z += incr; |
|
224 if( !isdigit(*(u8*)z) ) return 0; |
|
225 while( isdigit(*(u8*)z) ){ z += incr; } |
|
226 if( realnum ) *realnum = 1; |
|
227 } |
|
228 return *z==0; |
|
229 } |
|
230 |
|
231 /* |
|
232 ** The string z[] is an ascii representation of a real number. |
|
233 ** Convert this string to a double. |
|
234 ** |
|
235 ** This routine assumes that z[] really is a valid number. If it |
|
236 ** is not, the result is undefined. |
|
237 ** |
|
238 ** This routine is used instead of the library atof() function because |
|
239 ** the library atof() might want to use "," as the decimal point instead |
|
240 ** of "." depending on how locale is set. But that would cause problems |
|
241 ** for SQL. So this routine always uses "." regardless of locale. |
|
242 */ |
|
243 int sqlite3AtoF(const char *z, double *pResult){ |
|
244 #ifndef SQLITE_OMIT_FLOATING_POINT |
|
245 int sign = 1; |
|
246 const char *zBegin = z; |
|
247 LONGDOUBLE_TYPE v1 = 0.0; |
|
248 while( isspace(*(u8*)z) ) z++; |
|
249 if( *z=='-' ){ |
|
250 sign = -1; |
|
251 z++; |
|
252 }else if( *z=='+' ){ |
|
253 z++; |
|
254 } |
|
255 while( isdigit(*(u8*)z) ){ |
|
256 v1 = v1*10.0 + (*z - '0'); |
|
257 z++; |
|
258 } |
|
259 if( *z=='.' ){ |
|
260 LONGDOUBLE_TYPE divisor = 1.0; |
|
261 z++; |
|
262 while( isdigit(*(u8*)z) ){ |
|
263 v1 = v1*10.0 + (*z - '0'); |
|
264 divisor *= 10.0; |
|
265 z++; |
|
266 } |
|
267 v1 /= divisor; |
|
268 } |
|
269 if( *z=='e' || *z=='E' ){ |
|
270 int esign = 1; |
|
271 int eval = 0; |
|
272 LONGDOUBLE_TYPE scale = 1.0; |
|
273 z++; |
|
274 if( *z=='-' ){ |
|
275 esign = -1; |
|
276 z++; |
|
277 }else if( *z=='+' ){ |
|
278 z++; |
|
279 } |
|
280 while( isdigit(*(u8*)z) ){ |
|
281 eval = eval*10 + *z - '0'; |
|
282 z++; |
|
283 } |
|
284 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } |
|
285 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } |
|
286 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } |
|
287 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } |
|
288 if( esign<0 ){ |
|
289 v1 /= scale; |
|
290 }else{ |
|
291 v1 *= scale; |
|
292 } |
|
293 } |
|
294 *pResult = sign<0 ? -v1 : v1; |
|
295 return z - zBegin; |
|
296 #else |
|
297 return sqlite3Atoi64(z, pResult); |
|
298 #endif /* SQLITE_OMIT_FLOATING_POINT */ |
|
299 } |
|
300 |
|
301 /* |
|
302 ** Compare the 19-character string zNum against the text representation |
|
303 ** value 2^63: 9223372036854775808. Return negative, zero, or positive |
|
304 ** if zNum is less than, equal to, or greater than the string. |
|
305 ** |
|
306 ** Unlike memcmp() this routine is guaranteed to return the difference |
|
307 ** in the values of the last digit if the only difference is in the |
|
308 ** last digit. So, for example, |
|
309 ** |
|
310 ** compare2pow63("9223372036854775800") |
|
311 ** |
|
312 ** will return -8. |
|
313 */ |
|
314 static int compare2pow63(const char *zNum){ |
|
315 int c; |
|
316 c = memcmp(zNum,"922337203685477580",18); |
|
317 if( c==0 ){ |
|
318 c = zNum[18] - '8'; |
|
319 } |
|
320 return c; |
|
321 } |
|
322 |
|
323 |
|
324 /* |
|
325 ** Return TRUE if zNum is a 64-bit signed integer and write |
|
326 ** the value of the integer into *pNum. If zNum is not an integer |
|
327 ** or is an integer that is too large to be expressed with 64 bits, |
|
328 ** then return false. |
|
329 ** |
|
330 ** When this routine was originally written it dealt with only |
|
331 ** 32-bit numbers. At that time, it was much faster than the |
|
332 ** atoi() library routine in RedHat 7.2. |
|
333 */ |
|
334 int sqlite3Atoi64(const char *zNum, i64 *pNum){ |
|
335 i64 v = 0; |
|
336 int neg; |
|
337 int i, c; |
|
338 while( isspace(*(u8*)zNum) ) zNum++; |
|
339 if( *zNum=='-' ){ |
|
340 neg = 1; |
|
341 zNum++; |
|
342 }else if( *zNum=='+' ){ |
|
343 neg = 0; |
|
344 zNum++; |
|
345 }else{ |
|
346 neg = 0; |
|
347 } |
|
348 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ |
|
349 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
|
350 v = v*10 + c - '0'; |
|
351 } |
|
352 *pNum = neg ? -v : v; |
|
353 if( c!=0 || i==0 || i>19 ){ |
|
354 /* zNum is empty or contains non-numeric text or is longer |
|
355 ** than 19 digits (thus guaranting that it is too large) */ |
|
356 return 0; |
|
357 }else if( i<19 ){ |
|
358 /* Less than 19 digits, so we know that it fits in 64 bits */ |
|
359 return 1; |
|
360 }else{ |
|
361 /* 19-digit numbers must be no larger than 9223372036854775807 if positive |
|
362 ** or 9223372036854775808 if negative. Note that 9223372036854665808 |
|
363 ** is 2^63. */ |
|
364 return compare2pow63(zNum)<neg; |
|
365 } |
|
366 } |
|
367 |
|
368 /* |
|
369 ** The string zNum represents an integer. There might be some other |
|
370 ** information following the integer too, but that part is ignored. |
|
371 ** If the integer that the prefix of zNum represents will fit in a |
|
372 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
|
373 ** |
|
374 ** This routine returns FALSE for the string -9223372036854775808 even that |
|
375 ** that number will, in theory fit in a 64-bit integer. Positive |
|
376 ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return |
|
377 ** false. |
|
378 */ |
|
379 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ |
|
380 int i, c; |
|
381 int neg = 0; |
|
382 if( *zNum=='-' ){ |
|
383 neg = 1; |
|
384 zNum++; |
|
385 }else if( *zNum=='+' ){ |
|
386 zNum++; |
|
387 } |
|
388 if( negFlag ) neg = 1-neg; |
|
389 while( *zNum=='0' ){ |
|
390 zNum++; /* Skip leading zeros. Ticket #2454 */ |
|
391 } |
|
392 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
|
393 if( i<19 ){ |
|
394 /* Guaranteed to fit if less than 19 digits */ |
|
395 return 1; |
|
396 }else if( i>19 ){ |
|
397 /* Guaranteed to be too big if greater than 19 digits */ |
|
398 return 0; |
|
399 }else{ |
|
400 /* Compare against 2^63. */ |
|
401 return compare2pow63(zNum)<neg; |
|
402 } |
|
403 } |
|
404 |
|
405 /* |
|
406 ** If zNum represents an integer that will fit in 32-bits, then set |
|
407 ** *pValue to that integer and return true. Otherwise return false. |
|
408 ** |
|
409 ** Any non-numeric characters that following zNum are ignored. |
|
410 ** This is different from sqlite3Atoi64() which requires the |
|
411 ** input number to be zero-terminated. |
|
412 */ |
|
413 int sqlite3GetInt32(const char *zNum, int *pValue){ |
|
414 sqlite_int64 v = 0; |
|
415 int i, c; |
|
416 int neg = 0; |
|
417 if( zNum[0]=='-' ){ |
|
418 neg = 1; |
|
419 zNum++; |
|
420 }else if( zNum[0]=='+' ){ |
|
421 zNum++; |
|
422 } |
|
423 while( zNum[0]=='0' ) zNum++; |
|
424 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
|
425 v = v*10 + c; |
|
426 } |
|
427 |
|
428 /* The longest decimal representation of a 32 bit integer is 10 digits: |
|
429 ** |
|
430 ** 1234567890 |
|
431 ** 2^31 -> 2147483648 |
|
432 */ |
|
433 if( i>10 ){ |
|
434 return 0; |
|
435 } |
|
436 if( v-neg>2147483647 ){ |
|
437 return 0; |
|
438 } |
|
439 if( neg ){ |
|
440 v = -v; |
|
441 } |
|
442 *pValue = (int)v; |
|
443 return 1; |
|
444 } |
|
445 |
|
446 /* |
|
447 ** Check to make sure we have a valid db pointer. This test is not |
|
448 ** foolproof but it does provide some measure of protection against |
|
449 ** misuse of the interface such as passing in db pointers that are |
|
450 ** NULL or which have been previously closed. If this routine returns |
|
451 ** TRUE it means that the db pointer is invalid and should not be |
|
452 ** dereferenced for any reason. The calling function should invoke |
|
453 ** SQLITE_MISUSE immediately. |
|
454 */ |
|
455 int sqlite3SafetyCheck(sqlite3 *db){ |
|
456 int magic; |
|
457 if( db==0 ) return 1; |
|
458 magic = db->magic; |
|
459 if( magic!=SQLITE_MAGIC_CLOSED && |
|
460 magic!=SQLITE_MAGIC_OPEN && |
|
461 magic!=SQLITE_MAGIC_BUSY ) return 1; |
|
462 return 0; |
|
463 } |
|
464 |
|
465 /* |
|
466 ** The variable-length integer encoding is as follows: |
|
467 ** |
|
468 ** KEY: |
|
469 ** A = 0xxxxxxx 7 bits of data and one flag bit |
|
470 ** B = 1xxxxxxx 7 bits of data and one flag bit |
|
471 ** C = xxxxxxxx 8 bits of data |
|
472 ** |
|
473 ** 7 bits - A |
|
474 ** 14 bits - BA |
|
475 ** 21 bits - BBA |
|
476 ** 28 bits - BBBA |
|
477 ** 35 bits - BBBBA |
|
478 ** 42 bits - BBBBBA |
|
479 ** 49 bits - BBBBBBA |
|
480 ** 56 bits - BBBBBBBA |
|
481 ** 64 bits - BBBBBBBBC |
|
482 */ |
|
483 |
|
484 /* |
|
485 ** Write a 64-bit variable-length integer to memory starting at p[0]. |
|
486 ** The length of data write will be between 1 and 9 bytes. The number |
|
487 ** of bytes written is returned. |
|
488 ** |
|
489 ** A variable-length integer consists of the lower 7 bits of each byte |
|
490 ** for all bytes that have the 8th bit set and one byte with the 8th |
|
491 ** bit clear. Except, if we get to the 9th byte, it stores the full |
|
492 ** 8 bits and is the last byte. |
|
493 */ |
|
494 int sqlite3PutVarint(unsigned char *p, u64 v){ |
|
495 int i, j, n; |
|
496 u8 buf[10]; |
|
497 if( v & (((u64)0xff000000)<<32) ){ |
|
498 p[8] = v; |
|
499 v >>= 8; |
|
500 for(i=7; i>=0; i--){ |
|
501 p[i] = (v & 0x7f) | 0x80; |
|
502 v >>= 7; |
|
503 } |
|
504 return 9; |
|
505 } |
|
506 n = 0; |
|
507 do{ |
|
508 buf[n++] = (v & 0x7f) | 0x80; |
|
509 v >>= 7; |
|
510 }while( v!=0 ); |
|
511 buf[0] &= 0x7f; |
|
512 assert( n<=9 ); |
|
513 for(i=0, j=n-1; j>=0; j--, i++){ |
|
514 p[i] = buf[j]; |
|
515 } |
|
516 return n; |
|
517 } |
|
518 |
|
519 /* |
|
520 ** Read a 64-bit variable-length integer from memory starting at p[0]. |
|
521 ** Return the number of bytes read. The value is stored in *v. |
|
522 */ |
|
523 int sqlite3GetVarint(const unsigned char *p, u64 *v){ |
|
524 u32 x; |
|
525 u64 x64; |
|
526 int n; |
|
527 unsigned char c; |
|
528 if( ((c = p[0]) & 0x80)==0 ){ |
|
529 *v = c; |
|
530 return 1; |
|
531 } |
|
532 x = c & 0x7f; |
|
533 if( ((c = p[1]) & 0x80)==0 ){ |
|
534 *v = (x<<7) | c; |
|
535 return 2; |
|
536 } |
|
537 x = (x<<7) | (c&0x7f); |
|
538 if( ((c = p[2]) & 0x80)==0 ){ |
|
539 *v = (x<<7) | c; |
|
540 return 3; |
|
541 } |
|
542 x = (x<<7) | (c&0x7f); |
|
543 if( ((c = p[3]) & 0x80)==0 ){ |
|
544 *v = (x<<7) | c; |
|
545 return 4; |
|
546 } |
|
547 x64 = (x<<7) | (c&0x7f); |
|
548 n = 4; |
|
549 do{ |
|
550 c = p[n++]; |
|
551 if( n==9 ){ |
|
552 x64 = (x64<<8) | c; |
|
553 break; |
|
554 } |
|
555 x64 = (x64<<7) | (c&0x7f); |
|
556 }while( (c & 0x80)!=0 ); |
|
557 *v = x64; |
|
558 return n; |
|
559 } |
|
560 |
|
561 /* |
|
562 ** Read a 32-bit variable-length integer from memory starting at p[0]. |
|
563 ** Return the number of bytes read. The value is stored in *v. |
|
564 */ |
|
565 int sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
|
566 u32 x; |
|
567 int n; |
|
568 unsigned char c; |
|
569 if( ((signed char*)p)[0]>=0 ){ |
|
570 *v = p[0]; |
|
571 return 1; |
|
572 } |
|
573 x = p[0] & 0x7f; |
|
574 if( ((signed char*)p)[1]>=0 ){ |
|
575 *v = (x<<7) | p[1]; |
|
576 return 2; |
|
577 } |
|
578 x = (x<<7) | (p[1] & 0x7f); |
|
579 n = 2; |
|
580 do{ |
|
581 x = (x<<7) | ((c = p[n++])&0x7f); |
|
582 }while( (c & 0x80)!=0 && n<9 ); |
|
583 *v = x; |
|
584 return n; |
|
585 } |
|
586 |
|
587 /* |
|
588 ** Return the number of bytes that will be needed to store the given |
|
589 ** 64-bit integer. |
|
590 */ |
|
591 int sqlite3VarintLen(u64 v){ |
|
592 int i = 0; |
|
593 do{ |
|
594 i++; |
|
595 v >>= 7; |
|
596 }while( v!=0 && i<9 ); |
|
597 return i; |
|
598 } |
|
599 |
|
600 |
|
601 /* |
|
602 ** Read or write a four-byte big-endian integer value. |
|
603 */ |
|
604 u32 sqlite3Get4byte(const u8 *p){ |
|
605 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
|
606 } |
|
607 void sqlite3Put4byte(unsigned char *p, u32 v){ |
|
608 p[0] = v>>24; |
|
609 p[1] = v>>16; |
|
610 p[2] = v>>8; |
|
611 p[3] = v; |
|
612 } |
|
613 |
|
614 |
|
615 |
|
616 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \ |
|
617 || defined(SQLITE_TEST) |
|
618 /* |
|
619 ** Translate a single byte of Hex into an integer. |
|
620 */ |
|
621 static int hexToInt(int h){ |
|
622 if( h>='0' && h<='9' ){ |
|
623 return h - '0'; |
|
624 }else if( h>='a' && h<='f' ){ |
|
625 return h - 'a' + 10; |
|
626 }else{ |
|
627 assert( h>='A' && h<='F' ); |
|
628 return h - 'A' + 10; |
|
629 } |
|
630 } |
|
631 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */ |
|
632 |
|
633 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
|
634 /* |
|
635 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
|
636 ** value. Return a pointer to its binary value. Space to hold the |
|
637 ** binary value has been obtained from malloc and must be freed by |
|
638 ** the calling routine. |
|
639 */ |
|
640 void *sqlite3HexToBlob(sqlite3 *db, const char *z){ |
|
641 char *zBlob; |
|
642 int i; |
|
643 int n = strlen(z); |
|
644 if( n%2 ) return 0; |
|
645 |
|
646 zBlob = (char *)sqlite3DbMallocRaw(db, n/2); |
|
647 if( zBlob ){ |
|
648 for(i=0; i<n; i+=2){ |
|
649 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
|
650 } |
|
651 } |
|
652 return zBlob; |
|
653 } |
|
654 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
|
655 |
|
656 |
|
657 /* |
|
658 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
|
659 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
|
660 ** when this routine is called. |
|
661 ** |
|
662 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN |
|
663 ** value indicates that the database connection passed into the API is |
|
664 ** open and is not being used by another thread. By changing the value |
|
665 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. |
|
666 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN |
|
667 ** when the API exits. |
|
668 ** |
|
669 ** This routine is a attempt to detect if two threads use the |
|
670 ** same sqlite* pointer at the same time. There is a race |
|
671 ** condition so it is possible that the error is not detected. |
|
672 ** But usually the problem will be seen. The result will be an |
|
673 ** error which can be used to debug the application that is |
|
674 ** using SQLite incorrectly. |
|
675 ** |
|
676 ** Ticket #202: If db->magic is not a valid open value, take care not |
|
677 ** to modify the db structure at all. It could be that db is a stale |
|
678 ** pointer. In other words, it could be that there has been a prior |
|
679 ** call to sqlite3_close(db) and db has been deallocated. And we do |
|
680 ** not want to write into deallocated memory. |
|
681 */ |
|
682 int sqlite3SafetyOn(sqlite3 *db){ |
|
683 if( db->magic==SQLITE_MAGIC_OPEN ){ |
|
684 db->magic = SQLITE_MAGIC_BUSY; |
|
685 return 0; |
|
686 }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
|
687 db->magic = SQLITE_MAGIC_ERROR; |
|
688 db->u1.isInterrupted = 1; |
|
689 } |
|
690 return 1; |
|
691 } |
|
692 |
|
693 /* |
|
694 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
|
695 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
|
696 ** when this routine is called. |
|
697 */ |
|
698 int sqlite3SafetyOff(sqlite3 *db){ |
|
699 if( db->magic==SQLITE_MAGIC_BUSY ){ |
|
700 db->magic = SQLITE_MAGIC_OPEN; |
|
701 return 0; |
|
702 }else { |
|
703 db->magic = SQLITE_MAGIC_ERROR; |
|
704 db->u1.isInterrupted = 1; |
|
705 return 1; |
|
706 } |
|
707 } |