|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** The code in this file implements execution method of the |
|
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") |
|
14 ** handles housekeeping details such as creating and deleting |
|
15 ** VDBE instances. This file is solely interested in executing |
|
16 ** the VDBE program. |
|
17 ** |
|
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer |
|
19 ** to a VDBE. |
|
20 ** |
|
21 ** The SQL parser generates a program which is then executed by |
|
22 ** the VDBE to do the work of the SQL statement. VDBE programs are |
|
23 ** similar in form to assembly language. The program consists of |
|
24 ** a linear sequence of operations. Each operation has an opcode |
|
25 ** and 3 operands. Operands P1 and P2 are integers. Operand P3 |
|
26 ** is a null-terminated string. The P2 operand must be non-negative. |
|
27 ** Opcodes will typically ignore one or more operands. Many opcodes |
|
28 ** ignore all three operands. |
|
29 ** |
|
30 ** Computation results are stored on a stack. Each entry on the |
|
31 ** stack is either an integer, a null-terminated string, a floating point |
|
32 ** number, or the SQL "NULL" value. An inplicit conversion from one |
|
33 ** type to the other occurs as necessary. |
|
34 ** |
|
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() |
|
36 ** function which does the work of interpreting a VDBE program. |
|
37 ** But other routines are also provided to help in building up |
|
38 ** a program instruction by instruction. |
|
39 ** |
|
40 ** Various scripts scan this source file in order to generate HTML |
|
41 ** documentation, headers files, or other derived files. The formatting |
|
42 ** of the code in this file is, therefore, important. See other comments |
|
43 ** in this file for details. If in doubt, do not deviate from existing |
|
44 ** commenting and indentation practices when changing or adding code. |
|
45 ** |
|
46 ** $Id: vdbe.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
47 */ |
|
48 #include "sqliteInt.h" |
|
49 #include <ctype.h> |
|
50 #include "vdbeInt.h" |
|
51 |
|
52 /* |
|
53 ** The following global variable is incremented every time a cursor |
|
54 ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test |
|
55 ** procedures use this information to make sure that indices are |
|
56 ** working correctly. This variable has no function other than to |
|
57 ** help verify the correct operation of the library. |
|
58 */ |
|
59 #ifdef SQLITE_TEST |
|
60 int sqlite3_search_count = 0; |
|
61 #endif |
|
62 |
|
63 /* |
|
64 ** When this global variable is positive, it gets decremented once before |
|
65 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted |
|
66 ** field of the sqlite3 structure is set in order to simulate and interrupt. |
|
67 ** |
|
68 ** This facility is used for testing purposes only. It does not function |
|
69 ** in an ordinary build. |
|
70 */ |
|
71 #ifdef SQLITE_TEST |
|
72 int sqlite3_interrupt_count = 0; |
|
73 #endif |
|
74 |
|
75 /* |
|
76 ** The next global variable is incremented each type the OP_Sort opcode |
|
77 ** is executed. The test procedures use this information to make sure that |
|
78 ** sorting is occurring or not occuring at appropriate times. This variable |
|
79 ** has no function other than to help verify the correct operation of the |
|
80 ** library. |
|
81 */ |
|
82 #ifdef SQLITE_TEST |
|
83 int sqlite3_sort_count = 0; |
|
84 #endif |
|
85 |
|
86 /* |
|
87 ** The next global variable records the size of the largest MEM_Blob |
|
88 ** or MEM_Str that has appeared on the VDBE stack. The test procedures |
|
89 ** use this information to make sure that the zero-blob functionality |
|
90 ** is working correctly. This variable has no function other than to |
|
91 ** help verify the correct operation of the library. |
|
92 */ |
|
93 #ifdef SQLITE_TEST |
|
94 int sqlite3_max_blobsize = 0; |
|
95 #endif |
|
96 |
|
97 /* |
|
98 ** Release the memory associated with the given stack level. This |
|
99 ** leaves the Mem.flags field in an inconsistent state. |
|
100 */ |
|
101 #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } |
|
102 |
|
103 /* |
|
104 ** Convert the given stack entity into a string if it isn't one |
|
105 ** already. Return non-zero if a malloc() fails. |
|
106 */ |
|
107 #define Stringify(P, enc) \ |
|
108 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ |
|
109 { goto no_mem; } |
|
110 |
|
111 /* |
|
112 ** The header of a record consists of a sequence variable-length integers. |
|
113 ** These integers are almost always small and are encoded as a single byte. |
|
114 ** The following macro takes advantage this fact to provide a fast decode |
|
115 ** of the integers in a record header. It is faster for the common case |
|
116 ** where the integer is a single byte. It is a little slower when the |
|
117 ** integer is two or more bytes. But overall it is faster. |
|
118 ** |
|
119 ** The following expressions are equivalent: |
|
120 ** |
|
121 ** x = sqlite3GetVarint32( A, &B ); |
|
122 ** |
|
123 ** x = GetVarint( A, B ); |
|
124 ** |
|
125 */ |
|
126 #define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B)) |
|
127 |
|
128 /* |
|
129 ** An ephemeral string value (signified by the MEM_Ephem flag) contains |
|
130 ** a pointer to a dynamically allocated string where some other entity |
|
131 ** is responsible for deallocating that string. Because the stack entry |
|
132 ** does not control the string, it might be deleted without the stack |
|
133 ** entry knowing it. |
|
134 ** |
|
135 ** This routine converts an ephemeral string into a dynamically allocated |
|
136 ** string that the stack entry itself controls. In other words, it |
|
137 ** converts an MEM_Ephem string into an MEM_Dyn string. |
|
138 */ |
|
139 #define Deephemeralize(P) \ |
|
140 if( ((P)->flags&MEM_Ephem)!=0 \ |
|
141 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} |
|
142 |
|
143 /* |
|
144 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) |
|
145 ** P if required. |
|
146 */ |
|
147 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) |
|
148 |
|
149 /* |
|
150 ** Argument pMem points at a memory cell that will be passed to a |
|
151 ** user-defined function or returned to the user as the result of a query. |
|
152 ** The second argument, 'db_enc' is the text encoding used by the vdbe for |
|
153 ** stack variables. This routine sets the pMem->enc and pMem->type |
|
154 ** variables used by the sqlite3_value_*() routines. |
|
155 */ |
|
156 #define storeTypeInfo(A,B) _storeTypeInfo(A) |
|
157 static void _storeTypeInfo(Mem *pMem){ |
|
158 int flags = pMem->flags; |
|
159 if( flags & MEM_Null ){ |
|
160 pMem->type = SQLITE_NULL; |
|
161 } |
|
162 else if( flags & MEM_Int ){ |
|
163 pMem->type = SQLITE_INTEGER; |
|
164 } |
|
165 else if( flags & MEM_Real ){ |
|
166 pMem->type = SQLITE_FLOAT; |
|
167 } |
|
168 else if( flags & MEM_Str ){ |
|
169 pMem->type = SQLITE_TEXT; |
|
170 }else{ |
|
171 pMem->type = SQLITE_BLOB; |
|
172 } |
|
173 } |
|
174 |
|
175 /* |
|
176 ** Pop the stack N times. |
|
177 */ |
|
178 static void popStack(Mem **ppTos, int N){ |
|
179 Mem *pTos = *ppTos; |
|
180 while( N>0 ){ |
|
181 N--; |
|
182 Release(pTos); |
|
183 pTos--; |
|
184 } |
|
185 *ppTos = pTos; |
|
186 } |
|
187 |
|
188 /* |
|
189 ** Allocate cursor number iCur. Return a pointer to it. Return NULL |
|
190 ** if we run out of memory. |
|
191 */ |
|
192 static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){ |
|
193 Cursor *pCx; |
|
194 assert( iCur<p->nCursor ); |
|
195 if( p->apCsr[iCur] ){ |
|
196 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
|
197 } |
|
198 p->apCsr[iCur] = pCx = (Cursor*)sqlite3MallocZero( sizeof(Cursor) ); |
|
199 if( pCx ){ |
|
200 pCx->iDb = iDb; |
|
201 } |
|
202 return pCx; |
|
203 } |
|
204 |
|
205 /* |
|
206 ** Try to convert a value into a numeric representation if we can |
|
207 ** do so without loss of information. In other words, if the string |
|
208 ** looks like a number, convert it into a number. If it does not |
|
209 ** look like a number, leave it alone. |
|
210 */ |
|
211 static void applyNumericAffinity(Mem *pRec){ |
|
212 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ |
|
213 int realnum; |
|
214 sqlite3VdbeMemNulTerminate(pRec); |
|
215 if( (pRec->flags&MEM_Str) |
|
216 && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ |
|
217 i64 value; |
|
218 sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); |
|
219 if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ |
|
220 sqlite3VdbeMemRelease(pRec); |
|
221 pRec->u.i = value; |
|
222 pRec->flags = MEM_Int; |
|
223 }else{ |
|
224 sqlite3VdbeMemRealify(pRec); |
|
225 } |
|
226 } |
|
227 } |
|
228 } |
|
229 |
|
230 /* |
|
231 ** Processing is determine by the affinity parameter: |
|
232 ** |
|
233 ** SQLITE_AFF_INTEGER: |
|
234 ** SQLITE_AFF_REAL: |
|
235 ** SQLITE_AFF_NUMERIC: |
|
236 ** Try to convert pRec to an integer representation or a |
|
237 ** floating-point representation if an integer representation |
|
238 ** is not possible. Note that the integer representation is |
|
239 ** always preferred, even if the affinity is REAL, because |
|
240 ** an integer representation is more space efficient on disk. |
|
241 ** |
|
242 ** SQLITE_AFF_TEXT: |
|
243 ** Convert pRec to a text representation. |
|
244 ** |
|
245 ** SQLITE_AFF_NONE: |
|
246 ** No-op. pRec is unchanged. |
|
247 */ |
|
248 static void applyAffinity( |
|
249 Mem *pRec, /* The value to apply affinity to */ |
|
250 char affinity, /* The affinity to be applied */ |
|
251 u8 enc /* Use this text encoding */ |
|
252 ){ |
|
253 if( affinity==SQLITE_AFF_TEXT ){ |
|
254 /* Only attempt the conversion to TEXT if there is an integer or real |
|
255 ** representation (blob and NULL do not get converted) but no string |
|
256 ** representation. |
|
257 */ |
|
258 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ |
|
259 sqlite3VdbeMemStringify(pRec, enc); |
|
260 } |
|
261 pRec->flags &= ~(MEM_Real|MEM_Int); |
|
262 }else if( affinity!=SQLITE_AFF_NONE ){ |
|
263 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL |
|
264 || affinity==SQLITE_AFF_NUMERIC ); |
|
265 applyNumericAffinity(pRec); |
|
266 if( pRec->flags & MEM_Real ){ |
|
267 sqlite3VdbeIntegerAffinity(pRec); |
|
268 } |
|
269 } |
|
270 } |
|
271 |
|
272 /* |
|
273 ** Try to convert the type of a function argument or a result column |
|
274 ** into a numeric representation. Use either INTEGER or REAL whichever |
|
275 ** is appropriate. But only do the conversion if it is possible without |
|
276 ** loss of information and return the revised type of the argument. |
|
277 ** |
|
278 ** This is an EXPERIMENTAL api and is subject to change or removal. |
|
279 */ |
|
280 EXPORT_C int sqlite3_value_numeric_type(sqlite3_value *pVal){ |
|
281 Mem *pMem = (Mem*)pVal; |
|
282 applyNumericAffinity(pMem); |
|
283 storeTypeInfo(pMem, 0); |
|
284 return pMem->type; |
|
285 } |
|
286 |
|
287 /* |
|
288 ** Exported version of applyAffinity(). This one works on sqlite3_value*, |
|
289 ** not the internal Mem* type. |
|
290 */ |
|
291 void sqlite3ValueApplyAffinity( |
|
292 sqlite3_value *pVal, |
|
293 u8 affinity, |
|
294 u8 enc |
|
295 ){ |
|
296 applyAffinity((Mem *)pVal, affinity, enc); |
|
297 } |
|
298 |
|
299 #ifdef SQLITE_DEBUG |
|
300 /* |
|
301 ** Write a nice string representation of the contents of cell pMem |
|
302 ** into buffer zBuf, length nBuf. |
|
303 */ |
|
304 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ |
|
305 char *zCsr = zBuf; |
|
306 int f = pMem->flags; |
|
307 |
|
308 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; |
|
309 |
|
310 if( f&MEM_Blob ){ |
|
311 int i; |
|
312 char c; |
|
313 if( f & MEM_Dyn ){ |
|
314 c = 'z'; |
|
315 assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
|
316 }else if( f & MEM_Static ){ |
|
317 c = 't'; |
|
318 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
|
319 }else if( f & MEM_Ephem ){ |
|
320 c = 'e'; |
|
321 assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
|
322 }else{ |
|
323 c = 's'; |
|
324 } |
|
325 |
|
326 sqlite3_snprintf(100, zCsr, "%c", c); |
|
327 zCsr += strlen(zCsr); |
|
328 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); |
|
329 zCsr += strlen(zCsr); |
|
330 for(i=0; i<16 && i<pMem->n; i++){ |
|
331 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); |
|
332 zCsr += strlen(zCsr); |
|
333 } |
|
334 for(i=0; i<16 && i<pMem->n; i++){ |
|
335 char z = pMem->z[i]; |
|
336 if( z<32 || z>126 ) *zCsr++ = '.'; |
|
337 else *zCsr++ = z; |
|
338 } |
|
339 |
|
340 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); |
|
341 zCsr += strlen(zCsr); |
|
342 if( f & MEM_Zero ){ |
|
343 sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i); |
|
344 zCsr += strlen(zCsr); |
|
345 } |
|
346 *zCsr = '\0'; |
|
347 }else if( f & MEM_Str ){ |
|
348 int j, k; |
|
349 zBuf[0] = ' '; |
|
350 if( f & MEM_Dyn ){ |
|
351 zBuf[1] = 'z'; |
|
352 assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
|
353 }else if( f & MEM_Static ){ |
|
354 zBuf[1] = 't'; |
|
355 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
|
356 }else if( f & MEM_Ephem ){ |
|
357 zBuf[1] = 'e'; |
|
358 assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
|
359 }else{ |
|
360 zBuf[1] = 's'; |
|
361 } |
|
362 k = 2; |
|
363 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); |
|
364 k += strlen(&zBuf[k]); |
|
365 zBuf[k++] = '['; |
|
366 for(j=0; j<15 && j<pMem->n; j++){ |
|
367 u8 c = pMem->z[j]; |
|
368 if( c>=0x20 && c<0x7f ){ |
|
369 zBuf[k++] = c; |
|
370 }else{ |
|
371 zBuf[k++] = '.'; |
|
372 } |
|
373 } |
|
374 zBuf[k++] = ']'; |
|
375 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); |
|
376 k += strlen(&zBuf[k]); |
|
377 zBuf[k++] = 0; |
|
378 } |
|
379 } |
|
380 #endif |
|
381 |
|
382 |
|
383 #ifdef VDBE_PROFILE |
|
384 /* |
|
385 ** The following routine only works on pentium-class processors. |
|
386 ** It uses the RDTSC opcode to read the cycle count value out of the |
|
387 ** processor and returns that value. This can be used for high-res |
|
388 ** profiling. |
|
389 */ |
|
390 __inline__ unsigned long long int hwtime(void){ |
|
391 unsigned long long int x; |
|
392 __asm__("rdtsc\n\t" |
|
393 "mov %%edx, %%ecx\n\t" |
|
394 :"=A" (x)); |
|
395 return x; |
|
396 } |
|
397 #endif |
|
398 |
|
399 /* |
|
400 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the |
|
401 ** sqlite3_interrupt() routine has been called. If it has been, then |
|
402 ** processing of the VDBE program is interrupted. |
|
403 ** |
|
404 ** This macro added to every instruction that does a jump in order to |
|
405 ** implement a loop. This test used to be on every single instruction, |
|
406 ** but that meant we more testing that we needed. By only testing the |
|
407 ** flag on jump instructions, we get a (small) speed improvement. |
|
408 */ |
|
409 #define CHECK_FOR_INTERRUPT \ |
|
410 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
|
411 |
|
412 |
|
413 /* |
|
414 ** Execute as much of a VDBE program as we can then return. |
|
415 ** |
|
416 ** sqlite3VdbeMakeReady() must be called before this routine in order to |
|
417 ** close the program with a final OP_Halt and to set up the callbacks |
|
418 ** and the error message pointer. |
|
419 ** |
|
420 ** Whenever a row or result data is available, this routine will either |
|
421 ** invoke the result callback (if there is one) or return with |
|
422 ** SQLITE_ROW. |
|
423 ** |
|
424 ** If an attempt is made to open a locked database, then this routine |
|
425 ** will either invoke the busy callback (if there is one) or it will |
|
426 ** return SQLITE_BUSY. |
|
427 ** |
|
428 ** If an error occurs, an error message is written to memory obtained |
|
429 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. |
|
430 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. |
|
431 ** |
|
432 ** If the callback ever returns non-zero, then the program exits |
|
433 ** immediately. There will be no error message but the p->rc field is |
|
434 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. |
|
435 ** |
|
436 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this |
|
437 ** routine to return SQLITE_ERROR. |
|
438 ** |
|
439 ** Other fatal errors return SQLITE_ERROR. |
|
440 ** |
|
441 ** After this routine has finished, sqlite3VdbeFinalize() should be |
|
442 ** used to clean up the mess that was left behind. |
|
443 */ |
|
444 int sqlite3VdbeExec( |
|
445 Vdbe *p /* The VDBE */ |
|
446 ){ |
|
447 int pc; /* The program counter */ |
|
448 Op *pOp; /* Current operation */ |
|
449 int rc = SQLITE_OK; /* Value to return */ |
|
450 sqlite3 *db = p->db; /* The database */ |
|
451 u8 encoding = ENC(db); /* The database encoding */ |
|
452 Mem *pTos; /* Top entry in the operand stack */ |
|
453 #ifdef VDBE_PROFILE |
|
454 unsigned long long start; /* CPU clock count at start of opcode */ |
|
455 int origPc; /* Program counter at start of opcode */ |
|
456 #endif |
|
457 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
|
458 int nProgressOps = 0; /* Opcodes executed since progress callback. */ |
|
459 #endif |
|
460 #ifndef NDEBUG |
|
461 Mem *pStackLimit; |
|
462 #endif |
|
463 |
|
464 if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; |
|
465 assert( db->magic==SQLITE_MAGIC_BUSY ); |
|
466 pTos = p->pTos; |
|
467 sqlite3BtreeMutexArrayEnter(&p->aMutex); |
|
468 if( p->rc==SQLITE_NOMEM ){ |
|
469 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
|
470 ** sqlite3_column_text16() failed. */ |
|
471 goto no_mem; |
|
472 } |
|
473 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); |
|
474 p->rc = SQLITE_OK; |
|
475 assert( p->explain==0 ); |
|
476 if( p->popStack ){ |
|
477 popStack(&pTos, p->popStack); |
|
478 p->popStack = 0; |
|
479 } |
|
480 p->resOnStack = 0; |
|
481 db->busyHandler.nBusy = 0; |
|
482 CHECK_FOR_INTERRUPT; |
|
483 sqlite3VdbeIOTraceSql(p); |
|
484 #ifdef SQLITE_DEBUG |
|
485 if( (p->db->flags & SQLITE_VdbeListing)!=0 |
|
486 || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS) |
|
487 ){ |
|
488 int i; |
|
489 printf("VDBE Program Listing:\n"); |
|
490 sqlite3VdbePrintSql(p); |
|
491 for(i=0; i<p->nOp; i++){ |
|
492 sqlite3VdbePrintOp(stdout, i, &p->aOp[i]); |
|
493 } |
|
494 } |
|
495 if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){ |
|
496 p->trace = stdout; |
|
497 } |
|
498 #endif |
|
499 for(pc=p->pc; rc==SQLITE_OK; pc++){ |
|
500 assert( pc>=0 && pc<p->nOp ); |
|
501 assert( pTos<=&p->aStack[pc] ); |
|
502 if( db->mallocFailed ) goto no_mem; |
|
503 #ifdef VDBE_PROFILE |
|
504 origPc = pc; |
|
505 start = hwtime(); |
|
506 #endif |
|
507 pOp = &p->aOp[pc]; |
|
508 |
|
509 /* Only allow tracing if SQLITE_DEBUG is defined. |
|
510 */ |
|
511 #ifdef SQLITE_DEBUG |
|
512 if( p->trace ){ |
|
513 if( pc==0 ){ |
|
514 printf("VDBE Execution Trace:\n"); |
|
515 sqlite3VdbePrintSql(p); |
|
516 } |
|
517 sqlite3VdbePrintOp(p->trace, pc, pOp); |
|
518 } |
|
519 if( p->trace==0 && pc==0 |
|
520 && sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){ |
|
521 sqlite3VdbePrintSql(p); |
|
522 } |
|
523 #endif |
|
524 |
|
525 |
|
526 /* Check to see if we need to simulate an interrupt. This only happens |
|
527 ** if we have a special test build. |
|
528 */ |
|
529 #ifdef SQLITE_TEST |
|
530 if( sqlite3_interrupt_count>0 ){ |
|
531 sqlite3_interrupt_count--; |
|
532 if( sqlite3_interrupt_count==0 ){ |
|
533 sqlite3_interrupt(db); |
|
534 } |
|
535 } |
|
536 #endif |
|
537 |
|
538 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
|
539 /* Call the progress callback if it is configured and the required number |
|
540 ** of VDBE ops have been executed (either since this invocation of |
|
541 ** sqlite3VdbeExec() or since last time the progress callback was called). |
|
542 ** If the progress callback returns non-zero, exit the virtual machine with |
|
543 ** a return code SQLITE_ABORT. |
|
544 */ |
|
545 if( db->xProgress ){ |
|
546 if( db->nProgressOps==nProgressOps ){ |
|
547 int prc; |
|
548 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
549 prc =db->xProgress(db->pProgressArg); |
|
550 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
551 if( prc!=0 ){ |
|
552 rc = SQLITE_INTERRUPT; |
|
553 goto vdbe_halt; |
|
554 } |
|
555 nProgressOps = 0; |
|
556 } |
|
557 nProgressOps++; |
|
558 } |
|
559 #endif |
|
560 |
|
561 #ifndef NDEBUG |
|
562 /* This is to check that the return value of static function |
|
563 ** opcodeNoPush() (see vdbeaux.c) returns values that match the |
|
564 ** implementation of the virtual machine in this file. If |
|
565 ** opcodeNoPush() returns non-zero, then the stack is guarenteed |
|
566 ** not to grow when the opcode is executed. If it returns zero, then |
|
567 ** the stack may grow by at most 1. |
|
568 ** |
|
569 ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not |
|
570 ** available if NDEBUG is defined at build time. |
|
571 */ |
|
572 pStackLimit = pTos; |
|
573 if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){ |
|
574 pStackLimit++; |
|
575 } |
|
576 #endif |
|
577 |
|
578 switch( pOp->opcode ){ |
|
579 |
|
580 /***************************************************************************** |
|
581 ** What follows is a massive switch statement where each case implements a |
|
582 ** separate instruction in the virtual machine. If we follow the usual |
|
583 ** indentation conventions, each case should be indented by 6 spaces. But |
|
584 ** that is a lot of wasted space on the left margin. So the code within |
|
585 ** the switch statement will break with convention and be flush-left. Another |
|
586 ** big comment (similar to this one) will mark the point in the code where |
|
587 ** we transition back to normal indentation. |
|
588 ** |
|
589 ** The formatting of each case is important. The makefile for SQLite |
|
590 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
|
591 ** file looking for lines that begin with "case OP_". The opcodes.h files |
|
592 ** will be filled with #defines that give unique integer values to each |
|
593 ** opcode and the opcodes.c file is filled with an array of strings where |
|
594 ** each string is the symbolic name for the corresponding opcode. If the |
|
595 ** case statement is followed by a comment of the form "/# same as ... #/" |
|
596 ** that comment is used to determine the particular value of the opcode. |
|
597 ** |
|
598 ** If a comment on the same line as the "case OP_" construction contains |
|
599 ** the word "no-push", then the opcode is guarenteed not to grow the |
|
600 ** vdbe stack when it is executed. See function opcode() in |
|
601 ** vdbeaux.c for details. |
|
602 ** |
|
603 ** Documentation about VDBE opcodes is generated by scanning this file |
|
604 ** for lines of that contain "Opcode:". That line and all subsequent |
|
605 ** comment lines are used in the generation of the opcode.html documentation |
|
606 ** file. |
|
607 ** |
|
608 ** SUMMARY: |
|
609 ** |
|
610 ** Formatting is important to scripts that scan this file. |
|
611 ** Do not deviate from the formatting style currently in use. |
|
612 ** |
|
613 *****************************************************************************/ |
|
614 |
|
615 /* Opcode: Goto * P2 * |
|
616 ** |
|
617 ** An unconditional jump to address P2. |
|
618 ** The next instruction executed will be |
|
619 ** the one at index P2 from the beginning of |
|
620 ** the program. |
|
621 */ |
|
622 case OP_Goto: { /* no-push */ |
|
623 CHECK_FOR_INTERRUPT; |
|
624 pc = pOp->p2 - 1; |
|
625 break; |
|
626 } |
|
627 |
|
628 /* Opcode: Gosub * P2 * |
|
629 ** |
|
630 ** Push the current address plus 1 onto the return address stack |
|
631 ** and then jump to address P2. |
|
632 ** |
|
633 ** The return address stack is of limited depth. If too many |
|
634 ** OP_Gosub operations occur without intervening OP_Returns, then |
|
635 ** the return address stack will fill up and processing will abort |
|
636 ** with a fatal error. |
|
637 */ |
|
638 case OP_Gosub: { /* no-push */ |
|
639 assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) ); |
|
640 p->returnStack[p->returnDepth++] = pc+1; |
|
641 pc = pOp->p2 - 1; |
|
642 break; |
|
643 } |
|
644 |
|
645 /* Opcode: Return * * * |
|
646 ** |
|
647 ** Jump immediately to the next instruction after the last unreturned |
|
648 ** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then |
|
649 ** processing aborts with a fatal error. |
|
650 */ |
|
651 case OP_Return: { /* no-push */ |
|
652 assert( p->returnDepth>0 ); |
|
653 p->returnDepth--; |
|
654 pc = p->returnStack[p->returnDepth] - 1; |
|
655 break; |
|
656 } |
|
657 |
|
658 /* Opcode: Halt P1 P2 P3 |
|
659 ** |
|
660 ** Exit immediately. All open cursors, Fifos, etc are closed |
|
661 ** automatically. |
|
662 ** |
|
663 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), |
|
664 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). |
|
665 ** For errors, it can be some other value. If P1!=0 then P2 will determine |
|
666 ** whether or not to rollback the current transaction. Do not rollback |
|
667 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, |
|
668 ** then back out all changes that have occurred during this execution of the |
|
669 ** VDBE, but do not rollback the transaction. |
|
670 ** |
|
671 ** If P3 is not null then it is an error message string. |
|
672 ** |
|
673 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
|
674 ** every program. So a jump past the last instruction of the program |
|
675 ** is the same as executing Halt. |
|
676 */ |
|
677 case OP_Halt: { /* no-push */ |
|
678 p->pTos = pTos; |
|
679 p->rc = pOp->p1; |
|
680 p->pc = pc; |
|
681 p->errorAction = pOp->p2; |
|
682 if( pOp->p3 ){ |
|
683 sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0); |
|
684 } |
|
685 rc = sqlite3VdbeHalt(p); |
|
686 assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); |
|
687 if( rc==SQLITE_BUSY ){ |
|
688 p->rc = rc = SQLITE_BUSY; |
|
689 }else{ |
|
690 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
|
691 } |
|
692 goto vdbe_return; |
|
693 } |
|
694 |
|
695 /* Opcode: StackDepth P1 * * |
|
696 ** |
|
697 ** If P1 is less than zero, then store the current stack depth |
|
698 ** in P1. If P1 is zero or greater, verify that the current stack |
|
699 ** depth is equal to P1 and throw an exception if it is not. |
|
700 ** |
|
701 ** This opcode is used for internal consistency checking. |
|
702 */ |
|
703 case OP_StackDepth: { /* no-push */ |
|
704 int n = pTos - p->aStack + 1; |
|
705 if( pOp->p1<0 ){ |
|
706 pOp->p1 = n; |
|
707 }else if( pOp->p1!=n ){ |
|
708 p->pTos = pTos; |
|
709 p->rc = rc = SQLITE_INTERNAL; |
|
710 p->pc = pc; |
|
711 p->errorAction = OE_Rollback; |
|
712 sqlite3SetString(&p->zErrMsg, "internal error: VDBE stack leak", (char*)0); |
|
713 goto vdbe_return; |
|
714 } |
|
715 break; |
|
716 } |
|
717 |
|
718 /* Opcode: Integer P1 * * |
|
719 ** |
|
720 ** The 32-bit integer value P1 is pushed onto the stack. |
|
721 */ |
|
722 case OP_Integer: { |
|
723 pTos++; |
|
724 pTos->flags = MEM_Int; |
|
725 pTos->u.i = pOp->p1; |
|
726 break; |
|
727 } |
|
728 |
|
729 /* Opcode: Int64 * * P3 |
|
730 ** |
|
731 ** P3 is a pointer to a 64-bit integer value. |
|
732 ** Push that value onto the stack. |
|
733 */ |
|
734 case OP_Int64: { |
|
735 pTos++; |
|
736 assert( pOp->p3!=0 ); |
|
737 pTos->flags = MEM_Int; |
|
738 memcpy(&pTos->u.i, pOp->p3, 8); |
|
739 break; |
|
740 } |
|
741 |
|
742 /* Opcode: Real * * P3 |
|
743 ** |
|
744 ** P3 is a pointer to a 64-bit floating point value. Push that value |
|
745 ** onto the stack. |
|
746 */ |
|
747 case OP_Real: { /* same as TK_FLOAT, */ |
|
748 pTos++; |
|
749 pTos->flags = MEM_Real; |
|
750 memcpy(&pTos->r, pOp->p3, 8); |
|
751 break; |
|
752 } |
|
753 |
|
754 /* Opcode: String8 * * P3 |
|
755 ** |
|
756 ** P3 points to a nul terminated UTF-8 string. This opcode is transformed |
|
757 ** into an OP_String before it is executed for the first time. |
|
758 */ |
|
759 case OP_String8: { /* same as TK_STRING */ |
|
760 assert( pOp->p3!=0 ); |
|
761 pOp->opcode = OP_String; |
|
762 pOp->p1 = strlen(pOp->p3); |
|
763 assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH ); |
|
764 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
|
765 |
|
766 #ifndef SQLITE_OMIT_UTF16 |
|
767 if( encoding!=SQLITE_UTF8 ){ |
|
768 pTos++; |
|
769 sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC); |
|
770 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem; |
|
771 if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem; |
|
772 pTos->flags &= ~(MEM_Dyn); |
|
773 pTos->flags |= MEM_Static; |
|
774 if( pOp->p3type==P3_DYNAMIC ){ |
|
775 sqlite3_free(pOp->p3); |
|
776 } |
|
777 pOp->p3type = P3_DYNAMIC; |
|
778 pOp->p3 = pTos->z; |
|
779 pOp->p1 = pTos->n; |
|
780 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */ |
|
781 break; |
|
782 } |
|
783 #endif |
|
784 /* Otherwise fall through to the next case, OP_String */ |
|
785 } |
|
786 |
|
787 /* Opcode: String P1 * P3 |
|
788 ** |
|
789 ** The string value P3 of length P1 (bytes) is pushed onto the stack. |
|
790 */ |
|
791 case OP_String: { |
|
792 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */ |
|
793 pTos++; |
|
794 assert( pOp->p3!=0 ); |
|
795 pTos->flags = MEM_Str|MEM_Static|MEM_Term; |
|
796 pTos->z = pOp->p3; |
|
797 pTos->n = pOp->p1; |
|
798 pTos->enc = encoding; |
|
799 break; |
|
800 } |
|
801 |
|
802 /* Opcode: Null * * * |
|
803 ** |
|
804 ** Push a NULL onto the stack. |
|
805 */ |
|
806 case OP_Null: { |
|
807 pTos++; |
|
808 pTos->flags = MEM_Null; |
|
809 pTos->n = 0; |
|
810 break; |
|
811 } |
|
812 |
|
813 |
|
814 #ifndef SQLITE_OMIT_BLOB_LITERAL |
|
815 /* Opcode: HexBlob * * P3 |
|
816 ** |
|
817 ** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the |
|
818 ** vdbe stack. |
|
819 ** |
|
820 ** The first time this instruction executes, in transforms itself into a |
|
821 ** 'Blob' opcode with a binary blob as P3. |
|
822 */ |
|
823 case OP_HexBlob: { /* same as TK_BLOB */ |
|
824 pOp->opcode = OP_Blob; |
|
825 pOp->p1 = strlen(pOp->p3)/2; |
|
826 assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH ); |
|
827 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
|
828 if( pOp->p1 ){ |
|
829 char *zBlob = (char*)sqlite3HexToBlob(db, pOp->p3); |
|
830 if( !zBlob ) goto no_mem; |
|
831 if( pOp->p3type==P3_DYNAMIC ){ |
|
832 sqlite3_free(pOp->p3); |
|
833 } |
|
834 pOp->p3 = zBlob; |
|
835 pOp->p3type = P3_DYNAMIC; |
|
836 }else{ |
|
837 if( pOp->p3type==P3_DYNAMIC ){ |
|
838 sqlite3_free(pOp->p3); |
|
839 } |
|
840 pOp->p3type = P3_STATIC; |
|
841 pOp->p3 = ""; |
|
842 } |
|
843 |
|
844 /* Fall through to the next case, OP_Blob. */ |
|
845 } |
|
846 |
|
847 /* Opcode: Blob P1 * P3 |
|
848 ** |
|
849 ** P3 points to a blob of data P1 bytes long. Push this |
|
850 ** value onto the stack. This instruction is not coded directly |
|
851 ** by the compiler. Instead, the compiler layer specifies |
|
852 ** an OP_HexBlob opcode, with the hex string representation of |
|
853 ** the blob as P3. This opcode is transformed to an OP_Blob |
|
854 ** the first time it is executed. |
|
855 */ |
|
856 case OP_Blob: { |
|
857 pTos++; |
|
858 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */ |
|
859 sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0); |
|
860 pTos->enc = encoding; |
|
861 break; |
|
862 } |
|
863 #endif /* SQLITE_OMIT_BLOB_LITERAL */ |
|
864 |
|
865 /* Opcode: Variable P1 * * |
|
866 ** |
|
867 ** Push the value of variable P1 onto the stack. A variable is |
|
868 ** an unknown in the original SQL string as handed to sqlite3_compile(). |
|
869 ** Any occurance of the '?' character in the original SQL is considered |
|
870 ** a variable. Variables in the SQL string are number from left to |
|
871 ** right beginning with 1. The values of variables are set using the |
|
872 ** sqlite3_bind() API. |
|
873 */ |
|
874 case OP_Variable: { |
|
875 int j = pOp->p1 - 1; |
|
876 Mem *pVar; |
|
877 assert( j>=0 && j<p->nVar ); |
|
878 |
|
879 pVar = &p->aVar[j]; |
|
880 if( sqlite3VdbeMemTooBig(pVar) ){ |
|
881 goto too_big; |
|
882 } |
|
883 pTos++; |
|
884 sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static); |
|
885 break; |
|
886 } |
|
887 |
|
888 /* Opcode: Pop P1 * * |
|
889 ** |
|
890 ** P1 elements are popped off of the top of stack and discarded. |
|
891 */ |
|
892 case OP_Pop: { /* no-push */ |
|
893 assert( pOp->p1>=0 ); |
|
894 popStack(&pTos, pOp->p1); |
|
895 assert( pTos>=&p->aStack[-1] ); |
|
896 break; |
|
897 } |
|
898 |
|
899 /* Opcode: Dup P1 P2 * |
|
900 ** |
|
901 ** A copy of the P1-th element of the stack |
|
902 ** is made and pushed onto the top of the stack. |
|
903 ** The top of the stack is element 0. So the |
|
904 ** instruction "Dup 0 0 0" will make a copy of the |
|
905 ** top of the stack. |
|
906 ** |
|
907 ** If the content of the P1-th element is a dynamically |
|
908 ** allocated string, then a new copy of that string |
|
909 ** is made if P2==0. If P2!=0, then just a pointer |
|
910 ** to the string is copied. |
|
911 ** |
|
912 ** Also see the Pull instruction. |
|
913 */ |
|
914 case OP_Dup: { |
|
915 Mem *pFrom = &pTos[-pOp->p1]; |
|
916 assert( pFrom<=pTos && pFrom>=p->aStack ); |
|
917 pTos++; |
|
918 sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem); |
|
919 if( pOp->p2 ){ |
|
920 Deephemeralize(pTos); |
|
921 } |
|
922 break; |
|
923 } |
|
924 |
|
925 /* Opcode: Pull P1 * * |
|
926 ** |
|
927 ** The P1-th element is removed from its current location on |
|
928 ** the stack and pushed back on top of the stack. The |
|
929 ** top of the stack is element 0, so "Pull 0 0 0" is |
|
930 ** a no-op. "Pull 1 0 0" swaps the top two elements of |
|
931 ** the stack. |
|
932 ** |
|
933 ** See also the Dup instruction. |
|
934 */ |
|
935 case OP_Pull: { /* no-push */ |
|
936 Mem *pFrom = &pTos[-pOp->p1]; |
|
937 int i; |
|
938 Mem ts; |
|
939 |
|
940 ts = *pFrom; |
|
941 Deephemeralize(pTos); |
|
942 for(i=0; i<pOp->p1; i++, pFrom++){ |
|
943 Deephemeralize(&pFrom[1]); |
|
944 assert( (pFrom[1].flags & MEM_Ephem)==0 ); |
|
945 *pFrom = pFrom[1]; |
|
946 if( pFrom->flags & MEM_Short ){ |
|
947 assert( pFrom->flags & (MEM_Str|MEM_Blob) ); |
|
948 assert( pFrom->z==pFrom[1].zShort ); |
|
949 pFrom->z = pFrom->zShort; |
|
950 } |
|
951 } |
|
952 *pTos = ts; |
|
953 if( pTos->flags & MEM_Short ){ |
|
954 assert( pTos->flags & (MEM_Str|MEM_Blob) ); |
|
955 assert( pTos->z==pTos[-pOp->p1].zShort ); |
|
956 pTos->z = pTos->zShort; |
|
957 } |
|
958 break; |
|
959 } |
|
960 |
|
961 /* Opcode: Push P1 * * |
|
962 ** |
|
963 ** Overwrite the value of the P1-th element down on the |
|
964 ** stack (P1==0 is the top of the stack) with the value |
|
965 ** of the top of the stack. Then pop the top of the stack. |
|
966 */ |
|
967 case OP_Push: { /* no-push */ |
|
968 Mem *pTo = &pTos[-pOp->p1]; |
|
969 |
|
970 assert( pTo>=p->aStack ); |
|
971 sqlite3VdbeMemMove(pTo, pTos); |
|
972 pTos--; |
|
973 break; |
|
974 } |
|
975 |
|
976 /* Opcode: Callback P1 * * |
|
977 ** |
|
978 ** The top P1 values on the stack represent a single result row from |
|
979 ** a query. This opcode causes the sqlite3_step() call to terminate |
|
980 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt |
|
981 ** structure to provide access to the top P1 values as the result |
|
982 ** row. When the sqlite3_step() function is run again, the top P1 |
|
983 ** values will be automatically popped from the stack before the next |
|
984 ** instruction executes. |
|
985 */ |
|
986 case OP_Callback: { /* no-push */ |
|
987 Mem *pMem; |
|
988 Mem *pFirstColumn; |
|
989 assert( p->nResColumn==pOp->p1 ); |
|
990 |
|
991 /* Data in the pager might be moved or changed out from under us |
|
992 ** in between the return from this sqlite3_step() call and the |
|
993 ** next call to sqlite3_step(). So deephermeralize everything on |
|
994 ** the stack. Note that ephemeral data is never stored in memory |
|
995 ** cells so we do not have to worry about them. |
|
996 */ |
|
997 pFirstColumn = &pTos[0-pOp->p1]; |
|
998 for(pMem = p->aStack; pMem<pFirstColumn; pMem++){ |
|
999 Deephemeralize(pMem); |
|
1000 } |
|
1001 |
|
1002 /* Invalidate all ephemeral cursor row caches */ |
|
1003 p->cacheCtr = (p->cacheCtr + 2)|1; |
|
1004 |
|
1005 /* Make sure the results of the current row are \000 terminated |
|
1006 ** and have an assigned type. The results are deephemeralized as |
|
1007 ** as side effect. |
|
1008 */ |
|
1009 for(; pMem<=pTos; pMem++ ){ |
|
1010 sqlite3VdbeMemNulTerminate(pMem); |
|
1011 storeTypeInfo(pMem, encoding); |
|
1012 } |
|
1013 |
|
1014 /* Set up the statement structure so that it will pop the current |
|
1015 ** results from the stack when the statement returns. |
|
1016 */ |
|
1017 p->resOnStack = 1; |
|
1018 p->nCallback++; |
|
1019 p->popStack = pOp->p1; |
|
1020 p->pc = pc + 1; |
|
1021 p->pTos = pTos; |
|
1022 rc = SQLITE_ROW; |
|
1023 goto vdbe_return; |
|
1024 } |
|
1025 |
|
1026 /* Opcode: Concat P1 P2 * |
|
1027 ** |
|
1028 ** Look at the first P1+2 elements of the stack. Append them all |
|
1029 ** together with the lowest element first. The original P1+2 elements |
|
1030 ** are popped from the stack if P2==0 and retained if P2==1. If |
|
1031 ** any element of the stack is NULL, then the result is NULL. |
|
1032 ** |
|
1033 ** When P1==1, this routine makes a copy of the top stack element |
|
1034 ** into memory obtained from sqlite3_malloc(). |
|
1035 */ |
|
1036 case OP_Concat: { /* same as TK_CONCAT */ |
|
1037 char *zNew; |
|
1038 i64 nByte; |
|
1039 int nField; |
|
1040 int i, j; |
|
1041 Mem *pTerm; |
|
1042 |
|
1043 /* Loop through the stack elements to see how long the result will be. */ |
|
1044 nField = pOp->p1 + 2; |
|
1045 pTerm = &pTos[1-nField]; |
|
1046 nByte = 0; |
|
1047 for(i=0; i<nField; i++, pTerm++){ |
|
1048 assert( pOp->p2==0 || (pTerm->flags&MEM_Str) ); |
|
1049 if( pTerm->flags&MEM_Null ){ |
|
1050 nByte = -1; |
|
1051 break; |
|
1052 } |
|
1053 ExpandBlob(pTerm); |
|
1054 Stringify(pTerm, encoding); |
|
1055 nByte += pTerm->n; |
|
1056 } |
|
1057 |
|
1058 if( nByte<0 ){ |
|
1059 /* If nByte is less than zero, then there is a NULL value on the stack. |
|
1060 ** In this case just pop the values off the stack (if required) and |
|
1061 ** push on a NULL. |
|
1062 */ |
|
1063 if( pOp->p2==0 ){ |
|
1064 popStack(&pTos, nField); |
|
1065 } |
|
1066 pTos++; |
|
1067 pTos->flags = MEM_Null; |
|
1068 }else{ |
|
1069 /* Otherwise malloc() space for the result and concatenate all the |
|
1070 ** stack values. |
|
1071 */ |
|
1072 if( nByte+2>SQLITE_MAX_LENGTH ){ |
|
1073 goto too_big; |
|
1074 } |
|
1075 zNew = (char*)sqlite3DbMallocRaw(db, nByte+2 ); |
|
1076 if( zNew==0 ) goto no_mem; |
|
1077 j = 0; |
|
1078 pTerm = &pTos[1-nField]; |
|
1079 for(i=j=0; i<nField; i++, pTerm++){ |
|
1080 int n = pTerm->n; |
|
1081 assert( pTerm->flags & (MEM_Str|MEM_Blob) ); |
|
1082 memcpy(&zNew[j], pTerm->z, n); |
|
1083 j += n; |
|
1084 } |
|
1085 zNew[j] = 0; |
|
1086 zNew[j+1] = 0; |
|
1087 assert( j==nByte ); |
|
1088 |
|
1089 if( pOp->p2==0 ){ |
|
1090 popStack(&pTos, nField); |
|
1091 } |
|
1092 pTos++; |
|
1093 pTos->n = j; |
|
1094 pTos->flags = MEM_Str|MEM_Dyn|MEM_Term; |
|
1095 pTos->xDel = 0; |
|
1096 pTos->enc = encoding; |
|
1097 pTos->z = zNew; |
|
1098 } |
|
1099 break; |
|
1100 } |
|
1101 |
|
1102 /* Opcode: Add * * * |
|
1103 ** |
|
1104 ** Pop the top two elements from the stack, add them together, |
|
1105 ** and push the result back onto the stack. If either element |
|
1106 ** is a string then it is converted to a double using the atof() |
|
1107 ** function before the addition. |
|
1108 ** If either operand is NULL, the result is NULL. |
|
1109 */ |
|
1110 /* Opcode: Multiply * * * |
|
1111 ** |
|
1112 ** Pop the top two elements from the stack, multiply them together, |
|
1113 ** and push the result back onto the stack. If either element |
|
1114 ** is a string then it is converted to a double using the atof() |
|
1115 ** function before the multiplication. |
|
1116 ** If either operand is NULL, the result is NULL. |
|
1117 */ |
|
1118 /* Opcode: Subtract * * * |
|
1119 ** |
|
1120 ** Pop the top two elements from the stack, subtract the |
|
1121 ** first (what was on top of the stack) from the second (the |
|
1122 ** next on stack) |
|
1123 ** and push the result back onto the stack. If either element |
|
1124 ** is a string then it is converted to a double using the atof() |
|
1125 ** function before the subtraction. |
|
1126 ** If either operand is NULL, the result is NULL. |
|
1127 */ |
|
1128 /* Opcode: Divide * * * |
|
1129 ** |
|
1130 ** Pop the top two elements from the stack, divide the |
|
1131 ** first (what was on top of the stack) from the second (the |
|
1132 ** next on stack) |
|
1133 ** and push the result back onto the stack. If either element |
|
1134 ** is a string then it is converted to a double using the atof() |
|
1135 ** function before the division. Division by zero returns NULL. |
|
1136 ** If either operand is NULL, the result is NULL. |
|
1137 */ |
|
1138 /* Opcode: Remainder * * * |
|
1139 ** |
|
1140 ** Pop the top two elements from the stack, divide the |
|
1141 ** first (what was on top of the stack) from the second (the |
|
1142 ** next on stack) |
|
1143 ** and push the remainder after division onto the stack. If either element |
|
1144 ** is a string then it is converted to a double using the atof() |
|
1145 ** function before the division. Division by zero returns NULL. |
|
1146 ** If either operand is NULL, the result is NULL. |
|
1147 */ |
|
1148 case OP_Add: /* same as TK_PLUS, no-push */ |
|
1149 case OP_Subtract: /* same as TK_MINUS, no-push */ |
|
1150 case OP_Multiply: /* same as TK_STAR, no-push */ |
|
1151 case OP_Divide: /* same as TK_SLASH, no-push */ |
|
1152 case OP_Remainder: { /* same as TK_REM, no-push */ |
|
1153 Mem *pNos = &pTos[-1]; |
|
1154 int flags; |
|
1155 assert( pNos>=p->aStack ); |
|
1156 flags = pTos->flags | pNos->flags; |
|
1157 if( (flags & MEM_Null)!=0 ){ |
|
1158 Release(pTos); |
|
1159 pTos--; |
|
1160 Release(pTos); |
|
1161 pTos->flags = MEM_Null; |
|
1162 }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ |
|
1163 i64 a, b; |
|
1164 a = pTos->u.i; |
|
1165 b = pNos->u.i; |
|
1166 switch( pOp->opcode ){ |
|
1167 case OP_Add: b += a; break; |
|
1168 case OP_Subtract: b -= a; break; |
|
1169 case OP_Multiply: b *= a; break; |
|
1170 case OP_Divide: { |
|
1171 if( a==0 ) goto divide_by_zero; |
|
1172 /* Dividing the largest possible negative 64-bit integer (1<<63) by |
|
1173 ** -1 returns an integer to large to store in a 64-bit data-type. On |
|
1174 ** some architectures, the value overflows to (1<<63). On others, |
|
1175 ** a SIGFPE is issued. The following statement normalizes this |
|
1176 ** behaviour so that all architectures behave as if integer |
|
1177 ** overflow occured. |
|
1178 */ |
|
1179 if( a==-1 && b==(((i64)1)<<63) ) a = 1; |
|
1180 b /= a; |
|
1181 break; |
|
1182 } |
|
1183 default: { |
|
1184 if( a==0 ) goto divide_by_zero; |
|
1185 if( a==-1 ) a = 1; |
|
1186 b %= a; |
|
1187 break; |
|
1188 } |
|
1189 } |
|
1190 Release(pTos); |
|
1191 pTos--; |
|
1192 Release(pTos); |
|
1193 pTos->u.i = b; |
|
1194 pTos->flags = MEM_Int; |
|
1195 }else{ |
|
1196 double a, b; |
|
1197 a = sqlite3VdbeRealValue(pTos); |
|
1198 b = sqlite3VdbeRealValue(pNos); |
|
1199 switch( pOp->opcode ){ |
|
1200 case OP_Add: b += a; break; |
|
1201 case OP_Subtract: b -= a; break; |
|
1202 case OP_Multiply: b *= a; break; |
|
1203 case OP_Divide: { |
|
1204 if( a==0.0 ) goto divide_by_zero; |
|
1205 b /= a; |
|
1206 break; |
|
1207 } |
|
1208 default: { |
|
1209 i64 ia = (i64)a; |
|
1210 i64 ib = (i64)b; |
|
1211 if( ia==0 ) goto divide_by_zero; |
|
1212 if( ia==-1 ) ia = 1; |
|
1213 b = ib % ia; |
|
1214 break; |
|
1215 } |
|
1216 } |
|
1217 if( sqlite3_isnan(b) ){ |
|
1218 goto divide_by_zero; |
|
1219 } |
|
1220 Release(pTos); |
|
1221 pTos--; |
|
1222 Release(pTos); |
|
1223 pTos->r = b; |
|
1224 pTos->flags = MEM_Real; |
|
1225 if( (flags & MEM_Real)==0 ){ |
|
1226 sqlite3VdbeIntegerAffinity(pTos); |
|
1227 } |
|
1228 } |
|
1229 break; |
|
1230 |
|
1231 divide_by_zero: |
|
1232 Release(pTos); |
|
1233 pTos--; |
|
1234 Release(pTos); |
|
1235 pTos->flags = MEM_Null; |
|
1236 break; |
|
1237 } |
|
1238 |
|
1239 /* Opcode: CollSeq * * P3 |
|
1240 ** |
|
1241 ** P3 is a pointer to a CollSeq struct. If the next call to a user function |
|
1242 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will |
|
1243 ** be returned. This is used by the built-in min(), max() and nullif() |
|
1244 ** functions. |
|
1245 ** |
|
1246 ** The interface used by the implementation of the aforementioned functions |
|
1247 ** to retrieve the collation sequence set by this opcode is not available |
|
1248 ** publicly, only to user functions defined in func.c. |
|
1249 */ |
|
1250 case OP_CollSeq: { /* no-push */ |
|
1251 assert( pOp->p3type==P3_COLLSEQ ); |
|
1252 break; |
|
1253 } |
|
1254 |
|
1255 /* Opcode: Function P1 P2 P3 |
|
1256 ** |
|
1257 ** Invoke a user function (P3 is a pointer to a Function structure that |
|
1258 ** defines the function) with P2 arguments taken from the stack. Pop all |
|
1259 ** arguments from the stack and push back the result. |
|
1260 ** |
|
1261 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
|
1262 ** function was determined to be constant at compile time. If the first |
|
1263 ** argument was constant then bit 0 of P1 is set. This is used to determine |
|
1264 ** whether meta data associated with a user function argument using the |
|
1265 ** sqlite3_set_auxdata() API may be safely retained until the next |
|
1266 ** invocation of this opcode. |
|
1267 ** |
|
1268 ** See also: AggStep and AggFinal |
|
1269 */ |
|
1270 case OP_Function: { |
|
1271 int i; |
|
1272 Mem *pArg; |
|
1273 sqlite3_context ctx; |
|
1274 sqlite3_value **apVal; |
|
1275 int n = pOp->p2; |
|
1276 |
|
1277 apVal = p->apArg; |
|
1278 assert( apVal || n==0 ); |
|
1279 |
|
1280 pArg = &pTos[1-n]; |
|
1281 for(i=0; i<n; i++, pArg++){ |
|
1282 apVal[i] = pArg; |
|
1283 storeTypeInfo(pArg, encoding); |
|
1284 } |
|
1285 |
|
1286 assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC ); |
|
1287 if( pOp->p3type==P3_FUNCDEF ){ |
|
1288 ctx.pFunc = (FuncDef*)pOp->p3; |
|
1289 ctx.pVdbeFunc = 0; |
|
1290 }else{ |
|
1291 ctx.pVdbeFunc = (VdbeFunc*)pOp->p3; |
|
1292 ctx.pFunc = ctx.pVdbeFunc->pFunc; |
|
1293 } |
|
1294 |
|
1295 ctx.s.flags = MEM_Null; |
|
1296 ctx.s.z = 0; |
|
1297 ctx.s.xDel = 0; |
|
1298 ctx.s.db = db; |
|
1299 ctx.isError = 0; |
|
1300 if( ctx.pFunc->needCollSeq ){ |
|
1301 assert( pOp>p->aOp ); |
|
1302 assert( pOp[-1].p3type==P3_COLLSEQ ); |
|
1303 assert( pOp[-1].opcode==OP_CollSeq ); |
|
1304 ctx.pColl = (CollSeq *)pOp[-1].p3; |
|
1305 } |
|
1306 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
1307 (*ctx.pFunc->xFunc)(&ctx, n, apVal); |
|
1308 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
1309 if( db->mallocFailed ){ |
|
1310 /* Even though a malloc() has failed, the implementation of the |
|
1311 ** user function may have called an sqlite3_result_XXX() function |
|
1312 ** to return a value. The following call releases any resources |
|
1313 ** associated with such a value. |
|
1314 ** |
|
1315 ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn() |
|
1316 ** fails also (the if(...) statement above). But if people are |
|
1317 ** misusing sqlite, they have bigger problems than a leaked value. |
|
1318 */ |
|
1319 sqlite3VdbeMemRelease(&ctx.s); |
|
1320 goto no_mem; |
|
1321 } |
|
1322 popStack(&pTos, n); |
|
1323 |
|
1324 /* If any auxilary data functions have been called by this user function, |
|
1325 ** immediately call the destructor for any non-static values. |
|
1326 */ |
|
1327 if( ctx.pVdbeFunc ){ |
|
1328 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); |
|
1329 pOp->p3 = (char *)ctx.pVdbeFunc; |
|
1330 pOp->p3type = P3_VDBEFUNC; |
|
1331 } |
|
1332 |
|
1333 /* If the function returned an error, throw an exception */ |
|
1334 if( ctx.isError ){ |
|
1335 sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); |
|
1336 rc = SQLITE_ERROR; |
|
1337 } |
|
1338 |
|
1339 /* Copy the result of the function to the top of the stack */ |
|
1340 sqlite3VdbeChangeEncoding(&ctx.s, encoding); |
|
1341 pTos++; |
|
1342 pTos->flags = 0; |
|
1343 sqlite3VdbeMemMove(pTos, &ctx.s); |
|
1344 if( sqlite3VdbeMemTooBig(pTos) ){ |
|
1345 goto too_big; |
|
1346 } |
|
1347 break; |
|
1348 } |
|
1349 |
|
1350 /* Opcode: BitAnd * * * |
|
1351 ** |
|
1352 ** Pop the top two elements from the stack. Convert both elements |
|
1353 ** to integers. Push back onto the stack the bit-wise AND of the |
|
1354 ** two elements. |
|
1355 ** If either operand is NULL, the result is NULL. |
|
1356 */ |
|
1357 /* Opcode: BitOr * * * |
|
1358 ** |
|
1359 ** Pop the top two elements from the stack. Convert both elements |
|
1360 ** to integers. Push back onto the stack the bit-wise OR of the |
|
1361 ** two elements. |
|
1362 ** If either operand is NULL, the result is NULL. |
|
1363 */ |
|
1364 /* Opcode: ShiftLeft * * * |
|
1365 ** |
|
1366 ** Pop the top two elements from the stack. Convert both elements |
|
1367 ** to integers. Push back onto the stack the second element shifted |
|
1368 ** left by N bits where N is the top element on the stack. |
|
1369 ** If either operand is NULL, the result is NULL. |
|
1370 */ |
|
1371 /* Opcode: ShiftRight * * * |
|
1372 ** |
|
1373 ** Pop the top two elements from the stack. Convert both elements |
|
1374 ** to integers. Push back onto the stack the second element shifted |
|
1375 ** right by N bits where N is the top element on the stack. |
|
1376 ** If either operand is NULL, the result is NULL. |
|
1377 */ |
|
1378 case OP_BitAnd: /* same as TK_BITAND, no-push */ |
|
1379 case OP_BitOr: /* same as TK_BITOR, no-push */ |
|
1380 case OP_ShiftLeft: /* same as TK_LSHIFT, no-push */ |
|
1381 case OP_ShiftRight: { /* same as TK_RSHIFT, no-push */ |
|
1382 Mem *pNos = &pTos[-1]; |
|
1383 i64 a, b; |
|
1384 |
|
1385 assert( pNos>=p->aStack ); |
|
1386 if( (pTos->flags | pNos->flags) & MEM_Null ){ |
|
1387 popStack(&pTos, 2); |
|
1388 pTos++; |
|
1389 pTos->flags = MEM_Null; |
|
1390 break; |
|
1391 } |
|
1392 a = sqlite3VdbeIntValue(pNos); |
|
1393 b = sqlite3VdbeIntValue(pTos); |
|
1394 switch( pOp->opcode ){ |
|
1395 case OP_BitAnd: a &= b; break; |
|
1396 case OP_BitOr: a |= b; break; |
|
1397 case OP_ShiftLeft: a <<= b; break; |
|
1398 case OP_ShiftRight: a >>= b; break; |
|
1399 default: /* CANT HAPPEN */ break; |
|
1400 } |
|
1401 Release(pTos); |
|
1402 pTos--; |
|
1403 Release(pTos); |
|
1404 pTos->u.i = a; |
|
1405 pTos->flags = MEM_Int; |
|
1406 break; |
|
1407 } |
|
1408 |
|
1409 /* Opcode: AddImm P1 * * |
|
1410 ** |
|
1411 ** Add the value P1 to whatever is on top of the stack. The result |
|
1412 ** is always an integer. |
|
1413 ** |
|
1414 ** To force the top of the stack to be an integer, just add 0. |
|
1415 */ |
|
1416 case OP_AddImm: { /* no-push */ |
|
1417 assert( pTos>=p->aStack ); |
|
1418 sqlite3VdbeMemIntegerify(pTos); |
|
1419 pTos->u.i += pOp->p1; |
|
1420 break; |
|
1421 } |
|
1422 |
|
1423 /* Opcode: ForceInt P1 P2 * |
|
1424 ** |
|
1425 ** Convert the top of the stack into an integer. If the current top of |
|
1426 ** the stack is not numeric (meaning that is is a NULL or a string that |
|
1427 ** does not look like an integer or floating point number) then pop the |
|
1428 ** stack and jump to P2. If the top of the stack is numeric then |
|
1429 ** convert it into the least integer that is greater than or equal to its |
|
1430 ** current value if P1==0, or to the least integer that is strictly |
|
1431 ** greater than its current value if P1==1. |
|
1432 */ |
|
1433 case OP_ForceInt: { /* no-push */ |
|
1434 i64 v; |
|
1435 assert( pTos>=p->aStack ); |
|
1436 applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding); |
|
1437 if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){ |
|
1438 Release(pTos); |
|
1439 pTos--; |
|
1440 pc = pOp->p2 - 1; |
|
1441 break; |
|
1442 } |
|
1443 if( pTos->flags & MEM_Int ){ |
|
1444 v = pTos->u.i + (pOp->p1!=0); |
|
1445 }else{ |
|
1446 /* FIX ME: should this not be assert( pTos->flags & MEM_Real ) ??? */ |
|
1447 sqlite3VdbeMemRealify(pTos); |
|
1448 v = (int)pTos->r; |
|
1449 if( pTos->r>(double)v ) v++; |
|
1450 if( pOp->p1 && pTos->r==(double)v ) v++; |
|
1451 } |
|
1452 Release(pTos); |
|
1453 pTos->u.i = v; |
|
1454 pTos->flags = MEM_Int; |
|
1455 break; |
|
1456 } |
|
1457 |
|
1458 /* Opcode: MustBeInt P1 P2 * |
|
1459 ** |
|
1460 ** Force the top of the stack to be an integer. If the top of the |
|
1461 ** stack is not an integer and cannot be converted into an integer |
|
1462 ** without data loss, then jump immediately to P2, or if P2==0 |
|
1463 ** raise an SQLITE_MISMATCH exception. |
|
1464 ** |
|
1465 ** If the top of the stack is not an integer and P2 is not zero and |
|
1466 ** P1 is 1, then the stack is popped. In all other cases, the depth |
|
1467 ** of the stack is unchanged. |
|
1468 */ |
|
1469 case OP_MustBeInt: { /* no-push */ |
|
1470 assert( pTos>=p->aStack ); |
|
1471 applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding); |
|
1472 if( (pTos->flags & MEM_Int)==0 ){ |
|
1473 if( pOp->p2==0 ){ |
|
1474 rc = SQLITE_MISMATCH; |
|
1475 goto abort_due_to_error; |
|
1476 }else{ |
|
1477 if( pOp->p1 ) popStack(&pTos, 1); |
|
1478 pc = pOp->p2 - 1; |
|
1479 } |
|
1480 }else{ |
|
1481 Release(pTos); |
|
1482 pTos->flags = MEM_Int; |
|
1483 } |
|
1484 break; |
|
1485 } |
|
1486 |
|
1487 /* Opcode: RealAffinity * * * |
|
1488 ** |
|
1489 ** If the top of the stack is an integer, convert it to a real value. |
|
1490 ** |
|
1491 ** This opcode is used when extracting information from a column that |
|
1492 ** has REAL affinity. Such column values may still be stored as |
|
1493 ** integers, for space efficiency, but after extraction we want them |
|
1494 ** to have only a real value. |
|
1495 */ |
|
1496 case OP_RealAffinity: { /* no-push */ |
|
1497 assert( pTos>=p->aStack ); |
|
1498 if( pTos->flags & MEM_Int ){ |
|
1499 sqlite3VdbeMemRealify(pTos); |
|
1500 } |
|
1501 break; |
|
1502 } |
|
1503 |
|
1504 #ifndef SQLITE_OMIT_CAST |
|
1505 /* Opcode: ToText * * * |
|
1506 ** |
|
1507 ** Force the value on the top of the stack to be text. |
|
1508 ** If the value is numeric, convert it to a string using the |
|
1509 ** equivalent of printf(). Blob values are unchanged and |
|
1510 ** are afterwards simply interpreted as text. |
|
1511 ** |
|
1512 ** A NULL value is not changed by this routine. It remains NULL. |
|
1513 */ |
|
1514 case OP_ToText: { /* same as TK_TO_TEXT, no-push */ |
|
1515 assert( pTos>=p->aStack ); |
|
1516 if( pTos->flags & MEM_Null ) break; |
|
1517 assert( MEM_Str==(MEM_Blob>>3) ); |
|
1518 pTos->flags |= (pTos->flags&MEM_Blob)>>3; |
|
1519 applyAffinity(pTos, SQLITE_AFF_TEXT, encoding); |
|
1520 rc = ExpandBlob(pTos); |
|
1521 assert( pTos->flags & MEM_Str ); |
|
1522 pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob); |
|
1523 break; |
|
1524 } |
|
1525 |
|
1526 /* Opcode: ToBlob * * * |
|
1527 ** |
|
1528 ** Force the value on the top of the stack to be a BLOB. |
|
1529 ** If the value is numeric, convert it to a string first. |
|
1530 ** Strings are simply reinterpreted as blobs with no change |
|
1531 ** to the underlying data. |
|
1532 ** |
|
1533 ** A NULL value is not changed by this routine. It remains NULL. |
|
1534 */ |
|
1535 case OP_ToBlob: { /* same as TK_TO_BLOB, no-push */ |
|
1536 assert( pTos>=p->aStack ); |
|
1537 if( pTos->flags & MEM_Null ) break; |
|
1538 if( (pTos->flags & MEM_Blob)==0 ){ |
|
1539 applyAffinity(pTos, SQLITE_AFF_TEXT, encoding); |
|
1540 assert( pTos->flags & MEM_Str ); |
|
1541 pTos->flags |= MEM_Blob; |
|
1542 } |
|
1543 pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str); |
|
1544 break; |
|
1545 } |
|
1546 |
|
1547 /* Opcode: ToNumeric * * * |
|
1548 ** |
|
1549 ** Force the value on the top of the stack to be numeric (either an |
|
1550 ** integer or a floating-point number.) |
|
1551 ** If the value is text or blob, try to convert it to an using the |
|
1552 ** equivalent of atoi() or atof() and store 0 if no such conversion |
|
1553 ** is possible. |
|
1554 ** |
|
1555 ** A NULL value is not changed by this routine. It remains NULL. |
|
1556 */ |
|
1557 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, no-push */ |
|
1558 assert( pTos>=p->aStack ); |
|
1559 if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ |
|
1560 sqlite3VdbeMemNumerify(pTos); |
|
1561 } |
|
1562 break; |
|
1563 } |
|
1564 #endif /* SQLITE_OMIT_CAST */ |
|
1565 |
|
1566 /* Opcode: ToInt * * * |
|
1567 ** |
|
1568 ** Force the value on the top of the stack to be an integer. If |
|
1569 ** The value is currently a real number, drop its fractional part. |
|
1570 ** If the value is text or blob, try to convert it to an integer using the |
|
1571 ** equivalent of atoi() and store 0 if no such conversion is possible. |
|
1572 ** |
|
1573 ** A NULL value is not changed by this routine. It remains NULL. |
|
1574 */ |
|
1575 case OP_ToInt: { /* same as TK_TO_INT, no-push */ |
|
1576 assert( pTos>=p->aStack ); |
|
1577 if( (pTos->flags & MEM_Null)==0 ){ |
|
1578 sqlite3VdbeMemIntegerify(pTos); |
|
1579 } |
|
1580 break; |
|
1581 } |
|
1582 |
|
1583 #ifndef SQLITE_OMIT_CAST |
|
1584 /* Opcode: ToReal * * * |
|
1585 ** |
|
1586 ** Force the value on the top of the stack to be a floating point number. |
|
1587 ** If The value is currently an integer, convert it. |
|
1588 ** If the value is text or blob, try to convert it to an integer using the |
|
1589 ** equivalent of atoi() and store 0 if no such conversion is possible. |
|
1590 ** |
|
1591 ** A NULL value is not changed by this routine. It remains NULL. |
|
1592 */ |
|
1593 case OP_ToReal: { /* same as TK_TO_REAL, no-push */ |
|
1594 assert( pTos>=p->aStack ); |
|
1595 if( (pTos->flags & MEM_Null)==0 ){ |
|
1596 sqlite3VdbeMemRealify(pTos); |
|
1597 } |
|
1598 break; |
|
1599 } |
|
1600 #endif /* SQLITE_OMIT_CAST */ |
|
1601 |
|
1602 /* Opcode: Eq P1 P2 P3 |
|
1603 ** |
|
1604 ** Pop the top two elements from the stack. If they are equal, then |
|
1605 ** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1606 ** |
|
1607 ** If the 0x100 bit of P1 is true and either operand is NULL then take the |
|
1608 ** jump. If the 0x100 bit of P1 is clear then fall thru if either operand |
|
1609 ** is NULL. |
|
1610 ** |
|
1611 ** If the 0x200 bit of P1 is set and either operand is NULL then |
|
1612 ** both operands are converted to integers prior to comparison. |
|
1613 ** NULL operands are converted to zero and non-NULL operands are |
|
1614 ** converted to 1. Thus, for example, with 0x200 set, NULL==NULL is true |
|
1615 ** whereas it would normally be NULL. Similarly, NULL==123 is false when |
|
1616 ** 0x200 is set but is NULL when the 0x200 bit of P1 is clear. |
|
1617 ** |
|
1618 ** The least significant byte of P1 (mask 0xff) must be an affinity character - |
|
1619 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made |
|
1620 ** to coerce both values |
|
1621 ** according to the affinity before the comparison is made. If the byte is |
|
1622 ** 0x00, then numeric affinity is used. |
|
1623 ** |
|
1624 ** Once any conversions have taken place, and neither value is NULL, |
|
1625 ** the values are compared. If both values are blobs, or both are text, |
|
1626 ** then memcmp() is used to determine the results of the comparison. If |
|
1627 ** both values are numeric, then a numeric comparison is used. If the |
|
1628 ** two values are of different types, then they are inequal. |
|
1629 ** |
|
1630 ** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1631 ** stack if the jump would have been taken, or a 0 if not. Push a |
|
1632 ** NULL if either operand was NULL. |
|
1633 ** |
|
1634 ** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq |
|
1635 ** structure) that defines how to compare text. |
|
1636 */ |
|
1637 /* Opcode: Ne P1 P2 P3 |
|
1638 ** |
|
1639 ** This works just like the Eq opcode except that the jump is taken if |
|
1640 ** the operands from the stack are not equal. See the Eq opcode for |
|
1641 ** additional information. |
|
1642 */ |
|
1643 /* Opcode: Lt P1 P2 P3 |
|
1644 ** |
|
1645 ** This works just like the Eq opcode except that the jump is taken if |
|
1646 ** the 2nd element down on the stack is less than the top of the stack. |
|
1647 ** See the Eq opcode for additional information. |
|
1648 */ |
|
1649 /* Opcode: Le P1 P2 P3 |
|
1650 ** |
|
1651 ** This works just like the Eq opcode except that the jump is taken if |
|
1652 ** the 2nd element down on the stack is less than or equal to the |
|
1653 ** top of the stack. See the Eq opcode for additional information. |
|
1654 */ |
|
1655 /* Opcode: Gt P1 P2 P3 |
|
1656 ** |
|
1657 ** This works just like the Eq opcode except that the jump is taken if |
|
1658 ** the 2nd element down on the stack is greater than the top of the stack. |
|
1659 ** See the Eq opcode for additional information. |
|
1660 */ |
|
1661 /* Opcode: Ge P1 P2 P3 |
|
1662 ** |
|
1663 ** This works just like the Eq opcode except that the jump is taken if |
|
1664 ** the 2nd element down on the stack is greater than or equal to the |
|
1665 ** top of the stack. See the Eq opcode for additional information. |
|
1666 */ |
|
1667 case OP_Eq: /* same as TK_EQ, no-push */ |
|
1668 case OP_Ne: /* same as TK_NE, no-push */ |
|
1669 case OP_Lt: /* same as TK_LT, no-push */ |
|
1670 case OP_Le: /* same as TK_LE, no-push */ |
|
1671 case OP_Gt: /* same as TK_GT, no-push */ |
|
1672 case OP_Ge: { /* same as TK_GE, no-push */ |
|
1673 Mem *pNos; |
|
1674 int flags; |
|
1675 int res; |
|
1676 char affinity; |
|
1677 |
|
1678 pNos = &pTos[-1]; |
|
1679 flags = pTos->flags|pNos->flags; |
|
1680 |
|
1681 /* If either value is a NULL P2 is not zero, take the jump if the least |
|
1682 ** significant byte of P1 is true. If P2 is zero, then push a NULL onto |
|
1683 ** the stack. |
|
1684 */ |
|
1685 if( flags&MEM_Null ){ |
|
1686 if( (pOp->p1 & 0x200)!=0 ){ |
|
1687 /* The 0x200 bit of P1 means, roughly "do not treat NULL as the |
|
1688 ** magic SQL value it normally is - treat it as if it were another |
|
1689 ** integer". |
|
1690 ** |
|
1691 ** With 0x200 set, if either operand is NULL then both operands |
|
1692 ** are converted to integers prior to being passed down into the |
|
1693 ** normal comparison logic below. NULL operands are converted to |
|
1694 ** zero and non-NULL operands are converted to 1. Thus, for example, |
|
1695 ** with 0x200 set, NULL==NULL is true whereas it would normally |
|
1696 ** be NULL. Similarly, NULL!=123 is true. |
|
1697 */ |
|
1698 sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0); |
|
1699 sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0); |
|
1700 }else{ |
|
1701 /* If the 0x200 bit of P1 is clear and either operand is NULL then |
|
1702 ** the result is always NULL. The jump is taken if the 0x100 bit |
|
1703 ** of P1 is set. |
|
1704 */ |
|
1705 popStack(&pTos, 2); |
|
1706 if( pOp->p2 ){ |
|
1707 if( pOp->p1 & 0x100 ){ |
|
1708 pc = pOp->p2-1; |
|
1709 } |
|
1710 }else{ |
|
1711 pTos++; |
|
1712 pTos->flags = MEM_Null; |
|
1713 } |
|
1714 break; |
|
1715 } |
|
1716 } |
|
1717 |
|
1718 affinity = pOp->p1 & 0xFF; |
|
1719 if( affinity ){ |
|
1720 applyAffinity(pNos, affinity, encoding); |
|
1721 applyAffinity(pTos, affinity, encoding); |
|
1722 } |
|
1723 |
|
1724 assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 ); |
|
1725 ExpandBlob(pNos); |
|
1726 ExpandBlob(pTos); |
|
1727 res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3); |
|
1728 switch( pOp->opcode ){ |
|
1729 case OP_Eq: res = res==0; break; |
|
1730 case OP_Ne: res = res!=0; break; |
|
1731 case OP_Lt: res = res<0; break; |
|
1732 case OP_Le: res = res<=0; break; |
|
1733 case OP_Gt: res = res>0; break; |
|
1734 default: res = res>=0; break; |
|
1735 } |
|
1736 |
|
1737 popStack(&pTos, 2); |
|
1738 if( pOp->p2 ){ |
|
1739 if( res ){ |
|
1740 pc = pOp->p2-1; |
|
1741 } |
|
1742 }else{ |
|
1743 pTos++; |
|
1744 pTos->flags = MEM_Int; |
|
1745 pTos->u.i = res; |
|
1746 } |
|
1747 break; |
|
1748 } |
|
1749 |
|
1750 /* Opcode: And * * * |
|
1751 ** |
|
1752 ** Pop two values off the stack. Take the logical AND of the |
|
1753 ** two values and push the resulting boolean value back onto the |
|
1754 ** stack. |
|
1755 */ |
|
1756 /* Opcode: Or * * * |
|
1757 ** |
|
1758 ** Pop two values off the stack. Take the logical OR of the |
|
1759 ** two values and push the resulting boolean value back onto the |
|
1760 ** stack. |
|
1761 */ |
|
1762 case OP_And: /* same as TK_AND, no-push */ |
|
1763 case OP_Or: { /* same as TK_OR, no-push */ |
|
1764 Mem *pNos = &pTos[-1]; |
|
1765 int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ |
|
1766 |
|
1767 assert( pNos>=p->aStack ); |
|
1768 if( pTos->flags & MEM_Null ){ |
|
1769 v1 = 2; |
|
1770 }else{ |
|
1771 sqlite3VdbeMemIntegerify(pTos); |
|
1772 v1 = pTos->u.i==0; |
|
1773 } |
|
1774 if( pNos->flags & MEM_Null ){ |
|
1775 v2 = 2; |
|
1776 }else{ |
|
1777 sqlite3VdbeMemIntegerify(pNos); |
|
1778 v2 = pNos->u.i==0; |
|
1779 } |
|
1780 if( pOp->opcode==OP_And ){ |
|
1781 static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; |
|
1782 v1 = and_logic[v1*3+v2]; |
|
1783 }else{ |
|
1784 static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; |
|
1785 v1 = or_logic[v1*3+v2]; |
|
1786 } |
|
1787 popStack(&pTos, 2); |
|
1788 pTos++; |
|
1789 if( v1==2 ){ |
|
1790 pTos->flags = MEM_Null; |
|
1791 }else{ |
|
1792 pTos->u.i = v1==0; |
|
1793 pTos->flags = MEM_Int; |
|
1794 } |
|
1795 break; |
|
1796 } |
|
1797 |
|
1798 /* Opcode: Negative * * * |
|
1799 ** |
|
1800 ** Treat the top of the stack as a numeric quantity. Replace it |
|
1801 ** with its additive inverse. If the top of the stack is NULL |
|
1802 ** its value is unchanged. |
|
1803 */ |
|
1804 /* Opcode: AbsValue * * * |
|
1805 ** |
|
1806 ** Treat the top of the stack as a numeric quantity. Replace it |
|
1807 ** with its absolute value. If the top of the stack is NULL |
|
1808 ** its value is unchanged. |
|
1809 */ |
|
1810 case OP_Negative: /* same as TK_UMINUS, no-push */ |
|
1811 case OP_AbsValue: { |
|
1812 assert( pTos>=p->aStack ); |
|
1813 if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){ |
|
1814 sqlite3VdbeMemNumerify(pTos); |
|
1815 } |
|
1816 if( pTos->flags & MEM_Real ){ |
|
1817 Release(pTos); |
|
1818 if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ |
|
1819 pTos->r = -pTos->r; |
|
1820 } |
|
1821 pTos->flags = MEM_Real; |
|
1822 }else if( pTos->flags & MEM_Int ){ |
|
1823 Release(pTos); |
|
1824 if( pOp->opcode==OP_Negative || pTos->u.i<0 ){ |
|
1825 pTos->u.i = -pTos->u.i; |
|
1826 } |
|
1827 pTos->flags = MEM_Int; |
|
1828 } |
|
1829 break; |
|
1830 } |
|
1831 |
|
1832 /* Opcode: Not * * * |
|
1833 ** |
|
1834 ** Interpret the top of the stack as a boolean value. Replace it |
|
1835 ** with its complement. If the top of the stack is NULL its value |
|
1836 ** is unchanged. |
|
1837 */ |
|
1838 case OP_Not: { /* same as TK_NOT, no-push */ |
|
1839 assert( pTos>=p->aStack ); |
|
1840 if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ |
|
1841 sqlite3VdbeMemIntegerify(pTos); |
|
1842 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
1843 pTos->u.i = !pTos->u.i; |
|
1844 pTos->flags = MEM_Int; |
|
1845 break; |
|
1846 } |
|
1847 |
|
1848 /* Opcode: BitNot * * * |
|
1849 ** |
|
1850 ** Interpret the top of the stack as an value. Replace it |
|
1851 ** with its ones-complement. If the top of the stack is NULL its |
|
1852 ** value is unchanged. |
|
1853 */ |
|
1854 case OP_BitNot: { /* same as TK_BITNOT, no-push */ |
|
1855 assert( pTos>=p->aStack ); |
|
1856 if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ |
|
1857 sqlite3VdbeMemIntegerify(pTos); |
|
1858 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
1859 pTos->u.i = ~pTos->u.i; |
|
1860 pTos->flags = MEM_Int; |
|
1861 break; |
|
1862 } |
|
1863 |
|
1864 /* Opcode: Noop * * * |
|
1865 ** |
|
1866 ** Do nothing. This instruction is often useful as a jump |
|
1867 ** destination. |
|
1868 */ |
|
1869 /* |
|
1870 ** The magic Explain opcode are only inserted when explain==2 (which |
|
1871 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
|
1872 ** This opcode records information from the optimizer. It is the |
|
1873 ** the same as a no-op. This opcodesnever appears in a real VM program. |
|
1874 */ |
|
1875 case OP_Explain: |
|
1876 case OP_Noop: { /* no-push */ |
|
1877 break; |
|
1878 } |
|
1879 |
|
1880 /* Opcode: If P1 P2 * |
|
1881 ** |
|
1882 ** Pop a single boolean from the stack. If the boolean popped is |
|
1883 ** true, then jump to p2. Otherwise continue to the next instruction. |
|
1884 ** An integer is false if zero and true otherwise. A string is |
|
1885 ** false if it has zero length and true otherwise. |
|
1886 ** |
|
1887 ** If the value popped of the stack is NULL, then take the jump if P1 |
|
1888 ** is true and fall through if P1 is false. |
|
1889 */ |
|
1890 /* Opcode: IfNot P1 P2 * |
|
1891 ** |
|
1892 ** Pop a single boolean from the stack. If the boolean popped is |
|
1893 ** false, then jump to p2. Otherwise continue to the next instruction. |
|
1894 ** An integer is false if zero and true otherwise. A string is |
|
1895 ** false if it has zero length and true otherwise. |
|
1896 ** |
|
1897 ** If the value popped of the stack is NULL, then take the jump if P1 |
|
1898 ** is true and fall through if P1 is false. |
|
1899 */ |
|
1900 case OP_If: /* no-push */ |
|
1901 case OP_IfNot: { /* no-push */ |
|
1902 int c; |
|
1903 assert( pTos>=p->aStack ); |
|
1904 if( pTos->flags & MEM_Null ){ |
|
1905 c = pOp->p1; |
|
1906 }else{ |
|
1907 #ifdef SQLITE_OMIT_FLOATING_POINT |
|
1908 c = sqlite3VdbeIntValue(pTos); |
|
1909 #else |
|
1910 c = sqlite3VdbeRealValue(pTos)!=0.0; |
|
1911 #endif |
|
1912 if( pOp->opcode==OP_IfNot ) c = !c; |
|
1913 } |
|
1914 Release(pTos); |
|
1915 pTos--; |
|
1916 if( c ) pc = pOp->p2-1; |
|
1917 break; |
|
1918 } |
|
1919 |
|
1920 /* Opcode: IsNull P1 P2 * |
|
1921 ** |
|
1922 ** Check the top of the stack and jump to P2 if the top of the stack |
|
1923 ** is NULL. If P1 is positive, then pop P1 elements from the stack |
|
1924 ** regardless of whether or not the jump is taken. If P1 is negative, |
|
1925 ** pop -P1 elements from the stack only if the jump is taken and leave |
|
1926 ** the stack unchanged if the jump is not taken. |
|
1927 */ |
|
1928 case OP_IsNull: { /* same as TK_ISNULL, no-push */ |
|
1929 if( pTos->flags & MEM_Null ){ |
|
1930 pc = pOp->p2-1; |
|
1931 if( pOp->p1<0 ){ |
|
1932 popStack(&pTos, -pOp->p1); |
|
1933 } |
|
1934 } |
|
1935 if( pOp->p1>0 ){ |
|
1936 popStack(&pTos, pOp->p1); |
|
1937 } |
|
1938 break; |
|
1939 } |
|
1940 |
|
1941 /* Opcode: NotNull P1 P2 * |
|
1942 ** |
|
1943 ** Jump to P2 if the top abs(P1) values on the stack are all not NULL. |
|
1944 ** Regardless of whether or not the jump is taken, pop the stack |
|
1945 ** P1 times if P1 is greater than zero. But if P1 is negative, |
|
1946 ** leave the stack unchanged. |
|
1947 */ |
|
1948 case OP_NotNull: { /* same as TK_NOTNULL, no-push */ |
|
1949 int i, cnt; |
|
1950 cnt = pOp->p1; |
|
1951 if( cnt<0 ) cnt = -cnt; |
|
1952 assert( &pTos[1-cnt] >= p->aStack ); |
|
1953 for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} |
|
1954 if( i>=cnt ) pc = pOp->p2-1; |
|
1955 if( pOp->p1>0 ) popStack(&pTos, cnt); |
|
1956 break; |
|
1957 } |
|
1958 |
|
1959 /* Opcode: SetNumColumns P1 P2 * |
|
1960 ** |
|
1961 ** Before the OP_Column opcode can be executed on a cursor, this |
|
1962 ** opcode must be called to set the number of fields in the table. |
|
1963 ** |
|
1964 ** This opcode sets the number of columns for cursor P1 to P2. |
|
1965 ** |
|
1966 ** If OP_KeyAsData is to be applied to cursor P1, it must be executed |
|
1967 ** before this op-code. |
|
1968 */ |
|
1969 case OP_SetNumColumns: { /* no-push */ |
|
1970 Cursor *pC; |
|
1971 assert( (pOp->p1)<p->nCursor ); |
|
1972 assert( p->apCsr[pOp->p1]!=0 ); |
|
1973 pC = p->apCsr[pOp->p1]; |
|
1974 pC->nField = pOp->p2; |
|
1975 break; |
|
1976 } |
|
1977 |
|
1978 /* Opcode: Column P1 P2 P3 |
|
1979 ** |
|
1980 ** Interpret the data that cursor P1 points to as a structure built using |
|
1981 ** the MakeRecord instruction. (See the MakeRecord opcode for additional |
|
1982 ** information about the format of the data.) Push onto the stack the value |
|
1983 ** of the P2-th column contained in the data. If there are less that (P2+1) |
|
1984 ** values in the record, push a NULL onto the stack. |
|
1985 ** |
|
1986 ** If the KeyAsData opcode has previously executed on this cursor, then the |
|
1987 ** field might be extracted from the key rather than the data. |
|
1988 ** |
|
1989 ** If the column contains fewer than P2 fields, then push a NULL. Or |
|
1990 ** if P3 is of type P3_MEM, then push the P3 value. The P3 value will |
|
1991 ** be default value for a column that has been added using the ALTER TABLE |
|
1992 ** ADD COLUMN command. If P3 is an ordinary string, just push a NULL. |
|
1993 ** When P3 is a string it is really just a comment describing the value |
|
1994 ** to be pushed, not a default value. |
|
1995 */ |
|
1996 case OP_Column: { |
|
1997 u32 payloadSize; /* Number of bytes in the record */ |
|
1998 int p1 = pOp->p1; /* P1 value of the opcode */ |
|
1999 int p2 = pOp->p2; /* column number to retrieve */ |
|
2000 Cursor *pC = 0; /* The VDBE cursor */ |
|
2001 char *zRec; /* Pointer to complete record-data */ |
|
2002 BtCursor *pCrsr; /* The BTree cursor */ |
|
2003 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ |
|
2004 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ |
|
2005 u32 nField; /* number of fields in the record */ |
|
2006 int len; /* The length of the serialized data for the column */ |
|
2007 int i; /* Loop counter */ |
|
2008 char *zData; /* Part of the record being decoded */ |
|
2009 Mem sMem; /* For storing the record being decoded */ |
|
2010 |
|
2011 sMem.flags = 0; |
|
2012 assert( p1<p->nCursor ); |
|
2013 pTos++; |
|
2014 pTos->flags = MEM_Null; |
|
2015 |
|
2016 /* This block sets the variable payloadSize to be the total number of |
|
2017 ** bytes in the record. |
|
2018 ** |
|
2019 ** zRec is set to be the complete text of the record if it is available. |
|
2020 ** The complete record text is always available for pseudo-tables |
|
2021 ** If the record is stored in a cursor, the complete record text |
|
2022 ** might be available in the pC->aRow cache. Or it might not be. |
|
2023 ** If the data is unavailable, zRec is set to NULL. |
|
2024 ** |
|
2025 ** We also compute the number of columns in the record. For cursors, |
|
2026 ** the number of columns is stored in the Cursor.nField element. For |
|
2027 ** records on the stack, the next entry down on the stack is an integer |
|
2028 ** which is the number of records. |
|
2029 */ |
|
2030 pC = p->apCsr[p1]; |
|
2031 assert( pC!=0 ); |
|
2032 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2033 assert( pC->pVtabCursor==0 ); |
|
2034 #endif |
|
2035 if( pC->pCursor!=0 ){ |
|
2036 /* The record is stored in a B-Tree */ |
|
2037 rc = sqlite3VdbeCursorMoveto(pC); |
|
2038 if( rc ) goto abort_due_to_error; |
|
2039 zRec = 0; |
|
2040 pCrsr = pC->pCursor; |
|
2041 if( pC->nullRow ){ |
|
2042 payloadSize = 0; |
|
2043 }else if( pC->cacheStatus==p->cacheCtr ){ |
|
2044 payloadSize = pC->payloadSize; |
|
2045 zRec = (char*)pC->aRow; |
|
2046 }else if( pC->isIndex ){ |
|
2047 i64 payloadSize64; |
|
2048 sqlite3BtreeKeySize(pCrsr, &payloadSize64); |
|
2049 payloadSize = payloadSize64; |
|
2050 }else{ |
|
2051 sqlite3BtreeDataSize(pCrsr, &payloadSize); |
|
2052 } |
|
2053 nField = pC->nField; |
|
2054 }else if( pC->pseudoTable ){ |
|
2055 /* The record is the sole entry of a pseudo-table */ |
|
2056 payloadSize = pC->nData; |
|
2057 zRec = pC->pData; |
|
2058 pC->cacheStatus = CACHE_STALE; |
|
2059 assert( payloadSize==0 || zRec!=0 ); |
|
2060 nField = pC->nField; |
|
2061 pCrsr = 0; |
|
2062 }else{ |
|
2063 zRec = 0; |
|
2064 payloadSize = 0; |
|
2065 pCrsr = 0; |
|
2066 nField = 0; |
|
2067 } |
|
2068 |
|
2069 /* If payloadSize is 0, then just push a NULL onto the stack. */ |
|
2070 if( payloadSize==0 ){ |
|
2071 assert( pTos->flags==MEM_Null ); |
|
2072 break; |
|
2073 } |
|
2074 if( payloadSize>SQLITE_MAX_LENGTH ){ |
|
2075 goto too_big; |
|
2076 } |
|
2077 |
|
2078 assert( p2<nField ); |
|
2079 |
|
2080 /* Read and parse the table header. Store the results of the parse |
|
2081 ** into the record header cache fields of the cursor. |
|
2082 */ |
|
2083 if( pC && pC->cacheStatus==p->cacheCtr ){ |
|
2084 aType = pC->aType; |
|
2085 aOffset = pC->aOffset; |
|
2086 }else{ |
|
2087 u8 *zIdx; /* Index into header */ |
|
2088 u8 *zEndHdr; /* Pointer to first byte after the header */ |
|
2089 u32 offset; /* Offset into the data */ |
|
2090 int szHdrSz; /* Size of the header size field at start of record */ |
|
2091 int avail; /* Number of bytes of available data */ |
|
2092 |
|
2093 aType = pC->aType; |
|
2094 if( aType==0 ){ |
|
2095 pC->aType = aType = (u32*)sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) ); |
|
2096 } |
|
2097 if( aType==0 ){ |
|
2098 goto no_mem; |
|
2099 } |
|
2100 pC->aOffset = aOffset = &aType[nField]; |
|
2101 pC->payloadSize = payloadSize; |
|
2102 pC->cacheStatus = p->cacheCtr; |
|
2103 |
|
2104 /* Figure out how many bytes are in the header */ |
|
2105 if( zRec ){ |
|
2106 zData = zRec; |
|
2107 }else{ |
|
2108 if( pC->isIndex ){ |
|
2109 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); |
|
2110 }else{ |
|
2111 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); |
|
2112 } |
|
2113 /* If KeyFetch()/DataFetch() managed to get the entire payload, |
|
2114 ** save the payload in the pC->aRow cache. That will save us from |
|
2115 ** having to make additional calls to fetch the content portion of |
|
2116 ** the record. |
|
2117 */ |
|
2118 if( avail>=payloadSize ){ |
|
2119 zRec = zData; |
|
2120 pC->aRow = (u8*)zData; |
|
2121 }else{ |
|
2122 pC->aRow = 0; |
|
2123 } |
|
2124 } |
|
2125 /* The following assert is true in all cases accept when |
|
2126 ** the database file has been corrupted externally. |
|
2127 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ |
|
2128 szHdrSz = GetVarint((u8*)zData, offset); |
|
2129 |
|
2130 /* The KeyFetch() or DataFetch() above are fast and will get the entire |
|
2131 ** record header in most cases. But they will fail to get the complete |
|
2132 ** record header if the record header does not fit on a single page |
|
2133 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to |
|
2134 ** acquire the complete header text. |
|
2135 */ |
|
2136 if( !zRec && avail<offset ){ |
|
2137 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem); |
|
2138 if( rc!=SQLITE_OK ){ |
|
2139 goto op_column_out; |
|
2140 } |
|
2141 zData = sMem.z; |
|
2142 } |
|
2143 zEndHdr = (u8 *)&zData[offset]; |
|
2144 zIdx = (u8 *)&zData[szHdrSz]; |
|
2145 |
|
2146 /* Scan the header and use it to fill in the aType[] and aOffset[] |
|
2147 ** arrays. aType[i] will contain the type integer for the i-th |
|
2148 ** column and aOffset[i] will contain the offset from the beginning |
|
2149 ** of the record to the start of the data for the i-th column |
|
2150 */ |
|
2151 for(i=0; i<nField; i++){ |
|
2152 if( zIdx<zEndHdr ){ |
|
2153 aOffset[i] = offset; |
|
2154 zIdx += GetVarint(zIdx, aType[i]); |
|
2155 offset += sqlite3VdbeSerialTypeLen(aType[i]); |
|
2156 }else{ |
|
2157 /* If i is less that nField, then there are less fields in this |
|
2158 ** record than SetNumColumns indicated there are columns in the |
|
2159 ** table. Set the offset for any extra columns not present in |
|
2160 ** the record to 0. This tells code below to push a NULL onto the |
|
2161 ** stack instead of deserializing a value from the record. |
|
2162 */ |
|
2163 aOffset[i] = 0; |
|
2164 } |
|
2165 } |
|
2166 Release(&sMem); |
|
2167 sMem.flags = MEM_Null; |
|
2168 |
|
2169 /* If we have read more header data than was contained in the header, |
|
2170 ** or if the end of the last field appears to be past the end of the |
|
2171 ** record, then we must be dealing with a corrupt database. |
|
2172 */ |
|
2173 if( zIdx>zEndHdr || offset>payloadSize ){ |
|
2174 rc = SQLITE_CORRUPT_BKPT; |
|
2175 goto op_column_out; |
|
2176 } |
|
2177 } |
|
2178 |
|
2179 /* Get the column information. If aOffset[p2] is non-zero, then |
|
2180 ** deserialize the value from the record. If aOffset[p2] is zero, |
|
2181 ** then there are not enough fields in the record to satisfy the |
|
2182 ** request. In this case, set the value NULL or to P3 if P3 is |
|
2183 ** a pointer to a Mem object. |
|
2184 */ |
|
2185 if( aOffset[p2] ){ |
|
2186 assert( rc==SQLITE_OK ); |
|
2187 if( zRec ){ |
|
2188 zData = &zRec[aOffset[p2]]; |
|
2189 }else{ |
|
2190 len = sqlite3VdbeSerialTypeLen(aType[p2]); |
|
2191 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); |
|
2192 if( rc!=SQLITE_OK ){ |
|
2193 goto op_column_out; |
|
2194 } |
|
2195 zData = sMem.z; |
|
2196 } |
|
2197 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos); |
|
2198 pTos->enc = encoding; |
|
2199 }else{ |
|
2200 if( pOp->p3type==P3_MEM ){ |
|
2201 sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static); |
|
2202 }else{ |
|
2203 pTos->flags = MEM_Null; |
|
2204 } |
|
2205 } |
|
2206 |
|
2207 /* If we dynamically allocated space to hold the data (in the |
|
2208 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that |
|
2209 ** dynamically allocated space over to the pTos structure. |
|
2210 ** This prevents a memory copy. |
|
2211 */ |
|
2212 if( (sMem.flags & MEM_Dyn)!=0 ){ |
|
2213 assert( pTos->flags & MEM_Ephem ); |
|
2214 assert( pTos->flags & (MEM_Str|MEM_Blob) ); |
|
2215 assert( pTos->z==sMem.z ); |
|
2216 assert( sMem.flags & MEM_Term ); |
|
2217 pTos->flags &= ~MEM_Ephem; |
|
2218 pTos->flags |= MEM_Dyn|MEM_Term; |
|
2219 } |
|
2220 |
|
2221 /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we |
|
2222 ** can abandon sMem */ |
|
2223 rc = sqlite3VdbeMemMakeWriteable(pTos); |
|
2224 |
|
2225 op_column_out: |
|
2226 break; |
|
2227 } |
|
2228 |
|
2229 /* Opcode: MakeRecord P1 P2 P3 |
|
2230 ** |
|
2231 ** Convert the top abs(P1) entries of the stack into a single entry |
|
2232 ** suitable for use as a data record in a database table or as a key |
|
2233 ** in an index. The details of the format are irrelavant as long as |
|
2234 ** the OP_Column opcode can decode the record later and as long as the |
|
2235 ** sqlite3VdbeRecordCompare function will correctly compare two encoded |
|
2236 ** records. Refer to source code comments for the details of the record |
|
2237 ** format. |
|
2238 ** |
|
2239 ** The original stack entries are popped from the stack if P1>0 but |
|
2240 ** remain on the stack if P1<0. |
|
2241 ** |
|
2242 ** If P2 is not zero and one or more of the entries are NULL, then jump |
|
2243 ** to the address given by P2. This feature can be used to skip a |
|
2244 ** uniqueness test on indices. |
|
2245 ** |
|
2246 ** P3 may be a string that is P1 characters long. The nth character of the |
|
2247 ** string indicates the column affinity that should be used for the nth |
|
2248 ** field of the index key (i.e. the first character of P3 corresponds to the |
|
2249 ** lowest element on the stack). |
|
2250 ** |
|
2251 ** The mapping from character to affinity is given by the SQLITE_AFF_ |
|
2252 ** macros defined in sqliteInt.h. |
|
2253 ** |
|
2254 ** If P3 is NULL then all index fields have the affinity NONE. |
|
2255 ** |
|
2256 ** See also OP_MakeIdxRec |
|
2257 */ |
|
2258 /* Opcode: MakeIdxRec P1 P2 P3 |
|
2259 ** |
|
2260 ** This opcode works just OP_MakeRecord except that it reads an extra |
|
2261 ** integer from the stack (thus reading a total of abs(P1+1) entries) |
|
2262 ** and appends that extra integer to the end of the record as a varint. |
|
2263 ** This results in an index key. |
|
2264 */ |
|
2265 case OP_MakeIdxRec: |
|
2266 case OP_MakeRecord: { |
|
2267 /* Assuming the record contains N fields, the record format looks |
|
2268 ** like this: |
|
2269 ** |
|
2270 ** ------------------------------------------------------------------------ |
|
2271 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | |
|
2272 ** ------------------------------------------------------------------------ |
|
2273 ** |
|
2274 ** Data(0) is taken from the lowest element of the stack and data(N-1) is |
|
2275 ** the top of the stack. |
|
2276 ** |
|
2277 ** Each type field is a varint representing the serial type of the |
|
2278 ** corresponding data element (see sqlite3VdbeSerialType()). The |
|
2279 ** hdr-size field is also a varint which is the offset from the beginning |
|
2280 ** of the record to data0. |
|
2281 */ |
|
2282 u8 *zNewRecord; /* A buffer to hold the data for the new record */ |
|
2283 Mem *pRec; /* The new record */ |
|
2284 Mem *pRowid = 0; /* Rowid appended to the new record */ |
|
2285 u64 nData = 0; /* Number of bytes of data space */ |
|
2286 int nHdr = 0; /* Number of bytes of header space */ |
|
2287 u64 nByte = 0; /* Data space required for this record */ |
|
2288 int nZero = 0; /* Number of zero bytes at the end of the record */ |
|
2289 int nVarint; /* Number of bytes in a varint */ |
|
2290 u32 serial_type; /* Type field */ |
|
2291 int containsNull = 0; /* True if any of the data fields are NULL */ |
|
2292 Mem *pData0; /* Bottom of the stack */ |
|
2293 int leaveOnStack; /* If true, leave the entries on the stack */ |
|
2294 int nField; /* Number of fields in the record */ |
|
2295 int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */ |
|
2296 int addRowid; /* True to append a rowid column at the end */ |
|
2297 char *zAffinity; /* The affinity string for the record */ |
|
2298 int file_format; /* File format to use for encoding */ |
|
2299 int i; /* Space used in zNewRecord[] */ |
|
2300 char zTemp[NBFS]; /* Space to hold small records */ |
|
2301 |
|
2302 leaveOnStack = ((pOp->p1<0)?1:0); |
|
2303 nField = pOp->p1 * (leaveOnStack?-1:1); |
|
2304 jumpIfNull = pOp->p2; |
|
2305 addRowid = pOp->opcode==OP_MakeIdxRec; |
|
2306 zAffinity = pOp->p3; |
|
2307 |
|
2308 pData0 = &pTos[1-nField]; |
|
2309 assert( pData0>=p->aStack ); |
|
2310 containsNull = 0; |
|
2311 file_format = p->minWriteFileFormat; |
|
2312 |
|
2313 /* Loop through the elements that will make up the record to figure |
|
2314 ** out how much space is required for the new record. |
|
2315 */ |
|
2316 for(pRec=pData0; pRec<=pTos; pRec++){ |
|
2317 int len; |
|
2318 if( zAffinity ){ |
|
2319 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); |
|
2320 } |
|
2321 if( pRec->flags&MEM_Null ){ |
|
2322 containsNull = 1; |
|
2323 } |
|
2324 if( pRec->flags&MEM_Zero && pRec->n>0 ){ |
|
2325 ExpandBlob(pRec); |
|
2326 } |
|
2327 serial_type = sqlite3VdbeSerialType(pRec, file_format); |
|
2328 len = sqlite3VdbeSerialTypeLen(serial_type); |
|
2329 nData += len; |
|
2330 nHdr += sqlite3VarintLen(serial_type); |
|
2331 if( pRec->flags & MEM_Zero ){ |
|
2332 /* Only pure zero-filled BLOBs can be input to this Opcode. |
|
2333 ** We do not allow blobs with a prefix and a zero-filled tail. */ |
|
2334 nZero += pRec->u.i; |
|
2335 }else if( len ){ |
|
2336 nZero = 0; |
|
2337 } |
|
2338 } |
|
2339 |
|
2340 /* If we have to append a varint rowid to this record, set pRowid |
|
2341 ** to the value of the rowid and increase nByte by the amount of space |
|
2342 ** required to store it. |
|
2343 */ |
|
2344 if( addRowid ){ |
|
2345 pRowid = &pTos[0-nField]; |
|
2346 assert( pRowid>=p->aStack ); |
|
2347 sqlite3VdbeMemIntegerify(pRowid); |
|
2348 serial_type = sqlite3VdbeSerialType(pRowid, 0); |
|
2349 nData += sqlite3VdbeSerialTypeLen(serial_type); |
|
2350 nHdr += sqlite3VarintLen(serial_type); |
|
2351 nZero = 0; |
|
2352 } |
|
2353 |
|
2354 /* Add the initial header varint and total the size */ |
|
2355 nHdr += nVarint = sqlite3VarintLen(nHdr); |
|
2356 if( nVarint<sqlite3VarintLen(nHdr) ){ |
|
2357 nHdr++; |
|
2358 } |
|
2359 nByte = nHdr+nData-nZero; |
|
2360 if( nByte>SQLITE_MAX_LENGTH ){ |
|
2361 goto too_big; |
|
2362 } |
|
2363 |
|
2364 /* Allocate space for the new record. */ |
|
2365 if( nByte>sizeof(zTemp) ){ |
|
2366 zNewRecord = (u8*)sqlite3DbMallocRaw(db, nByte); |
|
2367 if( !zNewRecord ){ |
|
2368 goto no_mem; |
|
2369 } |
|
2370 }else{ |
|
2371 zNewRecord = (u8*)zTemp; |
|
2372 } |
|
2373 |
|
2374 /* Write the record */ |
|
2375 i = sqlite3PutVarint(zNewRecord, nHdr); |
|
2376 for(pRec=pData0; pRec<=pTos; pRec++){ |
|
2377 serial_type = sqlite3VdbeSerialType(pRec, file_format); |
|
2378 i += sqlite3PutVarint(&zNewRecord[i], serial_type); /* serial type */ |
|
2379 } |
|
2380 if( addRowid ){ |
|
2381 i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0)); |
|
2382 } |
|
2383 for(pRec=pData0; pRec<=pTos; pRec++){ /* serial data */ |
|
2384 i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format); |
|
2385 } |
|
2386 if( addRowid ){ |
|
2387 i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0); |
|
2388 } |
|
2389 assert( i==nByte ); |
|
2390 |
|
2391 /* Pop entries off the stack if required. Push the new record on. */ |
|
2392 if( !leaveOnStack ){ |
|
2393 popStack(&pTos, nField+addRowid); |
|
2394 } |
|
2395 pTos++; |
|
2396 pTos->n = nByte; |
|
2397 if( nByte<=sizeof(zTemp) ){ |
|
2398 assert( zNewRecord==(unsigned char *)zTemp ); |
|
2399 pTos->z = pTos->zShort; |
|
2400 memcpy(pTos->zShort, zTemp, nByte); |
|
2401 pTos->flags = MEM_Blob | MEM_Short; |
|
2402 }else{ |
|
2403 assert( zNewRecord!=(unsigned char *)zTemp ); |
|
2404 pTos->z = (char*)zNewRecord; |
|
2405 pTos->flags = MEM_Blob | MEM_Dyn; |
|
2406 pTos->xDel = 0; |
|
2407 } |
|
2408 if( nZero ){ |
|
2409 pTos->u.i = nZero; |
|
2410 pTos->flags |= MEM_Zero; |
|
2411 } |
|
2412 pTos->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ |
|
2413 |
|
2414 /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */ |
|
2415 if( jumpIfNull && containsNull ){ |
|
2416 pc = jumpIfNull - 1; |
|
2417 } |
|
2418 break; |
|
2419 } |
|
2420 |
|
2421 /* Opcode: Statement P1 * * |
|
2422 ** |
|
2423 ** Begin an individual statement transaction which is part of a larger |
|
2424 ** BEGIN..COMMIT transaction. This is needed so that the statement |
|
2425 ** can be rolled back after an error without having to roll back the |
|
2426 ** entire transaction. The statement transaction will automatically |
|
2427 ** commit when the VDBE halts. |
|
2428 ** |
|
2429 ** The statement is begun on the database file with index P1. The main |
|
2430 ** database file has an index of 0 and the file used for temporary tables |
|
2431 ** has an index of 1. |
|
2432 */ |
|
2433 case OP_Statement: { /* no-push */ |
|
2434 int i = pOp->p1; |
|
2435 Btree *pBt; |
|
2436 if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0 |
|
2437 && (db->autoCommit==0 || db->activeVdbeCnt>1) ){ |
|
2438 assert( sqlite3BtreeIsInTrans(pBt) ); |
|
2439 assert( (p->btreeMask & (1<<i))!=0 ); |
|
2440 if( !sqlite3BtreeIsInStmt(pBt) ){ |
|
2441 rc = sqlite3BtreeBeginStmt(pBt); |
|
2442 p->openedStatement = 1; |
|
2443 } |
|
2444 } |
|
2445 break; |
|
2446 } |
|
2447 |
|
2448 /* Opcode: AutoCommit P1 P2 * |
|
2449 ** |
|
2450 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll |
|
2451 ** back any currently active btree transactions. If there are any active |
|
2452 ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. |
|
2453 ** |
|
2454 ** This instruction causes the VM to halt. |
|
2455 */ |
|
2456 case OP_AutoCommit: { /* no-push */ |
|
2457 u8 i = pOp->p1; |
|
2458 u8 rollback = pOp->p2; |
|
2459 |
|
2460 assert( i==1 || i==0 ); |
|
2461 assert( i==1 || rollback==0 ); |
|
2462 |
|
2463 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ |
|
2464 |
|
2465 if( db->activeVdbeCnt>1 && i && !db->autoCommit ){ |
|
2466 /* If this instruction implements a COMMIT or ROLLBACK, other VMs are |
|
2467 ** still running, and a transaction is active, return an error indicating |
|
2468 ** that the other VMs must complete first. |
|
2469 */ |
|
2470 sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", |
|
2471 " transaction - SQL statements in progress", (char*)0); |
|
2472 rc = SQLITE_ERROR; |
|
2473 }else if( i!=db->autoCommit ){ |
|
2474 if( pOp->p2 ){ |
|
2475 assert( i==1 ); |
|
2476 sqlite3RollbackAll(db); |
|
2477 db->autoCommit = 1; |
|
2478 }else{ |
|
2479 db->autoCommit = i; |
|
2480 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
|
2481 p->pTos = pTos; |
|
2482 p->pc = pc; |
|
2483 db->autoCommit = 1-i; |
|
2484 p->rc = rc = SQLITE_BUSY; |
|
2485 goto vdbe_return; |
|
2486 } |
|
2487 } |
|
2488 if( p->rc==SQLITE_OK ){ |
|
2489 rc = SQLITE_DONE; |
|
2490 }else{ |
|
2491 rc = SQLITE_ERROR; |
|
2492 } |
|
2493 goto vdbe_return; |
|
2494 }else{ |
|
2495 sqlite3SetString(&p->zErrMsg, |
|
2496 (!i)?"cannot start a transaction within a transaction":( |
|
2497 (rollback)?"cannot rollback - no transaction is active": |
|
2498 "cannot commit - no transaction is active"), (char*)0); |
|
2499 |
|
2500 rc = SQLITE_ERROR; |
|
2501 } |
|
2502 break; |
|
2503 } |
|
2504 |
|
2505 /* Opcode: Transaction P1 P2 * |
|
2506 ** |
|
2507 ** Begin a transaction. The transaction ends when a Commit or Rollback |
|
2508 ** opcode is encountered. Depending on the ON CONFLICT setting, the |
|
2509 ** transaction might also be rolled back if an error is encountered. |
|
2510 ** |
|
2511 ** P1 is the index of the database file on which the transaction is |
|
2512 ** started. Index 0 is the main database file and index 1 is the |
|
2513 ** file used for temporary tables. |
|
2514 ** |
|
2515 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is |
|
2516 ** obtained on the database file when a write-transaction is started. No |
|
2517 ** other process can start another write transaction while this transaction is |
|
2518 ** underway. Starting a write transaction also creates a rollback journal. A |
|
2519 ** write transaction must be started before any changes can be made to the |
|
2520 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained |
|
2521 ** on the file. |
|
2522 ** |
|
2523 ** If P2 is zero, then a read-lock is obtained on the database file. |
|
2524 */ |
|
2525 case OP_Transaction: { /* no-push */ |
|
2526 int i = pOp->p1; |
|
2527 Btree *pBt; |
|
2528 |
|
2529 assert( i>=0 && i<db->nDb ); |
|
2530 assert( (p->btreeMask & (1<<i))!=0 ); |
|
2531 pBt = db->aDb[i].pBt; |
|
2532 |
|
2533 if( pBt ){ |
|
2534 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); |
|
2535 if( rc==SQLITE_BUSY ){ |
|
2536 p->pc = pc; |
|
2537 p->rc = rc = SQLITE_BUSY; |
|
2538 p->pTos = pTos; |
|
2539 goto vdbe_return; |
|
2540 } |
|
2541 if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ |
|
2542 goto abort_due_to_error; |
|
2543 } |
|
2544 } |
|
2545 break; |
|
2546 } |
|
2547 |
|
2548 /* Opcode: ReadCookie P1 P2 * |
|
2549 ** |
|
2550 ** Read cookie number P2 from database P1 and push it onto the stack. |
|
2551 ** P2==0 is the schema version. P2==1 is the database format. |
|
2552 ** P2==2 is the recommended pager cache size, and so forth. P1==0 is |
|
2553 ** the main database file and P1==1 is the database file used to store |
|
2554 ** temporary tables. |
|
2555 ** |
|
2556 ** If P1 is negative, then this is a request to read the size of a |
|
2557 ** databases free-list. P2 must be set to 1 in this case. The actual |
|
2558 ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1 |
|
2559 ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp"). |
|
2560 ** |
|
2561 ** There must be a read-lock on the database (either a transaction |
|
2562 ** must be started or there must be an open cursor) before |
|
2563 ** executing this instruction. |
|
2564 */ |
|
2565 case OP_ReadCookie: { |
|
2566 int iMeta; |
|
2567 int iDb = pOp->p1; |
|
2568 int iCookie = pOp->p2; |
|
2569 |
|
2570 assert( pOp->p2<SQLITE_N_BTREE_META ); |
|
2571 if( iDb<0 ){ |
|
2572 iDb = (-1*(iDb+1)); |
|
2573 iCookie *= -1; |
|
2574 } |
|
2575 assert( iDb>=0 && iDb<db->nDb ); |
|
2576 assert( db->aDb[iDb].pBt!=0 ); |
|
2577 assert( (p->btreeMask & (1<<iDb))!=0 ); |
|
2578 /* The indexing of meta values at the schema layer is off by one from |
|
2579 ** the indexing in the btree layer. The btree considers meta[0] to |
|
2580 ** be the number of free pages in the database (a read-only value) |
|
2581 ** and meta[1] to be the schema cookie. The schema layer considers |
|
2582 ** meta[1] to be the schema cookie. So we have to shift the index |
|
2583 ** by one in the following statement. |
|
2584 */ |
|
2585 rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); |
|
2586 pTos++; |
|
2587 pTos->u.i = iMeta; |
|
2588 pTos->flags = MEM_Int; |
|
2589 break; |
|
2590 } |
|
2591 |
|
2592 /* Opcode: SetCookie P1 P2 * |
|
2593 ** |
|
2594 ** Write the top of the stack into cookie number P2 of database P1. |
|
2595 ** P2==0 is the schema version. P2==1 is the database format. |
|
2596 ** P2==2 is the recommended pager cache size, and so forth. P1==0 is |
|
2597 ** the main database file and P1==1 is the database file used to store |
|
2598 ** temporary tables. |
|
2599 ** |
|
2600 ** A transaction must be started before executing this opcode. |
|
2601 */ |
|
2602 case OP_SetCookie: { /* no-push */ |
|
2603 Db *pDb; |
|
2604 assert( pOp->p2<SQLITE_N_BTREE_META ); |
|
2605 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
|
2606 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); |
|
2607 pDb = &db->aDb[pOp->p1]; |
|
2608 assert( pDb->pBt!=0 ); |
|
2609 assert( pTos>=p->aStack ); |
|
2610 sqlite3VdbeMemIntegerify(pTos); |
|
2611 /* See note about index shifting on OP_ReadCookie */ |
|
2612 rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i); |
|
2613 if( pOp->p2==0 ){ |
|
2614 /* When the schema cookie changes, record the new cookie internally */ |
|
2615 pDb->pSchema->schema_cookie = pTos->u.i; |
|
2616 db->flags |= SQLITE_InternChanges; |
|
2617 }else if( pOp->p2==1 ){ |
|
2618 /* Record changes in the file format */ |
|
2619 pDb->pSchema->file_format = pTos->u.i; |
|
2620 } |
|
2621 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
2622 pTos--; |
|
2623 if( pOp->p1==1 ){ |
|
2624 /* Invalidate all prepared statements whenever the TEMP database |
|
2625 ** schema is changed. Ticket #1644 */ |
|
2626 sqlite3ExpirePreparedStatements(db); |
|
2627 } |
|
2628 break; |
|
2629 } |
|
2630 |
|
2631 /* Opcode: VerifyCookie P1 P2 * |
|
2632 ** |
|
2633 ** Check the value of global database parameter number 0 (the |
|
2634 ** schema version) and make sure it is equal to P2. |
|
2635 ** P1 is the database number which is 0 for the main database file |
|
2636 ** and 1 for the file holding temporary tables and some higher number |
|
2637 ** for auxiliary databases. |
|
2638 ** |
|
2639 ** The cookie changes its value whenever the database schema changes. |
|
2640 ** This operation is used to detect when that the cookie has changed |
|
2641 ** and that the current process needs to reread the schema. |
|
2642 ** |
|
2643 ** Either a transaction needs to have been started or an OP_Open needs |
|
2644 ** to be executed (to establish a read lock) before this opcode is |
|
2645 ** invoked. |
|
2646 */ |
|
2647 case OP_VerifyCookie: { /* no-push */ |
|
2648 int iMeta; |
|
2649 Btree *pBt; |
|
2650 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
|
2651 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); |
|
2652 pBt = db->aDb[pOp->p1].pBt; |
|
2653 if( pBt ){ |
|
2654 rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta); |
|
2655 }else{ |
|
2656 rc = SQLITE_OK; |
|
2657 iMeta = 0; |
|
2658 } |
|
2659 if( rc==SQLITE_OK && iMeta!=pOp->p2 ){ |
|
2660 sqlite3_free(p->zErrMsg); |
|
2661 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); |
|
2662 /* If the schema-cookie from the database file matches the cookie |
|
2663 ** stored with the in-memory representation of the schema, do |
|
2664 ** not reload the schema from the database file. |
|
2665 ** |
|
2666 ** If virtual-tables are in use, this is not just an optimisation. |
|
2667 ** Often, v-tables store their data in other SQLite tables, which |
|
2668 ** are queried from within xNext() and other v-table methods using |
|
2669 ** prepared queries. If such a query is out-of-date, we do not want to |
|
2670 ** discard the database schema, as the user code implementing the |
|
2671 ** v-table would have to be ready for the sqlite3_vtab structure itself |
|
2672 ** to be invalidated whenever sqlite3_step() is called from within |
|
2673 ** a v-table method. |
|
2674 */ |
|
2675 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ |
|
2676 sqlite3ResetInternalSchema(db, pOp->p1); |
|
2677 } |
|
2678 |
|
2679 sqlite3ExpirePreparedStatements(db); |
|
2680 rc = SQLITE_SCHEMA; |
|
2681 } |
|
2682 break; |
|
2683 } |
|
2684 |
|
2685 /* Opcode: OpenRead P1 P2 P3 |
|
2686 ** |
|
2687 ** Open a read-only cursor for the database table whose root page is |
|
2688 ** P2 in a database file. The database file is determined by an |
|
2689 ** integer from the top of the stack. 0 means the main database and |
|
2690 ** 1 means the database used for temporary tables. Give the new |
|
2691 ** cursor an identifier of P1. The P1 values need not be contiguous |
|
2692 ** but all P1 values should be small integers. It is an error for |
|
2693 ** P1 to be negative. |
|
2694 ** |
|
2695 ** If P2==0 then take the root page number from the next of the stack. |
|
2696 ** |
|
2697 ** There will be a read lock on the database whenever there is an |
|
2698 ** open cursor. If the database was unlocked prior to this instruction |
|
2699 ** then a read lock is acquired as part of this instruction. A read |
|
2700 ** lock allows other processes to read the database but prohibits |
|
2701 ** any other process from modifying the database. The read lock is |
|
2702 ** released when all cursors are closed. If this instruction attempts |
|
2703 ** to get a read lock but fails, the script terminates with an |
|
2704 ** SQLITE_BUSY error code. |
|
2705 ** |
|
2706 ** The P3 value is a pointer to a KeyInfo structure that defines the |
|
2707 ** content and collating sequence of indices. P3 is NULL for cursors |
|
2708 ** that are not pointing to indices. |
|
2709 ** |
|
2710 ** See also OpenWrite. |
|
2711 */ |
|
2712 /* Opcode: OpenWrite P1 P2 P3 |
|
2713 ** |
|
2714 ** Open a read/write cursor named P1 on the table or index whose root |
|
2715 ** page is P2. If P2==0 then take the root page number from the stack. |
|
2716 ** |
|
2717 ** The P3 value is a pointer to a KeyInfo structure that defines the |
|
2718 ** content and collating sequence of indices. P3 is NULL for cursors |
|
2719 ** that are not pointing to indices. |
|
2720 ** |
|
2721 ** This instruction works just like OpenRead except that it opens the cursor |
|
2722 ** in read/write mode. For a given table, there can be one or more read-only |
|
2723 ** cursors or a single read/write cursor but not both. |
|
2724 ** |
|
2725 ** See also OpenRead. |
|
2726 */ |
|
2727 case OP_OpenRead: /* no-push */ |
|
2728 case OP_OpenWrite: { /* no-push */ |
|
2729 int i = pOp->p1; |
|
2730 int p2 = pOp->p2; |
|
2731 int wrFlag; |
|
2732 Btree *pX; |
|
2733 int iDb; |
|
2734 Cursor *pCur; |
|
2735 Db *pDb; |
|
2736 |
|
2737 assert( pTos>=p->aStack ); |
|
2738 sqlite3VdbeMemIntegerify(pTos); |
|
2739 iDb = pTos->u.i; |
|
2740 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
2741 pTos--; |
|
2742 assert( iDb>=0 && iDb<db->nDb ); |
|
2743 assert( (p->btreeMask & (1<<iDb))!=0 ); |
|
2744 pDb = &db->aDb[iDb]; |
|
2745 pX = pDb->pBt; |
|
2746 assert( pX!=0 ); |
|
2747 if( pOp->opcode==OP_OpenWrite ){ |
|
2748 wrFlag = 1; |
|
2749 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ |
|
2750 p->minWriteFileFormat = pDb->pSchema->file_format; |
|
2751 } |
|
2752 }else{ |
|
2753 wrFlag = 0; |
|
2754 } |
|
2755 if( p2<=0 ){ |
|
2756 assert( pTos>=p->aStack ); |
|
2757 sqlite3VdbeMemIntegerify(pTos); |
|
2758 p2 = pTos->u.i; |
|
2759 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
2760 pTos--; |
|
2761 assert( p2>=2 ); |
|
2762 } |
|
2763 assert( i>=0 ); |
|
2764 pCur = allocateCursor(p, i, iDb); |
|
2765 if( pCur==0 ) goto no_mem; |
|
2766 pCur->nullRow = 1; |
|
2767 if( pX==0 ) break; |
|
2768 /* We always provide a key comparison function. If the table being |
|
2769 ** opened is of type INTKEY, the comparision function will be ignored. */ |
|
2770 rc = sqlite3BtreeCursor(pX, p2, wrFlag, |
|
2771 sqlite3VdbeRecordCompare, pOp->p3, |
|
2772 &pCur->pCursor); |
|
2773 if( pOp->p3type==P3_KEYINFO ){ |
|
2774 pCur->pKeyInfo = (KeyInfo*)pOp->p3; |
|
2775 pCur->pIncrKey = &pCur->pKeyInfo->incrKey; |
|
2776 pCur->pKeyInfo->enc = ENC(p->db); |
|
2777 }else{ |
|
2778 pCur->pKeyInfo = 0; |
|
2779 pCur->pIncrKey = &pCur->bogusIncrKey; |
|
2780 } |
|
2781 switch( rc ){ |
|
2782 case SQLITE_BUSY: { |
|
2783 p->pc = pc; |
|
2784 p->rc = rc = SQLITE_BUSY; |
|
2785 p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ |
|
2786 goto vdbe_return; |
|
2787 } |
|
2788 case SQLITE_OK: { |
|
2789 int flags = sqlite3BtreeFlags(pCur->pCursor); |
|
2790 /* Sanity checking. Only the lower four bits of the flags byte should |
|
2791 ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits |
|
2792 ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or |
|
2793 ** 2 (zerodata for indices). If these conditions are not met it can |
|
2794 ** only mean that we are dealing with a corrupt database file |
|
2795 */ |
|
2796 if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){ |
|
2797 rc = SQLITE_CORRUPT_BKPT; |
|
2798 goto abort_due_to_error; |
|
2799 } |
|
2800 pCur->isTable = (flags & BTREE_INTKEY)!=0; |
|
2801 pCur->isIndex = (flags & BTREE_ZERODATA)!=0; |
|
2802 /* If P3==0 it means we are expected to open a table. If P3!=0 then |
|
2803 ** we expect to be opening an index. If this is not what happened, |
|
2804 ** then the database is corrupt |
|
2805 */ |
|
2806 if( (pCur->isTable && pOp->p3type==P3_KEYINFO) |
|
2807 || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){ |
|
2808 rc = SQLITE_CORRUPT_BKPT; |
|
2809 goto abort_due_to_error; |
|
2810 } |
|
2811 break; |
|
2812 } |
|
2813 case SQLITE_EMPTY: { |
|
2814 pCur->isTable = pOp->p3type!=P3_KEYINFO; |
|
2815 pCur->isIndex = !pCur->isTable; |
|
2816 rc = SQLITE_OK; |
|
2817 break; |
|
2818 } |
|
2819 default: { |
|
2820 goto abort_due_to_error; |
|
2821 } |
|
2822 } |
|
2823 break; |
|
2824 } |
|
2825 |
|
2826 /* Opcode: OpenEphemeral P1 P2 P3 |
|
2827 ** |
|
2828 ** Open a new cursor P1 to a transient table. |
|
2829 ** The cursor is always opened read/write even if |
|
2830 ** the main database is read-only. The transient or virtual |
|
2831 ** table is deleted automatically when the cursor is closed. |
|
2832 ** |
|
2833 ** P2 is the number of columns in the virtual table. |
|
2834 ** The cursor points to a BTree table if P3==0 and to a BTree index |
|
2835 ** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure |
|
2836 ** that defines the format of keys in the index. |
|
2837 ** |
|
2838 ** This opcode was once called OpenTemp. But that created |
|
2839 ** confusion because the term "temp table", might refer either |
|
2840 ** to a TEMP table at the SQL level, or to a table opened by |
|
2841 ** this opcode. Then this opcode was call OpenVirtual. But |
|
2842 ** that created confusion with the whole virtual-table idea. |
|
2843 */ |
|
2844 case OP_OpenEphemeral: { /* no-push */ |
|
2845 int i = pOp->p1; |
|
2846 Cursor *pCx; |
|
2847 static const int openFlags = |
|
2848 SQLITE_OPEN_READWRITE | |
|
2849 SQLITE_OPEN_CREATE | |
|
2850 SQLITE_OPEN_EXCLUSIVE | |
|
2851 SQLITE_OPEN_DELETEONCLOSE | |
|
2852 SQLITE_OPEN_TRANSIENT_DB; |
|
2853 |
|
2854 assert( i>=0 ); |
|
2855 pCx = allocateCursor(p, i, -1); |
|
2856 if( pCx==0 ) goto no_mem; |
|
2857 pCx->nullRow = 1; |
|
2858 rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags, |
|
2859 &pCx->pBt); |
|
2860 if( rc==SQLITE_OK ){ |
|
2861 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); |
|
2862 } |
|
2863 if( rc==SQLITE_OK ){ |
|
2864 /* If a transient index is required, create it by calling |
|
2865 ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before |
|
2866 ** opening it. If a transient table is required, just use the |
|
2867 ** automatically created table with root-page 1 (an INTKEY table). |
|
2868 */ |
|
2869 if( pOp->p3 ){ |
|
2870 int pgno; |
|
2871 assert( pOp->p3type==P3_KEYINFO ); |
|
2872 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); |
|
2873 if( rc==SQLITE_OK ){ |
|
2874 assert( pgno==MASTER_ROOT+1 ); |
|
2875 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare, |
|
2876 pOp->p3, &pCx->pCursor); |
|
2877 pCx->pKeyInfo = (KeyInfo*)pOp->p3; |
|
2878 pCx->pKeyInfo->enc = ENC(p->db); |
|
2879 pCx->pIncrKey = &pCx->pKeyInfo->incrKey; |
|
2880 } |
|
2881 pCx->isTable = 0; |
|
2882 }else{ |
|
2883 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor); |
|
2884 pCx->isTable = 1; |
|
2885 pCx->pIncrKey = &pCx->bogusIncrKey; |
|
2886 } |
|
2887 } |
|
2888 pCx->nField = pOp->p2; |
|
2889 pCx->isIndex = !pCx->isTable; |
|
2890 break; |
|
2891 } |
|
2892 |
|
2893 /* Opcode: OpenPseudo P1 * * |
|
2894 ** |
|
2895 ** Open a new cursor that points to a fake table that contains a single |
|
2896 ** row of data. Any attempt to write a second row of data causes the |
|
2897 ** first row to be deleted. All data is deleted when the cursor is |
|
2898 ** closed. |
|
2899 ** |
|
2900 ** A pseudo-table created by this opcode is useful for holding the |
|
2901 ** NEW or OLD tables in a trigger. Also used to hold the a single |
|
2902 ** row output from the sorter so that the row can be decomposed into |
|
2903 ** individual columns using the OP_Column opcode. |
|
2904 */ |
|
2905 case OP_OpenPseudo: { /* no-push */ |
|
2906 int i = pOp->p1; |
|
2907 Cursor *pCx; |
|
2908 assert( i>=0 ); |
|
2909 pCx = allocateCursor(p, i, -1); |
|
2910 if( pCx==0 ) goto no_mem; |
|
2911 pCx->nullRow = 1; |
|
2912 pCx->pseudoTable = 1; |
|
2913 pCx->pIncrKey = &pCx->bogusIncrKey; |
|
2914 pCx->isTable = 1; |
|
2915 pCx->isIndex = 0; |
|
2916 break; |
|
2917 } |
|
2918 |
|
2919 /* Opcode: Close P1 * * |
|
2920 ** |
|
2921 ** Close a cursor previously opened as P1. If P1 is not |
|
2922 ** currently open, this instruction is a no-op. |
|
2923 */ |
|
2924 case OP_Close: { /* no-push */ |
|
2925 int i = pOp->p1; |
|
2926 if( i>=0 && i<p->nCursor ){ |
|
2927 sqlite3VdbeFreeCursor(p, p->apCsr[i]); |
|
2928 p->apCsr[i] = 0; |
|
2929 } |
|
2930 break; |
|
2931 } |
|
2932 |
|
2933 /* Opcode: MoveGe P1 P2 * |
|
2934 ** |
|
2935 ** Pop the top of the stack and use its value as a key. Reposition |
|
2936 ** cursor P1 so that it points to the smallest entry that is greater |
|
2937 ** than or equal to the key that was popped ffrom the stack. |
|
2938 ** If there are no records greater than or equal to the key and P2 |
|
2939 ** is not zero, then jump to P2. |
|
2940 ** |
|
2941 ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe |
|
2942 */ |
|
2943 /* Opcode: MoveGt P1 P2 * |
|
2944 ** |
|
2945 ** Pop the top of the stack and use its value as a key. Reposition |
|
2946 ** cursor P1 so that it points to the smallest entry that is greater |
|
2947 ** than the key from the stack. |
|
2948 ** If there are no records greater than the key and P2 is not zero, |
|
2949 ** then jump to P2. |
|
2950 ** |
|
2951 ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe |
|
2952 */ |
|
2953 /* Opcode: MoveLt P1 P2 * |
|
2954 ** |
|
2955 ** Pop the top of the stack and use its value as a key. Reposition |
|
2956 ** cursor P1 so that it points to the largest entry that is less |
|
2957 ** than the key from the stack. |
|
2958 ** If there are no records less than the key and P2 is not zero, |
|
2959 ** then jump to P2. |
|
2960 ** |
|
2961 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe |
|
2962 */ |
|
2963 /* Opcode: MoveLe P1 P2 * |
|
2964 ** |
|
2965 ** Pop the top of the stack and use its value as a key. Reposition |
|
2966 ** cursor P1 so that it points to the largest entry that is less than |
|
2967 ** or equal to the key that was popped from the stack. |
|
2968 ** If there are no records less than or eqal to the key and P2 is not zero, |
|
2969 ** then jump to P2. |
|
2970 ** |
|
2971 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt |
|
2972 */ |
|
2973 case OP_MoveLt: /* no-push */ |
|
2974 case OP_MoveLe: /* no-push */ |
|
2975 case OP_MoveGe: /* no-push */ |
|
2976 case OP_MoveGt: { /* no-push */ |
|
2977 int i = pOp->p1; |
|
2978 Cursor *pC; |
|
2979 |
|
2980 assert( pTos>=p->aStack ); |
|
2981 assert( i>=0 && i<p->nCursor ); |
|
2982 pC = p->apCsr[i]; |
|
2983 assert( pC!=0 ); |
|
2984 if( pC->pCursor!=0 ){ |
|
2985 int res, oc; |
|
2986 oc = pOp->opcode; |
|
2987 pC->nullRow = 0; |
|
2988 *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe; |
|
2989 if( pC->isTable ){ |
|
2990 i64 iKey; |
|
2991 sqlite3VdbeMemIntegerify(pTos); |
|
2992 iKey = intToKey(pTos->u.i); |
|
2993 if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){ |
|
2994 pC->movetoTarget = iKey; |
|
2995 pC->deferredMoveto = 1; |
|
2996 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
2997 pTos--; |
|
2998 break; |
|
2999 } |
|
3000 rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res); |
|
3001 if( rc!=SQLITE_OK ){ |
|
3002 goto abort_due_to_error; |
|
3003 } |
|
3004 pC->lastRowid = pTos->u.i; |
|
3005 pC->rowidIsValid = res==0; |
|
3006 }else{ |
|
3007 assert( pTos->flags & MEM_Blob ); |
|
3008 ExpandBlob(pTos); |
|
3009 rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res); |
|
3010 if( rc!=SQLITE_OK ){ |
|
3011 goto abort_due_to_error; |
|
3012 } |
|
3013 pC->rowidIsValid = 0; |
|
3014 } |
|
3015 pC->deferredMoveto = 0; |
|
3016 pC->cacheStatus = CACHE_STALE; |
|
3017 *pC->pIncrKey = 0; |
|
3018 #ifdef SQLITE_TEST |
|
3019 sqlite3_search_count++; |
|
3020 #endif |
|
3021 if( oc==OP_MoveGe || oc==OP_MoveGt ){ |
|
3022 if( res<0 ){ |
|
3023 rc = sqlite3BtreeNext(pC->pCursor, &res); |
|
3024 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
|
3025 pC->rowidIsValid = 0; |
|
3026 }else{ |
|
3027 res = 0; |
|
3028 } |
|
3029 }else{ |
|
3030 assert( oc==OP_MoveLt || oc==OP_MoveLe ); |
|
3031 if( res>=0 ){ |
|
3032 rc = sqlite3BtreePrevious(pC->pCursor, &res); |
|
3033 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
|
3034 pC->rowidIsValid = 0; |
|
3035 }else{ |
|
3036 /* res might be negative because the table is empty. Check to |
|
3037 ** see if this is the case. |
|
3038 */ |
|
3039 res = sqlite3BtreeEof(pC->pCursor); |
|
3040 } |
|
3041 } |
|
3042 if( res ){ |
|
3043 if( pOp->p2>0 ){ |
|
3044 pc = pOp->p2 - 1; |
|
3045 }else{ |
|
3046 pC->nullRow = 1; |
|
3047 } |
|
3048 } |
|
3049 } |
|
3050 Release(pTos); |
|
3051 pTos--; |
|
3052 break; |
|
3053 } |
|
3054 |
|
3055 /* Opcode: Distinct P1 P2 * |
|
3056 ** |
|
3057 ** Use the top of the stack as a record created using MakeRecord. P1 is a |
|
3058 ** cursor on a table that declared as an index. If that table contains an |
|
3059 ** entry that matches the top of the stack fall thru. If the top of the stack |
|
3060 ** matches no entry in P1 then jump to P2. |
|
3061 ** |
|
3062 ** The cursor is left pointing at the matching entry if it exists. The |
|
3063 ** record on the top of the stack is not popped. |
|
3064 ** |
|
3065 ** This instruction is similar to NotFound except that this operation |
|
3066 ** does not pop the key from the stack. |
|
3067 ** |
|
3068 ** The instruction is used to implement the DISTINCT operator on SELECT |
|
3069 ** statements. The P1 table is not a true index but rather a record of |
|
3070 ** all results that have produced so far. |
|
3071 ** |
|
3072 ** See also: Found, NotFound, MoveTo, IsUnique, NotExists |
|
3073 */ |
|
3074 /* Opcode: Found P1 P2 * |
|
3075 ** |
|
3076 ** Top of the stack holds a blob constructed by MakeRecord. P1 is an index. |
|
3077 ** If an entry that matches the top of the stack exists in P1 then |
|
3078 ** jump to P2. If the top of the stack does not match any entry in P1 |
|
3079 ** then fall thru. The P1 cursor is left pointing at the matching entry |
|
3080 ** if it exists. The blob is popped off the top of the stack. |
|
3081 ** |
|
3082 ** This instruction is used to implement the IN operator where the |
|
3083 ** left-hand side is a SELECT statement. P1 may be a true index, or it |
|
3084 ** may be a temporary index that holds the results of the SELECT |
|
3085 ** statement. |
|
3086 ** |
|
3087 ** This instruction checks if index P1 contains a record for which |
|
3088 ** the first N serialised values exactly match the N serialised values |
|
3089 ** in the record on the stack, where N is the total number of values in |
|
3090 ** the stack record (stack record is a prefix of the P1 record). |
|
3091 ** |
|
3092 ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists |
|
3093 */ |
|
3094 /* Opcode: NotFound P1 P2 * |
|
3095 ** |
|
3096 ** The top of the stack holds a blob constructed by MakeRecord. P1 is |
|
3097 ** an index. If no entry exists in P1 that matches the blob then jump |
|
3098 ** to P2. If an entry does existing, fall through. The cursor is left |
|
3099 ** pointing to the entry that matches. The blob is popped from the stack. |
|
3100 ** |
|
3101 ** The difference between this operation and Distinct is that |
|
3102 ** Distinct does not pop the key from the stack. |
|
3103 ** |
|
3104 ** See also: Distinct, Found, MoveTo, NotExists, IsUnique |
|
3105 */ |
|
3106 case OP_Distinct: /* no-push */ |
|
3107 case OP_NotFound: /* no-push */ |
|
3108 case OP_Found: { /* no-push */ |
|
3109 int i = pOp->p1; |
|
3110 int alreadyExists = 0; |
|
3111 Cursor *pC; |
|
3112 assert( pTos>=p->aStack ); |
|
3113 assert( i>=0 && i<p->nCursor ); |
|
3114 assert( p->apCsr[i]!=0 ); |
|
3115 if( (pC = p->apCsr[i])->pCursor!=0 ){ |
|
3116 int res; |
|
3117 assert( pC->isTable==0 ); |
|
3118 assert( pTos->flags & MEM_Blob ); |
|
3119 Stringify(pTos, encoding); |
|
3120 if( pOp->opcode==OP_Found ){ |
|
3121 pC->pKeyInfo->prefixIsEqual = 1; |
|
3122 } |
|
3123 rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res); |
|
3124 pC->pKeyInfo->prefixIsEqual = 0; |
|
3125 if( rc!=SQLITE_OK ){ |
|
3126 break; |
|
3127 } |
|
3128 alreadyExists = (res==0); |
|
3129 pC->deferredMoveto = 0; |
|
3130 pC->cacheStatus = CACHE_STALE; |
|
3131 } |
|
3132 if( pOp->opcode==OP_Found ){ |
|
3133 if( alreadyExists ) pc = pOp->p2 - 1; |
|
3134 }else{ |
|
3135 if( !alreadyExists ) pc = pOp->p2 - 1; |
|
3136 } |
|
3137 if( pOp->opcode!=OP_Distinct ){ |
|
3138 Release(pTos); |
|
3139 pTos--; |
|
3140 } |
|
3141 break; |
|
3142 } |
|
3143 |
|
3144 /* Opcode: IsUnique P1 P2 * |
|
3145 ** |
|
3146 ** The top of the stack is an integer record number. Call this |
|
3147 ** record number R. The next on the stack is an index key created |
|
3148 ** using MakeIdxRec. Call it K. This instruction pops R from the |
|
3149 ** stack but it leaves K unchanged. |
|
3150 ** |
|
3151 ** P1 is an index. So it has no data and its key consists of a |
|
3152 ** record generated by OP_MakeRecord where the last field is the |
|
3153 ** rowid of the entry that the index refers to. |
|
3154 ** |
|
3155 ** This instruction asks if there is an entry in P1 where the |
|
3156 ** fields matches K but the rowid is different from R. |
|
3157 ** If there is no such entry, then there is an immediate |
|
3158 ** jump to P2. If any entry does exist where the index string |
|
3159 ** matches K but the record number is not R, then the record |
|
3160 ** number for that entry is pushed onto the stack and control |
|
3161 ** falls through to the next instruction. |
|
3162 ** |
|
3163 ** See also: Distinct, NotFound, NotExists, Found |
|
3164 */ |
|
3165 case OP_IsUnique: { /* no-push */ |
|
3166 int i = pOp->p1; |
|
3167 Mem *pNos = &pTos[-1]; |
|
3168 Cursor *pCx; |
|
3169 BtCursor *pCrsr; |
|
3170 i64 R; |
|
3171 |
|
3172 /* Pop the value R off the top of the stack |
|
3173 */ |
|
3174 assert( pNos>=p->aStack ); |
|
3175 sqlite3VdbeMemIntegerify(pTos); |
|
3176 R = pTos->u.i; |
|
3177 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
3178 pTos--; |
|
3179 assert( i>=0 && i<p->nCursor ); |
|
3180 pCx = p->apCsr[i]; |
|
3181 assert( pCx!=0 ); |
|
3182 pCrsr = pCx->pCursor; |
|
3183 if( pCrsr!=0 ){ |
|
3184 int res; |
|
3185 i64 v; /* The record number on the P1 entry that matches K */ |
|
3186 char *zKey; /* The value of K */ |
|
3187 int nKey; /* Number of bytes in K */ |
|
3188 int len; /* Number of bytes in K without the rowid at the end */ |
|
3189 int szRowid; /* Size of the rowid column at the end of zKey */ |
|
3190 |
|
3191 /* Make sure K is a string and make zKey point to K |
|
3192 */ |
|
3193 assert( pNos->flags & MEM_Blob ); |
|
3194 Stringify(pNos, encoding); |
|
3195 zKey = pNos->z; |
|
3196 nKey = pNos->n; |
|
3197 |
|
3198 szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey); |
|
3199 len = nKey-szRowid; |
|
3200 |
|
3201 /* Search for an entry in P1 where all but the last four bytes match K. |
|
3202 ** If there is no such entry, jump immediately to P2. |
|
3203 */ |
|
3204 assert( pCx->deferredMoveto==0 ); |
|
3205 pCx->cacheStatus = CACHE_STALE; |
|
3206 rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res); |
|
3207 if( rc!=SQLITE_OK ){ |
|
3208 goto abort_due_to_error; |
|
3209 } |
|
3210 if( res<0 ){ |
|
3211 rc = sqlite3BtreeNext(pCrsr, &res); |
|
3212 if( res ){ |
|
3213 pc = pOp->p2 - 1; |
|
3214 break; |
|
3215 } |
|
3216 } |
|
3217 rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); |
|
3218 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
|
3219 if( res>0 ){ |
|
3220 pc = pOp->p2 - 1; |
|
3221 break; |
|
3222 } |
|
3223 |
|
3224 /* At this point, pCrsr is pointing to an entry in P1 where all but |
|
3225 ** the final entry (the rowid) matches K. Check to see if the |
|
3226 ** final rowid column is different from R. If it equals R then jump |
|
3227 ** immediately to P2. |
|
3228 */ |
|
3229 rc = sqlite3VdbeIdxRowid(pCrsr, &v); |
|
3230 if( rc!=SQLITE_OK ){ |
|
3231 goto abort_due_to_error; |
|
3232 } |
|
3233 if( v==R ){ |
|
3234 pc = pOp->p2 - 1; |
|
3235 break; |
|
3236 } |
|
3237 |
|
3238 /* The final varint of the key is different from R. Push it onto |
|
3239 ** the stack. (The record number of an entry that violates a UNIQUE |
|
3240 ** constraint.) |
|
3241 */ |
|
3242 pTos++; |
|
3243 pTos->u.i = v; |
|
3244 pTos->flags = MEM_Int; |
|
3245 } |
|
3246 break; |
|
3247 } |
|
3248 |
|
3249 /* Opcode: NotExists P1 P2 * |
|
3250 ** |
|
3251 ** Use the top of the stack as a integer key. If a record with that key |
|
3252 ** does not exist in table of P1, then jump to P2. If the record |
|
3253 ** does exist, then fall thru. The cursor is left pointing to the |
|
3254 ** record if it exists. The integer key is popped from the stack. |
|
3255 ** |
|
3256 ** The difference between this operation and NotFound is that this |
|
3257 ** operation assumes the key is an integer and that P1 is a table whereas |
|
3258 ** NotFound assumes key is a blob constructed from MakeRecord and |
|
3259 ** P1 is an index. |
|
3260 ** |
|
3261 ** See also: Distinct, Found, MoveTo, NotFound, IsUnique |
|
3262 */ |
|
3263 case OP_NotExists: { /* no-push */ |
|
3264 int i = pOp->p1; |
|
3265 Cursor *pC; |
|
3266 BtCursor *pCrsr; |
|
3267 assert( pTos>=p->aStack ); |
|
3268 assert( i>=0 && i<p->nCursor ); |
|
3269 assert( p->apCsr[i]!=0 ); |
|
3270 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ |
|
3271 int res; |
|
3272 u64 iKey; |
|
3273 assert( pTos->flags & MEM_Int ); |
|
3274 assert( p->apCsr[i]->isTable ); |
|
3275 iKey = intToKey(pTos->u.i); |
|
3276 rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res); |
|
3277 pC->lastRowid = pTos->u.i; |
|
3278 pC->rowidIsValid = res==0; |
|
3279 pC->nullRow = 0; |
|
3280 pC->cacheStatus = CACHE_STALE; |
|
3281 /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK |
|
3282 ** processing is about to abort so we really do not care whether or not |
|
3283 ** the following jump is taken. (In other words, do not stress over |
|
3284 ** the error that valgrind sometimes shows on the next statement when |
|
3285 ** running ioerr.test and similar failure-recovery test scripts.) */ |
|
3286 if( res!=0 ){ |
|
3287 pc = pOp->p2 - 1; |
|
3288 pC->rowidIsValid = 0; |
|
3289 } |
|
3290 } |
|
3291 Release(pTos); |
|
3292 pTos--; |
|
3293 break; |
|
3294 } |
|
3295 |
|
3296 /* Opcode: Sequence P1 * * |
|
3297 ** |
|
3298 ** Push an integer onto the stack which is the next available |
|
3299 ** sequence number for cursor P1. The sequence number on the |
|
3300 ** cursor is incremented after the push. |
|
3301 */ |
|
3302 case OP_Sequence: { |
|
3303 int i = pOp->p1; |
|
3304 assert( pTos>=p->aStack ); |
|
3305 assert( i>=0 && i<p->nCursor ); |
|
3306 assert( p->apCsr[i]!=0 ); |
|
3307 pTos++; |
|
3308 pTos->u.i = p->apCsr[i]->seqCount++; |
|
3309 pTos->flags = MEM_Int; |
|
3310 break; |
|
3311 } |
|
3312 |
|
3313 |
|
3314 /* Opcode: NewRowid P1 P2 * |
|
3315 ** |
|
3316 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
|
3317 ** The record number is not previously used as a key in the database |
|
3318 ** table that cursor P1 points to. The new record number is pushed |
|
3319 ** onto the stack. |
|
3320 ** |
|
3321 ** If P2>0 then P2 is a memory cell that holds the largest previously |
|
3322 ** generated record number. No new record numbers are allowed to be less |
|
3323 ** than this value. When this value reaches its maximum, a SQLITE_FULL |
|
3324 ** error is generated. The P2 memory cell is updated with the generated |
|
3325 ** record number. This P2 mechanism is used to help implement the |
|
3326 ** AUTOINCREMENT feature. |
|
3327 */ |
|
3328 case OP_NewRowid: { |
|
3329 int i = pOp->p1; |
|
3330 i64 v = 0; |
|
3331 Cursor *pC; |
|
3332 assert( i>=0 && i<p->nCursor ); |
|
3333 assert( p->apCsr[i]!=0 ); |
|
3334 if( (pC = p->apCsr[i])->pCursor==0 ){ |
|
3335 /* The zero initialization above is all that is needed */ |
|
3336 }else{ |
|
3337 /* The next rowid or record number (different terms for the same |
|
3338 ** thing) is obtained in a two-step algorithm. |
|
3339 ** |
|
3340 ** First we attempt to find the largest existing rowid and add one |
|
3341 ** to that. But if the largest existing rowid is already the maximum |
|
3342 ** positive integer, we have to fall through to the second |
|
3343 ** probabilistic algorithm |
|
3344 ** |
|
3345 ** The second algorithm is to select a rowid at random and see if |
|
3346 ** it already exists in the table. If it does not exist, we have |
|
3347 ** succeeded. If the random rowid does exist, we select a new one |
|
3348 ** and try again, up to 1000 times. |
|
3349 ** |
|
3350 ** For a table with less than 2 billion entries, the probability |
|
3351 ** of not finding a unused rowid is about 1.0e-300. This is a |
|
3352 ** non-zero probability, but it is still vanishingly small and should |
|
3353 ** never cause a problem. You are much, much more likely to have a |
|
3354 ** hardware failure than for this algorithm to fail. |
|
3355 ** |
|
3356 ** The analysis in the previous paragraph assumes that you have a good |
|
3357 ** source of random numbers. Is a library function like lrand48() |
|
3358 ** good enough? Maybe. Maybe not. It's hard to know whether there |
|
3359 ** might be subtle bugs is some implementations of lrand48() that |
|
3360 ** could cause problems. To avoid uncertainty, SQLite uses its own |
|
3361 ** random number generator based on the RC4 algorithm. |
|
3362 ** |
|
3363 ** To promote locality of reference for repetitive inserts, the |
|
3364 ** first few attempts at chosing a random rowid pick values just a little |
|
3365 ** larger than the previous rowid. This has been shown experimentally |
|
3366 ** to double the speed of the COPY operation. |
|
3367 */ |
|
3368 int res, rx=SQLITE_OK, cnt; |
|
3369 i64 x; |
|
3370 cnt = 0; |
|
3371 if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) != |
|
3372 BTREE_INTKEY ){ |
|
3373 rc = SQLITE_CORRUPT_BKPT; |
|
3374 goto abort_due_to_error; |
|
3375 } |
|
3376 assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); |
|
3377 assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 ); |
|
3378 |
|
3379 #ifdef SQLITE_32BIT_ROWID |
|
3380 # define MAX_ROWID 0x7fffffff |
|
3381 #else |
|
3382 /* Some compilers complain about constants of the form 0x7fffffffffffffff. |
|
3383 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems |
|
3384 ** to provide the constant while making all compilers happy. |
|
3385 */ |
|
3386 # define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) |
|
3387 #endif |
|
3388 |
|
3389 if( !pC->useRandomRowid ){ |
|
3390 if( pC->nextRowidValid ){ |
|
3391 v = pC->nextRowid; |
|
3392 }else{ |
|
3393 rc = sqlite3BtreeLast(pC->pCursor, &res); |
|
3394 if( rc!=SQLITE_OK ){ |
|
3395 goto abort_due_to_error; |
|
3396 } |
|
3397 if( res ){ |
|
3398 v = 1; |
|
3399 }else{ |
|
3400 sqlite3BtreeKeySize(pC->pCursor, &v); |
|
3401 v = keyToInt(v); |
|
3402 if( v==MAX_ROWID ){ |
|
3403 pC->useRandomRowid = 1; |
|
3404 }else{ |
|
3405 v++; |
|
3406 } |
|
3407 } |
|
3408 } |
|
3409 |
|
3410 #ifndef SQLITE_OMIT_AUTOINCREMENT |
|
3411 if( pOp->p2 ){ |
|
3412 Mem *pMem; |
|
3413 assert( pOp->p2>0 && pOp->p2<p->nMem ); /* P2 is a valid memory cell */ |
|
3414 pMem = &p->aMem[pOp->p2]; |
|
3415 sqlite3VdbeMemIntegerify(pMem); |
|
3416 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P2) holds an integer */ |
|
3417 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ |
|
3418 rc = SQLITE_FULL; |
|
3419 goto abort_due_to_error; |
|
3420 } |
|
3421 if( v<pMem->u.i+1 ){ |
|
3422 v = pMem->u.i + 1; |
|
3423 } |
|
3424 pMem->u.i = v; |
|
3425 } |
|
3426 #endif |
|
3427 |
|
3428 if( v<MAX_ROWID ){ |
|
3429 pC->nextRowidValid = 1; |
|
3430 pC->nextRowid = v+1; |
|
3431 }else{ |
|
3432 pC->nextRowidValid = 0; |
|
3433 } |
|
3434 } |
|
3435 if( pC->useRandomRowid ){ |
|
3436 assert( pOp->p2==0 ); /* SQLITE_FULL must have occurred prior to this */ |
|
3437 v = db->priorNewRowid; |
|
3438 cnt = 0; |
|
3439 do{ |
|
3440 if( v==0 || cnt>2 ){ |
|
3441 sqlite3Randomness(sizeof(v), &v); |
|
3442 if( cnt<5 ) v &= 0xffffff; |
|
3443 }else{ |
|
3444 unsigned char r; |
|
3445 sqlite3Randomness(1, &r); |
|
3446 v += r + 1; |
|
3447 } |
|
3448 if( v==0 ) continue; |
|
3449 x = intToKey(v); |
|
3450 rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res); |
|
3451 cnt++; |
|
3452 }while( cnt<1000 && rx==SQLITE_OK && res==0 ); |
|
3453 db->priorNewRowid = v; |
|
3454 if( rx==SQLITE_OK && res==0 ){ |
|
3455 rc = SQLITE_FULL; |
|
3456 goto abort_due_to_error; |
|
3457 } |
|
3458 } |
|
3459 pC->rowidIsValid = 0; |
|
3460 pC->deferredMoveto = 0; |
|
3461 pC->cacheStatus = CACHE_STALE; |
|
3462 } |
|
3463 pTos++; |
|
3464 pTos->u.i = v; |
|
3465 pTos->flags = MEM_Int; |
|
3466 break; |
|
3467 } |
|
3468 |
|
3469 /* Opcode: Insert P1 P2 P3 |
|
3470 ** |
|
3471 ** Write an entry into the table of cursor P1. A new entry is |
|
3472 ** created if it doesn't already exist or the data for an existing |
|
3473 ** entry is overwritten. The data is the value on the top of the |
|
3474 ** stack. The key is the next value down on the stack. The key must |
|
3475 ** be an integer. The stack is popped twice by this instruction. |
|
3476 ** |
|
3477 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
|
3478 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set, |
|
3479 ** then rowid is stored for subsequent return by the |
|
3480 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). |
|
3481 ** |
|
3482 ** Parameter P3 may point to a string containing the table-name, or |
|
3483 ** may be NULL. If it is not NULL, then the update-hook |
|
3484 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. |
|
3485 ** |
|
3486 ** This instruction only works on tables. The equivalent instruction |
|
3487 ** for indices is OP_IdxInsert. |
|
3488 */ |
|
3489 case OP_Insert: { /* no-push */ |
|
3490 Mem *pNos = &pTos[-1]; |
|
3491 int i = pOp->p1; |
|
3492 Cursor *pC; |
|
3493 assert( pNos>=p->aStack ); |
|
3494 assert( i>=0 && i<p->nCursor ); |
|
3495 assert( p->apCsr[i]!=0 ); |
|
3496 if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){ |
|
3497 i64 iKey; /* The integer ROWID or key for the record to be inserted */ |
|
3498 |
|
3499 assert( pNos->flags & MEM_Int ); |
|
3500 assert( pC->isTable ); |
|
3501 iKey = intToKey(pNos->u.i); |
|
3502 |
|
3503 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; |
|
3504 if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i; |
|
3505 if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){ |
|
3506 pC->nextRowidValid = 0; |
|
3507 } |
|
3508 if( pTos->flags & MEM_Null ){ |
|
3509 pTos->z = 0; |
|
3510 pTos->n = 0; |
|
3511 }else{ |
|
3512 assert( pTos->flags & (MEM_Blob|MEM_Str) ); |
|
3513 } |
|
3514 if( pC->pseudoTable ){ |
|
3515 sqlite3_free(pC->pData); |
|
3516 pC->iKey = iKey; |
|
3517 pC->nData = pTos->n; |
|
3518 if( pTos->flags & MEM_Dyn ){ |
|
3519 pC->pData = pTos->z; |
|
3520 pTos->flags = MEM_Null; |
|
3521 }else{ |
|
3522 pC->pData = (char*)sqlite3_malloc( pC->nData+2 ); |
|
3523 if( !pC->pData ) goto no_mem; |
|
3524 memcpy(pC->pData, pTos->z, pC->nData); |
|
3525 pC->pData[pC->nData] = 0; |
|
3526 pC->pData[pC->nData+1] = 0; |
|
3527 } |
|
3528 pC->nullRow = 0; |
|
3529 }else{ |
|
3530 int nZero; |
|
3531 if( pTos->flags & MEM_Zero ){ |
|
3532 nZero = pTos->u.i; |
|
3533 }else{ |
|
3534 nZero = 0; |
|
3535 } |
|
3536 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, |
|
3537 pTos->z, pTos->n, nZero, |
|
3538 pOp->p2 & OPFLAG_APPEND); |
|
3539 } |
|
3540 |
|
3541 pC->rowidIsValid = 0; |
|
3542 pC->deferredMoveto = 0; |
|
3543 pC->cacheStatus = CACHE_STALE; |
|
3544 |
|
3545 /* Invoke the update-hook if required. */ |
|
3546 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){ |
|
3547 const char *zDb = db->aDb[pC->iDb].zName; |
|
3548 const char *zTbl = pOp->p3; |
|
3549 int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); |
|
3550 assert( pC->isTable ); |
|
3551 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); |
|
3552 assert( pC->iDb>=0 ); |
|
3553 } |
|
3554 } |
|
3555 popStack(&pTos, 2); |
|
3556 |
|
3557 break; |
|
3558 } |
|
3559 |
|
3560 /* Opcode: Delete P1 P2 P3 |
|
3561 ** |
|
3562 ** Delete the record at which the P1 cursor is currently pointing. |
|
3563 ** |
|
3564 ** The cursor will be left pointing at either the next or the previous |
|
3565 ** record in the table. If it is left pointing at the next record, then |
|
3566 ** the next Next instruction will be a no-op. Hence it is OK to delete |
|
3567 ** a record from within an Next loop. |
|
3568 ** |
|
3569 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
|
3570 ** incremented (otherwise not). |
|
3571 ** |
|
3572 ** If P1 is a pseudo-table, then this instruction is a no-op. |
|
3573 */ |
|
3574 case OP_Delete: { /* no-push */ |
|
3575 int i = pOp->p1; |
|
3576 Cursor *pC; |
|
3577 assert( i>=0 && i<p->nCursor ); |
|
3578 pC = p->apCsr[i]; |
|
3579 assert( pC!=0 ); |
|
3580 if( pC->pCursor!=0 ){ |
|
3581 i64 iKey; |
|
3582 |
|
3583 /* If the update-hook will be invoked, set iKey to the rowid of the |
|
3584 ** row being deleted. |
|
3585 */ |
|
3586 if( db->xUpdateCallback && pOp->p3 ){ |
|
3587 assert( pC->isTable ); |
|
3588 if( pC->rowidIsValid ){ |
|
3589 iKey = pC->lastRowid; |
|
3590 }else{ |
|
3591 rc = sqlite3BtreeKeySize(pC->pCursor, &iKey); |
|
3592 if( rc ){ |
|
3593 goto abort_due_to_error; |
|
3594 } |
|
3595 iKey = keyToInt(iKey); |
|
3596 } |
|
3597 } |
|
3598 |
|
3599 rc = sqlite3VdbeCursorMoveto(pC); |
|
3600 if( rc ) goto abort_due_to_error; |
|
3601 rc = sqlite3BtreeDelete(pC->pCursor); |
|
3602 pC->nextRowidValid = 0; |
|
3603 pC->cacheStatus = CACHE_STALE; |
|
3604 |
|
3605 /* Invoke the update-hook if required. */ |
|
3606 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){ |
|
3607 const char *zDb = db->aDb[pC->iDb].zName; |
|
3608 const char *zTbl = pOp->p3; |
|
3609 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); |
|
3610 assert( pC->iDb>=0 ); |
|
3611 } |
|
3612 } |
|
3613 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; |
|
3614 break; |
|
3615 } |
|
3616 |
|
3617 /* Opcode: ResetCount P1 * * |
|
3618 ** |
|
3619 ** This opcode resets the VMs internal change counter to 0. If P1 is true, |
|
3620 ** then the value of the change counter is copied to the database handle |
|
3621 ** change counter (returned by subsequent calls to sqlite3_changes()) |
|
3622 ** before it is reset. This is used by trigger programs. |
|
3623 */ |
|
3624 case OP_ResetCount: { /* no-push */ |
|
3625 if( pOp->p1 ){ |
|
3626 sqlite3VdbeSetChanges(db, p->nChange); |
|
3627 } |
|
3628 p->nChange = 0; |
|
3629 break; |
|
3630 } |
|
3631 |
|
3632 /* Opcode: RowData P1 * * |
|
3633 ** |
|
3634 ** Push onto the stack the complete row data for cursor P1. |
|
3635 ** There is no interpretation of the data. It is just copied |
|
3636 ** onto the stack exactly as it is found in the database file. |
|
3637 ** |
|
3638 ** If the cursor is not pointing to a valid row, a NULL is pushed |
|
3639 ** onto the stack. |
|
3640 */ |
|
3641 /* Opcode: RowKey P1 * * |
|
3642 ** |
|
3643 ** Push onto the stack the complete row key for cursor P1. |
|
3644 ** There is no interpretation of the key. It is just copied |
|
3645 ** onto the stack exactly as it is found in the database file. |
|
3646 ** |
|
3647 ** If the cursor is not pointing to a valid row, a NULL is pushed |
|
3648 ** onto the stack. |
|
3649 */ |
|
3650 case OP_RowKey: |
|
3651 case OP_RowData: { |
|
3652 int i = pOp->p1; |
|
3653 Cursor *pC; |
|
3654 u32 n; |
|
3655 |
|
3656 /* Note that RowKey and RowData are really exactly the same instruction */ |
|
3657 pTos++; |
|
3658 assert( i>=0 && i<p->nCursor ); |
|
3659 pC = p->apCsr[i]; |
|
3660 assert( pC->isTable || pOp->opcode==OP_RowKey ); |
|
3661 assert( pC->isIndex || pOp->opcode==OP_RowData ); |
|
3662 assert( pC!=0 ); |
|
3663 if( pC->nullRow ){ |
|
3664 pTos->flags = MEM_Null; |
|
3665 }else if( pC->pCursor!=0 ){ |
|
3666 BtCursor *pCrsr = pC->pCursor; |
|
3667 rc = sqlite3VdbeCursorMoveto(pC); |
|
3668 if( rc ) goto abort_due_to_error; |
|
3669 if( pC->nullRow ){ |
|
3670 pTos->flags = MEM_Null; |
|
3671 break; |
|
3672 }else if( pC->isIndex ){ |
|
3673 i64 n64; |
|
3674 assert( !pC->isTable ); |
|
3675 sqlite3BtreeKeySize(pCrsr, &n64); |
|
3676 if( n64>SQLITE_MAX_LENGTH ){ |
|
3677 goto too_big; |
|
3678 } |
|
3679 n = n64; |
|
3680 }else{ |
|
3681 sqlite3BtreeDataSize(pCrsr, &n); |
|
3682 } |
|
3683 if( n>SQLITE_MAX_LENGTH ){ |
|
3684 goto too_big; |
|
3685 } |
|
3686 pTos->n = n; |
|
3687 if( n<=NBFS ){ |
|
3688 pTos->flags = MEM_Blob | MEM_Short; |
|
3689 pTos->z = pTos->zShort; |
|
3690 }else{ |
|
3691 char *z = (char*)sqlite3_malloc( n ); |
|
3692 if( z==0 ) goto no_mem; |
|
3693 pTos->flags = MEM_Blob | MEM_Dyn; |
|
3694 pTos->xDel = 0; |
|
3695 pTos->z = z; |
|
3696 } |
|
3697 if( pC->isIndex ){ |
|
3698 rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z); |
|
3699 }else{ |
|
3700 rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z); |
|
3701 } |
|
3702 }else if( pC->pseudoTable ){ |
|
3703 pTos->n = pC->nData; |
|
3704 assert( pC->nData<=SQLITE_MAX_LENGTH ); |
|
3705 pTos->z = pC->pData; |
|
3706 pTos->flags = MEM_Blob|MEM_Ephem; |
|
3707 }else{ |
|
3708 pTos->flags = MEM_Null; |
|
3709 } |
|
3710 pTos->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ |
|
3711 break; |
|
3712 } |
|
3713 |
|
3714 /* Opcode: Rowid P1 * * |
|
3715 ** |
|
3716 ** Push onto the stack an integer which is the key of the table entry that |
|
3717 ** P1 is currently point to. |
|
3718 */ |
|
3719 case OP_Rowid: { |
|
3720 int i = pOp->p1; |
|
3721 Cursor *pC; |
|
3722 i64 v; |
|
3723 |
|
3724 assert( i>=0 && i<p->nCursor ); |
|
3725 pC = p->apCsr[i]; |
|
3726 assert( pC!=0 ); |
|
3727 rc = sqlite3VdbeCursorMoveto(pC); |
|
3728 if( rc ) goto abort_due_to_error; |
|
3729 pTos++; |
|
3730 if( pC->rowidIsValid ){ |
|
3731 v = pC->lastRowid; |
|
3732 }else if( pC->pseudoTable ){ |
|
3733 v = keyToInt(pC->iKey); |
|
3734 }else if( pC->nullRow || pC->pCursor==0 ){ |
|
3735 pTos->flags = MEM_Null; |
|
3736 break; |
|
3737 }else{ |
|
3738 assert( pC->pCursor!=0 ); |
|
3739 sqlite3BtreeKeySize(pC->pCursor, &v); |
|
3740 v = keyToInt(v); |
|
3741 } |
|
3742 pTos->u.i = v; |
|
3743 pTos->flags = MEM_Int; |
|
3744 break; |
|
3745 } |
|
3746 |
|
3747 /* Opcode: NullRow P1 * * |
|
3748 ** |
|
3749 ** Move the cursor P1 to a null row. Any OP_Column operations |
|
3750 ** that occur while the cursor is on the null row will always push |
|
3751 ** a NULL onto the stack. |
|
3752 */ |
|
3753 case OP_NullRow: { /* no-push */ |
|
3754 int i = pOp->p1; |
|
3755 Cursor *pC; |
|
3756 |
|
3757 assert( i>=0 && i<p->nCursor ); |
|
3758 pC = p->apCsr[i]; |
|
3759 assert( pC!=0 ); |
|
3760 pC->nullRow = 1; |
|
3761 pC->rowidIsValid = 0; |
|
3762 break; |
|
3763 } |
|
3764 |
|
3765 /* Opcode: Last P1 P2 * |
|
3766 ** |
|
3767 ** The next use of the Rowid or Column or Next instruction for P1 |
|
3768 ** will refer to the last entry in the database table or index. |
|
3769 ** If the table or index is empty and P2>0, then jump immediately to P2. |
|
3770 ** If P2 is 0 or if the table or index is not empty, fall through |
|
3771 ** to the following instruction. |
|
3772 */ |
|
3773 case OP_Last: { /* no-push */ |
|
3774 int i = pOp->p1; |
|
3775 Cursor *pC; |
|
3776 BtCursor *pCrsr; |
|
3777 |
|
3778 assert( i>=0 && i<p->nCursor ); |
|
3779 pC = p->apCsr[i]; |
|
3780 assert( pC!=0 ); |
|
3781 if( (pCrsr = pC->pCursor)!=0 ){ |
|
3782 int res; |
|
3783 rc = sqlite3BtreeLast(pCrsr, &res); |
|
3784 pC->nullRow = res; |
|
3785 pC->deferredMoveto = 0; |
|
3786 pC->cacheStatus = CACHE_STALE; |
|
3787 if( res && pOp->p2>0 ){ |
|
3788 pc = pOp->p2 - 1; |
|
3789 } |
|
3790 }else{ |
|
3791 pC->nullRow = 0; |
|
3792 } |
|
3793 break; |
|
3794 } |
|
3795 |
|
3796 |
|
3797 /* Opcode: Sort P1 P2 * |
|
3798 ** |
|
3799 ** This opcode does exactly the same thing as OP_Rewind except that |
|
3800 ** it increments an undocumented global variable used for testing. |
|
3801 ** |
|
3802 ** Sorting is accomplished by writing records into a sorting index, |
|
3803 ** then rewinding that index and playing it back from beginning to |
|
3804 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the |
|
3805 ** rewinding so that the global variable will be incremented and |
|
3806 ** regression tests can determine whether or not the optimizer is |
|
3807 ** correctly optimizing out sorts. |
|
3808 */ |
|
3809 case OP_Sort: { /* no-push */ |
|
3810 #ifdef SQLITE_TEST |
|
3811 sqlite3_sort_count++; |
|
3812 sqlite3_search_count--; |
|
3813 #endif |
|
3814 /* Fall through into OP_Rewind */ |
|
3815 } |
|
3816 /* Opcode: Rewind P1 P2 * |
|
3817 ** |
|
3818 ** The next use of the Rowid or Column or Next instruction for P1 |
|
3819 ** will refer to the first entry in the database table or index. |
|
3820 ** If the table or index is empty and P2>0, then jump immediately to P2. |
|
3821 ** If P2 is 0 or if the table or index is not empty, fall through |
|
3822 ** to the following instruction. |
|
3823 */ |
|
3824 case OP_Rewind: { /* no-push */ |
|
3825 int i = pOp->p1; |
|
3826 Cursor *pC; |
|
3827 BtCursor *pCrsr; |
|
3828 int res; |
|
3829 |
|
3830 assert( i>=0 && i<p->nCursor ); |
|
3831 pC = p->apCsr[i]; |
|
3832 assert( pC!=0 ); |
|
3833 if( (pCrsr = pC->pCursor)!=0 ){ |
|
3834 rc = sqlite3BtreeFirst(pCrsr, &res); |
|
3835 pC->atFirst = res==0; |
|
3836 pC->deferredMoveto = 0; |
|
3837 pC->cacheStatus = CACHE_STALE; |
|
3838 }else{ |
|
3839 res = 1; |
|
3840 } |
|
3841 pC->nullRow = res; |
|
3842 if( res && pOp->p2>0 ){ |
|
3843 pc = pOp->p2 - 1; |
|
3844 } |
|
3845 break; |
|
3846 } |
|
3847 |
|
3848 /* Opcode: Next P1 P2 * |
|
3849 ** |
|
3850 ** Advance cursor P1 so that it points to the next key/data pair in its |
|
3851 ** table or index. If there are no more key/value pairs then fall through |
|
3852 ** to the following instruction. But if the cursor advance was successful, |
|
3853 ** jump immediately to P2. |
|
3854 ** |
|
3855 ** See also: Prev |
|
3856 */ |
|
3857 /* Opcode: Prev P1 P2 * |
|
3858 ** |
|
3859 ** Back up cursor P1 so that it points to the previous key/data pair in its |
|
3860 ** table or index. If there is no previous key/value pairs then fall through |
|
3861 ** to the following instruction. But if the cursor backup was successful, |
|
3862 ** jump immediately to P2. |
|
3863 */ |
|
3864 case OP_Prev: /* no-push */ |
|
3865 case OP_Next: { /* no-push */ |
|
3866 Cursor *pC; |
|
3867 BtCursor *pCrsr; |
|
3868 |
|
3869 CHECK_FOR_INTERRUPT; |
|
3870 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
|
3871 pC = p->apCsr[pOp->p1]; |
|
3872 if( pC==0 ){ |
|
3873 break; /* See ticket #2273 */ |
|
3874 } |
|
3875 if( (pCrsr = pC->pCursor)!=0 ){ |
|
3876 int res; |
|
3877 if( pC->nullRow ){ |
|
3878 res = 1; |
|
3879 }else{ |
|
3880 assert( pC->deferredMoveto==0 ); |
|
3881 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : |
|
3882 sqlite3BtreePrevious(pCrsr, &res); |
|
3883 pC->nullRow = res; |
|
3884 pC->cacheStatus = CACHE_STALE; |
|
3885 } |
|
3886 if( res==0 ){ |
|
3887 pc = pOp->p2 - 1; |
|
3888 #ifdef SQLITE_TEST |
|
3889 sqlite3_search_count++; |
|
3890 #endif |
|
3891 } |
|
3892 }else{ |
|
3893 pC->nullRow = 1; |
|
3894 } |
|
3895 pC->rowidIsValid = 0; |
|
3896 break; |
|
3897 } |
|
3898 |
|
3899 /* Opcode: IdxInsert P1 P2 * |
|
3900 ** |
|
3901 ** The top of the stack holds a SQL index key made using either the |
|
3902 ** MakeIdxRec or MakeRecord instructions. This opcode writes that key |
|
3903 ** into the index P1. Data for the entry is nil. |
|
3904 ** |
|
3905 ** P2 is a flag that provides a hint to the b-tree layer that this |
|
3906 ** insert is likely to be an append. |
|
3907 ** |
|
3908 ** This instruction only works for indices. The equivalent instruction |
|
3909 ** for tables is OP_Insert. |
|
3910 */ |
|
3911 case OP_IdxInsert: { /* no-push */ |
|
3912 int i = pOp->p1; |
|
3913 Cursor *pC; |
|
3914 BtCursor *pCrsr; |
|
3915 assert( pTos>=p->aStack ); |
|
3916 assert( i>=0 && i<p->nCursor ); |
|
3917 assert( p->apCsr[i]!=0 ); |
|
3918 assert( pTos->flags & MEM_Blob ); |
|
3919 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ |
|
3920 assert( pC->isTable==0 ); |
|
3921 rc = ExpandBlob(pTos); |
|
3922 if( rc==SQLITE_OK ){ |
|
3923 int nKey = pTos->n; |
|
3924 const char *zKey = pTos->z; |
|
3925 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2); |
|
3926 assert( pC->deferredMoveto==0 ); |
|
3927 pC->cacheStatus = CACHE_STALE; |
|
3928 } |
|
3929 } |
|
3930 Release(pTos); |
|
3931 pTos--; |
|
3932 break; |
|
3933 } |
|
3934 |
|
3935 /* Opcode: IdxDelete P1 * * |
|
3936 ** |
|
3937 ** The top of the stack is an index key built using the either the |
|
3938 ** MakeIdxRec or MakeRecord opcodes. |
|
3939 ** This opcode removes that entry from the index. |
|
3940 */ |
|
3941 case OP_IdxDelete: { /* no-push */ |
|
3942 int i = pOp->p1; |
|
3943 Cursor *pC; |
|
3944 BtCursor *pCrsr; |
|
3945 assert( pTos>=p->aStack ); |
|
3946 assert( pTos->flags & MEM_Blob ); |
|
3947 assert( i>=0 && i<p->nCursor ); |
|
3948 assert( p->apCsr[i]!=0 ); |
|
3949 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ |
|
3950 int res; |
|
3951 rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res); |
|
3952 if( rc==SQLITE_OK && res==0 ){ |
|
3953 rc = sqlite3BtreeDelete(pCrsr); |
|
3954 } |
|
3955 assert( pC->deferredMoveto==0 ); |
|
3956 pC->cacheStatus = CACHE_STALE; |
|
3957 } |
|
3958 Release(pTos); |
|
3959 pTos--; |
|
3960 break; |
|
3961 } |
|
3962 |
|
3963 /* Opcode: IdxRowid P1 * * |
|
3964 ** |
|
3965 ** Push onto the stack an integer which is the last entry in the record at |
|
3966 ** the end of the index key pointed to by cursor P1. This integer should be |
|
3967 ** the rowid of the table entry to which this index entry points. |
|
3968 ** |
|
3969 ** See also: Rowid, MakeIdxRec. |
|
3970 */ |
|
3971 case OP_IdxRowid: { |
|
3972 int i = pOp->p1; |
|
3973 BtCursor *pCrsr; |
|
3974 Cursor *pC; |
|
3975 |
|
3976 assert( i>=0 && i<p->nCursor ); |
|
3977 assert( p->apCsr[i]!=0 ); |
|
3978 pTos++; |
|
3979 pTos->flags = MEM_Null; |
|
3980 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ |
|
3981 i64 rowid; |
|
3982 |
|
3983 assert( pC->deferredMoveto==0 ); |
|
3984 assert( pC->isTable==0 ); |
|
3985 if( pC->nullRow ){ |
|
3986 pTos->flags = MEM_Null; |
|
3987 }else{ |
|
3988 rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); |
|
3989 if( rc!=SQLITE_OK ){ |
|
3990 goto abort_due_to_error; |
|
3991 } |
|
3992 pTos->flags = MEM_Int; |
|
3993 pTos->u.i = rowid; |
|
3994 } |
|
3995 } |
|
3996 break; |
|
3997 } |
|
3998 |
|
3999 /* Opcode: IdxGT P1 P2 * |
|
4000 ** |
|
4001 ** The top of the stack is an index entry that omits the ROWID. Compare |
|
4002 ** the top of stack against the index that P1 is currently pointing to. |
|
4003 ** Ignore the ROWID on the P1 index. |
|
4004 ** |
|
4005 ** The top of the stack might have fewer columns that P1. |
|
4006 ** |
|
4007 ** If the P1 index entry is greater than the top of the stack |
|
4008 ** then jump to P2. Otherwise fall through to the next instruction. |
|
4009 ** In either case, the stack is popped once. |
|
4010 */ |
|
4011 /* Opcode: IdxGE P1 P2 P3 |
|
4012 ** |
|
4013 ** The top of the stack is an index entry that omits the ROWID. Compare |
|
4014 ** the top of stack against the index that P1 is currently pointing to. |
|
4015 ** Ignore the ROWID on the P1 index. |
|
4016 ** |
|
4017 ** If the P1 index entry is greater than or equal to the top of the stack |
|
4018 ** then jump to P2. Otherwise fall through to the next instruction. |
|
4019 ** In either case, the stack is popped once. |
|
4020 ** |
|
4021 ** If P3 is the "+" string (or any other non-NULL string) then the |
|
4022 ** index taken from the top of the stack is temporarily increased by |
|
4023 ** an epsilon prior to the comparison. This make the opcode work |
|
4024 ** like IdxGT except that if the key from the stack is a prefix of |
|
4025 ** the key in the cursor, the result is false whereas it would be |
|
4026 ** true with IdxGT. |
|
4027 */ |
|
4028 /* Opcode: IdxLT P1 P2 P3 |
|
4029 ** |
|
4030 ** The top of the stack is an index entry that omits the ROWID. Compare |
|
4031 ** the top of stack against the index that P1 is currently pointing to. |
|
4032 ** Ignore the ROWID on the P1 index. |
|
4033 ** |
|
4034 ** If the P1 index entry is less than the top of the stack |
|
4035 ** then jump to P2. Otherwise fall through to the next instruction. |
|
4036 ** In either case, the stack is popped once. |
|
4037 ** |
|
4038 ** If P3 is the "+" string (or any other non-NULL string) then the |
|
4039 ** index taken from the top of the stack is temporarily increased by |
|
4040 ** an epsilon prior to the comparison. This makes the opcode work |
|
4041 ** like IdxLE. |
|
4042 */ |
|
4043 case OP_IdxLT: /* no-push */ |
|
4044 case OP_IdxGT: /* no-push */ |
|
4045 case OP_IdxGE: { /* no-push */ |
|
4046 int i= pOp->p1; |
|
4047 Cursor *pC; |
|
4048 |
|
4049 assert( i>=0 && i<p->nCursor ); |
|
4050 assert( p->apCsr[i]!=0 ); |
|
4051 assert( pTos>=p->aStack ); |
|
4052 if( (pC = p->apCsr[i])->pCursor!=0 ){ |
|
4053 int res; |
|
4054 |
|
4055 assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */ |
|
4056 assert( pC->deferredMoveto==0 ); |
|
4057 ExpandBlob(pTos); |
|
4058 *pC->pIncrKey = pOp->p3!=0; |
|
4059 assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT ); |
|
4060 rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res); |
|
4061 *pC->pIncrKey = 0; |
|
4062 if( rc!=SQLITE_OK ){ |
|
4063 break; |
|
4064 } |
|
4065 if( pOp->opcode==OP_IdxLT ){ |
|
4066 res = -res; |
|
4067 }else if( pOp->opcode==OP_IdxGE ){ |
|
4068 res++; |
|
4069 } |
|
4070 if( res>0 ){ |
|
4071 pc = pOp->p2 - 1 ; |
|
4072 } |
|
4073 } |
|
4074 Release(pTos); |
|
4075 pTos--; |
|
4076 break; |
|
4077 } |
|
4078 |
|
4079 /* Opcode: Destroy P1 P2 * |
|
4080 ** |
|
4081 ** Delete an entire database table or index whose root page in the database |
|
4082 ** file is given by P1. |
|
4083 ** |
|
4084 ** The table being destroyed is in the main database file if P2==0. If |
|
4085 ** P2==1 then the table to be clear is in the auxiliary database file |
|
4086 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
|
4087 ** |
|
4088 ** If AUTOVACUUM is enabled then it is possible that another root page |
|
4089 ** might be moved into the newly deleted root page in order to keep all |
|
4090 ** root pages contiguous at the beginning of the database. The former |
|
4091 ** value of the root page that moved - its value before the move occurred - |
|
4092 ** is pushed onto the stack. If no page movement was required (because |
|
4093 ** the table being dropped was already the last one in the database) then |
|
4094 ** a zero is pushed onto the stack. If AUTOVACUUM is disabled |
|
4095 ** then a zero is pushed onto the stack. |
|
4096 ** |
|
4097 ** See also: Clear |
|
4098 */ |
|
4099 case OP_Destroy: { |
|
4100 int iMoved; |
|
4101 int iCnt; |
|
4102 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4103 Vdbe *pVdbe; |
|
4104 iCnt = 0; |
|
4105 for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ |
|
4106 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ |
|
4107 iCnt++; |
|
4108 } |
|
4109 } |
|
4110 #else |
|
4111 iCnt = db->activeVdbeCnt; |
|
4112 #endif |
|
4113 if( iCnt>1 ){ |
|
4114 rc = SQLITE_LOCKED; |
|
4115 p->errorAction = OE_Abort; |
|
4116 }else{ |
|
4117 assert( iCnt==1 ); |
|
4118 assert( (p->btreeMask & (1<<pOp->p2))!=0 ); |
|
4119 rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved); |
|
4120 pTos++; |
|
4121 pTos->flags = MEM_Int; |
|
4122 pTos->u.i = iMoved; |
|
4123 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4124 if( rc==SQLITE_OK && iMoved!=0 ){ |
|
4125 sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1); |
|
4126 } |
|
4127 #endif |
|
4128 } |
|
4129 break; |
|
4130 } |
|
4131 |
|
4132 /* Opcode: Clear P1 P2 * |
|
4133 ** |
|
4134 ** Delete all contents of the database table or index whose root page |
|
4135 ** in the database file is given by P1. But, unlike Destroy, do not |
|
4136 ** remove the table or index from the database file. |
|
4137 ** |
|
4138 ** The table being clear is in the main database file if P2==0. If |
|
4139 ** P2==1 then the table to be clear is in the auxiliary database file |
|
4140 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
|
4141 ** |
|
4142 ** See also: Destroy |
|
4143 */ |
|
4144 case OP_Clear: { /* no-push */ |
|
4145 |
|
4146 /* For consistency with the way other features of SQLite operate |
|
4147 ** with a truncate, we will also skip the update callback. |
|
4148 */ |
|
4149 #if 0 |
|
4150 Btree *pBt = db->aDb[pOp->p2].pBt; |
|
4151 if( db->xUpdateCallback && pOp->p3 ){ |
|
4152 const char *zDb = db->aDb[pOp->p2].zName; |
|
4153 const char *zTbl = pOp->p3; |
|
4154 BtCursor *pCur = 0; |
|
4155 int fin = 0; |
|
4156 |
|
4157 rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur); |
|
4158 if( rc!=SQLITE_OK ){ |
|
4159 goto abort_due_to_error; |
|
4160 } |
|
4161 for( |
|
4162 rc=sqlite3BtreeFirst(pCur, &fin); |
|
4163 rc==SQLITE_OK && !fin; |
|
4164 rc=sqlite3BtreeNext(pCur, &fin) |
|
4165 ){ |
|
4166 i64 iKey; |
|
4167 rc = sqlite3BtreeKeySize(pCur, &iKey); |
|
4168 if( rc ){ |
|
4169 break; |
|
4170 } |
|
4171 iKey = keyToInt(iKey); |
|
4172 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); |
|
4173 } |
|
4174 sqlite3BtreeCloseCursor(pCur); |
|
4175 if( rc!=SQLITE_OK ){ |
|
4176 goto abort_due_to_error; |
|
4177 } |
|
4178 } |
|
4179 #endif |
|
4180 assert( (p->btreeMask & (1<<pOp->p2))!=0 ); |
|
4181 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); |
|
4182 break; |
|
4183 } |
|
4184 |
|
4185 /* Opcode: CreateTable P1 * * |
|
4186 ** |
|
4187 ** Allocate a new table in the main database file if P2==0 or in the |
|
4188 ** auxiliary database file if P2==1. Push the page number |
|
4189 ** for the root page of the new table onto the stack. |
|
4190 ** |
|
4191 ** The difference between a table and an index is this: A table must |
|
4192 ** have a 4-byte integer key and can have arbitrary data. An index |
|
4193 ** has an arbitrary key but no data. |
|
4194 ** |
|
4195 ** See also: CreateIndex |
|
4196 */ |
|
4197 /* Opcode: CreateIndex P1 * * |
|
4198 ** |
|
4199 ** Allocate a new index in the main database file if P2==0 or in the |
|
4200 ** auxiliary database file if P2==1. Push the page number of the |
|
4201 ** root page of the new index onto the stack. |
|
4202 ** |
|
4203 ** See documentation on OP_CreateTable for additional information. |
|
4204 */ |
|
4205 case OP_CreateIndex: |
|
4206 case OP_CreateTable: { |
|
4207 int pgno; |
|
4208 int flags; |
|
4209 Db *pDb; |
|
4210 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
|
4211 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); |
|
4212 pDb = &db->aDb[pOp->p1]; |
|
4213 assert( pDb->pBt!=0 ); |
|
4214 if( pOp->opcode==OP_CreateTable ){ |
|
4215 /* flags = BTREE_INTKEY; */ |
|
4216 flags = BTREE_LEAFDATA|BTREE_INTKEY; |
|
4217 }else{ |
|
4218 flags = BTREE_ZERODATA; |
|
4219 } |
|
4220 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); |
|
4221 pTos++; |
|
4222 if( rc==SQLITE_OK ){ |
|
4223 pTos->u.i = pgno; |
|
4224 pTos->flags = MEM_Int; |
|
4225 }else{ |
|
4226 pTos->flags = MEM_Null; |
|
4227 } |
|
4228 break; |
|
4229 } |
|
4230 |
|
4231 /* Opcode: ParseSchema P1 P2 P3 |
|
4232 ** |
|
4233 ** Read and parse all entries from the SQLITE_MASTER table of database P1 |
|
4234 ** that match the WHERE clause P3. P2 is the "force" flag. Always do |
|
4235 ** the parsing if P2 is true. If P2 is false, then this routine is a |
|
4236 ** no-op if the schema is not currently loaded. In other words, if P2 |
|
4237 ** is false, the SQLITE_MASTER table is only parsed if the rest of the |
|
4238 ** schema is already loaded into the symbol table. |
|
4239 ** |
|
4240 ** This opcode invokes the parser to create a new virtual machine, |
|
4241 ** then runs the new virtual machine. It is thus a reentrant opcode. |
|
4242 */ |
|
4243 case OP_ParseSchema: { /* no-push */ |
|
4244 char *zSql; |
|
4245 int iDb = pOp->p1; |
|
4246 const char *zMaster; |
|
4247 InitData initData; |
|
4248 |
|
4249 assert( iDb>=0 && iDb<db->nDb ); |
|
4250 if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){ |
|
4251 break; |
|
4252 } |
|
4253 zMaster = SCHEMA_TABLE(iDb); |
|
4254 initData.db = db; |
|
4255 initData.iDb = pOp->p1; |
|
4256 initData.pzErrMsg = &p->zErrMsg; |
|
4257 zSql = sqlite3MPrintf(db, |
|
4258 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", |
|
4259 db->aDb[iDb].zName, zMaster, pOp->p3); |
|
4260 if( zSql==0 ) goto no_mem; |
|
4261 sqlite3SafetyOff(db); |
|
4262 assert( db->init.busy==0 ); |
|
4263 db->init.busy = 1; |
|
4264 assert( !db->mallocFailed ); |
|
4265 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); |
|
4266 if( rc==SQLITE_ABORT ) rc = initData.rc; |
|
4267 sqlite3_free(zSql); |
|
4268 db->init.busy = 0; |
|
4269 sqlite3SafetyOn(db); |
|
4270 if( rc==SQLITE_NOMEM ){ |
|
4271 goto no_mem; |
|
4272 } |
|
4273 break; |
|
4274 } |
|
4275 |
|
4276 #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) |
|
4277 /* Opcode: LoadAnalysis P1 * * |
|
4278 ** |
|
4279 ** Read the sqlite_stat1 table for database P1 and load the content |
|
4280 ** of that table into the internal index hash table. This will cause |
|
4281 ** the analysis to be used when preparing all subsequent queries. |
|
4282 */ |
|
4283 case OP_LoadAnalysis: { /* no-push */ |
|
4284 int iDb = pOp->p1; |
|
4285 assert( iDb>=0 && iDb<db->nDb ); |
|
4286 rc = sqlite3AnalysisLoad(db, iDb); |
|
4287 break; |
|
4288 } |
|
4289 #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */ |
|
4290 |
|
4291 /* Opcode: DropTable P1 * P3 |
|
4292 ** |
|
4293 ** Remove the internal (in-memory) data structures that describe |
|
4294 ** the table named P3 in database P1. This is called after a table |
|
4295 ** is dropped in order to keep the internal representation of the |
|
4296 ** schema consistent with what is on disk. |
|
4297 */ |
|
4298 case OP_DropTable: { /* no-push */ |
|
4299 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3); |
|
4300 break; |
|
4301 } |
|
4302 |
|
4303 /* Opcode: DropIndex P1 * P3 |
|
4304 ** |
|
4305 ** Remove the internal (in-memory) data structures that describe |
|
4306 ** the index named P3 in database P1. This is called after an index |
|
4307 ** is dropped in order to keep the internal representation of the |
|
4308 ** schema consistent with what is on disk. |
|
4309 */ |
|
4310 case OP_DropIndex: { /* no-push */ |
|
4311 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3); |
|
4312 break; |
|
4313 } |
|
4314 |
|
4315 /* Opcode: DropTrigger P1 * P3 |
|
4316 ** |
|
4317 ** Remove the internal (in-memory) data structures that describe |
|
4318 ** the trigger named P3 in database P1. This is called after a trigger |
|
4319 ** is dropped in order to keep the internal representation of the |
|
4320 ** schema consistent with what is on disk. |
|
4321 */ |
|
4322 case OP_DropTrigger: { /* no-push */ |
|
4323 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3); |
|
4324 break; |
|
4325 } |
|
4326 |
|
4327 |
|
4328 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
4329 /* Opcode: IntegrityCk P1 P2 * |
|
4330 ** |
|
4331 ** Do an analysis of the currently open database. Push onto the |
|
4332 ** stack the text of an error message describing any problems. |
|
4333 ** If no problems are found, push a NULL onto the stack. |
|
4334 ** |
|
4335 ** P1 is the address of a memory cell that contains the maximum |
|
4336 ** number of allowed errors. At most mem[P1] errors will be reported. |
|
4337 ** In other words, the analysis stops as soon as mem[P1] errors are |
|
4338 ** seen. Mem[P1] is updated with the number of errors remaining. |
|
4339 ** |
|
4340 ** The root page numbers of all tables in the database are integer |
|
4341 ** values on the stack. This opcode pulls as many integers as it |
|
4342 ** can off of the stack and uses those numbers as the root pages. |
|
4343 ** |
|
4344 ** If P2 is not zero, the check is done on the auxiliary database |
|
4345 ** file, not the main database file. |
|
4346 ** |
|
4347 ** This opcode is used to implement the integrity_check pragma. |
|
4348 */ |
|
4349 case OP_IntegrityCk: { |
|
4350 int nRoot; |
|
4351 int *aRoot; |
|
4352 int j; |
|
4353 int nErr; |
|
4354 char *z; |
|
4355 Mem *pnErr; |
|
4356 |
|
4357 for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){ |
|
4358 if( (pTos[-nRoot].flags & MEM_Int)==0 ) break; |
|
4359 } |
|
4360 assert( nRoot>0 ); |
|
4361 aRoot = (int*)sqlite3_malloc( sizeof(int)*(nRoot+1) ); |
|
4362 if( aRoot==0 ) goto no_mem; |
|
4363 j = pOp->p1; |
|
4364 assert( j>=0 && j<p->nMem ); |
|
4365 pnErr = &p->aMem[j]; |
|
4366 assert( (pnErr->flags & MEM_Int)!=0 ); |
|
4367 for(j=0; j<nRoot; j++){ |
|
4368 aRoot[j] = (pTos-j)->u.i; |
|
4369 } |
|
4370 aRoot[j] = 0; |
|
4371 popStack(&pTos, nRoot); |
|
4372 pTos++; |
|
4373 assert( pOp->p2>=0 && pOp->p2<db->nDb ); |
|
4374 assert( (p->btreeMask & (1<<pOp->p2))!=0 ); |
|
4375 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot, |
|
4376 pnErr->u.i, &nErr); |
|
4377 pnErr->u.i -= nErr; |
|
4378 if( nErr==0 ){ |
|
4379 assert( z==0 ); |
|
4380 pTos->flags = MEM_Null; |
|
4381 }else{ |
|
4382 pTos->z = z; |
|
4383 pTos->n = strlen(z); |
|
4384 pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; |
|
4385 pTos->xDel = 0; |
|
4386 } |
|
4387 pTos->enc = SQLITE_UTF8; |
|
4388 sqlite3VdbeChangeEncoding(pTos, encoding); |
|
4389 sqlite3_free(aRoot); |
|
4390 break; |
|
4391 } |
|
4392 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
4393 |
|
4394 /* Opcode: FifoWrite * * * |
|
4395 ** |
|
4396 ** Write the integer on the top of the stack |
|
4397 ** into the Fifo. |
|
4398 */ |
|
4399 case OP_FifoWrite: { /* no-push */ |
|
4400 assert( pTos>=p->aStack ); |
|
4401 sqlite3VdbeMemIntegerify(pTos); |
|
4402 if( sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i)==SQLITE_NOMEM ){ |
|
4403 goto no_mem; |
|
4404 } |
|
4405 assert( (pTos->flags & MEM_Dyn)==0 ); |
|
4406 pTos--; |
|
4407 break; |
|
4408 } |
|
4409 |
|
4410 /* Opcode: FifoRead * P2 * |
|
4411 ** |
|
4412 ** Attempt to read a single integer from the Fifo |
|
4413 ** and push it onto the stack. If the Fifo is empty |
|
4414 ** push nothing but instead jump to P2. |
|
4415 */ |
|
4416 case OP_FifoRead: { |
|
4417 i64 v; |
|
4418 CHECK_FOR_INTERRUPT; |
|
4419 if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){ |
|
4420 pc = pOp->p2 - 1; |
|
4421 }else{ |
|
4422 pTos++; |
|
4423 pTos->u.i = v; |
|
4424 pTos->flags = MEM_Int; |
|
4425 } |
|
4426 break; |
|
4427 } |
|
4428 |
|
4429 #ifndef SQLITE_OMIT_TRIGGER |
|
4430 /* Opcode: ContextPush * * * |
|
4431 ** |
|
4432 ** Save the current Vdbe context such that it can be restored by a ContextPop |
|
4433 ** opcode. The context stores the last insert row id, the last statement change |
|
4434 ** count, and the current statement change count. |
|
4435 */ |
|
4436 case OP_ContextPush: { /* no-push */ |
|
4437 int i = p->contextStackTop++; |
|
4438 Context *pContext; |
|
4439 |
|
4440 assert( i>=0 ); |
|
4441 /* FIX ME: This should be allocated as part of the vdbe at compile-time */ |
|
4442 if( i>=p->contextStackDepth ){ |
|
4443 p->contextStackDepth = i+1; |
|
4444 p->contextStack = (Context*)sqlite3DbReallocOrFree(db, p->contextStack, |
|
4445 sizeof(Context)*(i+1)); |
|
4446 if( p->contextStack==0 ) goto no_mem; |
|
4447 } |
|
4448 pContext = &p->contextStack[i]; |
|
4449 pContext->lastRowid = db->lastRowid; |
|
4450 pContext->nChange = p->nChange; |
|
4451 pContext->sFifo = p->sFifo; |
|
4452 sqlite3VdbeFifoInit(&p->sFifo); |
|
4453 break; |
|
4454 } |
|
4455 |
|
4456 /* Opcode: ContextPop * * * |
|
4457 ** |
|
4458 ** Restore the Vdbe context to the state it was in when contextPush was last |
|
4459 ** executed. The context stores the last insert row id, the last statement |
|
4460 ** change count, and the current statement change count. |
|
4461 */ |
|
4462 case OP_ContextPop: { /* no-push */ |
|
4463 Context *pContext = &p->contextStack[--p->contextStackTop]; |
|
4464 assert( p->contextStackTop>=0 ); |
|
4465 db->lastRowid = pContext->lastRowid; |
|
4466 p->nChange = pContext->nChange; |
|
4467 sqlite3VdbeFifoClear(&p->sFifo); |
|
4468 p->sFifo = pContext->sFifo; |
|
4469 break; |
|
4470 } |
|
4471 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
|
4472 |
|
4473 /* Opcode: MemStore P1 P2 * |
|
4474 ** |
|
4475 ** Write the top of the stack into memory location P1. |
|
4476 ** P1 should be a small integer since space is allocated |
|
4477 ** for all memory locations between 0 and P1 inclusive. |
|
4478 ** |
|
4479 ** After the data is stored in the memory location, the |
|
4480 ** stack is popped once if P2 is 1. If P2 is zero, then |
|
4481 ** the original data remains on the stack. |
|
4482 */ |
|
4483 case OP_MemStore: { /* no-push */ |
|
4484 assert( pTos>=p->aStack ); |
|
4485 assert( pOp->p1>=0 && pOp->p1<p->nMem ); |
|
4486 rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos); |
|
4487 pTos--; |
|
4488 |
|
4489 /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will |
|
4490 ** restore the top of the stack to its original value. |
|
4491 */ |
|
4492 if( pOp->p2 ){ |
|
4493 break; |
|
4494 } |
|
4495 } |
|
4496 /* Opcode: MemLoad P1 * * |
|
4497 ** |
|
4498 ** Push a copy of the value in memory location P1 onto the stack. |
|
4499 ** |
|
4500 ** If the value is a string, then the value pushed is a pointer to |
|
4501 ** the string that is stored in the memory location. If the memory |
|
4502 ** location is subsequently changed (using OP_MemStore) then the |
|
4503 ** value pushed onto the stack will change too. |
|
4504 */ |
|
4505 case OP_MemLoad: { |
|
4506 int i = pOp->p1; |
|
4507 assert( i>=0 && i<p->nMem ); |
|
4508 pTos++; |
|
4509 sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem); |
|
4510 break; |
|
4511 } |
|
4512 |
|
4513 #ifndef SQLITE_OMIT_AUTOINCREMENT |
|
4514 /* Opcode: MemMax P1 * * |
|
4515 ** |
|
4516 ** Set the value of memory cell P1 to the maximum of its current value |
|
4517 ** and the value on the top of the stack. The stack is unchanged. |
|
4518 ** |
|
4519 ** This instruction throws an error if the memory cell is not initially |
|
4520 ** an integer. |
|
4521 */ |
|
4522 case OP_MemMax: { /* no-push */ |
|
4523 int i = pOp->p1; |
|
4524 Mem *pMem; |
|
4525 assert( pTos>=p->aStack ); |
|
4526 assert( i>=0 && i<p->nMem ); |
|
4527 pMem = &p->aMem[i]; |
|
4528 sqlite3VdbeMemIntegerify(pMem); |
|
4529 sqlite3VdbeMemIntegerify(pTos); |
|
4530 if( pMem->u.i<pTos->u.i){ |
|
4531 pMem->u.i = pTos->u.i; |
|
4532 } |
|
4533 break; |
|
4534 } |
|
4535 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
|
4536 |
|
4537 /* Opcode: MemIncr P1 P2 * |
|
4538 ** |
|
4539 ** Increment the integer valued memory cell P2 by the value in P1. |
|
4540 ** |
|
4541 ** It is illegal to use this instruction on a memory cell that does |
|
4542 ** not contain an integer. An assertion fault will result if you try. |
|
4543 */ |
|
4544 case OP_MemIncr: { /* no-push */ |
|
4545 int i = pOp->p2; |
|
4546 Mem *pMem; |
|
4547 assert( i>=0 && i<p->nMem ); |
|
4548 pMem = &p->aMem[i]; |
|
4549 assert( pMem->flags==MEM_Int ); |
|
4550 pMem->u.i += pOp->p1; |
|
4551 break; |
|
4552 } |
|
4553 |
|
4554 /* Opcode: IfMemPos P1 P2 * |
|
4555 ** |
|
4556 ** If the value of memory cell P1 is 1 or greater, jump to P2. |
|
4557 ** |
|
4558 ** It is illegal to use this instruction on a memory cell that does |
|
4559 ** not contain an integer. An assertion fault will result if you try. |
|
4560 */ |
|
4561 case OP_IfMemPos: { /* no-push */ |
|
4562 int i = pOp->p1; |
|
4563 Mem *pMem; |
|
4564 assert( i>=0 && i<p->nMem ); |
|
4565 pMem = &p->aMem[i]; |
|
4566 assert( pMem->flags==MEM_Int ); |
|
4567 if( pMem->u.i>0 ){ |
|
4568 pc = pOp->p2 - 1; |
|
4569 } |
|
4570 break; |
|
4571 } |
|
4572 |
|
4573 /* Opcode: IfMemNeg P1 P2 * |
|
4574 ** |
|
4575 ** If the value of memory cell P1 is less than zero, jump to P2. |
|
4576 ** |
|
4577 ** It is illegal to use this instruction on a memory cell that does |
|
4578 ** not contain an integer. An assertion fault will result if you try. |
|
4579 */ |
|
4580 case OP_IfMemNeg: { /* no-push */ |
|
4581 int i = pOp->p1; |
|
4582 Mem *pMem; |
|
4583 assert( i>=0 && i<p->nMem ); |
|
4584 pMem = &p->aMem[i]; |
|
4585 assert( pMem->flags==MEM_Int ); |
|
4586 if( pMem->u.i<0 ){ |
|
4587 pc = pOp->p2 - 1; |
|
4588 } |
|
4589 break; |
|
4590 } |
|
4591 |
|
4592 /* Opcode: IfMemZero P1 P2 * |
|
4593 ** |
|
4594 ** If the value of memory cell P1 is exactly 0, jump to P2. |
|
4595 ** |
|
4596 ** It is illegal to use this instruction on a memory cell that does |
|
4597 ** not contain an integer. An assertion fault will result if you try. |
|
4598 */ |
|
4599 case OP_IfMemZero: { /* no-push */ |
|
4600 int i = pOp->p1; |
|
4601 Mem *pMem; |
|
4602 assert( i>=0 && i<p->nMem ); |
|
4603 pMem = &p->aMem[i]; |
|
4604 assert( pMem->flags==MEM_Int ); |
|
4605 if( pMem->u.i==0 ){ |
|
4606 pc = pOp->p2 - 1; |
|
4607 } |
|
4608 break; |
|
4609 } |
|
4610 |
|
4611 /* Opcode: MemNull P1 * * |
|
4612 ** |
|
4613 ** Store a NULL in memory cell P1 |
|
4614 */ |
|
4615 case OP_MemNull: { |
|
4616 assert( pOp->p1>=0 && pOp->p1<p->nMem ); |
|
4617 sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]); |
|
4618 break; |
|
4619 } |
|
4620 |
|
4621 /* Opcode: MemInt P1 P2 * |
|
4622 ** |
|
4623 ** Store the integer value P1 in memory cell P2. |
|
4624 */ |
|
4625 case OP_MemInt: { |
|
4626 assert( pOp->p2>=0 && pOp->p2<p->nMem ); |
|
4627 sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1); |
|
4628 break; |
|
4629 } |
|
4630 |
|
4631 /* Opcode: MemMove P1 P2 * |
|
4632 ** |
|
4633 ** Move the content of memory cell P2 over to memory cell P1. |
|
4634 ** Any prior content of P1 is erased. Memory cell P2 is left |
|
4635 ** containing a NULL. |
|
4636 */ |
|
4637 case OP_MemMove: { |
|
4638 assert( pOp->p1>=0 && pOp->p1<p->nMem ); |
|
4639 assert( pOp->p2>=0 && pOp->p2<p->nMem ); |
|
4640 rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]); |
|
4641 break; |
|
4642 } |
|
4643 |
|
4644 /* Opcode: AggStep P1 P2 P3 |
|
4645 ** |
|
4646 ** Execute the step function for an aggregate. The |
|
4647 ** function has P2 arguments. P3 is a pointer to the FuncDef |
|
4648 ** structure that specifies the function. Use memory location |
|
4649 ** P1 as the accumulator. |
|
4650 ** |
|
4651 ** The P2 arguments are popped from the stack. |
|
4652 */ |
|
4653 case OP_AggStep: { /* no-push */ |
|
4654 int n = pOp->p2; |
|
4655 int i; |
|
4656 Mem *pMem, *pRec; |
|
4657 sqlite3_context ctx; |
|
4658 sqlite3_value **apVal; |
|
4659 |
|
4660 assert( n>=0 ); |
|
4661 pRec = &pTos[1-n]; |
|
4662 assert( pRec>=p->aStack ); |
|
4663 apVal = p->apArg; |
|
4664 assert( apVal || n==0 ); |
|
4665 for(i=0; i<n; i++, pRec++){ |
|
4666 apVal[i] = pRec; |
|
4667 storeTypeInfo(pRec, encoding); |
|
4668 } |
|
4669 ctx.pFunc = (FuncDef*)pOp->p3; |
|
4670 assert( pOp->p1>=0 && pOp->p1<p->nMem ); |
|
4671 ctx.pMem = pMem = &p->aMem[pOp->p1]; |
|
4672 pMem->n++; |
|
4673 ctx.s.flags = MEM_Null; |
|
4674 ctx.s.z = 0; |
|
4675 ctx.s.xDel = 0; |
|
4676 ctx.s.db = db; |
|
4677 ctx.isError = 0; |
|
4678 ctx.pColl = 0; |
|
4679 if( ctx.pFunc->needCollSeq ){ |
|
4680 assert( pOp>p->aOp ); |
|
4681 assert( pOp[-1].p3type==P3_COLLSEQ ); |
|
4682 assert( pOp[-1].opcode==OP_CollSeq ); |
|
4683 ctx.pColl = (CollSeq *)pOp[-1].p3; |
|
4684 } |
|
4685 (ctx.pFunc->xStep)(&ctx, n, apVal); |
|
4686 popStack(&pTos, n); |
|
4687 if( ctx.isError ){ |
|
4688 sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); |
|
4689 rc = SQLITE_ERROR; |
|
4690 } |
|
4691 sqlite3VdbeMemRelease(&ctx.s); |
|
4692 break; |
|
4693 } |
|
4694 |
|
4695 /* Opcode: AggFinal P1 P2 P3 |
|
4696 ** |
|
4697 ** Execute the finalizer function for an aggregate. P1 is |
|
4698 ** the memory location that is the accumulator for the aggregate. |
|
4699 ** |
|
4700 ** P2 is the number of arguments that the step function takes and |
|
4701 ** P3 is a pointer to the FuncDef for this function. The P2 |
|
4702 ** argument is not used by this opcode. It is only there to disambiguate |
|
4703 ** functions that can take varying numbers of arguments. The |
|
4704 ** P3 argument is only needed for the degenerate case where |
|
4705 ** the step function was not previously called. |
|
4706 */ |
|
4707 case OP_AggFinal: { /* no-push */ |
|
4708 Mem *pMem; |
|
4709 assert( pOp->p1>=0 && pOp->p1<p->nMem ); |
|
4710 pMem = &p->aMem[pOp->p1]; |
|
4711 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); |
|
4712 rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3); |
|
4713 if( rc==SQLITE_ERROR ){ |
|
4714 sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0); |
|
4715 } |
|
4716 if( sqlite3VdbeMemTooBig(pMem) ){ |
|
4717 goto too_big; |
|
4718 } |
|
4719 break; |
|
4720 } |
|
4721 |
|
4722 |
|
4723 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
|
4724 /* Opcode: Vacuum * * * |
|
4725 ** |
|
4726 ** Vacuum the entire database. This opcode will cause other virtual |
|
4727 ** machines to be created and run. It may not be called from within |
|
4728 ** a transaction. |
|
4729 */ |
|
4730 case OP_Vacuum: { /* no-push */ |
|
4731 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
4732 rc = sqlite3RunVacuum(&p->zErrMsg, db); |
|
4733 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
4734 break; |
|
4735 } |
|
4736 #endif |
|
4737 |
|
4738 #if !defined(SQLITE_OMIT_AUTOVACUUM) |
|
4739 /* Opcode: IncrVacuum P1 P2 * |
|
4740 ** |
|
4741 ** Perform a single step of the incremental vacuum procedure on |
|
4742 ** the P1 database. If the vacuum has finished, jump to instruction |
|
4743 ** P2. Otherwise, fall through to the next instruction. |
|
4744 */ |
|
4745 case OP_IncrVacuum: { /* no-push */ |
|
4746 Btree *pBt; |
|
4747 |
|
4748 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
|
4749 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); |
|
4750 pBt = db->aDb[pOp->p1].pBt; |
|
4751 rc = sqlite3BtreeIncrVacuum(pBt); |
|
4752 if( rc==SQLITE_DONE ){ |
|
4753 pc = pOp->p2 - 1; |
|
4754 rc = SQLITE_OK; |
|
4755 } |
|
4756 break; |
|
4757 } |
|
4758 #endif |
|
4759 |
|
4760 /* Opcode: Expire P1 * * |
|
4761 ** |
|
4762 ** Cause precompiled statements to become expired. An expired statement |
|
4763 ** fails with an error code of SQLITE_SCHEMA if it is ever executed |
|
4764 ** (via sqlite3_step()). |
|
4765 ** |
|
4766 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, |
|
4767 ** then only the currently executing statement is affected. |
|
4768 */ |
|
4769 case OP_Expire: { /* no-push */ |
|
4770 if( !pOp->p1 ){ |
|
4771 sqlite3ExpirePreparedStatements(db); |
|
4772 }else{ |
|
4773 p->expired = 1; |
|
4774 } |
|
4775 break; |
|
4776 } |
|
4777 |
|
4778 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
4779 /* Opcode: TableLock P1 P2 P3 |
|
4780 ** |
|
4781 ** Obtain a lock on a particular table. This instruction is only used when |
|
4782 ** the shared-cache feature is enabled. |
|
4783 ** |
|
4784 ** If P1 is not negative, then it is the index of the database |
|
4785 ** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a |
|
4786 ** write-lock is required. In this case the index of the database is the |
|
4787 ** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is |
|
4788 ** required. |
|
4789 ** |
|
4790 ** P2 contains the root-page of the table to lock. |
|
4791 ** |
|
4792 ** P3 contains a pointer to the name of the table being locked. This is only |
|
4793 ** used to generate an error message if the lock cannot be obtained. |
|
4794 */ |
|
4795 case OP_TableLock: { /* no-push */ |
|
4796 int p1 = pOp->p1; |
|
4797 u8 isWriteLock = (p1<0); |
|
4798 if( isWriteLock ){ |
|
4799 p1 = (-1*p1)-1; |
|
4800 } |
|
4801 assert( p1>=0 && p1<db->nDb ); |
|
4802 assert( (p->btreeMask & (1<<p1))!=0 ); |
|
4803 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); |
|
4804 if( rc==SQLITE_LOCKED ){ |
|
4805 const char *z = (const char *)pOp->p3; |
|
4806 sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0); |
|
4807 } |
|
4808 break; |
|
4809 } |
|
4810 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
|
4811 |
|
4812 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4813 /* Opcode: VBegin * * P3 |
|
4814 ** |
|
4815 ** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method |
|
4816 ** for that table. |
|
4817 */ |
|
4818 case OP_VBegin: { /* no-push */ |
|
4819 rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3); |
|
4820 break; |
|
4821 } |
|
4822 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
4823 |
|
4824 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4825 /* Opcode: VCreate P1 * P3 |
|
4826 ** |
|
4827 ** P3 is the name of a virtual table in database P1. Call the xCreate method |
|
4828 ** for that table. |
|
4829 */ |
|
4830 case OP_VCreate: { /* no-push */ |
|
4831 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg); |
|
4832 break; |
|
4833 } |
|
4834 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
4835 |
|
4836 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4837 /* Opcode: VDestroy P1 * P3 |
|
4838 ** |
|
4839 ** P3 is the name of a virtual table in database P1. Call the xDestroy method |
|
4840 ** of that table. |
|
4841 */ |
|
4842 case OP_VDestroy: { /* no-push */ |
|
4843 p->inVtabMethod = 2; |
|
4844 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3); |
|
4845 p->inVtabMethod = 0; |
|
4846 break; |
|
4847 } |
|
4848 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
4849 |
|
4850 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4851 /* Opcode: VOpen P1 * P3 |
|
4852 ** |
|
4853 ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure. |
|
4854 ** P1 is a cursor number. This opcode opens a cursor to the virtual |
|
4855 ** table and stores that cursor in P1. |
|
4856 */ |
|
4857 case OP_VOpen: { /* no-push */ |
|
4858 Cursor *pCur = 0; |
|
4859 sqlite3_vtab_cursor *pVtabCursor = 0; |
|
4860 |
|
4861 sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3); |
|
4862 sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; |
|
4863 |
|
4864 assert(pVtab && pModule); |
|
4865 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
4866 rc = pModule->xOpen(pVtab, &pVtabCursor); |
|
4867 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
4868 if( SQLITE_OK==rc ){ |
|
4869 /* Initialise sqlite3_vtab_cursor base class */ |
|
4870 pVtabCursor->pVtab = pVtab; |
|
4871 |
|
4872 /* Initialise vdbe cursor object */ |
|
4873 pCur = allocateCursor(p, pOp->p1, -1); |
|
4874 if( pCur ){ |
|
4875 pCur->pVtabCursor = pVtabCursor; |
|
4876 pCur->pModule = pVtabCursor->pVtab->pModule; |
|
4877 }else{ |
|
4878 db->mallocFailed = 1; |
|
4879 pModule->xClose(pVtabCursor); |
|
4880 } |
|
4881 } |
|
4882 break; |
|
4883 } |
|
4884 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
4885 |
|
4886 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4887 /* Opcode: VFilter P1 P2 P3 |
|
4888 ** |
|
4889 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if |
|
4890 ** the filtered result set is empty. |
|
4891 ** |
|
4892 ** P3 is either NULL or a string that was generated by the xBestIndex |
|
4893 ** method of the module. The interpretation of the P3 string is left |
|
4894 ** to the module implementation. |
|
4895 ** |
|
4896 ** This opcode invokes the xFilter method on the virtual table specified |
|
4897 ** by P1. The integer query plan parameter to xFilter is the top of the |
|
4898 ** stack. Next down on the stack is the argc parameter. Beneath the |
|
4899 ** next of stack are argc additional parameters which are passed to |
|
4900 ** xFilter as argv. The topmost parameter (i.e. 3rd element popped from |
|
4901 ** the stack) becomes argv[argc-1] when passed to xFilter. |
|
4902 ** |
|
4903 ** The integer query plan parameter, argc, and all argv stack values |
|
4904 ** are popped from the stack before this instruction completes. |
|
4905 ** |
|
4906 ** A jump is made to P2 if the result set after filtering would be |
|
4907 ** empty. |
|
4908 */ |
|
4909 case OP_VFilter: { /* no-push */ |
|
4910 int nArg; |
|
4911 |
|
4912 const sqlite3_module *pModule; |
|
4913 |
|
4914 Cursor *pCur = p->apCsr[pOp->p1]; |
|
4915 assert( pCur->pVtabCursor ); |
|
4916 pModule = pCur->pVtabCursor->pVtab->pModule; |
|
4917 |
|
4918 /* Grab the index number and argc parameters off the top of the stack. */ |
|
4919 assert( (&pTos[-1])>=p->aStack ); |
|
4920 assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int ); |
|
4921 nArg = pTos[-1].u.i; |
|
4922 |
|
4923 /* Invoke the xFilter method */ |
|
4924 { |
|
4925 int res = 0; |
|
4926 int i; |
|
4927 Mem **apArg = p->apArg; |
|
4928 for(i = 0; i<nArg; i++){ |
|
4929 apArg[i] = &pTos[i+1-2-nArg]; |
|
4930 storeTypeInfo(apArg[i], 0); |
|
4931 } |
|
4932 |
|
4933 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
4934 p->inVtabMethod = 1; |
|
4935 rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg); |
|
4936 p->inVtabMethod = 0; |
|
4937 if( rc==SQLITE_OK ){ |
|
4938 res = pModule->xEof(pCur->pVtabCursor); |
|
4939 } |
|
4940 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
4941 |
|
4942 if( res ){ |
|
4943 pc = pOp->p2 - 1; |
|
4944 } |
|
4945 } |
|
4946 |
|
4947 /* Pop the index number, argc value and parameters off the stack */ |
|
4948 popStack(&pTos, 2+nArg); |
|
4949 break; |
|
4950 } |
|
4951 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
4952 |
|
4953 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4954 /* Opcode: VRowid P1 * * |
|
4955 ** |
|
4956 ** Push an integer onto the stack which is the rowid of |
|
4957 ** the virtual-table that the P1 cursor is pointing to. |
|
4958 */ |
|
4959 case OP_VRowid: { |
|
4960 const sqlite3_module *pModule; |
|
4961 |
|
4962 Cursor *pCur = p->apCsr[pOp->p1]; |
|
4963 assert( pCur->pVtabCursor ); |
|
4964 pModule = pCur->pVtabCursor->pVtab->pModule; |
|
4965 if( pModule->xRowid==0 ){ |
|
4966 sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0); |
|
4967 rc = SQLITE_ERROR; |
|
4968 } else { |
|
4969 sqlite_int64 iRow; |
|
4970 |
|
4971 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
4972 rc = pModule->xRowid(pCur->pVtabCursor, &iRow); |
|
4973 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
4974 |
|
4975 pTos++; |
|
4976 pTos->flags = MEM_Int; |
|
4977 pTos->u.i = iRow; |
|
4978 } |
|
4979 |
|
4980 break; |
|
4981 } |
|
4982 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
4983 |
|
4984 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
4985 /* Opcode: VColumn P1 P2 * |
|
4986 ** |
|
4987 ** Push onto the stack the value of the P2-th column of |
|
4988 ** the row of the virtual-table that the P1 cursor is pointing to. |
|
4989 */ |
|
4990 case OP_VColumn: { |
|
4991 const sqlite3_module *pModule; |
|
4992 |
|
4993 Cursor *pCur = p->apCsr[pOp->p1]; |
|
4994 assert( pCur->pVtabCursor ); |
|
4995 pModule = pCur->pVtabCursor->pVtab->pModule; |
|
4996 if( pModule->xColumn==0 ){ |
|
4997 sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0); |
|
4998 rc = SQLITE_ERROR; |
|
4999 } else { |
|
5000 sqlite3_context sContext; |
|
5001 memset(&sContext, 0, sizeof(sContext)); |
|
5002 sContext.s.flags = MEM_Null; |
|
5003 sContext.s.db = db; |
|
5004 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
5005 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); |
|
5006 |
|
5007 /* Copy the result of the function to the top of the stack. We |
|
5008 ** do this regardless of whether or not an error occured to ensure any |
|
5009 ** dynamic allocation in sContext.s (a Mem struct) is released. |
|
5010 */ |
|
5011 sqlite3VdbeChangeEncoding(&sContext.s, encoding); |
|
5012 pTos++; |
|
5013 pTos->flags = 0; |
|
5014 sqlite3VdbeMemMove(pTos, &sContext.s); |
|
5015 |
|
5016 if( sqlite3SafetyOn(db) ){ |
|
5017 goto abort_due_to_misuse; |
|
5018 } |
|
5019 if( sqlite3VdbeMemTooBig(pTos) ){ |
|
5020 goto too_big; |
|
5021 } |
|
5022 } |
|
5023 |
|
5024 break; |
|
5025 } |
|
5026 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
5027 |
|
5028 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
5029 /* Opcode: VNext P1 P2 * |
|
5030 ** |
|
5031 ** Advance virtual table P1 to the next row in its result set and |
|
5032 ** jump to instruction P2. Or, if the virtual table has reached |
|
5033 ** the end of its result set, then fall through to the next instruction. |
|
5034 */ |
|
5035 case OP_VNext: { /* no-push */ |
|
5036 const sqlite3_module *pModule; |
|
5037 int res = 0; |
|
5038 |
|
5039 Cursor *pCur = p->apCsr[pOp->p1]; |
|
5040 assert( pCur->pVtabCursor ); |
|
5041 pModule = pCur->pVtabCursor->pVtab->pModule; |
|
5042 if( pModule->xNext==0 ){ |
|
5043 sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0); |
|
5044 rc = SQLITE_ERROR; |
|
5045 } else { |
|
5046 /* Invoke the xNext() method of the module. There is no way for the |
|
5047 ** underlying implementation to return an error if one occurs during |
|
5048 ** xNext(). Instead, if an error occurs, true is returned (indicating that |
|
5049 ** data is available) and the error code returned when xColumn or |
|
5050 ** some other method is next invoked on the save virtual table cursor. |
|
5051 */ |
|
5052 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
5053 p->inVtabMethod = 1; |
|
5054 rc = pModule->xNext(pCur->pVtabCursor); |
|
5055 p->inVtabMethod = 0; |
|
5056 if( rc==SQLITE_OK ){ |
|
5057 res = pModule->xEof(pCur->pVtabCursor); |
|
5058 } |
|
5059 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
5060 |
|
5061 if( !res ){ |
|
5062 /* If there is data, jump to P2 */ |
|
5063 pc = pOp->p2 - 1; |
|
5064 } |
|
5065 } |
|
5066 |
|
5067 break; |
|
5068 } |
|
5069 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
5070 |
|
5071 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
5072 /* Opcode: VRename * * P3 |
|
5073 ** |
|
5074 ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure. |
|
5075 ** This opcode invokes the corresponding xRename method. The value |
|
5076 ** on the top of the stack is popped and passed as the zName argument |
|
5077 ** to the xRename method. |
|
5078 */ |
|
5079 case OP_VRename: { /* no-push */ |
|
5080 sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3); |
|
5081 assert( pVtab->pModule->xRename ); |
|
5082 |
|
5083 Stringify(pTos, encoding); |
|
5084 |
|
5085 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
5086 sqlite3VtabLock(pVtab); |
|
5087 rc = pVtab->pModule->xRename(pVtab, pTos->z); |
|
5088 sqlite3VtabUnlock(db, pVtab); |
|
5089 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
5090 |
|
5091 popStack(&pTos, 1); |
|
5092 break; |
|
5093 } |
|
5094 #endif |
|
5095 |
|
5096 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
5097 /* Opcode: VUpdate P1 P2 P3 |
|
5098 ** |
|
5099 ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure. |
|
5100 ** This opcode invokes the corresponding xUpdate method. P2 values |
|
5101 ** are taken from the stack to pass to the xUpdate invocation. The |
|
5102 ** value on the top of the stack corresponds to the p2th element |
|
5103 ** of the argv array passed to xUpdate. |
|
5104 ** |
|
5105 ** The xUpdate method will do a DELETE or an INSERT or both. |
|
5106 ** The argv[0] element (which corresponds to the P2-th element down |
|
5107 ** on the stack) is the rowid of a row to delete. If argv[0] is |
|
5108 ** NULL then no deletion occurs. The argv[1] element is the rowid |
|
5109 ** of the new row. This can be NULL to have the virtual table |
|
5110 ** select the new rowid for itself. The higher elements in the |
|
5111 ** stack are the values of columns in the new row. |
|
5112 ** |
|
5113 ** If P2==1 then no insert is performed. argv[0] is the rowid of |
|
5114 ** a row to delete. |
|
5115 ** |
|
5116 ** P1 is a boolean flag. If it is set to true and the xUpdate call |
|
5117 ** is successful, then the value returned by sqlite3_last_insert_rowid() |
|
5118 ** is set to the value of the rowid for the row just inserted. |
|
5119 */ |
|
5120 case OP_VUpdate: { /* no-push */ |
|
5121 sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3); |
|
5122 sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; |
|
5123 int nArg = pOp->p2; |
|
5124 assert( pOp->p3type==P3_VTAB ); |
|
5125 if( pModule->xUpdate==0 ){ |
|
5126 sqlite3SetString(&p->zErrMsg, "read-only table", 0); |
|
5127 rc = SQLITE_ERROR; |
|
5128 }else{ |
|
5129 int i; |
|
5130 sqlite_int64 rowid; |
|
5131 Mem **apArg = p->apArg; |
|
5132 Mem *pX = &pTos[1-nArg]; |
|
5133 for(i = 0; i<nArg; i++, pX++){ |
|
5134 storeTypeInfo(pX, 0); |
|
5135 apArg[i] = pX; |
|
5136 } |
|
5137 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; |
|
5138 sqlite3VtabLock(pVtab); |
|
5139 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); |
|
5140 sqlite3VtabUnlock(db, pVtab); |
|
5141 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
|
5142 if( pOp->p1 && rc==SQLITE_OK ){ |
|
5143 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); |
|
5144 db->lastRowid = rowid; |
|
5145 } |
|
5146 } |
|
5147 popStack(&pTos, nArg); |
|
5148 break; |
|
5149 } |
|
5150 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
5151 |
|
5152 /* An other opcode is illegal... |
|
5153 */ |
|
5154 default: { |
|
5155 assert( 0 ); |
|
5156 break; |
|
5157 } |
|
5158 |
|
5159 /***************************************************************************** |
|
5160 ** The cases of the switch statement above this line should all be indented |
|
5161 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
|
5162 ** readability. From this point on down, the normal indentation rules are |
|
5163 ** restored. |
|
5164 *****************************************************************************/ |
|
5165 } |
|
5166 |
|
5167 /* Make sure the stack limit was not exceeded */ |
|
5168 assert( pTos<=pStackLimit ); |
|
5169 |
|
5170 #ifdef VDBE_PROFILE |
|
5171 { |
|
5172 long long elapse = hwtime() - start; |
|
5173 pOp->cycles += elapse; |
|
5174 pOp->cnt++; |
|
5175 #if 0 |
|
5176 fprintf(stdout, "%10lld ", elapse); |
|
5177 sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); |
|
5178 #endif |
|
5179 } |
|
5180 #endif |
|
5181 |
|
5182 #ifdef SQLITE_TEST |
|
5183 /* Keep track of the size of the largest BLOB or STR that has appeared |
|
5184 ** on the top of the VDBE stack. |
|
5185 */ |
|
5186 if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0 |
|
5187 && pTos->n>sqlite3_max_blobsize ){ |
|
5188 sqlite3_max_blobsize = pTos->n; |
|
5189 } |
|
5190 #endif |
|
5191 |
|
5192 /* The following code adds nothing to the actual functionality |
|
5193 ** of the program. It is only here for testing and debugging. |
|
5194 ** On the other hand, it does burn CPU cycles every time through |
|
5195 ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
|
5196 */ |
|
5197 #ifndef NDEBUG |
|
5198 /* Sanity checking on the top element of the stack. If the previous |
|
5199 ** instruction was VNoChange, then the flags field of the top |
|
5200 ** of the stack is set to 0. This is technically invalid for a memory |
|
5201 ** cell, so avoid calling MemSanity() in this case. |
|
5202 */ |
|
5203 if( pTos>=p->aStack && pTos->flags ){ |
|
5204 assert( pTos->db==db ); |
|
5205 sqlite3VdbeMemSanity(pTos); |
|
5206 assert( !sqlite3VdbeMemTooBig(pTos) ); |
|
5207 } |
|
5208 assert( pc>=-1 && pc<p->nOp ); |
|
5209 |
|
5210 #ifdef SQLITE_DEBUG |
|
5211 /* Code for tracing the vdbe stack. */ |
|
5212 if( p->trace && pTos>=p->aStack ){ |
|
5213 int i; |
|
5214 fprintf(p->trace, "Stack:"); |
|
5215 for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ |
|
5216 if( pTos[i].flags & MEM_Null ){ |
|
5217 fprintf(p->trace, " NULL"); |
|
5218 }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
|
5219 fprintf(p->trace, " si:%lld", pTos[i].u.i); |
|
5220 }else if( pTos[i].flags & MEM_Int ){ |
|
5221 fprintf(p->trace, " i:%lld", pTos[i].u.i); |
|
5222 }else if( pTos[i].flags & MEM_Real ){ |
|
5223 fprintf(p->trace, " r:%g", pTos[i].r); |
|
5224 }else{ |
|
5225 char zBuf[200]; |
|
5226 sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf); |
|
5227 fprintf(p->trace, " "); |
|
5228 fprintf(p->trace, "%s", zBuf); |
|
5229 } |
|
5230 } |
|
5231 if( rc!=0 ) fprintf(p->trace," rc=%d",rc); |
|
5232 fprintf(p->trace,"\n"); |
|
5233 } |
|
5234 #endif /* SQLITE_DEBUG */ |
|
5235 #endif /* NDEBUG */ |
|
5236 } /* The end of the for(;;) loop the loops through opcodes */ |
|
5237 |
|
5238 /* If we reach this point, it means that execution is finished. |
|
5239 */ |
|
5240 vdbe_halt: |
|
5241 if( rc ){ |
|
5242 p->rc = rc; |
|
5243 rc = SQLITE_ERROR; |
|
5244 }else{ |
|
5245 rc = SQLITE_DONE; |
|
5246 } |
|
5247 sqlite3VdbeHalt(p); |
|
5248 p->pTos = pTos; |
|
5249 |
|
5250 /* This is the only way out of this procedure. We have to |
|
5251 ** release the mutexes on btrees that were acquired at the |
|
5252 ** top. */ |
|
5253 vdbe_return: |
|
5254 sqlite3BtreeMutexArrayLeave(&p->aMutex); |
|
5255 return rc; |
|
5256 |
|
5257 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH |
|
5258 ** is encountered. |
|
5259 */ |
|
5260 too_big: |
|
5261 sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0); |
|
5262 rc = SQLITE_TOOBIG; |
|
5263 goto vdbe_halt; |
|
5264 |
|
5265 /* Jump to here if a malloc() fails. |
|
5266 */ |
|
5267 no_mem: |
|
5268 db->mallocFailed = 1; |
|
5269 sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0); |
|
5270 rc = SQLITE_NOMEM; |
|
5271 goto vdbe_halt; |
|
5272 |
|
5273 /* Jump to here for an SQLITE_MISUSE error. |
|
5274 */ |
|
5275 abort_due_to_misuse: |
|
5276 rc = SQLITE_MISUSE; |
|
5277 /* Fall thru into abort_due_to_error */ |
|
5278 |
|
5279 /* Jump to here for any other kind of fatal error. The "rc" variable |
|
5280 ** should hold the error number. |
|
5281 */ |
|
5282 abort_due_to_error: |
|
5283 if( p->zErrMsg==0 ){ |
|
5284 if( db->mallocFailed ) rc = SQLITE_NOMEM; |
|
5285 sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); |
|
5286 } |
|
5287 goto vdbe_halt; |
|
5288 |
|
5289 /* Jump to here if the sqlite3_interrupt() API sets the interrupt |
|
5290 ** flag. |
|
5291 */ |
|
5292 abort_due_to_interrupt: |
|
5293 assert( db->u1.isInterrupted ); |
|
5294 if( db->magic!=SQLITE_MAGIC_BUSY ){ |
|
5295 rc = SQLITE_MISUSE; |
|
5296 }else{ |
|
5297 rc = SQLITE_INTERRUPT; |
|
5298 } |
|
5299 p->rc = rc; |
|
5300 sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); |
|
5301 goto vdbe_halt; |
|
5302 } |