1 /* |
|
2 ** 2004 May 26 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** |
|
13 ** This file contains code use to manipulate "Mem" structure. A "Mem" |
|
14 ** stores a single value in the VDBE. Mem is an opaque structure visible |
|
15 ** only within the VDBE. Interface routines refer to a Mem using the |
|
16 ** name sqlite_value |
|
17 */ |
|
18 #include "sqliteInt.h" |
|
19 #include <ctype.h> |
|
20 #include "vdbeInt.h" |
|
21 |
|
22 /* |
|
23 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) |
|
24 ** P if required. |
|
25 */ |
|
26 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) |
|
27 |
|
28 /* |
|
29 ** If pMem is an object with a valid string representation, this routine |
|
30 ** ensures the internal encoding for the string representation is |
|
31 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
|
32 ** |
|
33 ** If pMem is not a string object, or the encoding of the string |
|
34 ** representation is already stored using the requested encoding, then this |
|
35 ** routine is a no-op. |
|
36 ** |
|
37 ** SQLITE_OK is returned if the conversion is successful (or not required). |
|
38 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
|
39 ** between formats. |
|
40 */ |
|
41 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
|
42 int rc; |
|
43 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ |
|
44 return SQLITE_OK; |
|
45 } |
|
46 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
47 #ifdef SQLITE_OMIT_UTF16 |
|
48 return SQLITE_ERROR; |
|
49 #else |
|
50 |
|
51 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
|
52 ** then the encoding of the value may not have changed. |
|
53 */ |
|
54 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); |
|
55 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
|
56 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
|
57 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
|
58 return rc; |
|
59 #endif |
|
60 } |
|
61 |
|
62 /* |
|
63 ** Make the given Mem object MEM_Dyn. |
|
64 ** |
|
65 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
|
66 */ |
|
67 int sqlite3VdbeMemDynamicify(Mem *pMem){ |
|
68 int n; |
|
69 u8 *z; |
|
70 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
71 expandBlob(pMem); |
|
72 if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ |
|
73 return SQLITE_OK; |
|
74 } |
|
75 assert( (pMem->flags & MEM_Dyn)==0 ); |
|
76 n = pMem->n; |
|
77 assert( pMem->flags & (MEM_Str|MEM_Blob) ); |
|
78 z = (u8*)sqlite3DbMallocRaw(pMem->db, n+2 ); |
|
79 if( z==0 ){ |
|
80 return SQLITE_NOMEM; |
|
81 } |
|
82 pMem->flags |= MEM_Dyn|MEM_Term; |
|
83 pMem->xDel = 0; |
|
84 memcpy(z, pMem->z, n ); |
|
85 z[n] = 0; |
|
86 z[n+1] = 0; |
|
87 pMem->z = (char*)z; |
|
88 pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); |
|
89 return SQLITE_OK; |
|
90 } |
|
91 |
|
92 /* |
|
93 ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
|
94 ** blob stored in dynamically allocated space. |
|
95 */ |
|
96 #ifndef SQLITE_OMIT_INCRBLOB |
|
97 int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
|
98 if( pMem->flags & MEM_Zero ){ |
|
99 char *pNew; |
|
100 int nByte; |
|
101 assert( (pMem->flags & MEM_Blob)!=0 ); |
|
102 nByte = pMem->n + pMem->u.i; |
|
103 if( nByte<=0 ) nByte = 1; |
|
104 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
105 pNew = (char*)sqlite3DbMallocRaw(pMem->db, nByte); |
|
106 if( pNew==0 ){ |
|
107 return SQLITE_NOMEM; |
|
108 } |
|
109 memcpy(pNew, pMem->z, pMem->n); |
|
110 memset(&pNew[pMem->n], 0, pMem->u.i); |
|
111 sqlite3VdbeMemRelease(pMem); |
|
112 pMem->z = pNew; |
|
113 pMem->n += pMem->u.i; |
|
114 pMem->u.i = 0; |
|
115 pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term); |
|
116 pMem->flags |= MEM_Dyn; |
|
117 } |
|
118 return SQLITE_OK; |
|
119 } |
|
120 #endif |
|
121 |
|
122 |
|
123 /* |
|
124 ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes |
|
125 ** of the Mem.z[] array can be modified. |
|
126 ** |
|
127 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
|
128 */ |
|
129 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
|
130 int n; |
|
131 u8 *z; |
|
132 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
133 expandBlob(pMem); |
|
134 if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ |
|
135 return SQLITE_OK; |
|
136 } |
|
137 assert( (pMem->flags & MEM_Dyn)==0 ); |
|
138 assert( pMem->flags & (MEM_Str|MEM_Blob) ); |
|
139 if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ |
|
140 z = (u8*)pMem->zShort; |
|
141 pMem->flags |= MEM_Short|MEM_Term; |
|
142 }else{ |
|
143 z = (u8*)sqlite3DbMallocRaw(pMem->db, n+2 ); |
|
144 if( z==0 ){ |
|
145 return SQLITE_NOMEM; |
|
146 } |
|
147 pMem->flags |= MEM_Dyn|MEM_Term; |
|
148 pMem->xDel = 0; |
|
149 } |
|
150 memcpy(z, pMem->z, n ); |
|
151 z[n] = 0; |
|
152 z[n+1] = 0; |
|
153 pMem->z = (char*)z; |
|
154 pMem->flags &= ~(MEM_Ephem|MEM_Static); |
|
155 assert(0==(1&(int)pMem->z)); |
|
156 return SQLITE_OK; |
|
157 } |
|
158 |
|
159 /* |
|
160 ** Make sure the given Mem is \u0000 terminated. |
|
161 */ |
|
162 int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
|
163 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
164 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ |
|
165 return SQLITE_OK; /* Nothing to do */ |
|
166 } |
|
167 if( pMem->flags & (MEM_Static|MEM_Ephem) ){ |
|
168 return sqlite3VdbeMemMakeWriteable(pMem); |
|
169 }else{ |
|
170 char *z; |
|
171 sqlite3VdbeMemExpandBlob(pMem); |
|
172 z = (char*)sqlite3DbMallocRaw(pMem->db, pMem->n+2); |
|
173 if( !z ){ |
|
174 return SQLITE_NOMEM; |
|
175 } |
|
176 memcpy(z, pMem->z, pMem->n); |
|
177 z[pMem->n] = 0; |
|
178 z[pMem->n+1] = 0; |
|
179 if( pMem->xDel ){ |
|
180 pMem->xDel(pMem->z); |
|
181 }else{ |
|
182 sqlite3_free(pMem->z); |
|
183 } |
|
184 pMem->xDel = 0; |
|
185 pMem->z = z; |
|
186 pMem->flags |= MEM_Term; |
|
187 } |
|
188 return SQLITE_OK; |
|
189 } |
|
190 |
|
191 /* |
|
192 ** Add MEM_Str to the set of representations for the given Mem. Numbers |
|
193 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
|
194 ** is a no-op. |
|
195 ** |
|
196 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. |
|
197 ** |
|
198 ** A MEM_Null value will never be passed to this function. This function is |
|
199 ** used for converting values to text for returning to the user (i.e. via |
|
200 ** sqlite3_value_text()), or for ensuring that values to be used as btree |
|
201 ** keys are strings. In the former case a NULL pointer is returned the |
|
202 ** user and the later is an internal programming error. |
|
203 */ |
|
204 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ |
|
205 int rc = SQLITE_OK; |
|
206 int fg = pMem->flags; |
|
207 char *z = pMem->zShort; |
|
208 |
|
209 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
210 assert( !(fg&MEM_Zero) ); |
|
211 assert( !(fg&(MEM_Str|MEM_Blob)) ); |
|
212 assert( fg&(MEM_Int|MEM_Real) ); |
|
213 |
|
214 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 |
|
215 ** string representation of the value. Then, if the required encoding |
|
216 ** is UTF-16le or UTF-16be do a translation. |
|
217 ** |
|
218 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. |
|
219 */ |
|
220 if( fg & MEM_Int ){ |
|
221 sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i); |
|
222 }else{ |
|
223 assert( fg & MEM_Real ); |
|
224 sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r); |
|
225 } |
|
226 pMem->n = strlen(z); |
|
227 pMem->z = z; |
|
228 pMem->enc = SQLITE_UTF8; |
|
229 pMem->flags |= MEM_Str | MEM_Short | MEM_Term; |
|
230 sqlite3VdbeChangeEncoding(pMem, enc); |
|
231 return rc; |
|
232 } |
|
233 |
|
234 /* |
|
235 ** Memory cell pMem contains the context of an aggregate function. |
|
236 ** This routine calls the finalize method for that function. The |
|
237 ** result of the aggregate is stored back into pMem. |
|
238 ** |
|
239 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
|
240 ** otherwise. |
|
241 */ |
|
242 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
|
243 int rc = SQLITE_OK; |
|
244 if( pFunc && pFunc->xFinalize ){ |
|
245 sqlite3_context ctx; |
|
246 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
|
247 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
248 ctx.s.flags = MEM_Null; |
|
249 ctx.s.z = pMem->zShort; |
|
250 ctx.s.db = pMem->db; |
|
251 ctx.pMem = pMem; |
|
252 ctx.pFunc = pFunc; |
|
253 ctx.isError = 0; |
|
254 pFunc->xFinalize(&ctx); |
|
255 if( pMem->z && pMem->z!=pMem->zShort ){ |
|
256 sqlite3_free( pMem->z ); |
|
257 } |
|
258 *pMem = ctx.s; |
|
259 if( pMem->flags & MEM_Short ){ |
|
260 pMem->z = pMem->zShort; |
|
261 } |
|
262 rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); |
|
263 } |
|
264 return rc; |
|
265 } |
|
266 |
|
267 /* |
|
268 ** Release any memory held by the Mem. This may leave the Mem in an |
|
269 ** inconsistent state, for example with (Mem.z==0) and |
|
270 ** (Mem.type==SQLITE_TEXT). |
|
271 */ |
|
272 void sqlite3VdbeMemRelease(Mem *p){ |
|
273 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
|
274 if( p->flags & (MEM_Dyn|MEM_Agg) ){ |
|
275 if( p->xDel ){ |
|
276 if( p->flags & MEM_Agg ){ |
|
277 sqlite3VdbeMemFinalize(p, p->u.pDef); |
|
278 assert( (p->flags & MEM_Agg)==0 ); |
|
279 sqlite3VdbeMemRelease(p); |
|
280 }else{ |
|
281 p->xDel((void *)p->z); |
|
282 } |
|
283 }else{ |
|
284 sqlite3_free(p->z); |
|
285 } |
|
286 p->z = 0; |
|
287 p->xDel = 0; |
|
288 } |
|
289 } |
|
290 |
|
291 /* |
|
292 ** Return some kind of integer value which is the best we can do |
|
293 ** at representing the value that *pMem describes as an integer. |
|
294 ** If pMem is an integer, then the value is exact. If pMem is |
|
295 ** a floating-point then the value returned is the integer part. |
|
296 ** If pMem is a string or blob, then we make an attempt to convert |
|
297 ** it into a integer and return that. If pMem is NULL, return 0. |
|
298 ** |
|
299 ** If pMem is a string, its encoding might be changed. |
|
300 */ |
|
301 i64 sqlite3VdbeIntValue(Mem *pMem){ |
|
302 int flags; |
|
303 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
304 flags = pMem->flags; |
|
305 if( flags & MEM_Int ){ |
|
306 return pMem->u.i; |
|
307 }else if( flags & MEM_Real ){ |
|
308 return (i64)pMem->r; |
|
309 }else if( flags & (MEM_Str|MEM_Blob) ){ |
|
310 i64 value; |
|
311 pMem->flags |= MEM_Str; |
|
312 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) |
|
313 || sqlite3VdbeMemNulTerminate(pMem) ){ |
|
314 return 0; |
|
315 } |
|
316 assert( pMem->z ); |
|
317 sqlite3Atoi64(pMem->z, &value); |
|
318 return value; |
|
319 }else{ |
|
320 return 0; |
|
321 } |
|
322 } |
|
323 |
|
324 /* |
|
325 ** Return the best representation of pMem that we can get into a |
|
326 ** double. If pMem is already a double or an integer, return its |
|
327 ** value. If it is a string or blob, try to convert it to a double. |
|
328 ** If it is a NULL, return 0.0. |
|
329 */ |
|
330 double sqlite3VdbeRealValue(Mem *pMem){ |
|
331 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
332 if( pMem->flags & MEM_Real ){ |
|
333 return pMem->r; |
|
334 }else if( pMem->flags & MEM_Int ){ |
|
335 return (double)pMem->u.i; |
|
336 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
|
337 double val = 0.0; |
|
338 pMem->flags |= MEM_Str; |
|
339 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) |
|
340 || sqlite3VdbeMemNulTerminate(pMem) ){ |
|
341 return 0.0; |
|
342 } |
|
343 assert( pMem->z ); |
|
344 sqlite3AtoF(pMem->z, &val); |
|
345 return val; |
|
346 }else{ |
|
347 return 0.0; |
|
348 } |
|
349 } |
|
350 |
|
351 /* |
|
352 ** The MEM structure is already a MEM_Real. Try to also make it a |
|
353 ** MEM_Int if we can. |
|
354 */ |
|
355 void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
|
356 assert( pMem->flags & MEM_Real ); |
|
357 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
358 pMem->u.i = pMem->r; |
|
359 if( ((double)pMem->u.i)==pMem->r ){ |
|
360 pMem->flags |= MEM_Int; |
|
361 } |
|
362 } |
|
363 |
|
364 /* |
|
365 ** Convert pMem to type integer. Invalidate any prior representations. |
|
366 */ |
|
367 int sqlite3VdbeMemIntegerify(Mem *pMem){ |
|
368 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
369 pMem->u.i = sqlite3VdbeIntValue(pMem); |
|
370 sqlite3VdbeMemRelease(pMem); |
|
371 pMem->flags = MEM_Int; |
|
372 return SQLITE_OK; |
|
373 } |
|
374 |
|
375 /* |
|
376 ** Convert pMem so that it is of type MEM_Real. |
|
377 ** Invalidate any prior representations. |
|
378 */ |
|
379 int sqlite3VdbeMemRealify(Mem *pMem){ |
|
380 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
381 pMem->r = sqlite3VdbeRealValue(pMem); |
|
382 sqlite3VdbeMemRelease(pMem); |
|
383 pMem->flags = MEM_Real; |
|
384 return SQLITE_OK; |
|
385 } |
|
386 |
|
387 /* |
|
388 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. |
|
389 ** Invalidate any prior representations. |
|
390 */ |
|
391 int sqlite3VdbeMemNumerify(Mem *pMem){ |
|
392 double r1, r2; |
|
393 i64 i; |
|
394 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); |
|
395 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
|
396 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
397 r1 = sqlite3VdbeRealValue(pMem); |
|
398 i = (i64)r1; |
|
399 r2 = (double)i; |
|
400 if( r1==r2 ){ |
|
401 sqlite3VdbeMemIntegerify(pMem); |
|
402 }else{ |
|
403 pMem->r = r1; |
|
404 pMem->flags = MEM_Real; |
|
405 sqlite3VdbeMemRelease(pMem); |
|
406 } |
|
407 return SQLITE_OK; |
|
408 } |
|
409 |
|
410 /* |
|
411 ** Delete any previous value and set the value stored in *pMem to NULL. |
|
412 */ |
|
413 void sqlite3VdbeMemSetNull(Mem *pMem){ |
|
414 sqlite3VdbeMemRelease(pMem); |
|
415 pMem->flags = MEM_Null; |
|
416 pMem->type = SQLITE_NULL; |
|
417 pMem->n = 0; |
|
418 } |
|
419 |
|
420 /* |
|
421 ** Delete any previous value and set the value to be a BLOB of length |
|
422 ** n containing all zeros. |
|
423 */ |
|
424 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
|
425 sqlite3VdbeMemRelease(pMem); |
|
426 pMem->flags = MEM_Blob|MEM_Zero|MEM_Short; |
|
427 pMem->type = SQLITE_BLOB; |
|
428 pMem->n = 0; |
|
429 if( n<0 ) n = 0; |
|
430 pMem->u.i = n; |
|
431 pMem->z = pMem->zShort; |
|
432 pMem->enc = SQLITE_UTF8; |
|
433 } |
|
434 |
|
435 /* |
|
436 ** Delete any previous value and set the value stored in *pMem to val, |
|
437 ** manifest type INTEGER. |
|
438 */ |
|
439 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
|
440 sqlite3VdbeMemRelease(pMem); |
|
441 pMem->u.i = val; |
|
442 pMem->flags = MEM_Int; |
|
443 pMem->type = SQLITE_INTEGER; |
|
444 } |
|
445 |
|
446 /* |
|
447 ** Delete any previous value and set the value stored in *pMem to val, |
|
448 ** manifest type REAL. |
|
449 */ |
|
450 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
|
451 if( sqlite3_isnan(val) ){ |
|
452 sqlite3VdbeMemSetNull(pMem); |
|
453 }else{ |
|
454 sqlite3VdbeMemRelease(pMem); |
|
455 pMem->r = val; |
|
456 pMem->flags = MEM_Real; |
|
457 pMem->type = SQLITE_FLOAT; |
|
458 } |
|
459 } |
|
460 |
|
461 /* |
|
462 ** Return true if the Mem object contains a TEXT or BLOB that is |
|
463 ** too large - whose size exceeds SQLITE_MAX_LENGTH. |
|
464 */ |
|
465 int sqlite3VdbeMemTooBig(Mem *p){ |
|
466 if( p->flags & (MEM_Str|MEM_Blob) ){ |
|
467 int n = p->n; |
|
468 if( p->flags & MEM_Zero ){ |
|
469 n += p->u.i; |
|
470 } |
|
471 return n>SQLITE_MAX_LENGTH; |
|
472 } |
|
473 return 0; |
|
474 } |
|
475 |
|
476 /* |
|
477 ** Make an shallow copy of pFrom into pTo. Prior contents of |
|
478 ** pTo are overwritten. The pFrom->z field is not duplicated. If |
|
479 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
|
480 ** and flags gets srcType (either MEM_Ephem or MEM_Static). |
|
481 */ |
|
482 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
|
483 memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort)); |
|
484 pTo->xDel = 0; |
|
485 if( pTo->flags & (MEM_Str|MEM_Blob) ){ |
|
486 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem); |
|
487 assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
|
488 pTo->flags |= srcType; |
|
489 } |
|
490 } |
|
491 |
|
492 /* |
|
493 ** Make a full copy of pFrom into pTo. Prior contents of pTo are |
|
494 ** freed before the copy is made. |
|
495 */ |
|
496 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
|
497 int rc; |
|
498 if( pTo->flags & MEM_Dyn ){ |
|
499 sqlite3VdbeMemRelease(pTo); |
|
500 } |
|
501 sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); |
|
502 if( pTo->flags & MEM_Ephem ){ |
|
503 rc = sqlite3VdbeMemMakeWriteable(pTo); |
|
504 }else{ |
|
505 rc = SQLITE_OK; |
|
506 } |
|
507 return rc; |
|
508 } |
|
509 |
|
510 /* |
|
511 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
|
512 ** freed. If pFrom contains ephemeral data, a copy is made. |
|
513 ** |
|
514 ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM |
|
515 ** might be returned if pFrom held ephemeral data and we were unable |
|
516 ** to allocate enough space to make a copy. |
|
517 */ |
|
518 int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
|
519 int rc; |
|
520 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
|
521 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
|
522 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
|
523 if( pTo->flags & MEM_Dyn ){ |
|
524 sqlite3VdbeMemRelease(pTo); |
|
525 } |
|
526 memcpy(pTo, pFrom, sizeof(Mem)); |
|
527 if( pFrom->flags & MEM_Short ){ |
|
528 pTo->z = pTo->zShort; |
|
529 } |
|
530 pFrom->flags = MEM_Null; |
|
531 pFrom->xDel = 0; |
|
532 if( pTo->flags & MEM_Ephem ){ |
|
533 rc = sqlite3VdbeMemMakeWriteable(pTo); |
|
534 }else{ |
|
535 rc = SQLITE_OK; |
|
536 } |
|
537 return rc; |
|
538 } |
|
539 |
|
540 /* |
|
541 ** Change the value of a Mem to be a string or a BLOB. |
|
542 */ |
|
543 int sqlite3VdbeMemSetStr( |
|
544 Mem *pMem, /* Memory cell to set to string value */ |
|
545 const char *z, /* String pointer */ |
|
546 int n, /* Bytes in string, or negative */ |
|
547 u8 enc, /* Encoding of z. 0 for BLOBs */ |
|
548 void (*xDel)(void*) /* Destructor function */ |
|
549 ){ |
|
550 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
551 sqlite3VdbeMemRelease(pMem); |
|
552 if( !z ){ |
|
553 pMem->flags = MEM_Null; |
|
554 pMem->type = SQLITE_NULL; |
|
555 return SQLITE_OK; |
|
556 } |
|
557 pMem->z = (char *)z; |
|
558 if( xDel==SQLITE_STATIC ){ |
|
559 pMem->flags = MEM_Static; |
|
560 }else if( xDel==SQLITE_TRANSIENT ){ |
|
561 pMem->flags = MEM_Ephem; |
|
562 }else{ |
|
563 pMem->flags = MEM_Dyn; |
|
564 pMem->xDel = xDel; |
|
565 } |
|
566 |
|
567 pMem->enc = enc; |
|
568 pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; |
|
569 pMem->n = n; |
|
570 |
|
571 assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE |
|
572 || enc==SQLITE_UTF16BE ); |
|
573 switch( enc ){ |
|
574 case 0: |
|
575 pMem->flags |= MEM_Blob; |
|
576 pMem->enc = SQLITE_UTF8; |
|
577 break; |
|
578 |
|
579 case SQLITE_UTF8: |
|
580 pMem->flags |= MEM_Str; |
|
581 if( n<0 ){ |
|
582 pMem->n = strlen(z); |
|
583 pMem->flags |= MEM_Term; |
|
584 } |
|
585 break; |
|
586 |
|
587 #ifndef SQLITE_OMIT_UTF16 |
|
588 case SQLITE_UTF16LE: |
|
589 case SQLITE_UTF16BE: |
|
590 pMem->flags |= MEM_Str; |
|
591 if( pMem->n<0 ){ |
|
592 pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); |
|
593 pMem->flags |= MEM_Term; |
|
594 } |
|
595 if( sqlite3VdbeMemHandleBom(pMem) ){ |
|
596 return SQLITE_NOMEM; |
|
597 } |
|
598 #endif /* SQLITE_OMIT_UTF16 */ |
|
599 } |
|
600 if( pMem->flags&MEM_Ephem ){ |
|
601 return sqlite3VdbeMemMakeWriteable(pMem); |
|
602 } |
|
603 return SQLITE_OK; |
|
604 } |
|
605 |
|
606 /* |
|
607 ** Compare the values contained by the two memory cells, returning |
|
608 ** negative, zero or positive if pMem1 is less than, equal to, or greater |
|
609 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
|
610 ** and reals) sorted numerically, followed by text ordered by the collating |
|
611 ** sequence pColl and finally blob's ordered by memcmp(). |
|
612 ** |
|
613 ** Two NULL values are considered equal by this function. |
|
614 */ |
|
615 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
|
616 int rc; |
|
617 int f1, f2; |
|
618 int combined_flags; |
|
619 |
|
620 /* Interchange pMem1 and pMem2 if the collating sequence specifies |
|
621 ** DESC order. |
|
622 */ |
|
623 f1 = pMem1->flags; |
|
624 f2 = pMem2->flags; |
|
625 combined_flags = f1|f2; |
|
626 |
|
627 /* If one value is NULL, it is less than the other. If both values |
|
628 ** are NULL, return 0. |
|
629 */ |
|
630 if( combined_flags&MEM_Null ){ |
|
631 return (f2&MEM_Null) - (f1&MEM_Null); |
|
632 } |
|
633 |
|
634 /* If one value is a number and the other is not, the number is less. |
|
635 ** If both are numbers, compare as reals if one is a real, or as integers |
|
636 ** if both values are integers. |
|
637 */ |
|
638 if( combined_flags&(MEM_Int|MEM_Real) ){ |
|
639 if( !(f1&(MEM_Int|MEM_Real)) ){ |
|
640 return 1; |
|
641 } |
|
642 if( !(f2&(MEM_Int|MEM_Real)) ){ |
|
643 return -1; |
|
644 } |
|
645 if( (f1 & f2 & MEM_Int)==0 ){ |
|
646 double r1, r2; |
|
647 if( (f1&MEM_Real)==0 ){ |
|
648 r1 = pMem1->u.i; |
|
649 }else{ |
|
650 r1 = pMem1->r; |
|
651 } |
|
652 if( (f2&MEM_Real)==0 ){ |
|
653 r2 = pMem2->u.i; |
|
654 }else{ |
|
655 r2 = pMem2->r; |
|
656 } |
|
657 if( r1<r2 ) return -1; |
|
658 if( r1>r2 ) return 1; |
|
659 return 0; |
|
660 }else{ |
|
661 assert( f1&MEM_Int ); |
|
662 assert( f2&MEM_Int ); |
|
663 if( pMem1->u.i < pMem2->u.i ) return -1; |
|
664 if( pMem1->u.i > pMem2->u.i ) return 1; |
|
665 return 0; |
|
666 } |
|
667 } |
|
668 |
|
669 /* If one value is a string and the other is a blob, the string is less. |
|
670 ** If both are strings, compare using the collating functions. |
|
671 */ |
|
672 if( combined_flags&MEM_Str ){ |
|
673 if( (f1 & MEM_Str)==0 ){ |
|
674 return 1; |
|
675 } |
|
676 if( (f2 & MEM_Str)==0 ){ |
|
677 return -1; |
|
678 } |
|
679 |
|
680 assert( pMem1->enc==pMem2->enc ); |
|
681 assert( pMem1->enc==SQLITE_UTF8 || |
|
682 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
|
683 |
|
684 /* The collation sequence must be defined at this point, even if |
|
685 ** the user deletes the collation sequence after the vdbe program is |
|
686 ** compiled (this was not always the case). |
|
687 */ |
|
688 assert( !pColl || pColl->xCmp ); |
|
689 |
|
690 if( pColl ){ |
|
691 if( pMem1->enc==pColl->enc ){ |
|
692 /* The strings are already in the correct encoding. Call the |
|
693 ** comparison function directly */ |
|
694 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
|
695 }else{ |
|
696 u8 origEnc = pMem1->enc; |
|
697 const void *v1, *v2; |
|
698 int n1, n2; |
|
699 /* Convert the strings into the encoding that the comparison |
|
700 ** function expects */ |
|
701 v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); |
|
702 n1 = v1==0 ? 0 : pMem1->n; |
|
703 assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); |
|
704 v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); |
|
705 n2 = v2==0 ? 0 : pMem2->n; |
|
706 assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); |
|
707 /* Do the comparison */ |
|
708 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
|
709 /* Convert the strings back into the database encoding */ |
|
710 sqlite3ValueText((sqlite3_value*)pMem1, origEnc); |
|
711 sqlite3ValueText((sqlite3_value*)pMem2, origEnc); |
|
712 return rc; |
|
713 } |
|
714 } |
|
715 /* If a NULL pointer was passed as the collate function, fall through |
|
716 ** to the blob case and use memcmp(). */ |
|
717 } |
|
718 |
|
719 /* Both values must be blobs. Compare using memcmp(). */ |
|
720 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); |
|
721 if( rc==0 ){ |
|
722 rc = pMem1->n - pMem2->n; |
|
723 } |
|
724 return rc; |
|
725 } |
|
726 |
|
727 /* |
|
728 ** Move data out of a btree key or data field and into a Mem structure. |
|
729 ** The data or key is taken from the entry that pCur is currently pointing |
|
730 ** to. offset and amt determine what portion of the data or key to retrieve. |
|
731 ** key is true to get the key or false to get data. The result is written |
|
732 ** into the pMem element. |
|
733 ** |
|
734 ** The pMem structure is assumed to be uninitialized. Any prior content |
|
735 ** is overwritten without being freed. |
|
736 ** |
|
737 ** If this routine fails for any reason (malloc returns NULL or unable |
|
738 ** to read from the disk) then the pMem is left in an inconsistent state. |
|
739 */ |
|
740 int sqlite3VdbeMemFromBtree( |
|
741 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
|
742 int offset, /* Offset from the start of data to return bytes from. */ |
|
743 int amt, /* Number of bytes to return. */ |
|
744 int key, /* If true, retrieve from the btree key, not data. */ |
|
745 Mem *pMem /* OUT: Return data in this Mem structure. */ |
|
746 ){ |
|
747 char *zData; /* Data from the btree layer */ |
|
748 int available = 0; /* Number of bytes available on the local btree page */ |
|
749 sqlite3 *db; /* Database connection */ |
|
750 |
|
751 db = sqlite3BtreeCursorDb(pCur); |
|
752 assert( sqlite3_mutex_held(db->mutex) ); |
|
753 if( key ){ |
|
754 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); |
|
755 }else{ |
|
756 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); |
|
757 } |
|
758 assert( zData!=0 ); |
|
759 |
|
760 pMem->db = db; |
|
761 pMem->n = amt; |
|
762 if( offset+amt<=available ){ |
|
763 pMem->z = &zData[offset]; |
|
764 pMem->flags = MEM_Blob|MEM_Ephem; |
|
765 }else{ |
|
766 int rc; |
|
767 if( amt>NBFS-2 ){ |
|
768 zData = (char *)sqlite3DbMallocRaw(db, amt+2); |
|
769 if( !zData ){ |
|
770 return SQLITE_NOMEM; |
|
771 } |
|
772 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; |
|
773 pMem->xDel = 0; |
|
774 }else{ |
|
775 zData = &(pMem->zShort[0]); |
|
776 pMem->flags = MEM_Blob|MEM_Short|MEM_Term; |
|
777 } |
|
778 pMem->z = zData; |
|
779 pMem->enc = 0; |
|
780 pMem->type = SQLITE_BLOB; |
|
781 |
|
782 if( key ){ |
|
783 rc = sqlite3BtreeKey(pCur, offset, amt, zData); |
|
784 }else{ |
|
785 rc = sqlite3BtreeData(pCur, offset, amt, zData); |
|
786 } |
|
787 zData[amt] = 0; |
|
788 zData[amt+1] = 0; |
|
789 if( rc!=SQLITE_OK ){ |
|
790 if( amt>NBFS-2 ){ |
|
791 assert( zData!=pMem->zShort ); |
|
792 assert( pMem->flags & MEM_Dyn ); |
|
793 sqlite3_free(zData); |
|
794 } else { |
|
795 assert( zData==pMem->zShort ); |
|
796 assert( pMem->flags & MEM_Short ); |
|
797 } |
|
798 return rc; |
|
799 } |
|
800 } |
|
801 |
|
802 return SQLITE_OK; |
|
803 } |
|
804 |
|
805 #ifndef NDEBUG |
|
806 /* |
|
807 ** Perform various checks on the memory cell pMem. An assert() will |
|
808 ** fail if pMem is internally inconsistent. |
|
809 */ |
|
810 void sqlite3VdbeMemSanity(Mem *pMem){ |
|
811 int flags = pMem->flags; |
|
812 assert( flags!=0 ); /* Must define some type */ |
|
813 if( flags & (MEM_Str|MEM_Blob) ){ |
|
814 int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); |
|
815 assert( x!=0 ); /* Strings must define a string subtype */ |
|
816 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ |
|
817 assert( pMem->z!=0 ); /* Strings must have a value */ |
|
818 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ |
|
819 assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); |
|
820 assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); |
|
821 /* No destructor unless there is MEM_Dyn */ |
|
822 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); |
|
823 |
|
824 if( (flags & MEM_Str) ){ |
|
825 assert( pMem->enc==SQLITE_UTF8 || |
|
826 pMem->enc==SQLITE_UTF16BE || |
|
827 pMem->enc==SQLITE_UTF16LE |
|
828 ); |
|
829 /* If the string is UTF-8 encoded and nul terminated, then pMem->n |
|
830 ** must be the length of the string. (Later:) If the database file |
|
831 ** has been corrupted, '\000' characters might have been inserted |
|
832 ** into the middle of the string. In that case, the strlen() might |
|
833 ** be less. |
|
834 */ |
|
835 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ |
|
836 assert( strlen(pMem->z)<=pMem->n ); |
|
837 assert( pMem->z[pMem->n]==0 ); |
|
838 } |
|
839 } |
|
840 }else{ |
|
841 /* Cannot define a string subtype for non-string objects */ |
|
842 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); |
|
843 assert( pMem->xDel==0 ); |
|
844 } |
|
845 /* MEM_Null excludes all other types */ |
|
846 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 |
|
847 || (pMem->flags&MEM_Null)==0 ); |
|
848 /* If the MEM is both real and integer, the values are equal */ |
|
849 assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) |
|
850 || pMem->r==pMem->u.i ); |
|
851 } |
|
852 #endif |
|
853 |
|
854 /* This function is only available internally, it is not part of the |
|
855 ** external API. It works in a similar way to sqlite3_value_text(), |
|
856 ** except the data returned is in the encoding specified by the second |
|
857 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
|
858 ** SQLITE_UTF8. |
|
859 ** |
|
860 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
|
861 ** If that is the case, then the result must be aligned on an even byte |
|
862 ** boundary. |
|
863 */ |
|
864 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
|
865 if( !pVal ) return 0; |
|
866 |
|
867 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
|
868 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
|
869 |
|
870 if( pVal->flags&MEM_Null ){ |
|
871 return 0; |
|
872 } |
|
873 assert( (MEM_Blob>>3) == MEM_Str ); |
|
874 pVal->flags |= (pVal->flags & MEM_Blob)>>3; |
|
875 expandBlob(pVal); |
|
876 if( pVal->flags&MEM_Str ){ |
|
877 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
|
878 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){ |
|
879 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
|
880 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
|
881 return 0; |
|
882 } |
|
883 } |
|
884 sqlite3VdbeMemNulTerminate(pVal); |
|
885 }else{ |
|
886 assert( (pVal->flags&MEM_Blob)==0 ); |
|
887 sqlite3VdbeMemStringify(pVal, enc); |
|
888 assert( 0==(1&(int)pVal->z) ); |
|
889 } |
|
890 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
|
891 || pVal->db->mallocFailed ); |
|
892 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
|
893 return pVal->z; |
|
894 }else{ |
|
895 return 0; |
|
896 } |
|
897 } |
|
898 |
|
899 /* |
|
900 ** Create a new sqlite3_value object. |
|
901 */ |
|
902 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
|
903 Mem *p = (Mem*)sqlite3DbMallocZero(db, sizeof(*p)); |
|
904 if( p ){ |
|
905 p->flags = MEM_Null; |
|
906 p->type = SQLITE_NULL; |
|
907 p->db = db; |
|
908 } |
|
909 return p; |
|
910 } |
|
911 |
|
912 /* |
|
913 ** Create a new sqlite3_value object, containing the value of pExpr. |
|
914 ** |
|
915 ** This only works for very simple expressions that consist of one constant |
|
916 ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can |
|
917 ** be converted directly into a value, then the value is allocated and |
|
918 ** a pointer written to *ppVal. The caller is responsible for deallocating |
|
919 ** the value by passing it to sqlite3ValueFree() later on. If the expression |
|
920 ** cannot be converted to a value, then *ppVal is set to NULL. |
|
921 */ |
|
922 int sqlite3ValueFromExpr( |
|
923 sqlite3 *db, /* The database connection */ |
|
924 Expr *pExpr, /* The expression to evaluate */ |
|
925 u8 enc, /* Encoding to use */ |
|
926 u8 affinity, /* Affinity to use */ |
|
927 sqlite3_value **ppVal /* Write the new value here */ |
|
928 ){ |
|
929 int op; |
|
930 char *zVal = 0; |
|
931 sqlite3_value *pVal = 0; |
|
932 |
|
933 if( !pExpr ){ |
|
934 *ppVal = 0; |
|
935 return SQLITE_OK; |
|
936 } |
|
937 op = pExpr->op; |
|
938 |
|
939 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
|
940 zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); |
|
941 pVal = sqlite3ValueNew(db); |
|
942 if( !zVal || !pVal ) goto no_mem; |
|
943 sqlite3Dequote(zVal); |
|
944 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); |
|
945 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ |
|
946 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); |
|
947 }else{ |
|
948 sqlite3ValueApplyAffinity(pVal, affinity, enc); |
|
949 } |
|
950 }else if( op==TK_UMINUS ) { |
|
951 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ |
|
952 pVal->u.i = -1 * pVal->u.i; |
|
953 pVal->r = -1.0 * pVal->r; |
|
954 } |
|
955 } |
|
956 #ifndef SQLITE_OMIT_BLOB_LITERAL |
|
957 else if( op==TK_BLOB ){ |
|
958 int nVal; |
|
959 pVal = sqlite3ValueNew(db); |
|
960 zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1); |
|
961 if( !zVal || !pVal ) goto no_mem; |
|
962 sqlite3Dequote(zVal); |
|
963 nVal = strlen(zVal)/2; |
|
964 sqlite3VdbeMemSetStr(pVal, (const char*)sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free); |
|
965 sqlite3_free(zVal); |
|
966 } |
|
967 #endif |
|
968 |
|
969 *ppVal = pVal; |
|
970 return SQLITE_OK; |
|
971 |
|
972 no_mem: |
|
973 db->mallocFailed = 1; |
|
974 sqlite3_free(zVal); |
|
975 sqlite3ValueFree(pVal); |
|
976 *ppVal = 0; |
|
977 return SQLITE_NOMEM; |
|
978 } |
|
979 |
|
980 /* |
|
981 ** Change the string value of an sqlite3_value object |
|
982 */ |
|
983 void sqlite3ValueSetStr( |
|
984 sqlite3_value *v, /* Value to be set */ |
|
985 int n, /* Length of string z */ |
|
986 const void *z, /* Text of the new string */ |
|
987 u8 enc, /* Encoding to use */ |
|
988 void (*xDel)(void*) /* Destructor for the string */ |
|
989 ){ |
|
990 if( v ) sqlite3VdbeMemSetStr((Mem *)v, (const char*)z, n, enc, xDel); |
|
991 } |
|
992 |
|
993 /* |
|
994 ** Free an sqlite3_value object |
|
995 */ |
|
996 void sqlite3ValueFree(sqlite3_value *v){ |
|
997 if( !v ) return; |
|
998 sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
|
999 sqlite3_free(v); |
|
1000 } |
|
1001 |
|
1002 /* |
|
1003 ** Return the number of bytes in the sqlite3_value object assuming |
|
1004 ** that it uses the encoding "enc" |
|
1005 */ |
|
1006 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
|
1007 Mem *p = (Mem*)pVal; |
|
1008 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ |
|
1009 if( p->flags & MEM_Zero ){ |
|
1010 return p->n+p->u.i; |
|
1011 }else{ |
|
1012 return p->n; |
|
1013 } |
|
1014 } |
|
1015 return 0; |
|
1016 } |
|