/*+ −
** 2004 May 26+ −
**+ −
** The author disclaims copyright to this source code. In place of+ −
** a legal notice, here is a blessing:+ −
**+ −
** May you do good and not evil.+ −
** May you find forgiveness for yourself and forgive others.+ −
** May you share freely, never taking more than you give.+ −
**+ −
*************************************************************************+ −
**+ −
** This file contains code use to manipulate "Mem" structure. A "Mem"+ −
** stores a single value in the VDBE. Mem is an opaque structure visible+ −
** only within the VDBE. Interface routines refer to a Mem using the+ −
** name sqlite_value+ −
*/+ −
#include "sqliteInt.h"+ −
#include <ctype.h>+ −
#include "vdbeInt.h"+ −
+ −
/*+ −
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)+ −
** P if required.+ −
*/+ −
#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)+ −
+ −
/*+ −
** If pMem is an object with a valid string representation, this routine+ −
** ensures the internal encoding for the string representation is+ −
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.+ −
**+ −
** If pMem is not a string object, or the encoding of the string+ −
** representation is already stored using the requested encoding, then this+ −
** routine is a no-op.+ −
**+ −
** SQLITE_OK is returned if the conversion is successful (or not required).+ −
** SQLITE_NOMEM may be returned if a malloc() fails during conversion+ −
** between formats.+ −
*/+ −
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){+ −
int rc;+ −
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){+ −
return SQLITE_OK;+ −
}+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
#ifdef SQLITE_OMIT_UTF16+ −
return SQLITE_ERROR;+ −
#else+ −
+ −
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,+ −
** then the encoding of the value may not have changed.+ −
*/+ −
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);+ −
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);+ −
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);+ −
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);+ −
return rc;+ −
#endif+ −
}+ −
+ −
/*+ −
** Make the given Mem object MEM_Dyn.+ −
**+ −
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.+ −
*/+ −
int sqlite3VdbeMemDynamicify(Mem *pMem){+ −
int n;+ −
u8 *z;+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
expandBlob(pMem);+ −
if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){+ −
return SQLITE_OK;+ −
}+ −
assert( (pMem->flags & MEM_Dyn)==0 );+ −
n = pMem->n;+ −
assert( pMem->flags & (MEM_Str|MEM_Blob) );+ −
z = (u8*)sqlite3DbMallocRaw(pMem->db, n+2 );+ −
if( z==0 ){+ −
return SQLITE_NOMEM;+ −
}+ −
pMem->flags |= MEM_Dyn|MEM_Term;+ −
pMem->xDel = 0;+ −
memcpy(z, pMem->z, n );+ −
z[n] = 0;+ −
z[n+1] = 0;+ −
pMem->z = (char*)z;+ −
pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** If the given Mem* has a zero-filled tail, turn it into an ordinary+ −
** blob stored in dynamically allocated space.+ −
*/+ −
#ifndef SQLITE_OMIT_INCRBLOB+ −
int sqlite3VdbeMemExpandBlob(Mem *pMem){+ −
if( pMem->flags & MEM_Zero ){+ −
char *pNew;+ −
int nByte;+ −
assert( (pMem->flags & MEM_Blob)!=0 );+ −
nByte = pMem->n + pMem->u.i;+ −
if( nByte<=0 ) nByte = 1;+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
pNew = (char*)sqlite3DbMallocRaw(pMem->db, nByte);+ −
if( pNew==0 ){+ −
return SQLITE_NOMEM;+ −
}+ −
memcpy(pNew, pMem->z, pMem->n);+ −
memset(&pNew[pMem->n], 0, pMem->u.i);+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->z = pNew;+ −
pMem->n += pMem->u.i;+ −
pMem->u.i = 0;+ −
pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term);+ −
pMem->flags |= MEM_Dyn;+ −
}+ −
return SQLITE_OK;+ −
}+ −
#endif+ −
+ −
+ −
/*+ −
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes+ −
** of the Mem.z[] array can be modified.+ −
**+ −
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.+ −
*/+ −
int sqlite3VdbeMemMakeWriteable(Mem *pMem){+ −
int n;+ −
u8 *z;+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
expandBlob(pMem);+ −
if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){+ −
return SQLITE_OK;+ −
}+ −
assert( (pMem->flags & MEM_Dyn)==0 );+ −
assert( pMem->flags & (MEM_Str|MEM_Blob) );+ −
if( (n = pMem->n)+2<sizeof(pMem->zShort) ){+ −
z = (u8*)pMem->zShort;+ −
pMem->flags |= MEM_Short|MEM_Term;+ −
}else{+ −
z = (u8*)sqlite3DbMallocRaw(pMem->db, n+2 );+ −
if( z==0 ){+ −
return SQLITE_NOMEM;+ −
}+ −
pMem->flags |= MEM_Dyn|MEM_Term;+ −
pMem->xDel = 0;+ −
}+ −
memcpy(z, pMem->z, n );+ −
z[n] = 0;+ −
z[n+1] = 0;+ −
pMem->z = (char*)z;+ −
pMem->flags &= ~(MEM_Ephem|MEM_Static);+ −
assert(0==(1&(int)pMem->z));+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** Make sure the given Mem is \u0000 terminated.+ −
*/+ −
int sqlite3VdbeMemNulTerminate(Mem *pMem){+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){+ −
return SQLITE_OK; /* Nothing to do */+ −
}+ −
if( pMem->flags & (MEM_Static|MEM_Ephem) ){+ −
return sqlite3VdbeMemMakeWriteable(pMem);+ −
}else{+ −
char *z; + −
sqlite3VdbeMemExpandBlob(pMem);+ −
z = (char*)sqlite3DbMallocRaw(pMem->db, pMem->n+2);+ −
if( !z ){+ −
return SQLITE_NOMEM;+ −
}+ −
memcpy(z, pMem->z, pMem->n);+ −
z[pMem->n] = 0;+ −
z[pMem->n+1] = 0;+ −
if( pMem->xDel ){+ −
pMem->xDel(pMem->z);+ −
}else{+ −
sqlite3_free(pMem->z);+ −
}+ −
pMem->xDel = 0;+ −
pMem->z = z;+ −
pMem->flags |= MEM_Term;+ −
}+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** Add MEM_Str to the set of representations for the given Mem. Numbers+ −
** are converted using sqlite3_snprintf(). Converting a BLOB to a string+ −
** is a no-op.+ −
**+ −
** Existing representations MEM_Int and MEM_Real are *not* invalidated.+ −
**+ −
** A MEM_Null value will never be passed to this function. This function is+ −
** used for converting values to text for returning to the user (i.e. via+ −
** sqlite3_value_text()), or for ensuring that values to be used as btree+ −
** keys are strings. In the former case a NULL pointer is returned the+ −
** user and the later is an internal programming error.+ −
*/+ −
int sqlite3VdbeMemStringify(Mem *pMem, int enc){+ −
int rc = SQLITE_OK;+ −
int fg = pMem->flags;+ −
char *z = pMem->zShort;+ −
+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
assert( !(fg&MEM_Zero) );+ −
assert( !(fg&(MEM_Str|MEM_Blob)) );+ −
assert( fg&(MEM_Int|MEM_Real) );+ −
+ −
/* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8+ −
** string representation of the value. Then, if the required encoding+ −
** is UTF-16le or UTF-16be do a translation.+ −
** + −
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.+ −
*/+ −
if( fg & MEM_Int ){+ −
sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);+ −
}else{+ −
assert( fg & MEM_Real );+ −
sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);+ −
}+ −
pMem->n = strlen(z);+ −
pMem->z = z;+ −
pMem->enc = SQLITE_UTF8;+ −
pMem->flags |= MEM_Str | MEM_Short | MEM_Term;+ −
sqlite3VdbeChangeEncoding(pMem, enc);+ −
return rc;+ −
}+ −
+ −
/*+ −
** Memory cell pMem contains the context of an aggregate function.+ −
** This routine calls the finalize method for that function. The+ −
** result of the aggregate is stored back into pMem.+ −
**+ −
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK+ −
** otherwise.+ −
*/+ −
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){+ −
int rc = SQLITE_OK;+ −
if( pFunc && pFunc->xFinalize ){+ −
sqlite3_context ctx;+ −
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
ctx.s.flags = MEM_Null;+ −
ctx.s.z = pMem->zShort;+ −
ctx.s.db = pMem->db;+ −
ctx.pMem = pMem;+ −
ctx.pFunc = pFunc;+ −
ctx.isError = 0;+ −
pFunc->xFinalize(&ctx);+ −
if( pMem->z && pMem->z!=pMem->zShort ){+ −
sqlite3_free( pMem->z );+ −
}+ −
*pMem = ctx.s;+ −
if( pMem->flags & MEM_Short ){+ −
pMem->z = pMem->zShort;+ −
}+ −
rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);+ −
}+ −
return rc;+ −
}+ −
+ −
/*+ −
** Release any memory held by the Mem. This may leave the Mem in an+ −
** inconsistent state, for example with (Mem.z==0) and+ −
** (Mem.type==SQLITE_TEXT).+ −
*/+ −
void sqlite3VdbeMemRelease(Mem *p){+ −
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );+ −
if( p->flags & (MEM_Dyn|MEM_Agg) ){+ −
if( p->xDel ){+ −
if( p->flags & MEM_Agg ){+ −
sqlite3VdbeMemFinalize(p, p->u.pDef);+ −
assert( (p->flags & MEM_Agg)==0 );+ −
sqlite3VdbeMemRelease(p);+ −
}else{+ −
p->xDel((void *)p->z);+ −
}+ −
}else{+ −
sqlite3_free(p->z);+ −
}+ −
p->z = 0;+ −
p->xDel = 0;+ −
}+ −
}+ −
+ −
/*+ −
** Return some kind of integer value which is the best we can do+ −
** at representing the value that *pMem describes as an integer.+ −
** If pMem is an integer, then the value is exact. If pMem is+ −
** a floating-point then the value returned is the integer part.+ −
** If pMem is a string or blob, then we make an attempt to convert+ −
** it into a integer and return that. If pMem is NULL, return 0.+ −
**+ −
** If pMem is a string, its encoding might be changed.+ −
*/+ −
i64 sqlite3VdbeIntValue(Mem *pMem){+ −
int flags;+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
flags = pMem->flags;+ −
if( flags & MEM_Int ){+ −
return pMem->u.i;+ −
}else if( flags & MEM_Real ){+ −
return (i64)pMem->r;+ −
}else if( flags & (MEM_Str|MEM_Blob) ){+ −
i64 value;+ −
pMem->flags |= MEM_Str;+ −
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)+ −
|| sqlite3VdbeMemNulTerminate(pMem) ){+ −
return 0;+ −
}+ −
assert( pMem->z );+ −
sqlite3Atoi64(pMem->z, &value);+ −
return value;+ −
}else{+ −
return 0;+ −
}+ −
}+ −
+ −
/*+ −
** Return the best representation of pMem that we can get into a+ −
** double. If pMem is already a double or an integer, return its+ −
** value. If it is a string or blob, try to convert it to a double.+ −
** If it is a NULL, return 0.0.+ −
*/+ −
double sqlite3VdbeRealValue(Mem *pMem){+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
if( pMem->flags & MEM_Real ){+ −
return pMem->r;+ −
}else if( pMem->flags & MEM_Int ){+ −
return (double)pMem->u.i;+ −
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){+ −
double val = 0.0;+ −
pMem->flags |= MEM_Str;+ −
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)+ −
|| sqlite3VdbeMemNulTerminate(pMem) ){+ −
return 0.0;+ −
}+ −
assert( pMem->z );+ −
sqlite3AtoF(pMem->z, &val);+ −
return val;+ −
}else{+ −
return 0.0;+ −
}+ −
}+ −
+ −
/*+ −
** The MEM structure is already a MEM_Real. Try to also make it a+ −
** MEM_Int if we can.+ −
*/+ −
void sqlite3VdbeIntegerAffinity(Mem *pMem){+ −
assert( pMem->flags & MEM_Real );+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
pMem->u.i = pMem->r;+ −
if( ((double)pMem->u.i)==pMem->r ){+ −
pMem->flags |= MEM_Int;+ −
}+ −
}+ −
+ −
/*+ −
** Convert pMem to type integer. Invalidate any prior representations.+ −
*/+ −
int sqlite3VdbeMemIntegerify(Mem *pMem){+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
pMem->u.i = sqlite3VdbeIntValue(pMem);+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->flags = MEM_Int;+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** Convert pMem so that it is of type MEM_Real.+ −
** Invalidate any prior representations.+ −
*/+ −
int sqlite3VdbeMemRealify(Mem *pMem){+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
pMem->r = sqlite3VdbeRealValue(pMem);+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->flags = MEM_Real;+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** Convert pMem so that it has types MEM_Real or MEM_Int or both.+ −
** Invalidate any prior representations.+ −
*/+ −
int sqlite3VdbeMemNumerify(Mem *pMem){+ −
double r1, r2;+ −
i64 i;+ −
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );+ −
assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
r1 = sqlite3VdbeRealValue(pMem);+ −
i = (i64)r1;+ −
r2 = (double)i;+ −
if( r1==r2 ){+ −
sqlite3VdbeMemIntegerify(pMem);+ −
}else{+ −
pMem->r = r1;+ −
pMem->flags = MEM_Real;+ −
sqlite3VdbeMemRelease(pMem);+ −
}+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** Delete any previous value and set the value stored in *pMem to NULL.+ −
*/+ −
void sqlite3VdbeMemSetNull(Mem *pMem){+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->flags = MEM_Null;+ −
pMem->type = SQLITE_NULL;+ −
pMem->n = 0;+ −
}+ −
+ −
/*+ −
** Delete any previous value and set the value to be a BLOB of length+ −
** n containing all zeros.+ −
*/+ −
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->flags = MEM_Blob|MEM_Zero|MEM_Short;+ −
pMem->type = SQLITE_BLOB;+ −
pMem->n = 0;+ −
if( n<0 ) n = 0;+ −
pMem->u.i = n;+ −
pMem->z = pMem->zShort;+ −
pMem->enc = SQLITE_UTF8;+ −
}+ −
+ −
/*+ −
** Delete any previous value and set the value stored in *pMem to val,+ −
** manifest type INTEGER.+ −
*/+ −
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->u.i = val;+ −
pMem->flags = MEM_Int;+ −
pMem->type = SQLITE_INTEGER;+ −
}+ −
+ −
/*+ −
** Delete any previous value and set the value stored in *pMem to val,+ −
** manifest type REAL.+ −
*/+ −
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){+ −
if( sqlite3_isnan(val) ){+ −
sqlite3VdbeMemSetNull(pMem);+ −
}else{+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->r = val;+ −
pMem->flags = MEM_Real;+ −
pMem->type = SQLITE_FLOAT;+ −
}+ −
}+ −
+ −
/*+ −
** Return true if the Mem object contains a TEXT or BLOB that is+ −
** too large - whose size exceeds SQLITE_MAX_LENGTH.+ −
*/+ −
int sqlite3VdbeMemTooBig(Mem *p){+ −
if( p->flags & (MEM_Str|MEM_Blob) ){+ −
int n = p->n;+ −
if( p->flags & MEM_Zero ){+ −
n += p->u.i;+ −
}+ −
return n>SQLITE_MAX_LENGTH;+ −
}+ −
return 0; + −
}+ −
+ −
/*+ −
** Make an shallow copy of pFrom into pTo. Prior contents of+ −
** pTo are overwritten. The pFrom->z field is not duplicated. If+ −
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z+ −
** and flags gets srcType (either MEM_Ephem or MEM_Static).+ −
*/+ −
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){+ −
memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));+ −
pTo->xDel = 0;+ −
if( pTo->flags & (MEM_Str|MEM_Blob) ){+ −
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);+ −
assert( srcType==MEM_Ephem || srcType==MEM_Static );+ −
pTo->flags |= srcType;+ −
}+ −
}+ −
+ −
/*+ −
** Make a full copy of pFrom into pTo. Prior contents of pTo are+ −
** freed before the copy is made.+ −
*/+ −
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){+ −
int rc;+ −
if( pTo->flags & MEM_Dyn ){+ −
sqlite3VdbeMemRelease(pTo);+ −
}+ −
sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);+ −
if( pTo->flags & MEM_Ephem ){+ −
rc = sqlite3VdbeMemMakeWriteable(pTo);+ −
}else{+ −
rc = SQLITE_OK;+ −
}+ −
return rc;+ −
}+ −
+ −
/*+ −
** Transfer the contents of pFrom to pTo. Any existing value in pTo is+ −
** freed. If pFrom contains ephemeral data, a copy is made.+ −
**+ −
** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM+ −
** might be returned if pFrom held ephemeral data and we were unable+ −
** to allocate enough space to make a copy.+ −
*/+ −
int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){+ −
int rc;+ −
assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );+ −
assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );+ −
assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );+ −
if( pTo->flags & MEM_Dyn ){+ −
sqlite3VdbeMemRelease(pTo);+ −
}+ −
memcpy(pTo, pFrom, sizeof(Mem));+ −
if( pFrom->flags & MEM_Short ){+ −
pTo->z = pTo->zShort;+ −
}+ −
pFrom->flags = MEM_Null;+ −
pFrom->xDel = 0;+ −
if( pTo->flags & MEM_Ephem ){+ −
rc = sqlite3VdbeMemMakeWriteable(pTo);+ −
}else{+ −
rc = SQLITE_OK;+ −
}+ −
return rc;+ −
}+ −
+ −
/*+ −
** Change the value of a Mem to be a string or a BLOB.+ −
*/+ −
int sqlite3VdbeMemSetStr(+ −
Mem *pMem, /* Memory cell to set to string value */+ −
const char *z, /* String pointer */+ −
int n, /* Bytes in string, or negative */+ −
u8 enc, /* Encoding of z. 0 for BLOBs */+ −
void (*xDel)(void*) /* Destructor function */+ −
){+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
sqlite3VdbeMemRelease(pMem);+ −
if( !z ){+ −
pMem->flags = MEM_Null;+ −
pMem->type = SQLITE_NULL;+ −
return SQLITE_OK;+ −
}+ −
pMem->z = (char *)z;+ −
if( xDel==SQLITE_STATIC ){+ −
pMem->flags = MEM_Static;+ −
}else if( xDel==SQLITE_TRANSIENT ){+ −
pMem->flags = MEM_Ephem;+ −
}else{+ −
pMem->flags = MEM_Dyn;+ −
pMem->xDel = xDel;+ −
}+ −
+ −
pMem->enc = enc;+ −
pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;+ −
pMem->n = n;+ −
+ −
assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE + −
|| enc==SQLITE_UTF16BE );+ −
switch( enc ){+ −
case 0:+ −
pMem->flags |= MEM_Blob;+ −
pMem->enc = SQLITE_UTF8;+ −
break;+ −
+ −
case SQLITE_UTF8:+ −
pMem->flags |= MEM_Str;+ −
if( n<0 ){+ −
pMem->n = strlen(z);+ −
pMem->flags |= MEM_Term;+ −
}+ −
break;+ −
+ −
#ifndef SQLITE_OMIT_UTF16+ −
case SQLITE_UTF16LE:+ −
case SQLITE_UTF16BE:+ −
pMem->flags |= MEM_Str;+ −
if( pMem->n<0 ){+ −
pMem->n = sqlite3Utf16ByteLen(pMem->z,-1);+ −
pMem->flags |= MEM_Term;+ −
}+ −
if( sqlite3VdbeMemHandleBom(pMem) ){+ −
return SQLITE_NOMEM;+ −
}+ −
#endif /* SQLITE_OMIT_UTF16 */+ −
}+ −
if( pMem->flags&MEM_Ephem ){+ −
return sqlite3VdbeMemMakeWriteable(pMem);+ −
}+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** Compare the values contained by the two memory cells, returning+ −
** negative, zero or positive if pMem1 is less than, equal to, or greater+ −
** than pMem2. Sorting order is NULL's first, followed by numbers (integers+ −
** and reals) sorted numerically, followed by text ordered by the collating+ −
** sequence pColl and finally blob's ordered by memcmp().+ −
**+ −
** Two NULL values are considered equal by this function.+ −
*/+ −
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){+ −
int rc;+ −
int f1, f2;+ −
int combined_flags;+ −
+ −
/* Interchange pMem1 and pMem2 if the collating sequence specifies+ −
** DESC order.+ −
*/+ −
f1 = pMem1->flags;+ −
f2 = pMem2->flags;+ −
combined_flags = f1|f2;+ −
+ −
/* If one value is NULL, it is less than the other. If both values+ −
** are NULL, return 0.+ −
*/+ −
if( combined_flags&MEM_Null ){+ −
return (f2&MEM_Null) - (f1&MEM_Null);+ −
}+ −
+ −
/* If one value is a number and the other is not, the number is less.+ −
** If both are numbers, compare as reals if one is a real, or as integers+ −
** if both values are integers.+ −
*/+ −
if( combined_flags&(MEM_Int|MEM_Real) ){+ −
if( !(f1&(MEM_Int|MEM_Real)) ){+ −
return 1;+ −
}+ −
if( !(f2&(MEM_Int|MEM_Real)) ){+ −
return -1;+ −
}+ −
if( (f1 & f2 & MEM_Int)==0 ){+ −
double r1, r2;+ −
if( (f1&MEM_Real)==0 ){+ −
r1 = pMem1->u.i;+ −
}else{+ −
r1 = pMem1->r;+ −
}+ −
if( (f2&MEM_Real)==0 ){+ −
r2 = pMem2->u.i;+ −
}else{+ −
r2 = pMem2->r;+ −
}+ −
if( r1<r2 ) return -1;+ −
if( r1>r2 ) return 1;+ −
return 0;+ −
}else{+ −
assert( f1&MEM_Int );+ −
assert( f2&MEM_Int );+ −
if( pMem1->u.i < pMem2->u.i ) return -1;+ −
if( pMem1->u.i > pMem2->u.i ) return 1;+ −
return 0;+ −
}+ −
}+ −
+ −
/* If one value is a string and the other is a blob, the string is less.+ −
** If both are strings, compare using the collating functions.+ −
*/+ −
if( combined_flags&MEM_Str ){+ −
if( (f1 & MEM_Str)==0 ){+ −
return 1;+ −
}+ −
if( (f2 & MEM_Str)==0 ){+ −
return -1;+ −
}+ −
+ −
assert( pMem1->enc==pMem2->enc );+ −
assert( pMem1->enc==SQLITE_UTF8 || + −
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );+ −
+ −
/* The collation sequence must be defined at this point, even if+ −
** the user deletes the collation sequence after the vdbe program is+ −
** compiled (this was not always the case).+ −
*/+ −
assert( !pColl || pColl->xCmp );+ −
+ −
if( pColl ){+ −
if( pMem1->enc==pColl->enc ){+ −
/* The strings are already in the correct encoding. Call the+ −
** comparison function directly */+ −
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);+ −
}else{+ −
u8 origEnc = pMem1->enc;+ −
const void *v1, *v2;+ −
int n1, n2;+ −
/* Convert the strings into the encoding that the comparison+ −
** function expects */+ −
v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);+ −
n1 = v1==0 ? 0 : pMem1->n;+ −
assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );+ −
v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);+ −
n2 = v2==0 ? 0 : pMem2->n;+ −
assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );+ −
/* Do the comparison */+ −
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);+ −
/* Convert the strings back into the database encoding */+ −
sqlite3ValueText((sqlite3_value*)pMem1, origEnc);+ −
sqlite3ValueText((sqlite3_value*)pMem2, origEnc);+ −
return rc;+ −
}+ −
}+ −
/* If a NULL pointer was passed as the collate function, fall through+ −
** to the blob case and use memcmp(). */+ −
}+ −
+ −
/* Both values must be blobs. Compare using memcmp(). */+ −
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);+ −
if( rc==0 ){+ −
rc = pMem1->n - pMem2->n;+ −
}+ −
return rc;+ −
}+ −
+ −
/*+ −
** Move data out of a btree key or data field and into a Mem structure.+ −
** The data or key is taken from the entry that pCur is currently pointing+ −
** to. offset and amt determine what portion of the data or key to retrieve.+ −
** key is true to get the key or false to get data. The result is written+ −
** into the pMem element.+ −
**+ −
** The pMem structure is assumed to be uninitialized. Any prior content+ −
** is overwritten without being freed.+ −
**+ −
** If this routine fails for any reason (malloc returns NULL or unable+ −
** to read from the disk) then the pMem is left in an inconsistent state.+ −
*/+ −
int sqlite3VdbeMemFromBtree(+ −
BtCursor *pCur, /* Cursor pointing at record to retrieve. */+ −
int offset, /* Offset from the start of data to return bytes from. */+ −
int amt, /* Number of bytes to return. */+ −
int key, /* If true, retrieve from the btree key, not data. */+ −
Mem *pMem /* OUT: Return data in this Mem structure. */+ −
){+ −
char *zData; /* Data from the btree layer */+ −
int available = 0; /* Number of bytes available on the local btree page */+ −
sqlite3 *db; /* Database connection */+ −
+ −
db = sqlite3BtreeCursorDb(pCur);+ −
assert( sqlite3_mutex_held(db->mutex) );+ −
if( key ){+ −
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);+ −
}else{+ −
zData = (char *)sqlite3BtreeDataFetch(pCur, &available);+ −
}+ −
assert( zData!=0 );+ −
+ −
pMem->db = db;+ −
pMem->n = amt;+ −
if( offset+amt<=available ){+ −
pMem->z = &zData[offset];+ −
pMem->flags = MEM_Blob|MEM_Ephem;+ −
}else{+ −
int rc;+ −
if( amt>NBFS-2 ){+ −
zData = (char *)sqlite3DbMallocRaw(db, amt+2);+ −
if( !zData ){+ −
return SQLITE_NOMEM;+ −
}+ −
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;+ −
pMem->xDel = 0;+ −
}else{+ −
zData = &(pMem->zShort[0]);+ −
pMem->flags = MEM_Blob|MEM_Short|MEM_Term;+ −
}+ −
pMem->z = zData;+ −
pMem->enc = 0;+ −
pMem->type = SQLITE_BLOB;+ −
+ −
if( key ){+ −
rc = sqlite3BtreeKey(pCur, offset, amt, zData);+ −
}else{+ −
rc = sqlite3BtreeData(pCur, offset, amt, zData);+ −
}+ −
zData[amt] = 0;+ −
zData[amt+1] = 0;+ −
if( rc!=SQLITE_OK ){+ −
if( amt>NBFS-2 ){+ −
assert( zData!=pMem->zShort );+ −
assert( pMem->flags & MEM_Dyn );+ −
sqlite3_free(zData);+ −
} else {+ −
assert( zData==pMem->zShort );+ −
assert( pMem->flags & MEM_Short );+ −
}+ −
return rc;+ −
}+ −
}+ −
+ −
return SQLITE_OK;+ −
}+ −
+ −
#ifndef NDEBUG+ −
/*+ −
** Perform various checks on the memory cell pMem. An assert() will+ −
** fail if pMem is internally inconsistent.+ −
*/+ −
void sqlite3VdbeMemSanity(Mem *pMem){+ −
int flags = pMem->flags;+ −
assert( flags!=0 ); /* Must define some type */+ −
if( flags & (MEM_Str|MEM_Blob) ){+ −
int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);+ −
assert( x!=0 ); /* Strings must define a string subtype */+ −
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */+ −
assert( pMem->z!=0 ); /* Strings must have a value */+ −
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */+ −
assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );+ −
assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );+ −
/* No destructor unless there is MEM_Dyn */+ −
assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );+ −
+ −
if( (flags & MEM_Str) ){+ −
assert( pMem->enc==SQLITE_UTF8 || + −
pMem->enc==SQLITE_UTF16BE ||+ −
pMem->enc==SQLITE_UTF16LE + −
);+ −
/* If the string is UTF-8 encoded and nul terminated, then pMem->n+ −
** must be the length of the string. (Later:) If the database file+ −
** has been corrupted, '\000' characters might have been inserted+ −
** into the middle of the string. In that case, the strlen() might+ −
** be less.+ −
*/+ −
if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ + −
assert( strlen(pMem->z)<=pMem->n );+ −
assert( pMem->z[pMem->n]==0 );+ −
}+ −
}+ −
}else{+ −
/* Cannot define a string subtype for non-string objects */+ −
assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );+ −
assert( pMem->xDel==0 );+ −
}+ −
/* MEM_Null excludes all other types */+ −
assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0+ −
|| (pMem->flags&MEM_Null)==0 );+ −
/* If the MEM is both real and integer, the values are equal */+ −
assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) + −
|| pMem->r==pMem->u.i );+ −
}+ −
#endif+ −
+ −
/* This function is only available internally, it is not part of the+ −
** external API. It works in a similar way to sqlite3_value_text(),+ −
** except the data returned is in the encoding specified by the second+ −
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or+ −
** SQLITE_UTF8.+ −
**+ −
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.+ −
** If that is the case, then the result must be aligned on an even byte+ −
** boundary.+ −
*/+ −
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){+ −
if( !pVal ) return 0;+ −
+ −
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );+ −
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );+ −
+ −
if( pVal->flags&MEM_Null ){+ −
return 0;+ −
}+ −
assert( (MEM_Blob>>3) == MEM_Str );+ −
pVal->flags |= (pVal->flags & MEM_Blob)>>3;+ −
expandBlob(pVal);+ −
if( pVal->flags&MEM_Str ){+ −
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);+ −
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){+ −
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );+ −
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){+ −
return 0;+ −
}+ −
}+ −
sqlite3VdbeMemNulTerminate(pVal);+ −
}else{+ −
assert( (pVal->flags&MEM_Blob)==0 );+ −
sqlite3VdbeMemStringify(pVal, enc);+ −
assert( 0==(1&(int)pVal->z) );+ −
}+ −
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0+ −
|| pVal->db->mallocFailed );+ −
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){+ −
return pVal->z;+ −
}else{+ −
return 0;+ −
}+ −
}+ −
+ −
/*+ −
** Create a new sqlite3_value object.+ −
*/+ −
sqlite3_value *sqlite3ValueNew(sqlite3 *db){+ −
Mem *p = (Mem*)sqlite3DbMallocZero(db, sizeof(*p));+ −
if( p ){+ −
p->flags = MEM_Null;+ −
p->type = SQLITE_NULL;+ −
p->db = db;+ −
}+ −
return p;+ −
}+ −
+ −
/*+ −
** Create a new sqlite3_value object, containing the value of pExpr.+ −
**+ −
** This only works for very simple expressions that consist of one constant+ −
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can+ −
** be converted directly into a value, then the value is allocated and+ −
** a pointer written to *ppVal. The caller is responsible for deallocating+ −
** the value by passing it to sqlite3ValueFree() later on. If the expression+ −
** cannot be converted to a value, then *ppVal is set to NULL.+ −
*/+ −
int sqlite3ValueFromExpr(+ −
sqlite3 *db, /* The database connection */+ −
Expr *pExpr, /* The expression to evaluate */+ −
u8 enc, /* Encoding to use */+ −
u8 affinity, /* Affinity to use */+ −
sqlite3_value **ppVal /* Write the new value here */+ −
){+ −
int op;+ −
char *zVal = 0;+ −
sqlite3_value *pVal = 0;+ −
+ −
if( !pExpr ){+ −
*ppVal = 0;+ −
return SQLITE_OK;+ −
}+ −
op = pExpr->op;+ −
+ −
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){+ −
zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);+ −
pVal = sqlite3ValueNew(db);+ −
if( !zVal || !pVal ) goto no_mem;+ −
sqlite3Dequote(zVal);+ −
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);+ −
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){+ −
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);+ −
}else{+ −
sqlite3ValueApplyAffinity(pVal, affinity, enc);+ −
}+ −
}else if( op==TK_UMINUS ) {+ −
if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){+ −
pVal->u.i = -1 * pVal->u.i;+ −
pVal->r = -1.0 * pVal->r;+ −
}+ −
}+ −
#ifndef SQLITE_OMIT_BLOB_LITERAL+ −
else if( op==TK_BLOB ){+ −
int nVal;+ −
pVal = sqlite3ValueNew(db);+ −
zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);+ −
if( !zVal || !pVal ) goto no_mem;+ −
sqlite3Dequote(zVal);+ −
nVal = strlen(zVal)/2;+ −
sqlite3VdbeMemSetStr(pVal, (const char*)sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free);+ −
sqlite3_free(zVal);+ −
}+ −
#endif+ −
+ −
*ppVal = pVal;+ −
return SQLITE_OK;+ −
+ −
no_mem:+ −
db->mallocFailed = 1;+ −
sqlite3_free(zVal);+ −
sqlite3ValueFree(pVal);+ −
*ppVal = 0;+ −
return SQLITE_NOMEM;+ −
}+ −
+ −
/*+ −
** Change the string value of an sqlite3_value object+ −
*/+ −
void sqlite3ValueSetStr(+ −
sqlite3_value *v, /* Value to be set */+ −
int n, /* Length of string z */+ −
const void *z, /* Text of the new string */+ −
u8 enc, /* Encoding to use */+ −
void (*xDel)(void*) /* Destructor for the string */+ −
){+ −
if( v ) sqlite3VdbeMemSetStr((Mem *)v, (const char*)z, n, enc, xDel);+ −
}+ −
+ −
/*+ −
** Free an sqlite3_value object+ −
*/+ −
void sqlite3ValueFree(sqlite3_value *v){+ −
if( !v ) return;+ −
sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);+ −
sqlite3_free(v);+ −
}+ −
+ −
/*+ −
** Return the number of bytes in the sqlite3_value object assuming+ −
** that it uses the encoding "enc"+ −
*/+ −
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){+ −
Mem *p = (Mem*)pVal;+ −
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){+ −
if( p->flags & MEM_Zero ){+ −
return p->n+p->u.i;+ −
}else{+ −
return p->n;+ −
}+ −
}+ −
return 0;+ −
}+ −