/*
** 2007 October 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
** use of malloc(). All dynamically allocatable memory is
** contained in a static array, mem.aPool[]. The size of this
** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_MEMORY_SIZE is defined.
**
** $Id: mem3.cpp 1282 2008-11-13 09:31:33Z LarsPson $
*/
/*
** This version of the memory allocator is used only when
** SQLITE_MEMORY_SIZE is defined.
*/
#if defined(SQLITE_MEMORY_SIZE)
#include "sqliteInt.h"
#ifdef SQLITE_MEMDEBUG
# error cannot define both SQLITE_MEMDEBUG and SQLITE_MEMORY_SIZE
#endif
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.
*/
#define MX_SMALL 10
/*
** Number of freelist hash slots
*/
#define N_HASH 61
/*
** A memory allocation (also called a "chunk") consists of two or
** more blocks where each block is 8 bytes. The first 8 bytes are
** a header that is not returned to the user.
**
** A chunk is two or more blocks that is either checked out or
** free. The first block has format u.hdr. u.hdr.size is the
** size of the allocation in blocks if the allocation is free.
** If the allocation is checked out, u.hdr.size is the negative
** of the size. Similarly, u.hdr.prevSize is the size of the
** immediately previous allocation.
**
** We often identify a chunk by its index in mem.aPool[]. When
** this is done, the chunk index refers to the second block of
** the chunk. In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
** of a NULL pointer.
**
** The second block of free chunks is of the form u.list. The
** two fields form a double-linked list of chunks of related sizes.
** Pointers to the head of the list are stored in mem.aiSmall[]
** for smaller chunks and mem.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked
** out.
*/
typedef struct Mem3Block Mem3Block;
struct Mem3Block {
union {
struct {
int prevSize; /* Size of previous chunk in Mem3Block elements */
int size; /* Size of current chunk in Mem3Block elements */
} hdr;
struct {
int next; /* Index in mem.aPool[] of next free chunk */
int prev; /* Index in mem.aPool[] of previous free chunk */
} list;
} u;
};
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
/*
** True if we are evaluating an out-of-memory callback.
*/
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** The minimum amount of free space that we have seen.
*/
int mnMaster;
/*
** iMaster is the index of the master chunk. Most new allocations
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
** of the current master. iMaster is 0 if there is not master chunk.
** The master chunk is not in either the aiHash[] or aiSmall[].
*/
int iMaster;
int szMaster;
/*
** Array of lists of free blocks according to the block size
** for smaller chunks, or a hash on the block size for larger
** chunks.
*/
int aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
int aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
/*
** Memory available for allocation
*/
Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
} mem;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. *pRoot is the list that i is a member of.
*/
static void memsys3UnlinkFromList(int i, int *pRoot){
int next = mem.aPool[i].u.list.next;
int prev = mem.aPool[i].u.list.prev;
assert( sqlite3_mutex_held(mem.mutex) );
if( prev==0 ){
*pRoot = next;
}else{
mem.aPool[prev].u.list.next = next;
}
if( next ){
mem.aPool[next].u.list.prev = prev;
}
mem.aPool[i].u.list.next = 0;
mem.aPool[i].u.list.prev = 0;
}
/*
** Unlink the chunk at index i from
** whatever list is currently a member of.
*/
static void memsys3Unlink(int i){
int size, hash;
assert( sqlite3_mutex_held(mem.mutex) );
size = mem.aPool[i-1].u.hdr.size;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
}
}
/*
** Link the chunk at mem.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void memsys3LinkIntoList(int i, int *pRoot){
assert( sqlite3_mutex_held(mem.mutex) );
mem.aPool[i].u.list.next = *pRoot;
mem.aPool[i].u.list.prev = 0;
if( *pRoot ){
mem.aPool[*pRoot].u.list.prev = i;
}
*pRoot = i;
}
/*
** Link the chunk at index i into either the appropriate
** small chunk list, or into the large chunk hash table.
*/
static void memsys3Link(int i){
int size, hash;
assert( sqlite3_mutex_held(mem.mutex) );
size = mem.aPool[i-1].u.hdr.size;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
memsys3LinkIntoList(i, &mem.aiHash[hash]);
}
}
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void memsys3Enter(void){
if( mem.mutex==0 ){
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
mem.aPool[0].u.hdr.size = SQLITE_MEMORY_SIZE/8;
mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
mem.iMaster = 1;
mem.szMaster = SQLITE_MEMORY_SIZE/8;
mem.mnMaster = mem.szMaster;
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
if( resetFlag ){
mem.mnMaster = mem.szMaster;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Change the alarm callback.
**
** This is a no-op for the static memory allocator. The purpose
** of the memory alarm is to support sqlite3_soft_heap_limit().
** But with this memory allocator, the soft_heap_limit is really
** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
*/
int sqlite3_memory_alarm(
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
void *pArg,
sqlite3_int64 iThreshold
){
return SQLITE_OK;
}
/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void memsys3OutOfMemory(int nByte){
if( !mem.alarmBusy ){
mem.alarmBusy = 1;
assert( sqlite3_mutex_held(mem.mutex) );
sqlite3_mutex_leave(mem.mutex);
sqlite3_release_memory(nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
}
/*
** Return the size of an outstanding allocation, in bytes. The
** size returned omits the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
static int memsys3Size(void *p){
Mem3Block *pBlock = (Mem3Block*)p;
assert( pBlock[-1].u.hdr.size<0 );
return (-1-pBlock[-1].u.hdr.size)*8;
}
/*
** Chunk i is a free chunk that has been unlinked. Adjust its
** size parameters for check-out and return a pointer to the
** user portion of the chunk.
*/
static void *memsys3Checkout(int i, int nBlock){
assert( sqlite3_mutex_held(mem.mutex) );
assert( mem.aPool[i-1].u.hdr.size==nBlock );
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
mem.aPool[i-1].u.hdr.size = -nBlock;
mem.aPool[i+nBlock-1].u.hdr.prevSize = -nBlock;
return &mem.aPool[i];
}
/*
** Carve a piece off of the end of the mem.iMaster free chunk.
** Return a pointer to the new allocation. Or, if the master chunk
** is not large enough, return 0.
*/
static void *memsys3FromMaster(int nBlock){
assert( sqlite3_mutex_held(mem.mutex) );
assert( mem.szMaster>=nBlock );
if( nBlock>=mem.szMaster-1 ){
/* Use the entire master */
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
mem.iMaster = 0;
mem.szMaster = 0;
mem.mnMaster = 0;
return p;
}else{
/* Split the master block. Return the tail. */
int newi;
newi = mem.iMaster + mem.szMaster - nBlock;
assert( newi > mem.iMaster+1 );
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = -nBlock;
mem.aPool[newi-1].u.hdr.size = -nBlock;
mem.szMaster -= nBlock;
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
if( mem.szMaster < mem.mnMaster ){
mem.mnMaster = mem.szMaster;
}
return (void*)&mem.aPool[newi];
}
}
/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash. In other words, *pRoot is an entry in either
** mem.aiSmall[] or mem.aiHash[].
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.
**
** If it sees a chunk that is larger than mem.iMaster, it replaces
** the current mem.iMaster with the new larger chunk. In order for
** this mem.iMaster replacement to work, the master chunk must be
** linked into the hash tables. That is not the normal state of
** affairs, of course. The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
** changed) master chunk once this routine has finished.
*/
static void memsys3Merge(int *pRoot){
int iNext, prev, size, i;
assert( sqlite3_mutex_held(mem.mutex) );
for(i=*pRoot; i>0; i=iNext){
iNext = mem.aPool[i].u.list.next;
size = mem.aPool[i-1].u.hdr.size;
assert( size>0 );
if( mem.aPool[i-1].u.hdr.prevSize>0 ){
memsys3UnlinkFromList(i, pRoot);
prev = i - mem.aPool[i-1].u.hdr.prevSize;
assert( prev>=0 );
if( prev==iNext ){
iNext = mem.aPool[prev].u.list.next;
}
memsys3Unlink(prev);
size = i + size - prev;
mem.aPool[prev-1].u.hdr.size = size;
mem.aPool[prev+size-1].u.hdr.prevSize = size;
memsys3Link(prev);
i = prev;
}
if( size>mem.szMaster ){
mem.iMaster = i;
mem.szMaster = size;
}
}
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *memsys3Malloc(int nByte){
int i;
int nBlock;
int toFree;
assert( sqlite3_mutex_held(mem.mutex) );
assert( sizeof(Mem3Block)==8 );
if( nByte<=0 ){
nBlock = 2;
}else{
nBlock = (nByte + 15)/8;
}
assert( nBlock >= 2 );
/* STEP 1:
** Look for an entry of the correct size in either the small
** chunk table or in the large chunk hash table. This is
** successful most of the time (about 9 times out of 10).
*/
if( nBlock <= MX_SMALL ){
i = mem.aiSmall[nBlock-2];
if( i>0 ){
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
return memsys3Checkout(i, nBlock);
}
}else{
int hash = nBlock % N_HASH;
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
if( mem.aPool[i-1].u.hdr.size==nBlock ){
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
return memsys3Checkout(i, nBlock);
}
}
}
/* STEP 2:
** Try to satisfy the allocation by carving a piece off of the end
** of the master chunk. This step usually works if step 1 fails.
*/
if( mem.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
/* STEP 3:
** Loop through the entire memory pool. Coalesce adjacent free
** chunks. Recompute the master chunk as the largest free chunk.
** Then try again to satisfy the allocation by carving a piece off
** of the end of the master chunk. This step happens very
** rarely (we hope!)
*/
for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
memsys3OutOfMemory(toFree);
if( mem.iMaster ){
memsys3Link(mem.iMaster);
mem.iMaster = 0;
mem.szMaster = 0;
}
for(i=0; i<N_HASH; i++){
memsys3Merge(&mem.aiHash[i]);
}
for(i=0; i<MX_SMALL-1; i++){
memsys3Merge(&mem.aiSmall[i]);
}
if( mem.szMaster ){
memsys3Unlink(mem.iMaster);
if( mem.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
}
}
/* If none of the above worked, then we fail. */
return 0;
}
/*
** Free an outstanding memory allocation.
*/
void memsys3Free(void *pOld){
Mem3Block *p = (Mem3Block*)pOld;
int i;
int size;
assert( sqlite3_mutex_held(mem.mutex) );
assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
i = p - mem.aPool;
size = -mem.aPool[i-1].u.hdr.size;
assert( size>=2 );
assert( mem.aPool[i+size-1].u.hdr.prevSize==-size );
mem.aPool[i-1].u.hdr.size = size;
mem.aPool[i+size-1].u.hdr.prevSize = size;
memsys3Link(i);
/* Try to expand the master using the newly freed chunk */
if( mem.iMaster ){
while( mem.aPool[mem.iMaster-1].u.hdr.prevSize>0 ){
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
mem.iMaster -= size;
mem.szMaster += size;
memsys3Unlink(mem.iMaster);
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
}
while( mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size>0 ){
memsys3Unlink(mem.iMaster+mem.szMaster);
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size;
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
}
}
}
/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(int nBytes){
sqlite3_int64 *p = 0;
if( nBytes>0 ){
memsys3Enter();
p = memsys3Malloc(nBytes);
sqlite3_mutex_leave(mem.mutex);
}
return (void*)p;
}
/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
if( pPrior==0 ){
return;
}
assert( mem.mutex!=0 );
sqlite3_mutex_enter(mem.mutex);
memsys3Free(pPrior);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, int nBytes){
int nOld;
void *p;
if( pPrior==0 ){
return sqlite3_malloc(nBytes);
}
if( nBytes<=0 ){
sqlite3_free(pPrior);
return 0;
}
assert( mem.mutex!=0 );
nOld = memsys3Size(pPrior);
if( nBytes<=nOld && nBytes>=nOld-128 ){
return pPrior;
}
sqlite3_mutex_enter(mem.mutex);
p = memsys3Malloc(nBytes);
if( p ){
if( nOld<nBytes ){
memcpy(p, pPrior, nOld);
}else{
memcpy(p, pPrior, nBytes);
}
memsys3Free(pPrior);
}
sqlite3_mutex_leave(mem.mutex);
return p;
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
#ifdef SQLITE_DEBUG
FILE *out;
int i, j, size;
if( zFilename==0 || zFilename[0]==0 ){
out = stdout;
}else{
out = fopen(zFilename, "w");
if( out==0 ){
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
zFilename);
return;
}
}
memsys3Enter();
fprintf(out, "CHUNKS:\n");
for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size){
size = mem.aPool[i-1].u.hdr.size;
if( size>=-1 && size<=1 ){
fprintf(out, "%p size error\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( mem.aPool[i+(size<0?-size:size)-1].u.hdr.prevSize!=size ){
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( size<0 ){
size = -size;
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], size*8-8);
}else{
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], size*8-8,
i==mem.iMaster ? " **master**" : "");
}
}
for(i=0; i<MX_SMALL-1; i++){
if( mem.aiSmall[i]==0 ) continue;
fprintf(out, "small(%2d):", i);
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
}
fprintf(out, "\n");
}
for(i=0; i<N_HASH; i++){
if( mem.aiHash[i]==0 ) continue;
fprintf(out, "hash(%2d):", i);
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
}
fprintf(out, "\n");
}
fprintf(out, "master=%d\n", mem.iMaster);
fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
sqlite3_mutex_leave(mem.mutex);
if( out==stdout ){
fflush(stdout);
}else{
fclose(out);
}
#endif
}
#endif /* !SQLITE_MEMORY_SIZE */