/*+ −
** 2004 April 13+ −
**+ −
** The author disclaims copyright to this source code. In place of+ −
** a legal notice, here is a blessing:+ −
**+ −
** May you do good and not evil.+ −
** May you find forgiveness for yourself and forgive others.+ −
** May you share freely, never taking more than you give.+ −
**+ −
*************************************************************************+ −
** This file contains routines used to translate between UTF-8, + −
** UTF-16, UTF-16BE, and UTF-16LE.+ −
**+ −
** $Id: utf.cpp 1282 2008-11-13 09:31:33Z LarsPson $+ −
**+ −
** Notes on UTF-8:+ −
**+ −
** Byte-0 Byte-1 Byte-2 Byte-3 Value+ −
** 0xxxxxxx 00000000 00000000 0xxxxxxx+ −
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx+ −
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx+ −
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx+ −
**+ −
**+ −
** Notes on UTF-16: (with wwww+1==uuuuu)+ −
**+ −
** Word-0 Word-1 Value+ −
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx+ −
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx+ −
**+ −
**+ −
** BOM or Byte Order Mark:+ −
** 0xff 0xfe little-endian utf-16 follows+ −
** 0xfe 0xff big-endian utf-16 follows+ −
**+ −
*/+ −
#include "sqliteInt.h"+ −
#include <assert.h>+ −
#include "vdbeInt.h"+ −
+ −
/*+ −
** The following constant value is used by the SQLITE_BIGENDIAN and+ −
** SQLITE_LITTLEENDIAN macros.+ −
*/+ −
const int sqlite3one = 1;+ −
+ −
/*+ −
** This lookup table is used to help decode the first byte of+ −
** a multi-byte UTF8 character.+ −
*/+ −
static const unsigned char sqlite3UtfTrans1[] = {+ −
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,+ −
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,+ −
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,+ −
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,+ −
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,+ −
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,+ −
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,+ −
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,+ −
};+ −
+ −
+ −
#define WRITE_UTF8(zOut, c) { \+ −
if( c<0x00080 ){ \+ −
*zOut++ = (c&0xFF); \+ −
} \+ −
else if( c<0x00800 ){ \+ −
*zOut++ = 0xC0 + ((c>>6)&0x1F); \+ −
*zOut++ = 0x80 + (c & 0x3F); \+ −
} \+ −
else if( c<0x10000 ){ \+ −
*zOut++ = 0xE0 + ((c>>12)&0x0F); \+ −
*zOut++ = 0x80 + ((c>>6) & 0x3F); \+ −
*zOut++ = 0x80 + (c & 0x3F); \+ −
}else{ \+ −
*zOut++ = 0xF0 + ((c>>18) & 0x07); \+ −
*zOut++ = 0x80 + ((c>>12) & 0x3F); \+ −
*zOut++ = 0x80 + ((c>>6) & 0x3F); \+ −
*zOut++ = 0x80 + (c & 0x3F); \+ −
} \+ −
}+ −
+ −
#define WRITE_UTF16LE(zOut, c) { \+ −
if( c<=0xFFFF ){ \+ −
*zOut++ = (c&0x00FF); \+ −
*zOut++ = ((c>>8)&0x00FF); \+ −
}else{ \+ −
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \+ −
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \+ −
*zOut++ = (c&0x00FF); \+ −
*zOut++ = (0x00DC + ((c>>8)&0x03)); \+ −
} \+ −
}+ −
+ −
#define WRITE_UTF16BE(zOut, c) { \+ −
if( c<=0xFFFF ){ \+ −
*zOut++ = ((c>>8)&0x00FF); \+ −
*zOut++ = (c&0x00FF); \+ −
}else{ \+ −
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \+ −
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \+ −
*zOut++ = (0x00DC + ((c>>8)&0x03)); \+ −
*zOut++ = (c&0x00FF); \+ −
} \+ −
}+ −
+ −
#define READ_UTF16LE(zIn, c){ \+ −
c = (*zIn++); \+ −
c += ((*zIn++)<<8); \+ −
if( c>=0xD800 && c<0xE000 ){ \+ −
int c2 = (*zIn++); \+ −
c2 += ((*zIn++)<<8); \+ −
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \+ −
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \+ −
} \+ −
}+ −
+ −
#define READ_UTF16BE(zIn, c){ \+ −
c = ((*zIn++)<<8); \+ −
c += (*zIn++); \+ −
if( c>=0xD800 && c<0xE000 ){ \+ −
int c2 = ((*zIn++)<<8); \+ −
c2 += (*zIn++); \+ −
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \+ −
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \+ −
} \+ −
}+ −
+ −
/*+ −
** Translate a single UTF-8 character. Return the unicode value.+ −
**+ −
** During translation, assume that the byte that zTerm points+ −
** is a 0x00.+ −
**+ −
** Write a pointer to the next unread byte back into *pzNext.+ −
**+ −
** Notes On Invalid UTF-8:+ −
**+ −
** * This routine never allows a 7-bit character (0x00 through 0x7f) to+ −
** be encoded as a multi-byte character. Any multi-byte character that+ −
** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.+ −
**+ −
** * This routine never allows a UTF16 surrogate value to be encoded.+ −
** If a multi-byte character attempts to encode a value between+ −
** 0xd800 and 0xe000 then it is rendered as 0xfffd.+ −
**+ −
** * Bytes in the range of 0x80 through 0xbf which occur as the first+ −
** byte of a character are interpreted as single-byte characters+ −
** and rendered as themselves even though they are technically+ −
** invalid characters.+ −
**+ −
** * This routine accepts an infinite number of different UTF8 encodings+ −
** for unicode values 0x80 and greater. It do not change over-length+ −
** encodings to 0xfffd as some systems recommend.+ −
*/+ −
int sqlite3Utf8Read(+ −
const unsigned char *z, /* First byte of UTF-8 character */+ −
const unsigned char *zTerm, /* Pretend this byte is 0x00 */+ −
const unsigned char **pzNext /* Write first byte past UTF-8 char here */+ −
){+ −
int c = *(z++);+ −
if( c>=0xc0 ){+ −
c = sqlite3UtfTrans1[c-0xc0];+ −
while( z!=zTerm && (*z & 0xc0)==0x80 ){+ −
c = (c<<6) + (0x3f & *(z++));+ −
}+ −
if( c<0x80+ −
|| (c&0xFFFFF800)==0xD800+ −
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }+ −
}+ −
*pzNext = z;+ −
return c;+ −
}+ −
+ −
+ −
+ −
/*+ −
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is+ −
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().+ −
*/ + −
/* #define TRANSLATE_TRACE 1 */+ −
+ −
#ifndef SQLITE_OMIT_UTF16+ −
/*+ −
** This routine transforms the internal text encoding used by pMem to+ −
** desiredEnc. It is an error if the string is already of the desired+ −
** encoding, or if *pMem does not contain a string value.+ −
*/+ −
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){+ −
unsigned char zShort[NBFS]; /* Temporary short output buffer */+ −
int len; /* Maximum length of output string in bytes */+ −
unsigned char *zOut; /* Output buffer */+ −
unsigned char *zIn; /* Input iterator */+ −
unsigned char *zTerm; /* End of input */+ −
unsigned char *z; /* Output iterator */+ −
unsigned int c;+ −
+ −
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );+ −
assert( pMem->flags&MEM_Str );+ −
assert( pMem->enc!=desiredEnc );+ −
assert( pMem->enc!=0 );+ −
assert( pMem->n>=0 );+ −
+ −
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)+ −
{+ −
char zBuf[100];+ −
sqlite3VdbeMemPrettyPrint(pMem, zBuf);+ −
fprintf(stderr, "INPUT: %s\n", zBuf);+ −
}+ −
#endif+ −
+ −
/* If the translation is between UTF-16 little and big endian, then + −
** all that is required is to swap the byte order. This case is handled+ −
** differently from the others.+ −
*/+ −
if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){+ −
u8 temp;+ −
int rc;+ −
rc = sqlite3VdbeMemMakeWriteable(pMem);+ −
if( rc!=SQLITE_OK ){+ −
assert( rc==SQLITE_NOMEM );+ −
return SQLITE_NOMEM;+ −
}+ −
zIn = (u8*)pMem->z;+ −
zTerm = &zIn[pMem->n];+ −
while( zIn<zTerm ){+ −
temp = *zIn;+ −
*zIn = *(zIn+1);+ −
zIn++;+ −
*zIn++ = temp;+ −
}+ −
pMem->enc = desiredEnc;+ −
goto translate_out;+ −
}+ −
+ −
/* Set len to the maximum number of bytes required in the output buffer. */+ −
if( desiredEnc==SQLITE_UTF8 ){+ −
/* When converting from UTF-16, the maximum growth results from+ −
** translating a 2-byte character to a 4-byte UTF-8 character.+ −
** A single byte is required for the output string+ −
** nul-terminator.+ −
*/+ −
len = pMem->n * 2 + 1;+ −
}else{+ −
/* When converting from UTF-8 to UTF-16 the maximum growth is caused+ −
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16+ −
** character. Two bytes are required in the output buffer for the+ −
** nul-terminator.+ −
*/+ −
len = pMem->n * 2 + 2;+ −
}+ −
+ −
/* Set zIn to point at the start of the input buffer and zTerm to point 1+ −
** byte past the end.+ −
**+ −
** Variable zOut is set to point at the output buffer. This may be space+ −
** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and+ −
** not in use, or the zShort array on the stack (see above).+ −
*/+ −
zIn = (u8*)pMem->z;+ −
zTerm = &zIn[pMem->n];+ −
if( len>NBFS ){+ −
zOut = (unsigned char*)sqlite3DbMallocRaw(pMem->db, len);+ −
if( !zOut ){+ −
return SQLITE_NOMEM;+ −
}+ −
}else{+ −
zOut = zShort;+ −
}+ −
z = zOut;+ −
+ −
if( pMem->enc==SQLITE_UTF8 ){+ −
if( desiredEnc==SQLITE_UTF16LE ){+ −
/* UTF-8 -> UTF-16 Little-endian */+ −
while( zIn<zTerm ){+ −
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);+ −
WRITE_UTF16LE(z, c);+ −
}+ −
}else{+ −
assert( desiredEnc==SQLITE_UTF16BE );+ −
/* UTF-8 -> UTF-16 Big-endian */+ −
while( zIn<zTerm ){+ −
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);+ −
WRITE_UTF16BE(z, c);+ −
}+ −
}+ −
pMem->n = z - zOut;+ −
*z++ = 0;+ −
}else{+ −
assert( desiredEnc==SQLITE_UTF8 );+ −
if( pMem->enc==SQLITE_UTF16LE ){+ −
/* UTF-16 Little-endian -> UTF-8 */+ −
while( zIn<zTerm ){+ −
READ_UTF16LE(zIn, c); + −
WRITE_UTF8(z, c);+ −
}+ −
}else{+ −
/* UTF-16 Little-endian -> UTF-8 */+ −
while( zIn<zTerm ){+ −
READ_UTF16BE(zIn, c); + −
WRITE_UTF8(z, c);+ −
}+ −
}+ −
pMem->n = z - zOut;+ −
}+ −
*z = 0;+ −
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );+ −
+ −
sqlite3VdbeMemRelease(pMem);+ −
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);+ −
pMem->enc = desiredEnc;+ −
if( zOut==zShort ){+ −
memcpy(pMem->zShort, zOut, len);+ −
zOut = (u8*)pMem->zShort;+ −
pMem->flags |= (MEM_Term|MEM_Short);+ −
}else{+ −
pMem->flags |= (MEM_Term|MEM_Dyn);+ −
}+ −
pMem->z = (char*)zOut;+ −
+ −
translate_out:+ −
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)+ −
{+ −
char zBuf[100];+ −
sqlite3VdbeMemPrettyPrint(pMem, zBuf);+ −
fprintf(stderr, "OUTPUT: %s\n", zBuf);+ −
}+ −
#endif+ −
return SQLITE_OK;+ −
}+ −
+ −
/*+ −
** This routine checks for a byte-order mark at the beginning of the + −
** UTF-16 string stored in *pMem. If one is present, it is removed and+ −
** the encoding of the Mem adjusted. This routine does not do any+ −
** byte-swapping, it just sets Mem.enc appropriately.+ −
**+ −
** The allocation (static, dynamic etc.) and encoding of the Mem may be+ −
** changed by this function.+ −
*/+ −
int sqlite3VdbeMemHandleBom(Mem *pMem){+ −
int rc = SQLITE_OK;+ −
u8 bom = 0;+ −
+ −
if( pMem->n<0 || pMem->n>1 ){+ −
u8 b1 = *(u8 *)pMem->z;+ −
u8 b2 = *(((u8 *)pMem->z) + 1);+ −
if( b1==0xFE && b2==0xFF ){+ −
bom = SQLITE_UTF16BE;+ −
}+ −
if( b1==0xFF && b2==0xFE ){+ −
bom = SQLITE_UTF16LE;+ −
}+ −
}+ −
+ −
if( bom ){+ −
/* This function is called as soon as a string is stored in a Mem*,+ −
** from within sqlite3VdbeMemSetStr(). At that point it is not possible+ −
** for the string to be stored in Mem.zShort, or for it to be stored+ −
** in dynamic memory with no destructor.+ −
*/+ −
assert( !(pMem->flags&MEM_Short) );+ −
assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );+ −
if( pMem->flags & MEM_Dyn ){+ −
void (*xDel)(void*) = pMem->xDel;+ −
char *z = pMem->z;+ −
pMem->z = 0;+ −
pMem->xDel = 0;+ −
rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, + −
SQLITE_TRANSIENT);+ −
xDel(z);+ −
}else{+ −
rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, + −
SQLITE_TRANSIENT);+ −
}+ −
}+ −
return rc;+ −
}+ −
#endif /* SQLITE_OMIT_UTF16 */+ −
+ −
/*+ −
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,+ −
** return the number of unicode characters in pZ up to (but not including)+ −
** the first 0x00 byte. If nByte is not less than zero, return the+ −
** number of unicode characters in the first nByte of pZ (or up to + −
** the first 0x00, whichever comes first).+ −
*/+ −
int sqlite3Utf8CharLen(const char *zIn, int nByte){+ −
int r = 0;+ −
const u8 *z = (const u8*)zIn;+ −
const u8 *zTerm;+ −
if( nByte>=0 ){+ −
zTerm = &z[nByte];+ −
}else{+ −
zTerm = (const u8*)(-1);+ −
}+ −
assert( z<=zTerm );+ −
while( *z!=0 && z<zTerm ){+ −
SQLITE_SKIP_UTF8(z);+ −
r++;+ −
}+ −
return r;+ −
}+ −
+ −
/* This test function is not currently used by the automated test-suite. + −
** Hence it is only available in debug builds.+ −
*/+ −
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)+ −
/*+ −
** Translate UTF-8 to UTF-8.+ −
**+ −
** This has the effect of making sure that the string is well-formed+ −
** UTF-8. Miscoded characters are removed.+ −
**+ −
** The translation is done in-place (since it is impossible for the+ −
** correct UTF-8 encoding to be longer than a malformed encoding).+ −
*/+ −
int sqlite3Utf8To8(unsigned char *zIn){+ −
unsigned char *zOut = zIn;+ −
unsigned char *zStart = zIn;+ −
unsigned char *zTerm;+ −
u32 c;+ −
+ −
while( zIn[0] ){+ −
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);+ −
if( c!=0xfffd ){+ −
WRITE_UTF8(zOut, c);+ −
}+ −
}+ −
*zOut = 0;+ −
return zOut - zStart;+ −
}+ −
#endif+ −
+ −
#ifndef SQLITE_OMIT_UTF16+ −
/*+ −
** Convert a UTF-16 string in the native encoding into a UTF-8 string.+ −
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must+ −
** be freed by the calling function.+ −
**+ −
** NULL is returned if there is an allocation error.+ −
*/+ −
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){+ −
Mem m;+ −
memset(&m, 0, sizeof(m));+ −
m.db = db;+ −
sqlite3VdbeMemSetStr(&m, (const char*)z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);+ −
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);+ −
if( db->mallocFailed ){+ −
sqlite3VdbeMemRelease(&m);+ −
m.z = 0;+ −
}+ −
assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );+ −
assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );+ −
return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);+ −
}+ −
+ −
/*+ −
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,+ −
** return the number of bytes up to (but not including), the first pair+ −
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,+ −
** then return the number of bytes in the first nChar unicode characters+ −
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).+ −
*/+ −
int sqlite3Utf16ByteLen(const void *zIn, int nChar){+ −
unsigned int c = 1;+ −
char const *z = (const char*)zIn;+ −
int n = 0;+ −
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){+ −
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here+ −
** and in other parts of this file means that at one branch will+ −
** not be covered by coverage testing on any single host. But coverage+ −
** will be complete if the tests are run on both a little-endian and + −
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE+ −
** macros are constant at compile time the compiler can determine+ −
** which branch will be followed. It is therefore assumed that no runtime+ −
** penalty is paid for this "if" statement.+ −
*/+ −
while( c && ((nChar<0) || n<nChar) ){+ −
READ_UTF16BE(z, c);+ −
n++;+ −
}+ −
}else{+ −
while( c && ((nChar<0) || n<nChar) ){+ −
READ_UTF16LE(z, c);+ −
n++;+ −
}+ −
}+ −
return (z-(char const *)zIn)-((c==0)?2:0);+ −
}+ −
+ −
#if defined(SQLITE_TEST)+ −
/*+ −
** This routine is called from the TCL test function "translate_selftest".+ −
** It checks that the primitives for serializing and deserializing+ −
** characters in each encoding are inverses of each other.+ −
*/+ −
void sqlite3UtfSelfTest(){+ −
unsigned int i, t;+ −
unsigned char zBuf[20];+ −
unsigned char *z;+ −
unsigned char *zTerm;+ −
int n;+ −
unsigned int c;+ −
+ −
for(i=0; i<0x00110000; i++){+ −
z = zBuf;+ −
WRITE_UTF8(z, i);+ −
n = z-zBuf;+ −
z[0] = 0;+ −
zTerm = z;+ −
z = zBuf;+ −
c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);+ −
t = i;+ −
if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;+ −
if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;+ −
assert( c==t );+ −
assert( (z-zBuf)==n );+ −
}+ −
for(i=0; i<0x00110000; i++){+ −
if( i>=0xD800 && i<0xE000 ) continue;+ −
z = zBuf;+ −
WRITE_UTF16LE(z, i);+ −
n = z-zBuf;+ −
z[0] = 0;+ −
z = zBuf;+ −
READ_UTF16LE(z, c);+ −
assert( c==i );+ −
assert( (z-zBuf)==n );+ −
}+ −
for(i=0; i<0x00110000; i++){+ −
if( i>=0xD800 && i<0xE000 ) continue;+ −
z = zBuf;+ −
WRITE_UTF16BE(z, i);+ −
n = z-zBuf;+ −
z[0] = 0;+ −
z = zBuf;+ −
READ_UTF16BE(z, c);+ −
assert( c==i );+ −
assert( (z-zBuf)==n );+ −
}+ −
}+ −
#endif /* SQLITE_TEST */+ −
#endif /* SQLITE_OMIT_UTF16 */+ −