/*+ −
** 2004 April 6+ −
**+ −
** The author disclaims copyright to this source code. In place of+ −
** a legal notice, here is a blessing:+ −
**+ −
** May you do good and not evil.+ −
** May you find forgiveness for yourself and forgive others.+ −
** May you share freely, never taking more than you give.+ −
**+ −
*************************************************************************+ −
** $Id: btreeInt.h 1282 2008-11-13 09:31:33Z LarsPson $+ −
**+ −
** This file implements a external (disk-based) database using BTrees.+ −
** For a detailed discussion of BTrees, refer to+ −
**+ −
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:+ −
** "Sorting And Searching", pages 473-480. Addison-Wesley+ −
** Publishing Company, Reading, Massachusetts.+ −
**+ −
** The basic idea is that each page of the file contains N database+ −
** entries and N+1 pointers to subpages.+ −
**+ −
** ----------------------------------------------------------------+ −
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |+ −
** ----------------------------------------------------------------+ −
**+ −
** All of the keys on the page that Ptr(0) points to have values less+ −
** than Key(0). All of the keys on page Ptr(1) and its subpages have+ −
** values greater than Key(0) and less than Key(1). All of the keys+ −
** on Ptr(N) and its subpages have values greater than Key(N-1). And+ −
** so forth.+ −
**+ −
** Finding a particular key requires reading O(log(M)) pages from the + −
** disk where M is the number of entries in the tree.+ −
**+ −
** In this implementation, a single file can hold one or more separate + −
** BTrees. Each BTree is identified by the index of its root page. The+ −
** key and data for any entry are combined to form the "payload". A+ −
** fixed amount of payload can be carried directly on the database+ −
** page. If the payload is larger than the preset amount then surplus+ −
** bytes are stored on overflow pages. The payload for an entry+ −
** and the preceding pointer are combined to form a "Cell". Each + −
** page has a small header which contains the Ptr(N) pointer and other+ −
** information such as the size of key and data.+ −
**+ −
** FORMAT DETAILS+ −
**+ −
** The file is divided into pages. The first page is called page 1,+ −
** the second is page 2, and so forth. A page number of zero indicates+ −
** "no such page". The page size can be anything between 512 and 65536.+ −
** Each page can be either a btree page, a freelist page or an overflow+ −
** page.+ −
**+ −
** The first page is always a btree page. The first 100 bytes of the first+ −
** page contain a special header (the "file header") that describes the file.+ −
** The format of the file header is as follows:+ −
**+ −
** OFFSET SIZE DESCRIPTION+ −
** 0 16 Header string: "SQLite format 3\000"+ −
** 16 2 Page size in bytes. + −
** 18 1 File format write version+ −
** 19 1 File format read version+ −
** 20 1 Bytes of unused space at the end of each page+ −
** 21 1 Max embedded payload fraction+ −
** 22 1 Min embedded payload fraction+ −
** 23 1 Min leaf payload fraction+ −
** 24 4 File change counter+ −
** 28 4 Reserved for future use+ −
** 32 4 First freelist page+ −
** 36 4 Number of freelist pages in the file+ −
** 40 60 15 4-byte meta values passed to higher layers+ −
**+ −
** All of the integer values are big-endian (most significant byte first).+ −
**+ −
** The file change counter is incremented when the database is changed+ −
** This counter allows other processes to know when the file has changed+ −
** and thus when they need to flush their cache.+ −
**+ −
** The max embedded payload fraction is the amount of the total usable+ −
** space in a page that can be consumed by a single cell for standard+ −
** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default+ −
** is to limit the maximum cell size so that at least 4 cells will fit+ −
** on one page. Thus the default max embedded payload fraction is 64.+ −
**+ −
** If the payload for a cell is larger than the max payload, then extra+ −
** payload is spilled to overflow pages. Once an overflow page is allocated,+ −
** as many bytes as possible are moved into the overflow pages without letting+ −
** the cell size drop below the min embedded payload fraction.+ −
**+ −
** The min leaf payload fraction is like the min embedded payload fraction+ −
** except that it applies to leaf nodes in a LEAFDATA tree. The maximum+ −
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it+ −
** not specified in the header.+ −
**+ −
** Each btree pages is divided into three sections: The header, the+ −
** cell pointer array, and the cell content area. Page 1 also has a 100-byte+ −
** file header that occurs before the page header.+ −
**+ −
** |----------------|+ −
** | file header | 100 bytes. Page 1 only.+ −
** |----------------|+ −
** | page header | 8 bytes for leaves. 12 bytes for interior nodes+ −
** |----------------|+ −
** | cell pointer | | 2 bytes per cell. Sorted order.+ −
** | array | | Grows downward+ −
** | | v+ −
** |----------------|+ −
** | unallocated |+ −
** | space |+ −
** |----------------| ^ Grows upwards+ −
** | cell content | | Arbitrary order interspersed with freeblocks.+ −
** | area | | and free space fragments.+ −
** |----------------|+ −
**+ −
** The page headers looks like this:+ −
**+ −
** OFFSET SIZE DESCRIPTION+ −
** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf+ −
** 1 2 byte offset to the first freeblock+ −
** 3 2 number of cells on this page+ −
** 5 2 first byte of the cell content area+ −
** 7 1 number of fragmented free bytes+ −
** 8 4 Right child (the Ptr(N) value). Omitted on leaves.+ −
**+ −
** The flags define the format of this btree page. The leaf flag means that+ −
** this page has no children. The zerodata flag means that this page carries+ −
** only keys and no data. The intkey flag means that the key is a integer+ −
** which is stored in the key size entry of the cell header rather than in+ −
** the payload area.+ −
**+ −
** The cell pointer array begins on the first byte after the page header.+ −
** The cell pointer array contains zero or more 2-byte numbers which are+ −
** offsets from the beginning of the page to the cell content in the cell+ −
** content area. The cell pointers occur in sorted order. The system strives+ −
** to keep free space after the last cell pointer so that new cells can+ −
** be easily added without having to defragment the page.+ −
**+ −
** Cell content is stored at the very end of the page and grows toward the+ −
** beginning of the page.+ −
**+ −
** Unused space within the cell content area is collected into a linked list of+ −
** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset+ −
** to the first freeblock is given in the header. Freeblocks occur in+ −
** increasing order. Because a freeblock must be at least 4 bytes in size,+ −
** any group of 3 or fewer unused bytes in the cell content area cannot+ −
** exist on the freeblock chain. A group of 3 or fewer free bytes is called+ −
** a fragment. The total number of bytes in all fragments is recorded.+ −
** in the page header at offset 7.+ −
**+ −
** SIZE DESCRIPTION+ −
** 2 Byte offset of the next freeblock+ −
** 2 Bytes in this freeblock+ −
**+ −
** Cells are of variable length. Cells are stored in the cell content area at+ −
** the end of the page. Pointers to the cells are in the cell pointer array+ −
** that immediately follows the page header. Cells is not necessarily+ −
** contiguous or in order, but cell pointers are contiguous and in order.+ −
**+ −
** Cell content makes use of variable length integers. A variable+ −
** length integer is 1 to 9 bytes where the lower 7 bits of each + −
** byte are used. The integer consists of all bytes that have bit 8 set and+ −
** the first byte with bit 8 clear. The most significant byte of the integer+ −
** appears first. A variable-length integer may not be more than 9 bytes long.+ −
** As a special case, all 8 bytes of the 9th byte are used as data. This+ −
** allows a 64-bit integer to be encoded in 9 bytes.+ −
**+ −
** 0x00 becomes 0x00000000+ −
** 0x7f becomes 0x0000007f+ −
** 0x81 0x00 becomes 0x00000080+ −
** 0x82 0x00 becomes 0x00000100+ −
** 0x80 0x7f becomes 0x0000007f+ −
** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678+ −
** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081+ −
**+ −
** Variable length integers are used for rowids and to hold the number of+ −
** bytes of key and data in a btree cell.+ −
**+ −
** The content of a cell looks like this:+ −
**+ −
** SIZE DESCRIPTION+ −
** 4 Page number of the left child. Omitted if leaf flag is set.+ −
** var Number of bytes of data. Omitted if the zerodata flag is set.+ −
** var Number of bytes of key. Or the key itself if intkey flag is set.+ −
** * Payload+ −
** 4 First page of the overflow chain. Omitted if no overflow+ −
**+ −
** Overflow pages form a linked list. Each page except the last is completely+ −
** filled with data (pagesize - 4 bytes). The last page can have as little+ −
** as 1 byte of data.+ −
**+ −
** SIZE DESCRIPTION+ −
** 4 Page number of next overflow page+ −
** * Data+ −
**+ −
** Freelist pages come in two subtypes: trunk pages and leaf pages. The+ −
** file header points to the first in a linked list of trunk page. Each trunk+ −
** page points to multiple leaf pages. The content of a leaf page is+ −
** unspecified. A trunk page looks like this:+ −
**+ −
** SIZE DESCRIPTION+ −
** 4 Page number of next trunk page+ −
** 4 Number of leaf pointers on this page+ −
** * zero or more pages numbers of leaves+ −
*/+ −
#include "sqliteInt.h"+ −
#include "pager.h"+ −
#include "btree.h"+ −
#include "os.h"+ −
#include <assert.h>+ −
+ −
/* Round up a number to the next larger multiple of 8. This is used+ −
** to force 8-byte alignment on 64-bit architectures.+ −
*/+ −
#define ROUND8(x) ((x+7)&~7)+ −
+ −
+ −
/* The following value is the maximum cell size assuming a maximum page+ −
** size give above.+ −
*/+ −
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)+ −
+ −
/* The maximum number of cells on a single page of the database. This+ −
** assumes a minimum cell size of 3 bytes. Such small cells will be+ −
** exceedingly rare, but they are possible.+ −
*/+ −
#define MX_CELL(pBt) ((pBt->pageSize-8)/3)+ −
+ −
/* Forward declarations */+ −
typedef struct MemPage MemPage;+ −
typedef struct BtLock BtLock;+ −
+ −
/*+ −
** This is a magic string that appears at the beginning of every+ −
** SQLite database in order to identify the file as a real database.+ −
**+ −
** You can change this value at compile-time by specifying a+ −
** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The+ −
** header must be exactly 16 bytes including the zero-terminator so+ −
** the string itself should be 15 characters long. If you change+ −
** the header, then your custom library will not be able to read + −
** databases generated by the standard tools and the standard tools+ −
** will not be able to read databases created by your custom library.+ −
*/+ −
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */+ −
# define SQLITE_FILE_HEADER "SQLite format 3"+ −
#endif+ −
+ −
/*+ −
** Page type flags. An ORed combination of these flags appear as the+ −
** first byte of on-disk image of every BTree page.+ −
*/+ −
#define PTF_INTKEY 0x01+ −
#define PTF_ZERODATA 0x02+ −
#define PTF_LEAFDATA 0x04+ −
#define PTF_LEAF 0x08+ −
+ −
/*+ −
** As each page of the file is loaded into memory, an instance of the following+ −
** structure is appended and initialized to zero. This structure stores+ −
** information about the page that is decoded from the raw file page.+ −
**+ −
** The pParent field points back to the parent page. This allows us to+ −
** walk up the BTree from any leaf to the root. Care must be taken to+ −
** unref() the parent page pointer when this page is no longer referenced.+ −
** The pageDestructor() routine handles that chore.+ −
**+ −
** Access to all fields of this structure is controlled by the mutex+ −
** stored in MemPage.pBt->mutex.+ −
*/+ −
struct MemPage {+ −
u8 isInit; /* True if previously initialized. MUST BE FIRST! */+ −
u8 idxShift; /* True if Cell indices have changed */+ −
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */+ −
u8 intKey; /* True if intkey flag is set */+ −
u8 leaf; /* True if leaf flag is set */+ −
u8 zeroData; /* True if table stores keys only */+ −
u8 leafData; /* True if tables stores data on leaves only */+ −
u8 hasData; /* True if this page stores data */+ −
u8 hdrOffset; /* 100 for page 1. 0 otherwise */+ −
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */+ −
u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */+ −
u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */+ −
u16 cellOffset; /* Index in aData of first cell pointer */+ −
u16 idxParent; /* Index in parent of this node */+ −
u16 nFree; /* Number of free bytes on the page */+ −
u16 nCell; /* Number of cells on this page, local and ovfl */+ −
struct _OvflCell { /* Cells that will not fit on aData[] */+ −
u8 *pCell; /* Pointers to the body of the overflow cell */+ −
u16 idx; /* Insert this cell before idx-th non-overflow cell */+ −
} aOvfl[5];+ −
BtShared *pBt; /* Pointer to BtShared that this page is part of */+ −
u8 *aData; /* Pointer to disk image of the page data */+ −
DbPage *pDbPage; /* Pager page handle */+ −
Pgno pgno; /* Page number for this page */+ −
MemPage *pParent; /* The parent of this page. NULL for root */+ −
};+ −
+ −
/*+ −
** The in-memory image of a disk page has the auxiliary information appended+ −
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold+ −
** that extra information.+ −
*/+ −
#define EXTRA_SIZE sizeof(MemPage)+ −
+ −
/* A Btree handle+ −
**+ −
** A database connection contains a pointer to an instance of+ −
** this object for every database file that it has open. This structure+ −
** is opaque to the database connection. The database connection cannot+ −
** see the internals of this structure and only deals with pointers to+ −
** this structure.+ −
**+ −
** For some database files, the same underlying database cache might be + −
** shared between multiple connections. In that case, each contection+ −
** has it own pointer to this object. But each instance of this object+ −
** points to the same BtShared object. The database cache and the+ −
** schema associated with the database file are all contained within+ −
** the BtShared object.+ −
**+ −
** All fields in this structure are accessed under sqlite3.mutex.+ −
** The pBt pointer itself may not be changed while there exists cursors + −
** in the referenced BtShared that point back to this Btree since those+ −
** cursors have to do go through this Btree to find their BtShared and+ −
** they often do so without holding sqlite3.mutex.+ −
*/+ −
struct Btree {+ −
sqlite3 *db; /* The database connection holding this btree */+ −
BtShared *pBt; /* Sharable content of this btree */+ −
u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */+ −
u8 sharable; /* True if we can share pBt with another db */+ −
u8 locked; /* True if db currently has pBt locked */+ −
int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */+ −
Btree *pNext; /* List of other sharable Btrees from the same db */+ −
Btree *pPrev; /* Back pointer of the same list */+ −
};+ −
+ −
/*+ −
** Btree.inTrans may take one of the following values.+ −
**+ −
** If the shared-data extension is enabled, there may be multiple users+ −
** of the Btree structure. At most one of these may open a write transaction,+ −
** but any number may have active read transactions.+ −
*/+ −
#define TRANS_NONE 0+ −
#define TRANS_READ 1+ −
#define TRANS_WRITE 2+ −
+ −
/*+ −
** An instance of this object represents a single database file.+ −
** + −
** A single database file can be in use as the same time by two+ −
** or more database connections. When two or more connections are+ −
** sharing the same database file, each connection has it own+ −
** private Btree object for the file and each of those Btrees points+ −
** to this one BtShared object. BtShared.nRef is the number of+ −
** connections currently sharing this database file.+ −
**+ −
** Fields in this structure are accessed under the BtShared.mutex+ −
** mutex, except for nRef and pNext which are accessed under the+ −
** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field+ −
** may not be modified once it is initially set as long as nRef>0.+ −
** The pSchema field may be set once under BtShared.mutex and+ −
** thereafter is unchanged as long as nRef>0.+ −
*/+ −
struct BtShared {+ −
Pager *pPager; /* The page cache */+ −
sqlite3 *db; /* Database connection currently using this Btree */+ −
BtCursor *pCursor; /* A list of all open cursors */+ −
MemPage *pPage1; /* First page of the database */+ −
u8 inStmt; /* True if we are in a statement subtransaction */+ −
u8 readOnly; /* True if the underlying file is readonly */+ −
u8 maxEmbedFrac; /* Maximum payload as % of total page size */+ −
u8 minEmbedFrac; /* Minimum payload as % of total page size */+ −
u8 minLeafFrac; /* Minimum leaf payload as % of total page size */+ −
u8 pageSizeFixed; /* True if the page size can no longer be changed */+ −
#ifndef SQLITE_OMIT_AUTOVACUUM+ −
u8 autoVacuum; /* True if auto-vacuum is enabled */+ −
u8 incrVacuum; /* True if incr-vacuum is enabled */+ −
Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */+ −
#endif+ −
u16 pageSize; /* Total number of bytes on a page */+ −
u16 usableSize; /* Number of usable bytes on each page */+ −
int maxLocal; /* Maximum local payload in non-LEAFDATA tables */+ −
int minLocal; /* Minimum local payload in non-LEAFDATA tables */+ −
int maxLeaf; /* Maximum local payload in a LEAFDATA table */+ −
int minLeaf; /* Minimum local payload in a LEAFDATA table */+ −
u8 inTransaction; /* Transaction state */+ −
int nTransaction; /* Number of open transactions (read + write) */+ −
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */+ −
void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */+ −
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */+ −
BusyHandler busyHdr; /* The busy handler for this btree */+ −
#ifndef SQLITE_OMIT_SHARED_CACHE+ −
int nRef; /* Number of references to this structure */+ −
BtShared *pNext; /* Next on a list of sharable BtShared structs */+ −
BtLock *pLock; /* List of locks held on this shared-btree struct */+ −
#endif+ −
};+ −
+ −
/*+ −
** An instance of the following structure is used to hold information+ −
** about a cell. The parseCellPtr() function fills in this structure+ −
** based on information extract from the raw disk page.+ −
*/+ −
typedef struct CellInfo CellInfo;+ −
struct CellInfo {+ −
u8 *pCell; /* Pointer to the start of cell content */+ −
i64 nKey; /* The key for INTKEY tables, or number of bytes in key */+ −
u32 nData; /* Number of bytes of data */+ −
u32 nPayload; /* Total amount of payload */+ −
u16 nHeader; /* Size of the cell content header in bytes */+ −
u16 nLocal; /* Amount of payload held locally */+ −
u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */+ −
u16 nSize; /* Size of the cell content on the main b-tree page */+ −
};+ −
+ −
/*+ −
** A cursor is a pointer to a particular entry within a particular+ −
** b-tree within a database file.+ −
**+ −
** The entry is identified by its MemPage and the index in+ −
** MemPage.aCell[] of the entry.+ −
**+ −
** When a single database file can shared by two more database connections,+ −
** but cursors cannot be shared. Each cursor is associated with a+ −
** particular database connection identified BtCursor.pBtree.db.+ −
**+ −
** Fields in this structure are accessed under the BtShared.mutex+ −
** found at self->pBt->mutex. + −
*/+ −
struct BtCursor {+ −
Btree *pBtree; /* The Btree to which this cursor belongs */+ −
BtShared *pBt; /* The BtShared this cursor points to */+ −
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */+ −
int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */+ −
void *pArg; /* First arg to xCompare() */+ −
Pgno pgnoRoot; /* The root page of this tree */+ −
MemPage *pPage; /* Page that contains the entry */+ −
int idx; /* Index of the entry in pPage->aCell[] */+ −
CellInfo info; /* A parse of the cell we are pointing at */+ −
u8 wrFlag; /* True if writable */+ −
u8 eState; /* One of the CURSOR_XXX constants (see below) */+ −
void *pKey; /* Saved key that was cursor's last known position */+ −
i64 nKey; /* Size of pKey, or last integer key */+ −
int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */+ −
#ifndef SQLITE_OMIT_INCRBLOB+ −
u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */+ −
Pgno *aOverflow; /* Cache of overflow page locations */+ −
#endif+ −
};+ −
+ −
/*+ −
** Potential values for BtCursor.eState.+ −
**+ −
** CURSOR_VALID:+ −
** Cursor points to a valid entry. getPayload() etc. may be called.+ −
**+ −
** CURSOR_INVALID:+ −
** Cursor does not point to a valid entry. This can happen (for example) + −
** because the table is empty or because BtreeCursorFirst() has not been+ −
** called.+ −
**+ −
** CURSOR_REQUIRESEEK:+ −
** The table that this cursor was opened on still exists, but has been + −
** modified since the cursor was last used. The cursor position is saved+ −
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in + −
** this state, restoreOrClearCursorPosition() can be called to attempt to+ −
** seek the cursor to the saved position.+ −
**+ −
** CURSOR_FAULT:+ −
** A unrecoverable error (an I/O error or a malloc failure) has occurred+ −
** on a different connection that shares the BtShared cache with this+ −
** cursor. The error has left the cache in an inconsistent state.+ −
** Do nothing else with this cursor. Any attempt to use the cursor+ −
** should return the error code stored in BtCursor.skip+ −
*/+ −
#define CURSOR_INVALID 0+ −
#define CURSOR_VALID 1+ −
#define CURSOR_REQUIRESEEK 2+ −
#define CURSOR_FAULT 3+ −
+ −
/*+ −
** The TRACE macro will print high-level status information about the+ −
** btree operation when the global variable sqlite3_btree_trace is+ −
** enabled.+ −
*/+ −
#if SQLITE_TEST+ −
# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }+ −
#else+ −
# define TRACE(X)+ −
#endif+ −
+ −
/*+ −
** Routines to read and write variable-length integers. These used to+ −
** be defined locally, but now we use the varint routines in the util.c+ −
** file.+ −
*/+ −
#define getVarint sqlite3GetVarint+ −
#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))+ −
#define putVarint sqlite3PutVarint+ −
+ −
/* The database page the PENDING_BYTE occupies. This page is never used.+ −
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They+ −
** should possibly be consolidated (presumably in pager.h).+ −
**+ −
** If disk I/O is omitted (meaning that the database is stored purely+ −
** in memory) then there is no pending byte.+ −
*/+ −
#ifdef SQLITE_OMIT_DISKIO+ −
# define PENDING_BYTE_PAGE(pBt) 0x7fffffff+ −
#else+ −
# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)+ −
#endif+ −
+ −
/*+ −
** A linked list of the following structures is stored at BtShared.pLock.+ −
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor + −
** is opened on the table with root page BtShared.iTable. Locks are removed+ −
** from this list when a transaction is committed or rolled back, or when+ −
** a btree handle is closed.+ −
*/+ −
struct BtLock {+ −
Btree *pBtree; /* Btree handle holding this lock */+ −
Pgno iTable; /* Root page of table */+ −
u8 eLock; /* READ_LOCK or WRITE_LOCK */+ −
BtLock *pNext; /* Next in BtShared.pLock list */+ −
};+ −
+ −
/* Candidate values for BtLock.eLock */+ −
#define READ_LOCK 1+ −
#define WRITE_LOCK 2+ −
+ −
/*+ −
** These macros define the location of the pointer-map entry for a + −
** database page. The first argument to each is the number of usable+ −
** bytes on each page of the database (often 1024). The second is the+ −
** page number to look up in the pointer map.+ −
**+ −
** PTRMAP_PAGENO returns the database page number of the pointer-map+ −
** page that stores the required pointer. PTRMAP_PTROFFSET returns+ −
** the offset of the requested map entry.+ −
**+ −
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,+ −
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be+ −
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements+ −
** this test.+ −
*/+ −
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)+ −
#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))+ −
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))+ −
+ −
/*+ −
** The pointer map is a lookup table that identifies the parent page for+ −
** each child page in the database file. The parent page is the page that+ −
** contains a pointer to the child. Every page in the database contains+ −
** 0 or 1 parent pages. (In this context 'database page' refers+ −
** to any page that is not part of the pointer map itself.) Each pointer map+ −
** entry consists of a single byte 'type' and a 4 byte parent page number.+ −
** The PTRMAP_XXX identifiers below are the valid types.+ −
**+ −
** The purpose of the pointer map is to facility moving pages from one+ −
** position in the file to another as part of autovacuum. When a page+ −
** is moved, the pointer in its parent must be updated to point to the+ −
** new location. The pointer map is used to locate the parent page quickly.+ −
**+ −
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not+ −
** used in this case.+ −
**+ −
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number + −
** is not used in this case.+ −
**+ −
** PTRMAP_OVERFLOW1: The database page is the first page in a list of + −
** overflow pages. The page number identifies the page that+ −
** contains the cell with a pointer to this overflow page.+ −
**+ −
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of+ −
** overflow pages. The page-number identifies the previous+ −
** page in the overflow page list.+ −
**+ −
** PTRMAP_BTREE: The database page is a non-root btree page. The page number+ −
** identifies the parent page in the btree.+ −
*/+ −
#define PTRMAP_ROOTPAGE 1+ −
#define PTRMAP_FREEPAGE 2+ −
#define PTRMAP_OVERFLOW1 3+ −
#define PTRMAP_OVERFLOW2 4+ −
#define PTRMAP_BTREE 5+ −
+ −
/* A bunch of assert() statements to check the transaction state variables+ −
** of handle p (type Btree*) are internally consistent.+ −
*/+ −
#define btreeIntegrity(p) \+ −
assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \+ −
assert( p->pBt->inTransaction>=p->inTrans ); + −
+ −
+ −
/*+ −
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine+ −
** if the database supports auto-vacuum or not. Because it is used+ −
** within an expression that is an argument to another macro + −
** (sqliteMallocRaw), it is not possible to use conditional compilation.+ −
** So, this macro is defined instead.+ −
*/+ −
#ifndef SQLITE_OMIT_AUTOVACUUM+ −
#define ISAUTOVACUUM (pBt->autoVacuum)+ −
#else+ −
#define ISAUTOVACUUM 0+ −
#endif+ −
+ −
+ −
/*+ −
** This structure is passed around through all the sanity checking routines+ −
** in order to keep track of some global state information.+ −
*/+ −
typedef struct IntegrityCk IntegrityCk;+ −
struct IntegrityCk {+ −
BtShared *pBt; /* The tree being checked out */+ −
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */+ −
int nPage; /* Number of pages in the database */+ −
int *anRef; /* Number of times each page is referenced */+ −
int mxErr; /* Stop accumulating errors when this reaches zero */+ −
char *zErrMsg; /* An error message. NULL if no errors seen. */+ −
int nErr; /* Number of messages written to zErrMsg so far */+ −
};+ −
+ −
/*+ −
** Read or write a two- and four-byte big-endian integer values.+ −
*/+ −
#define get2byte(x) ((x)[0]<<8 | (x)[1])+ −
#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))+ −
#define get4byte sqlite3Get4byte+ −
#define put4byte sqlite3Put4byte+ −
+ −
/*+ −
** Internal routines that should be accessed by the btree layer only.+ −
*/+ −
int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);+ −
int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);+ −
void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);+ −
void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);+ −
#ifdef SQLITE_TEST+ −
u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);+ −
#endif+ −
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);+ −
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);+ −
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);+ −
int sqlite3BtreeIsRootPage(MemPage *pPage);+ −
void sqlite3BtreeMoveToParent(BtCursor *pCur);+ −