diff -r 4a65cc85c4f3 -r fbd95db6a4e1 engine/sqlite/src/expr.cpp --- a/engine/sqlite/src/expr.cpp Wed Apr 28 13:20:05 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2816 +0,0 @@ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains routines used for analyzing expressions and -** for generating VDBE code that evaluates expressions in SQLite. -** -** $Id: expr.cpp 1282 2008-11-13 09:31:33Z LarsPson $ -*/ -#include "sqliteInt.h" -#include - -/* -** Return the 'affinity' of the expression pExpr if any. -** -** If pExpr is a column, a reference to a column via an 'AS' alias, -** or a sub-select with a column as the return value, then the -** affinity of that column is returned. Otherwise, 0x00 is returned, -** indicating no affinity for the expression. -** -** i.e. the WHERE clause expresssions in the following statements all -** have an affinity: -** -** CREATE TABLE t1(a); -** SELECT * FROM t1 WHERE a; -** SELECT a AS b FROM t1 WHERE b; -** SELECT * FROM t1 WHERE (select a from t1); -*/ -char sqlite3ExprAffinity(Expr *pExpr){ - int op = pExpr->op; - if( op==TK_SELECT ){ - return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); - } -#ifndef SQLITE_OMIT_CAST - if( op==TK_CAST ){ - return sqlite3AffinityType(&pExpr->token); - } -#endif - return pExpr->affinity; -} - -/* -** Set the collating sequence for expression pExpr to be the collating -** sequence named by pToken. Return a pointer to the revised expression. -** The collating sequence is marked as "explicit" using the EP_ExpCollate -** flag. An explicit collating sequence will override implicit -** collating sequences. -*/ -Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ - char *zColl = 0; /* Dequoted name of collation sequence */ - CollSeq *pColl; - zColl = sqlite3NameFromToken(pParse->db, pName); - if( pExpr && zColl ){ - pColl = sqlite3LocateCollSeq(pParse, zColl, -1); - if( pColl ){ - pExpr->pColl = pColl; - pExpr->flags |= EP_ExpCollate; - } - } - sqlite3_free(zColl); - return pExpr; -} - -/* -** Return the default collation sequence for the expression pExpr. If -** there is no default collation type, return 0. -*/ -CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ - CollSeq *pColl = 0; - if( pExpr ){ - int op; - pColl = pExpr->pColl; - op = pExpr->op; - if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ - return sqlite3ExprCollSeq(pParse, pExpr->pLeft); - } - } - if( sqlite3CheckCollSeq(pParse, pColl) ){ - pColl = 0; - } - return pColl; -} - -/* -** pExpr is an operand of a comparison operator. aff2 is the -** type affinity of the other operand. This routine returns the -** type affinity that should be used for the comparison operator. -*/ -char sqlite3CompareAffinity(Expr *pExpr, char aff2){ - char aff1 = sqlite3ExprAffinity(pExpr); - if( aff1 && aff2 ){ - /* Both sides of the comparison are columns. If one has numeric - ** affinity, use that. Otherwise use no affinity. - */ - if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ - return SQLITE_AFF_NUMERIC; - }else{ - return SQLITE_AFF_NONE; - } - }else if( !aff1 && !aff2 ){ - /* Neither side of the comparison is a column. Compare the - ** results directly. - */ - return SQLITE_AFF_NONE; - }else{ - /* One side is a column, the other is not. Use the columns affinity. */ - assert( aff1==0 || aff2==0 ); - return (aff1 + aff2); - } -} - -/* -** pExpr is a comparison operator. Return the type affinity that should -** be applied to both operands prior to doing the comparison. -*/ -static char comparisonAffinity(Expr *pExpr){ - char aff; - assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || - pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || - pExpr->op==TK_NE ); - assert( pExpr->pLeft ); - aff = sqlite3ExprAffinity(pExpr->pLeft); - if( pExpr->pRight ){ - aff = sqlite3CompareAffinity(pExpr->pRight, aff); - } - else if( pExpr->pSelect ){ - aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); - } - else if( !aff ){ - aff = SQLITE_AFF_NONE; - } - return aff; -} - -/* -** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. -** idx_affinity is the affinity of an indexed column. Return true -** if the index with affinity idx_affinity may be used to implement -** the comparison in pExpr. -*/ -int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ - char aff = comparisonAffinity(pExpr); - switch( aff ){ - case SQLITE_AFF_NONE: - return 1; - case SQLITE_AFF_TEXT: - return idx_affinity==SQLITE_AFF_TEXT; - default: - return sqlite3IsNumericAffinity(idx_affinity); - } -} - -/* -** Return the P1 value that should be used for a binary comparison -** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. -** If jumpIfNull is true, then set the low byte of the returned -** P1 value to tell the opcode to jump if either expression -** evaluates to NULL. -*/ -static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ - char aff = sqlite3ExprAffinity(pExpr2); - return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); -} - -/* -** Return a pointer to the collation sequence that should be used by -** a binary comparison operator comparing pLeft and pRight. -** -** If the left hand expression has a collating sequence type, then it is -** used. Otherwise the collation sequence for the right hand expression -** is used, or the default (BINARY) if neither expression has a collating -** type. -** -** Argument pRight (but not pLeft) may be a null pointer. In this case, -** it is not considered. -*/ -CollSeq *sqlite3BinaryCompareCollSeq( - Parse *pParse, - Expr *pLeft, - Expr *pRight -){ - CollSeq *pColl; - assert( pLeft ); - if( pLeft->flags & EP_ExpCollate ){ - assert( pLeft->pColl ); - pColl = pLeft->pColl; - }else if( pRight && pRight->flags & EP_ExpCollate ){ - assert( pRight->pColl ); - pColl = pRight->pColl; - }else{ - pColl = sqlite3ExprCollSeq(pParse, pLeft); - if( !pColl ){ - pColl = sqlite3ExprCollSeq(pParse, pRight); - } - } - return pColl; -} - -/* -** Generate code for a comparison operator. -*/ -static int codeCompare( - Parse *pParse, /* The parsing (and code generating) context */ - Expr *pLeft, /* The left operand */ - Expr *pRight, /* The right operand */ - int opcode, /* The comparison opcode */ - int dest, /* Jump here if true. */ - int jumpIfNull /* If true, jump if either operand is NULL */ -){ - int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); - CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); - return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (const char*)p3, P3_COLLSEQ); -} - -/* -** Construct a new expression node and return a pointer to it. Memory -** for this node is obtained from sqlite3_malloc(). The calling function -** is responsible for making sure the node eventually gets freed. -*/ -Expr *sqlite3Expr( - sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ - int op, /* Expression opcode */ - Expr *pLeft, /* Left operand */ - Expr *pRight, /* Right operand */ - const Token *pToken /* Argument token */ -){ - Expr *pNew; - pNew = (Expr*)sqlite3DbMallocZero(db, sizeof(Expr)); - if( pNew==0 ){ - /* When malloc fails, delete pLeft and pRight. Expressions passed to - ** this function must always be allocated with sqlite3Expr() for this - ** reason. - */ - sqlite3ExprDelete(pLeft); - sqlite3ExprDelete(pRight); - return 0; - } - pNew->op = op; - pNew->pLeft = pLeft; - pNew->pRight = pRight; - pNew->iAgg = -1; - if( pToken ){ - assert( pToken->dyn==0 ); - pNew->span = pNew->token = *pToken; - }else if( pLeft ){ - if( pRight ){ - sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); - if( pRight->flags & EP_ExpCollate ){ - pNew->flags |= EP_ExpCollate; - pNew->pColl = pRight->pColl; - } - } - if( pLeft->flags & EP_ExpCollate ){ - pNew->flags |= EP_ExpCollate; - pNew->pColl = pLeft->pColl; - } - } - - sqlite3ExprSetHeight(pNew); - return pNew; -} - -/* -** Works like sqlite3Expr() except that it takes an extra Parse* -** argument and notifies the associated connection object if malloc fails. -*/ -Expr *sqlite3PExpr( - Parse *pParse, /* Parsing context */ - int op, /* Expression opcode */ - Expr *pLeft, /* Left operand */ - Expr *pRight, /* Right operand */ - const Token *pToken /* Argument token */ -){ - return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); -} - -/* -** When doing a nested parse, you can include terms in an expression -** that look like this: #0 #1 #2 ... These terms refer to elements -** on the stack. "#0" means the top of the stack. -** "#1" means the next down on the stack. And so forth. -** -** This routine is called by the parser to deal with on of those terms. -** It immediately generates code to store the value in a memory location. -** The returns an expression that will code to extract the value from -** that memory location as needed. -*/ -Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ - Vdbe *v = pParse->pVdbe; - Expr *p; - int depth; - if( pParse->nested==0 ){ - sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); - return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); - } - if( v==0 ) return 0; - p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); - if( p==0 ){ - return 0; /* Malloc failed */ - } - depth = atoi((char*)&pToken->z[1]); - p->iTable = pParse->nMem++; - sqlite3VdbeAddOp(v, OP_Dup, depth, 0); - sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); - return p; -} - -/* -** Join two expressions using an AND operator. If either expression is -** NULL, then just return the other expression. -*/ -Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ - if( pLeft==0 ){ - return pRight; - }else if( pRight==0 ){ - return pLeft; - }else{ - return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); - } -} - -/* -** Set the Expr.span field of the given expression to span all -** text between the two given tokens. -*/ -void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ - assert( pRight!=0 ); - assert( pLeft!=0 ); - if( pExpr && pRight->z && pLeft->z ){ - assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); - if( pLeft->dyn==0 && pRight->dyn==0 ){ - pExpr->span.z = pLeft->z; - pExpr->span.n = pRight->n + (pRight->z - pLeft->z); - }else{ - pExpr->span.z = 0; - } - } -} - -/* -** Construct a new expression node for a function with multiple -** arguments. -*/ -Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ - Expr *pNew; - assert( pToken ); - pNew = (Expr*)sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); - if( pNew==0 ){ - sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ - return 0; - } - pNew->op = TK_FUNCTION; - pNew->pList = pList; - assert( pToken->dyn==0 ); - pNew->token = *pToken; - pNew->span = pNew->token; - - sqlite3ExprSetHeight(pNew); - return pNew; -} - -/* -** Assign a variable number to an expression that encodes a wildcard -** in the original SQL statement. -** -** Wildcards consisting of a single "?" are assigned the next sequential -** variable number. -** -** Wildcards of the form "?nnn" are assigned the number "nnn". We make -** sure "nnn" is not too be to avoid a denial of service attack when -** the SQL statement comes from an external source. -** -** Wildcards of the form ":aaa" or "$aaa" are assigned the same number -** as the previous instance of the same wildcard. Or if this is the first -** instance of the wildcard, the next sequenial variable number is -** assigned. -*/ -void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ - Token *pToken; - sqlite3 *db = pParse->db; - - if( pExpr==0 ) return; - pToken = &pExpr->token; - assert( pToken->n>=1 ); - assert( pToken->z!=0 ); - assert( pToken->z[0]!=0 ); - if( pToken->n==1 ){ - /* Wildcard of the form "?". Assign the next variable number */ - pExpr->iTable = ++pParse->nVar; - }else if( pToken->z[0]=='?' ){ - /* Wildcard of the form "?nnn". Convert "nnn" to an integer and - ** use it as the variable number */ - int i; - pExpr->iTable = i = atoi((char*)&pToken->z[1]); - if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ - sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", - SQLITE_MAX_VARIABLE_NUMBER); - } - if( i>pParse->nVar ){ - pParse->nVar = i; - } - }else{ - /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable - ** number as the prior appearance of the same name, or if the name - ** has never appeared before, reuse the same variable number - */ - int i, n; - n = pToken->n; - for(i=0; inVarExpr; i++){ - Expr *pE; - if( (pE = pParse->apVarExpr[i])!=0 - && pE->token.n==n - && memcmp(pE->token.z, pToken->z, n)==0 ){ - pExpr->iTable = pE->iTable; - break; - } - } - if( i>=pParse->nVarExpr ){ - pExpr->iTable = ++pParse->nVar; - if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ - pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; - pParse->apVarExpr = - (Expr**)sqlite3DbReallocOrFree( - db, - pParse->apVarExpr, - pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) - ); - } - if( !db->mallocFailed ){ - assert( pParse->apVarExpr!=0 ); - pParse->apVarExpr[pParse->nVarExpr++] = pExpr; - } - } - } - if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ - sqlite3ErrorMsg(pParse, "too many SQL variables"); - } -} - -/* -** Recursively delete an expression tree. -*/ -void sqlite3ExprDelete(Expr *p){ - if( p==0 ) return; - if( p->span.dyn ) sqlite3_free((char*)p->span.z); - if( p->token.dyn ) sqlite3_free((char*)p->token.z); - sqlite3ExprDelete(p->pLeft); - sqlite3ExprDelete(p->pRight); - sqlite3ExprListDelete(p->pList); - sqlite3SelectDelete(p->pSelect); - sqlite3_free(p); -} - -/* -** The Expr.token field might be a string literal that is quoted. -** If so, remove the quotation marks. -*/ -void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ - if( ExprHasAnyProperty(p, EP_Dequoted) ){ - return; - } - ExprSetProperty(p, EP_Dequoted); - if( p->token.dyn==0 ){ - sqlite3TokenCopy(db, &p->token, &p->token); - } - sqlite3Dequote((char*)p->token.z); -} - - -/* -** The following group of routines make deep copies of expressions, -** expression lists, ID lists, and select statements. The copies can -** be deleted (by being passed to their respective ...Delete() routines) -** without effecting the originals. -** -** The expression list, ID, and source lists return by sqlite3ExprListDup(), -** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded -** by subsequent calls to sqlite*ListAppend() routines. -** -** Any tables that the SrcList might point to are not duplicated. -*/ -Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ - Expr *pNew; - if( p==0 ) return 0; - pNew = (Expr*)sqlite3DbMallocRaw(db, sizeof(*p) ); - if( pNew==0 ) return 0; - memcpy(pNew, p, sizeof(*pNew)); - if( p->token.z!=0 ){ - pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); - pNew->token.dyn = 1; - }else{ - assert( pNew->token.z==0 ); - } - pNew->span.z = 0; - pNew->pLeft = sqlite3ExprDup(db, p->pLeft); - pNew->pRight = sqlite3ExprDup(db, p->pRight); - pNew->pList = sqlite3ExprListDup(db, p->pList); - pNew->pSelect = sqlite3SelectDup(db, p->pSelect); - return pNew; -} -void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ - if( pTo->dyn ) sqlite3_free((char*)pTo->z); - if( pFrom->z ){ - pTo->n = pFrom->n; - pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); - pTo->dyn = 1; - }else{ - pTo->z = 0; - } -} -ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ - ExprList *pNew; - ExprList::ExprList_item *pItem, *pOldItem; - int i; - if( p==0 ) return 0; - pNew = (ExprList*)sqlite3DbMallocRaw(db, sizeof(*pNew) ); - if( pNew==0 ) return 0; - pNew->iECursor = 0; - pNew->nExpr = pNew->nAlloc = p->nExpr; - pNew->a = pItem = (ExprList::ExprList_item*)sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); - if( pItem==0 ){ - sqlite3_free(pNew); - return 0; - } - pOldItem = p->a; - for(i=0; inExpr; i++, pItem++, pOldItem++){ - Expr *pNewExpr, *pOldExpr; - pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); - if( pOldExpr->span.z!=0 && pNewExpr ){ - /* Always make a copy of the span for top-level expressions in the - ** expression list. The logic in SELECT processing that determines - ** the names of columns in the result set needs this information */ - sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); - } - assert( pNewExpr==0 || pNewExpr->span.z!=0 - || pOldExpr->span.z==0 - || db->mallocFailed ); - pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); - pItem->sortOrder = pOldItem->sortOrder; - pItem->isAgg = pOldItem->isAgg; - pItem->done = 0; - } - return pNew; -} - -/* -** If cursors, triggers, views and subqueries are all omitted from -** the build, then none of the following routines, except for -** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes -** called with a NULL argument. -*/ -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ - || !defined(SQLITE_OMIT_SUBQUERY) -SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ - SrcList *pNew; - int i; - int nByte; - if( p==0 ) return 0; - nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); - pNew = (SrcList*)sqlite3DbMallocRaw(db, nByte ); - if( pNew==0 ) return 0; - pNew->nSrc = pNew->nAlloc = p->nSrc; - for(i=0; inSrc; i++){ - SrcList::SrcList_item *pNewItem = &pNew->a[i]; - SrcList::SrcList_item *pOldItem = &p->a[i]; - Table *pTab; - pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); - pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); - pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); - pNewItem->jointype = pOldItem->jointype; - pNewItem->iCursor = pOldItem->iCursor; - pNewItem->isPopulated = pOldItem->isPopulated; - pTab = pNewItem->pTab = pOldItem->pTab; - if( pTab ){ - pTab->nRef++; - } - pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); - pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); - pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); - pNewItem->colUsed = pOldItem->colUsed; - } - return pNew; -} -IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ - IdList *pNew; - int i; - if( p==0 ) return 0; - pNew = (IdList*)sqlite3DbMallocRaw(db, sizeof(*pNew) ); - if( pNew==0 ) return 0; - pNew->nId = pNew->nAlloc = p->nId; - pNew->a = (IdList::IdList_item*)sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); - if( pNew->a==0 ){ - sqlite3_free(pNew); - return 0; - } - for(i=0; inId; i++){ - IdList::IdList_item *pNewItem = &pNew->a[i]; - IdList::IdList_item *pOldItem = &p->a[i]; - pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); - pNewItem->idx = pOldItem->idx; - } - return pNew; -} -Select *sqlite3SelectDup(sqlite3 *db, Select *p){ - Select *pNew; - if( p==0 ) return 0; - pNew = (Select*)sqlite3DbMallocRaw(db, sizeof(*p) ); - if( pNew==0 ) return 0; - pNew->isDistinct = p->isDistinct; - pNew->pEList = sqlite3ExprListDup(db, p->pEList); - pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); - pNew->pWhere = sqlite3ExprDup(db, p->pWhere); - pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); - pNew->pHaving = sqlite3ExprDup(db, p->pHaving); - pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); - pNew->op = p->op; - pNew->pPrior = sqlite3SelectDup(db, p->pPrior); - pNew->pLimit = sqlite3ExprDup(db, p->pLimit); - pNew->pOffset = sqlite3ExprDup(db, p->pOffset); - pNew->iLimit = -1; - pNew->iOffset = -1; - pNew->isResolved = p->isResolved; - pNew->isAgg = p->isAgg; - pNew->usesEphm = 0; - pNew->disallowOrderBy = 0; - pNew->pRightmost = 0; - pNew->addrOpenEphm[0] = -1; - pNew->addrOpenEphm[1] = -1; - pNew->addrOpenEphm[2] = -1; - return pNew; -} -#else -Select *sqlite3SelectDup(sqlite3 *db, Select *p){ - assert( p==0 ); - return 0; -} -#endif - - -/* -** Add a new element to the end of an expression list. If pList is -** initially NULL, then create a new expression list. -*/ -ExprList *sqlite3ExprListAppend( - Parse *pParse, /* Parsing context */ - ExprList *pList, /* List to which to append. Might be NULL */ - Expr *pExpr, /* Expression to be appended */ - Token *pName /* AS keyword for the expression */ -){ - sqlite3 *db = pParse->db; - if( pList==0 ){ - pList = (ExprList*)sqlite3DbMallocZero(db, sizeof(ExprList) ); - if( pList==0 ){ - goto no_mem; - } - assert( pList->nAlloc==0 ); - } - if( pList->nAlloc<=pList->nExpr ){ - ExprList::ExprList_item *a; - int n = pList->nAlloc*2 + 4; - a = (ExprList::ExprList_item*)sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); - if( a==0 ){ - goto no_mem; - } - pList->a = a; - pList->nAlloc = n; - } - assert( pList->a!=0 ); - if( pExpr || pName ){ - ExprList::ExprList_item *pItem = &pList->a[pList->nExpr++]; - memset(pItem, 0, sizeof(*pItem)); - pItem->zName = sqlite3NameFromToken(db, pName); - pItem->pExpr = pExpr; - } - return pList; - -no_mem: - /* Avoid leaking memory if malloc has failed. */ - sqlite3ExprDelete(pExpr); - sqlite3ExprListDelete(pList); - return 0; -} - -/* -** If the expression list pEList contains more than iLimit elements, -** leave an error message in pParse. -*/ -void sqlite3ExprListCheckLength( - Parse *pParse, - ExprList *pEList, - int iLimit, - const char *zObject -){ - if( pEList && pEList->nExpr>iLimit ){ - sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); - } -} - - -#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 -/* The following three functions, heightOfExpr(), heightOfExprList() -** and heightOfSelect(), are used to determine the maximum height -** of any expression tree referenced by the structure passed as the -** first argument. -** -** If this maximum height is greater than the current value pointed -** to by pnHeight, the second parameter, then set *pnHeight to that -** value. -*/ -static void heightOfExpr(Expr *p, int *pnHeight){ - if( p ){ - if( p->nHeight>*pnHeight ){ - *pnHeight = p->nHeight; - } - } -} -static void heightOfExprList(ExprList *p, int *pnHeight){ - if( p ){ - int i; - for(i=0; inExpr; i++){ - heightOfExpr(p->a[i].pExpr, pnHeight); - } - } -} -static void heightOfSelect(Select *p, int *pnHeight){ - if( p ){ - heightOfExpr(p->pWhere, pnHeight); - heightOfExpr(p->pHaving, pnHeight); - heightOfExpr(p->pLimit, pnHeight); - heightOfExpr(p->pOffset, pnHeight); - heightOfExprList(p->pEList, pnHeight); - heightOfExprList(p->pGroupBy, pnHeight); - heightOfExprList(p->pOrderBy, pnHeight); - heightOfSelect(p->pPrior, pnHeight); - } -} - -/* -** Set the Expr.nHeight variable in the structure passed as an -** argument. An expression with no children, Expr.pList or -** Expr.pSelect member has a height of 1. Any other expression -** has a height equal to the maximum height of any other -** referenced Expr plus one. -*/ -void sqlite3ExprSetHeight(Expr *p){ - int nHeight = 0; - heightOfExpr(p->pLeft, &nHeight); - heightOfExpr(p->pRight, &nHeight); - heightOfExprList(p->pList, &nHeight); - heightOfSelect(p->pSelect, &nHeight); - p->nHeight = nHeight + 1; -} - -/* -** Return the maximum height of any expression tree referenced -** by the select statement passed as an argument. -*/ -int sqlite3SelectExprHeight(Select *p){ - int nHeight = 0; - heightOfSelect(p, &nHeight); - return nHeight; -} -#endif - -/* -** Delete an entire expression list. -*/ -void sqlite3ExprListDelete(ExprList *pList){ - int i; - ExprList::ExprList_item *pItem; - if( pList==0 ) return; - assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); - assert( pList->nExpr<=pList->nAlloc ); - for(pItem=pList->a, i=0; inExpr; i++, pItem++){ - sqlite3ExprDelete(pItem->pExpr); - sqlite3_free(pItem->zName); - } - sqlite3_free(pList->a); - sqlite3_free(pList); -} - -/* -** Walk an expression tree. Call xFunc for each node visited. -** -** The return value from xFunc determines whether the tree walk continues. -** 0 means continue walking the tree. 1 means do not walk children -** of the current node but continue with siblings. 2 means abandon -** the tree walk completely. -** -** The return value from this routine is 1 to abandon the tree walk -** and 0 to continue. -** -** NOTICE: This routine does *not* descend into subqueries. -*/ -static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); -static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ - int rc; - if( pExpr==0 ) return 0; - rc = (*xFunc)(pArg, pExpr); - if( rc==0 ){ - if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; - if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; - if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; - } - return rc>1; -} - -/* -** Call walkExprTree() for every expression in list p. -*/ -static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ - int i; - ExprList::ExprList_item *pItem; - if( !p ) return 0; - for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ - if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; - } - return 0; -} - -/* -** Call walkExprTree() for every expression in Select p, not including -** expressions that are part of sub-selects in any FROM clause or the LIMIT -** or OFFSET expressions.. -*/ -static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ - walkExprList(p->pEList, xFunc, pArg); - walkExprTree(p->pWhere, xFunc, pArg); - walkExprList(p->pGroupBy, xFunc, pArg); - walkExprTree(p->pHaving, xFunc, pArg); - walkExprList(p->pOrderBy, xFunc, pArg); - if( p->pPrior ){ - walkSelectExpr(p->pPrior, xFunc, pArg); - } - return 0; -} - - -/* -** This routine is designed as an xFunc for walkExprTree(). -** -** pArg is really a pointer to an integer. If we can tell by looking -** at pExpr that the expression that contains pExpr is not a constant -** expression, then set *pArg to 0 and return 2 to abandon the tree walk. -** If pExpr does does not disqualify the expression from being a constant -** then do nothing. -** -** After walking the whole tree, if no nodes are found that disqualify -** the expression as constant, then we assume the whole expression -** is constant. See sqlite3ExprIsConstant() for additional information. -*/ -static int exprNodeIsConstant(void *pArg, Expr *pExpr){ - int *pN = (int*)pArg; - - /* If *pArg is 3 then any term of the expression that comes from - ** the ON or USING clauses of a join disqualifies the expression - ** from being considered constant. */ - if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ - *pN = 0; - return 2; - } - - switch( pExpr->op ){ - /* Consider functions to be constant if all their arguments are constant - ** and *pArg==2 */ - case TK_FUNCTION: - if( (*pN)==2 ) return 0; - /* Fall through */ - case TK_ID: - case TK_COLUMN: - case TK_DOT: - case TK_AGG_FUNCTION: - case TK_AGG_COLUMN: -#ifndef SQLITE_OMIT_SUBQUERY - case TK_SELECT: - case TK_EXISTS: -#endif - *pN = 0; - return 2; - case TK_IN: - if( pExpr->pSelect ){ - *pN = 0; - return 2; - } - default: - return 0; - } -} - -/* -** Walk an expression tree. Return 1 if the expression is constant -** and 0 if it involves variables or function calls. -** -** For the purposes of this function, a double-quoted string (ex: "abc") -** is considered a variable but a single-quoted string (ex: 'abc') is -** a constant. -*/ -int sqlite3ExprIsConstant(Expr *p){ - int isConst = 1; - walkExprTree(p, exprNodeIsConstant, &isConst); - return isConst; -} - -/* -** Walk an expression tree. Return 1 if the expression is constant -** that does no originate from the ON or USING clauses of a join. -** Return 0 if it involves variables or function calls or terms from -** an ON or USING clause. -*/ -int sqlite3ExprIsConstantNotJoin(Expr *p){ - int isConst = 3; - walkExprTree(p, exprNodeIsConstant, &isConst); - return isConst!=0; -} - -/* -** Walk an expression tree. Return 1 if the expression is constant -** or a function call with constant arguments. Return and 0 if there -** are any variables. -** -** For the purposes of this function, a double-quoted string (ex: "abc") -** is considered a variable but a single-quoted string (ex: 'abc') is -** a constant. -*/ -int sqlite3ExprIsConstantOrFunction(Expr *p){ - int isConst = 2; - walkExprTree(p, exprNodeIsConstant, &isConst); - return isConst!=0; -} - -/* -** If the expression p codes a constant integer that is small enough -** to fit in a 32-bit integer, return 1 and put the value of the integer -** in *pValue. If the expression is not an integer or if it is too big -** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. -*/ -int sqlite3ExprIsInteger(Expr *p, int *pValue){ - switch( p->op ){ - case TK_INTEGER: { - if( sqlite3GetInt32((char*)p->token.z, pValue) ){ - return 1; - } - break; - } - case TK_UPLUS: { - return sqlite3ExprIsInteger(p->pLeft, pValue); - } - case TK_UMINUS: { - int v; - if( sqlite3ExprIsInteger(p->pLeft, &v) ){ - *pValue = -v; - return 1; - } - break; - } - default: break; - } - return 0; -} - -/* -** Return TRUE if the given string is a row-id column name. -*/ -int sqlite3IsRowid(const char *z){ - if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; - if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; - if( sqlite3StrICmp(z, "OID")==0 ) return 1; - return 0; -} - -/* -** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up -** that name in the set of source tables in pSrcList and make the pExpr -** expression node refer back to that source column. The following changes -** are made to pExpr: -** -** pExpr->iDb Set the index in db->aDb[] of the database holding -** the table. -** pExpr->iTable Set to the cursor number for the table obtained -** from pSrcList. -** pExpr->iColumn Set to the column number within the table. -** pExpr->op Set to TK_COLUMN. -** pExpr->pLeft Any expression this points to is deleted -** pExpr->pRight Any expression this points to is deleted. -** -** The pDbToken is the name of the database (the "X"). This value may be -** NULL meaning that name is of the form Y.Z or Z. Any available database -** can be used. The pTableToken is the name of the table (the "Y"). This -** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it -** means that the form of the name is Z and that columns from any table -** can be used. -** -** If the name cannot be resolved unambiguously, leave an error message -** in pParse and return non-zero. Return zero on success. -*/ -static int lookupName( - Parse *pParse, /* The parsing context */ - Token *pDbToken, /* Name of the database containing table, or NULL */ - Token *pTableToken, /* Name of table containing column, or NULL */ - Token *pColumnToken, /* Name of the column. */ - NameContext *pNC, /* The name context used to resolve the name */ - Expr *pExpr /* Make this EXPR node point to the selected column */ -){ - char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ - char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ - char *zCol = 0; /* Name of the column. The "Z" */ - int i, j; /* Loop counters */ - int cnt = 0; /* Number of matching column names */ - int cntTab = 0; /* Number of matching table names */ - sqlite3 *db = pParse->db; /* The database */ - SrcList::SrcList_item *pItem; /* Use for looping over pSrcList items */ - SrcList::SrcList_item *pMatch = 0; /* The matching pSrcList item */ - NameContext *pTopNC = pNC; /* First namecontext in the list */ - Schema *pSchema = 0; /* Schema of the expression */ - - assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ - zDb = sqlite3NameFromToken(db, pDbToken); - zTab = sqlite3NameFromToken(db, pTableToken); - zCol = sqlite3NameFromToken(db, pColumnToken); - if( db->mallocFailed ){ - goto lookupname_end; - } - - pExpr->iTable = -1; - while( pNC && cnt==0 ){ - ExprList *pEList; - SrcList *pSrcList = pNC->pSrcList; - - if( pSrcList ){ - for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){ - Table *pTab; - int iDb; - Column *pCol; - - pTab = pItem->pTab; - assert( pTab!=0 ); - iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - assert( pTab->nCol>0 ); - if( zTab ){ - if( pItem->zAlias ){ - char *zTabName = pItem->zAlias; - if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; - }else{ - char *zTabName = pTab->zName; - if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; - if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ - continue; - } - } - } - if( 0==(cntTab++) ){ - pExpr->iTable = pItem->iCursor; - pSchema = pTab->pSchema; - pMatch = pItem; - } - for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){ - if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ - const char *zColl = pTab->aCol[j].zColl; - IdList *pUsing; - cnt++; - pExpr->iTable = pItem->iCursor; - pMatch = pItem; - pSchema = pTab->pSchema; - /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ - pExpr->iColumn = j==pTab->iPKey ? -1 : j; - pExpr->affinity = pTab->aCol[j].affinity; - if( (pExpr->flags & EP_ExpCollate)==0 ){ - pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); - } - if( inSrc-1 ){ - if( pItem[1].jointype & JT_NATURAL ){ - /* If this match occurred in the left table of a natural join, - ** then skip the right table to avoid a duplicate match */ - pItem++; - i++; - }else if( (pUsing = pItem[1].pUsing)!=0 ){ - /* If this match occurs on a column that is in the USING clause - ** of a join, skip the search of the right table of the join - ** to avoid a duplicate match there. */ - int k; - for(k=0; knId; k++){ - if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ - pItem++; - i++; - break; - } - } - } - } - break; - } - } - } - } - -#ifndef SQLITE_OMIT_TRIGGER - /* If we have not already resolved the name, then maybe - ** it is a new.* or old.* trigger argument reference - */ - if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ - TriggerStack *pTriggerStack = pParse->trigStack; - Table *pTab = 0; - if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ - pExpr->iTable = pTriggerStack->newIdx; - assert( pTriggerStack->pTab ); - pTab = pTriggerStack->pTab; - }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ - pExpr->iTable = pTriggerStack->oldIdx; - assert( pTriggerStack->pTab ); - pTab = pTriggerStack->pTab; - } - - if( pTab ){ - int iCol; - Column *pCol = pTab->aCol; - - pSchema = pTab->pSchema; - cntTab++; - for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { - if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ - const char *zColl = pTab->aCol[iCol].zColl; - cnt++; - pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; - pExpr->affinity = pTab->aCol[iCol].affinity; - if( (pExpr->flags & EP_ExpCollate)==0 ){ - pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); - } - pExpr->pTab = pTab; - break; - } - } - } - } -#endif /* !defined(SQLITE_OMIT_TRIGGER) */ - - /* - ** Perhaps the name is a reference to the ROWID - */ - if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ - cnt = 1; - pExpr->iColumn = -1; - pExpr->affinity = SQLITE_AFF_INTEGER; - } - - /* - ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z - ** might refer to an result-set alias. This happens, for example, when - ** we are resolving names in the WHERE clause of the following command: - ** - ** SELECT a+b AS x FROM table WHERE x<10; - ** - ** In cases like this, replace pExpr with a copy of the expression that - ** forms the result set entry ("a+b" in the example) and return immediately. - ** Note that the expression in the result set should have already been - ** resolved by the time the WHERE clause is resolved. - */ - if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ - for(j=0; jnExpr; j++){ - char *zAs = pEList->a[j].zName; - if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ - Expr *pDup, *pOrig; - assert( pExpr->pLeft==0 && pExpr->pRight==0 ); - assert( pExpr->pList==0 ); - assert( pExpr->pSelect==0 ); - pOrig = pEList->a[j].pExpr; - if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ - sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); - sqlite3_free(zCol); - return 2; - } - pDup = sqlite3ExprDup(db, pOrig); - if( pExpr->flags & EP_ExpCollate ){ - pDup->pColl = pExpr->pColl; - pDup->flags |= EP_ExpCollate; - } - if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); - if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); - memcpy(pExpr, pDup, sizeof(*pExpr)); - sqlite3_free(pDup); - cnt = 1; - pMatch = 0; - assert( zTab==0 && zDb==0 ); - goto lookupname_end_2; - } - } - } - - /* Advance to the next name context. The loop will exit when either - ** we have a match (cnt>0) or when we run out of name contexts. - */ - if( cnt==0 ){ - pNC = pNC->pNext; - } - } - - /* - ** If X and Y are NULL (in other words if only the column name Z is - ** supplied) and the value of Z is enclosed in double-quotes, then - ** Z is a string literal if it doesn't match any column names. In that - ** case, we need to return right away and not make any changes to - ** pExpr. - ** - ** Because no reference was made to outer contexts, the pNC->nRef - ** fields are not changed in any context. - */ - if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ - sqlite3_free(zCol); - return 0; - } - - /* - ** cnt==0 means there was not match. cnt>1 means there were two or - ** more matches. Either way, we have an error. - */ - if( cnt!=1 ){ - char *z = 0; - char *zErr; - zErr = (char*)(cnt==0 ? "no such column: %s" : "ambiguous column name: %s"); - if( zDb ){ - sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); - }else if( zTab ){ - sqlite3SetString(&z, zTab, ".", zCol, (char*)0); - }else{ - z = sqlite3StrDup(zCol); - } - if( z ){ - sqlite3ErrorMsg(pParse, zErr, z); - sqlite3_free(z); - pTopNC->nErr++; - }else{ - db->mallocFailed = 1; - } - } - - /* If a column from a table in pSrcList is referenced, then record - ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes - ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the - ** column number is greater than the number of bits in the bitmask - ** then set the high-order bit of the bitmask. - */ - if( pExpr->iColumn>=0 && pMatch!=0 ){ - int n = pExpr->iColumn; - if( n>=sizeof(Bitmask)*8 ){ - n = sizeof(Bitmask)*8-1; - } - assert( pMatch->iCursor==pExpr->iTable ); - pMatch->colUsed |= ((Bitmask)1)<pLeft); - pExpr->pLeft = 0; - sqlite3ExprDelete(pExpr->pRight); - pExpr->pRight = 0; - pExpr->op = TK_COLUMN; -lookupname_end_2: - sqlite3_free(zCol); - if( cnt==1 ){ - assert( pNC!=0 ); - sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); - if( pMatch && !pMatch->pSelect ){ - pExpr->pTab = pMatch->pTab; - } - /* Increment the nRef value on all name contexts from TopNC up to - ** the point where the name matched. */ - for(;;){ - assert( pTopNC!=0 ); - pTopNC->nRef++; - if( pTopNC==pNC ) break; - pTopNC = pTopNC->pNext; - } - return 0; - } else { - return 1; - } -} - -/* -** This routine is designed as an xFunc for walkExprTree(). -** -** Resolve symbolic names into TK_COLUMN operators for the current -** node in the expression tree. Return 0 to continue the search down -** the tree or 2 to abort the tree walk. -** -** This routine also does error checking and name resolution for -** function names. The operator for aggregate functions is changed -** to TK_AGG_FUNCTION. -*/ -static int nameResolverStep(void *pArg, Expr *pExpr){ - NameContext *pNC = (NameContext*)pArg; - Parse *pParse; - - if( pExpr==0 ) return 1; - assert( pNC!=0 ); - pParse = pNC->pParse; - - if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; - ExprSetProperty(pExpr, EP_Resolved); -#ifndef NDEBUG - if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ - SrcList *pSrcList = pNC->pSrcList; - int i; - for(i=0; ipSrcList->nSrc; i++){ - assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab); - } - } -#endif - switch( pExpr->op ){ - /* Double-quoted strings (ex: "abc") are used as identifiers if - ** possible. Otherwise they remain as strings. Single-quoted - ** strings (ex: 'abc') are always string literals. - */ - case TK_STRING: { - if( pExpr->token.z[0]=='\'' ) break; - /* Fall thru into the TK_ID case if this is a double-quoted string */ - } - /* A lone identifier is the name of a column. - */ - case TK_ID: { - lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); - return 1; - } - - /* A table name and column name: ID.ID - ** Or a database, table and column: ID.ID.ID - */ - case TK_DOT: { - Token *pColumn; - Token *pTable; - Token *pDb; - Expr *pRight; - - /* if( pSrcList==0 ) break; */ - pRight = pExpr->pRight; - if( pRight->op==TK_ID ){ - pDb = 0; - pTable = &pExpr->pLeft->token; - pColumn = &pRight->token; - }else{ - assert( pRight->op==TK_DOT ); - pDb = &pExpr->pLeft->token; - pTable = &pRight->pLeft->token; - pColumn = &pRight->pRight->token; - } - lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); - return 1; - } - - /* Resolve function names - */ - case TK_CONST_FUNC: - case TK_FUNCTION: { - ExprList *pList = pExpr->pList; /* The argument list */ - int n = pList ? pList->nExpr : 0; /* Number of arguments */ - int no_such_func = 0; /* True if no such function exists */ - int wrong_num_args = 0; /* True if wrong number of arguments */ - int is_agg = 0; /* True if is an aggregate function */ - int i; - int auth; /* Authorization to use the function */ - int nId; /* Number of characters in function name */ - const char *zId; /* The function name. */ - FuncDef *pDef; /* Information about the function */ - int enc = ENC(pParse->db); /* The database encoding */ - - zId = (char*)pExpr->token.z; - nId = pExpr->token.n; - pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); - if( pDef==0 ){ - pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); - if( pDef==0 ){ - no_such_func = 1; - }else{ - wrong_num_args = 1; - } - }else{ - is_agg = pDef->xFunc==0; - } -#ifndef SQLITE_OMIT_AUTHORIZATION - if( pDef ){ - auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); - if( auth!=SQLITE_OK ){ - if( auth==SQLITE_DENY ){ - sqlite3ErrorMsg(pParse, "not authorized to use function: %s", - pDef->zName); - pNC->nErr++; - } - pExpr->op = TK_NULL; - return 1; - } - } -#endif - if( is_agg && !pNC->allowAgg ){ - sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); - pNC->nErr++; - is_agg = 0; - }else if( no_such_func ){ - sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); - pNC->nErr++; - }else if( wrong_num_args ){ - sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", - nId, zId); - pNC->nErr++; - } - if( is_agg ){ - pExpr->op = TK_AGG_FUNCTION; - pNC->hasAgg = 1; - } - if( is_agg ) pNC->allowAgg = 0; - for(i=0; pNC->nErr==0 && ia[i].pExpr, nameResolverStep, pNC); - } - if( is_agg ) pNC->allowAgg = 1; - /* FIX ME: Compute pExpr->affinity based on the expected return - ** type of the function - */ - return is_agg; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_SELECT: - case TK_EXISTS: -#endif - case TK_IN: { - if( pExpr->pSelect ){ - int nRef = pNC->nRef; -#ifndef SQLITE_OMIT_CHECK - if( pNC->isCheck ){ - sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); - } -#endif - sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); - assert( pNC->nRef>=nRef ); - if( nRef!=pNC->nRef ){ - ExprSetProperty(pExpr, EP_VarSelect); - } - } - break; - } -#ifndef SQLITE_OMIT_CHECK - case TK_VARIABLE: { - if( pNC->isCheck ){ - sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); - } - break; - } -#endif - } - return 0; -} - -/* -** This routine walks an expression tree and resolves references to -** table columns. Nodes of the form ID.ID or ID resolve into an -** index to the table in the table list and a column offset. The -** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable -** value is changed to the index of the referenced table in pTabList -** plus the "base" value. The base value will ultimately become the -** VDBE cursor number for a cursor that is pointing into the referenced -** table. The Expr.iColumn value is changed to the index of the column -** of the referenced table. The Expr.iColumn value for the special -** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an -** alias for ROWID. -** -** Also resolve function names and check the functions for proper -** usage. Make sure all function names are recognized and all functions -** have the correct number of arguments. Leave an error message -** in pParse->zErrMsg if anything is amiss. Return the number of errors. -** -** If the expression contains aggregate functions then set the EP_Agg -** property on the expression. -*/ -int sqlite3ExprResolveNames( - NameContext *pNC, /* Namespace to resolve expressions in. */ - Expr *pExpr /* The expression to be analyzed. */ -){ - int savedHasAgg; - if( pExpr==0 ) return 0; -#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 - if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ - sqlite3ErrorMsg(pNC->pParse, - "Expression tree is too large (maximum depth %d)", - SQLITE_MAX_EXPR_DEPTH - ); - return 1; - } - pNC->pParse->nHeight += pExpr->nHeight; -#endif - savedHasAgg = pNC->hasAgg; - pNC->hasAgg = 0; - walkExprTree(pExpr, nameResolverStep, pNC); -#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 - pNC->pParse->nHeight -= pExpr->nHeight; -#endif - if( pNC->nErr>0 ){ - ExprSetProperty(pExpr, EP_Error); - } - if( pNC->hasAgg ){ - ExprSetProperty(pExpr, EP_Agg); - }else if( savedHasAgg ){ - pNC->hasAgg = 1; - } - return ExprHasProperty(pExpr, EP_Error); -} - -/* -** A pointer instance of this structure is used to pass information -** through walkExprTree into codeSubqueryStep(). -*/ -typedef struct QueryCoder QueryCoder; -struct QueryCoder { - Parse *pParse; /* The parsing context */ - NameContext *pNC; /* Namespace of first enclosing query */ -}; - -#ifdef SQLITE_TEST - int sqlite3_enable_in_opt = 1; -#else - #define sqlite3_enable_in_opt 1 -#endif - -/* -** This function is used by the implementation of the IN (...) operator. -** It's job is to find or create a b-tree structure that may be used -** either to test for membership of the (...) set or to iterate through -** its members, skipping duplicates. -** -** The cursor opened on the structure (database table, database index -** or ephermal table) is stored in pX->iTable before this function returns. -** The returned value indicates the structure type, as follows: -** -** IN_INDEX_ROWID - The cursor was opened on a database table. -** IN_INDEX_INDEX - The cursor was opened on a database indec. -** IN_INDEX_EPH - The cursor was opened on a specially created and -** populated epheremal table. -** -** An existing structure may only be used if the SELECT is of the simple -** form: -** -** SELECT FROM -** -** If the mustBeUnique parameter is false, the structure will be used -** for fast set membership tests. In this case an epheremal table must -** be used unless is an INTEGER PRIMARY KEY or an index can -** be found with as its left-most column. -** -** If mustBeUnique is true, then the structure will be used to iterate -** through the set members, skipping any duplicates. In this case an -** epheremal table must be used unless the selected is guaranteed -** to be unique - either because it is an INTEGER PRIMARY KEY or it -** is unique by virtue of a constraint or implicit index. -*/ -#ifndef SQLITE_OMIT_SUBQUERY -int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ - Select *p; - int eType = 0; - int iTab = pParse->nTab++; - - /* The follwing if(...) expression is true if the SELECT is of the - ** simple form: - ** - ** SELECT FROM
- ** - ** If this is the case, it may be possible to use an existing table - ** or index instead of generating an epheremal table. - */ - if( sqlite3_enable_in_opt - && (p=pX->pSelect) && !p->pPrior - && !p->isDistinct && !p->isAgg && !p->pGroupBy - && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect - && !p->pSrc->a[0].pTab->pSelect - && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN - && !p->pLimit && !p->pOffset && !p->pWhere - ){ - sqlite3 *db = pParse->db; - Index *pIdx; - Expr *pExpr = p->pEList->a[0].pExpr; - int iCol = pExpr->iColumn; - Vdbe *v = sqlite3GetVdbe(pParse); - - /* This function is only called from two places. In both cases the vdbe - ** has already been allocated. So assume sqlite3GetVdbe() is always - ** successful here. - */ - assert(v); - if( iCol<0 ){ - int iMem = pParse->nMem++; - int iAddr; - Table *pTab = p->pSrc->a[0].pTab; - int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); - sqlite3VdbeUsesBtree(v, iDb); - - sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); - iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); - sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); - - sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); - eType = IN_INDEX_ROWID; - - sqlite3VdbeJumpHere(v, iAddr); - }else{ - /* The collation sequence used by the comparison. If an index is to - ** be used in place of a temp-table, it must be ordered according - ** to this collation sequence. - */ - CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); - - /* Check that the affinity that will be used to perform the - ** comparison is the same as the affinity of the column. If - ** it is not, it is not possible to use any index. - */ - Table *pTab = p->pSrc->a[0].pTab; - char aff = comparisonAffinity(pX); - int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); - - for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ - if( (pIdx->aiColumn[0]==iCol) - && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) - && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) - ){ - int iDb; - int iMem = pParse->nMem++; - int iAddr; - char *pKey; - - pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); - iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); - sqlite3VdbeUsesBtree(v, iDb); - - sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); - iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); - sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); - - sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); - VdbeComment((v, "# %s", pIdx->zName)); - sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF); - eType = IN_INDEX_INDEX; - sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn); - - sqlite3VdbeJumpHere(v, iAddr); - } - } - } - } - - if( eType==0 ){ - sqlite3CodeSubselect(pParse, pX); - eType = IN_INDEX_EPH; - }else{ - pX->iTable = iTab; - } - return eType; -} -#endif - -/* -** Generate code for scalar subqueries used as an expression -** and IN operators. Examples: -** -** (SELECT a FROM b) -- subquery -** EXISTS (SELECT a FROM b) -- EXISTS subquery -** x IN (4,5,11) -- IN operator with list on right-hand side -** x IN (SELECT a FROM b) -- IN operator with subquery on the right -** -** The pExpr parameter describes the expression that contains the IN -** operator or subquery. -*/ -#ifndef SQLITE_OMIT_SUBQUERY -void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ - int testAddr = 0; /* One-time test address */ - Vdbe *v = sqlite3GetVdbe(pParse); - if( v==0 ) return; - - - /* This code must be run in its entirety every time it is encountered - ** if any of the following is true: - ** - ** * The right-hand side is a correlated subquery - ** * The right-hand side is an expression list containing variables - ** * We are inside a trigger - ** - ** If all of the above are false, then we can run this code just once - ** save the results, and reuse the same result on subsequent invocations. - */ - if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ - int mem = pParse->nMem++; - sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); - testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); - assert( testAddr>0 || pParse->db->mallocFailed ); - sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); - } - - switch( pExpr->op ){ - case TK_IN: { - char affinity; - KeyInfo keyInfo; - int addr; /* Address of OP_OpenEphemeral instruction */ - - affinity = sqlite3ExprAffinity(pExpr->pLeft); - - /* Whether this is an 'x IN(SELECT...)' or an 'x IN()' - ** expression it is handled the same way. A virtual table is - ** filled with single-field index keys representing the results - ** from the SELECT or the . - ** - ** If the 'x' expression is a column value, or the SELECT... - ** statement returns a column value, then the affinity of that - ** column is used to build the index keys. If both 'x' and the - ** SELECT... statement are columns, then numeric affinity is used - ** if either column has NUMERIC or INTEGER affinity. If neither - ** 'x' nor the SELECT... statement are columns, then numeric affinity - ** is used. - */ - pExpr->iTable = pParse->nTab++; - addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); - memset(&keyInfo, 0, sizeof(keyInfo)); - keyInfo.nField = 1; - sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); - - if( pExpr->pSelect ){ - /* Case 1: expr IN (SELECT ...) - ** - ** Generate code to write the results of the select into the temporary - ** table allocated and opened above. - */ - int iParm = pExpr->iTable + (((int)affinity)<<16); - ExprList *pEList; - assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); - if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ - return; - } - pEList = pExpr->pSelect->pEList; - if( pEList && pEList->nExpr>0 ){ - keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, - pEList->a[0].pExpr); - } - }else if( pExpr->pList ){ - /* Case 2: expr IN (exprlist) - ** - ** For each expression, build an index key from the evaluation and - ** store it in the temporary table. If is a column, then use - ** that columns affinity when building index keys. If is not - ** a column, use numeric affinity. - */ - int i; - ExprList *pList = pExpr->pList; - ExprList::ExprList_item *pItem; - - if( !affinity ){ - affinity = SQLITE_AFF_NONE; - } - keyInfo.aColl[0] = pExpr->pLeft->pColl; - - /* Loop through each expression in . */ - for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ - Expr *pE2 = pItem->pExpr; - - /* If the expression is not constant then we will need to - ** disable the test that was generated above that makes sure - ** this code only executes once. Because for a non-constant - ** expression we need to rerun this code each time. - */ - if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ - sqlite3VdbeChangeToNoop(v, testAddr-1, 3); - testAddr = 0; - } - - /* Evaluate the expression and insert it into the temp table */ - sqlite3ExprCode(pParse, pE2); - sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); - sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); - } - } - sqlite3VdbeChangeP3(v, addr, (const char *)&keyInfo, P3_KEYINFO); - break; - } - - case TK_EXISTS: - case TK_SELECT: { - /* This has to be a scalar SELECT. Generate code to put the - ** value of this select in a memory cell and record the number - ** of the memory cell in iColumn. - */ - static const Token one = { (u8*)"1", 0, 1 }; - Select *pSel; - int iMem; - int sop; - - pExpr->iColumn = iMem = pParse->nMem++; - pSel = pExpr->pSelect; - if( pExpr->op==TK_SELECT ){ - sop = SRT_Mem; - sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); - VdbeComment((v, "# Init subquery result")); - }else{ - sop = SRT_Exists; - sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); - VdbeComment((v, "# Init EXISTS result")); - } - sqlite3ExprDelete(pSel->pLimit); - pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); - if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ - return; - } - break; - } - } - - if( testAddr ){ - sqlite3VdbeJumpHere(v, testAddr); - } - - return; -} -#endif /* SQLITE_OMIT_SUBQUERY */ - -/* -** Duplicate an 8-byte value -*/ -static char *dup8bytes(Vdbe *v, const char *in){ - char *out = (char*)sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); - if( out ){ - memcpy(out, in, 8); - } - return out; -} - -/* -** Generate an instruction that will put the floating point -** value described by z[0..n-1] on the stack. -** -** The z[] string will probably not be zero-terminated. But the -** z[n] character is guaranteed to be something that does not look -** like the continuation of the number. -*/ -static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){ - assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); - if( z ){ - double value; - char *zV; - assert( !isdigit(z[n]) ); - sqlite3AtoF(z, &value); - if( negateFlag ) value = -value; - zV = dup8bytes(v, (char*)&value); - sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL); - } -} - - -/* -** Generate an instruction that will put the integer describe by -** text z[0..n-1] on the stack. -** -** The z[] string will probably not be zero-terminated. But the -** z[n] character is guaranteed to be something that does not look -** like the continuation of the number. -*/ -static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){ - assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); - if( z ){ - int i; - assert( !isdigit(z[n]) ); - if( sqlite3GetInt32(z, &i) ){ - if( negateFlag ) i = -i; - sqlite3VdbeAddOp(v, OP_Integer, i, 0); - }else if( sqlite3FitsIn64Bits(z, negateFlag) ){ - i64 value; - char *zV; - sqlite3Atoi64(z, &value); - if( negateFlag ) value = -value; - zV = dup8bytes(v, (char*)&value); - sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64); - }else{ - codeReal(v, z, n, negateFlag); - } - } -} - - -/* -** Generate code that will extract the iColumn-th column from -** table pTab and push that column value on the stack. There -** is an open cursor to pTab in iTable. If iColumn<0 then -** code is generated that extracts the rowid. -*/ -void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ - if( iColumn<0 ){ - int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; - sqlite3VdbeAddOp(v, op, iTable, 0); - }else if( pTab==0 ){ - sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); - }else{ - int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; - sqlite3VdbeAddOp(v, op, iTable, iColumn); - sqlite3ColumnDefault(v, pTab, iColumn); -#ifndef SQLITE_OMIT_FLOATING_POINT - if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ - sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); - } -#endif - } -} - -/* -** Generate code into the current Vdbe to evaluate the given -** expression and leave the result on the top of stack. -** -** This code depends on the fact that certain token values (ex: TK_EQ) -** are the same as opcode values (ex: OP_Eq) that implement the corresponding -** operation. Special comments in vdbe.c and the mkopcodeh.awk script in -** the make process cause these values to align. Assert()s in the code -** below verify that the numbers are aligned correctly. -*/ -void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ - Vdbe *v = pParse->pVdbe; - int op; - int stackChng = 1; /* Amount of change to stack depth */ - - if( v==0 ) return; - if( pExpr==0 ){ - sqlite3VdbeAddOp(v, OP_Null, 0, 0); - return; - } - op = pExpr->op; - switch( op ){ - case TK_AGG_COLUMN: { - AggInfo *pAggInfo = pExpr->pAggInfo; - AggInfo::AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; - if( !pAggInfo->directMode ){ - sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); - break; - }else if( pAggInfo->useSortingIdx ){ - sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, - pCol->iSorterColumn); - break; - } - /* Otherwise, fall thru into the TK_COLUMN case */ - } - case TK_COLUMN: { - if( pExpr->iTable<0 ){ - /* This only happens when coding check constraints */ - assert( pParse->ckOffset>0 ); - sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); - }else{ - sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); - } - break; - } - case TK_INTEGER: { - codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0); - break; - } - case TK_FLOAT: { - codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0); - break; - } - case TK_STRING: { - sqlite3DequoteExpr(pParse->db, pExpr); - sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n); - break; - } - case TK_NULL: { - sqlite3VdbeAddOp(v, OP_Null, 0, 0); - break; - } -#ifndef SQLITE_OMIT_BLOB_LITERAL - case TK_BLOB: { - int n; - const char *z; - assert( TK_BLOB==OP_HexBlob ); - n = pExpr->token.n - 3; - z = (char*)pExpr->token.z + 2; - assert( n>=0 ); - if( n==0 ){ - z = ""; - } - sqlite3VdbeOp3(v, op, 0, 0, z, n); - break; - } -#endif - case TK_VARIABLE: { - sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); - if( pExpr->token.n>1 ){ - sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); - } - break; - } - case TK_REGISTER: { - sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); - break; - } -#ifndef SQLITE_OMIT_CAST - case TK_CAST: { - /* Expressions of the form: CAST(pLeft AS token) */ - int aff, to_op; - sqlite3ExprCode(pParse, pExpr->pLeft); - aff = sqlite3AffinityType(&pExpr->token); - to_op = aff - SQLITE_AFF_TEXT + OP_ToText; - assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); - assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); - assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); - assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); - assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); - sqlite3VdbeAddOp(v, to_op, 0, 0); - stackChng = 0; - break; - } -#endif /* SQLITE_OMIT_CAST */ - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_NE: - case TK_EQ: { - assert( TK_LT==OP_Lt ); - assert( TK_LE==OP_Le ); - assert( TK_GT==OP_Gt ); - assert( TK_GE==OP_Ge ); - assert( TK_EQ==OP_Eq ); - assert( TK_NE==OP_Ne ); - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3ExprCode(pParse, pExpr->pRight); - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); - stackChng = -1; - break; - } - case TK_AND: - case TK_OR: - case TK_PLUS: - case TK_STAR: - case TK_MINUS: - case TK_REM: - case TK_BITAND: - case TK_BITOR: - case TK_SLASH: - case TK_LSHIFT: - case TK_RSHIFT: - case TK_CONCAT: { - assert( TK_AND==OP_And ); - assert( TK_OR==OP_Or ); - assert( TK_PLUS==OP_Add ); - assert( TK_MINUS==OP_Subtract ); - assert( TK_REM==OP_Remainder ); - assert( TK_BITAND==OP_BitAnd ); - assert( TK_BITOR==OP_BitOr ); - assert( TK_SLASH==OP_Divide ); - assert( TK_LSHIFT==OP_ShiftLeft ); - assert( TK_RSHIFT==OP_ShiftRight ); - assert( TK_CONCAT==OP_Concat ); - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3ExprCode(pParse, pExpr->pRight); - sqlite3VdbeAddOp(v, op, 0, 0); - stackChng = -1; - break; - } - case TK_UMINUS: { - Expr *pLeft = pExpr->pLeft; - assert( pLeft ); - if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ - Token *p = &pLeft->token; - if( pLeft->op==TK_FLOAT ){ - codeReal(v, (char*)p->z, p->n, 1); - }else{ - codeInteger(v, (char*)p->z, p->n, 1); - } - break; - } - /* Fall through into TK_NOT */ - } - case TK_BITNOT: - case TK_NOT: { - assert( TK_BITNOT==OP_BitNot ); - assert( TK_NOT==OP_Not ); - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3VdbeAddOp(v, op, 0, 0); - stackChng = 0; - break; - } - case TK_ISNULL: - case TK_NOTNULL: { - int dest; - assert( TK_ISNULL==OP_IsNull ); - assert( TK_NOTNULL==OP_NotNull ); - sqlite3VdbeAddOp(v, OP_Integer, 1, 0); - sqlite3ExprCode(pParse, pExpr->pLeft); - dest = sqlite3VdbeCurrentAddr(v) + 2; - sqlite3VdbeAddOp(v, op, 1, dest); - sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); - stackChng = 0; - break; - } - case TK_AGG_FUNCTION: { - AggInfo *pInfo = pExpr->pAggInfo; - if( pInfo==0 ){ - sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", - &pExpr->span); - }else{ - sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); - } - break; - } - case TK_CONST_FUNC: - case TK_FUNCTION: { - ExprList *pList = pExpr->pList; - int nExpr = pList ? pList->nExpr : 0; - FuncDef *pDef; - int nId; - const char *zId; - int constMask = 0; - int i; - sqlite3 *db = pParse->db; - u8 enc = ENC(db); - CollSeq *pColl = 0; - - zId = (char*)pExpr->token.z; - nId = pExpr->token.n; - pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); - assert( pDef!=0 ); - nExpr = sqlite3ExprCodeExprList(pParse, pList); -#ifndef SQLITE_OMIT_VIRTUALTABLE - /* Possibly overload the function if the first argument is - ** a virtual table column. - ** - ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the - ** second argument, not the first, as the argument to test to - ** see if it is a column in a virtual table. This is done because - ** the left operand of infix functions (the operand we want to - ** control overloading) ends up as the second argument to the - ** function. The expression "A glob B" is equivalent to - ** "glob(B,A). We want to use the A in "A glob B" to test - ** for function overloading. But we use the B term in "glob(B,A)". - */ - if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ - pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); - }else if( nExpr>0 ){ - pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); - } -#endif - for(i=0; ia[i].pExpr) ){ - constMask |= (1<needCollSeq && !pColl ){ - pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); - } - } - if( pDef->needCollSeq ){ - if( !pColl ) pColl = pParse->db->pDfltColl; - sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); - } - sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); - stackChng = 1-nExpr; - break; - } -#ifndef SQLITE_OMIT_SUBQUERY - case TK_EXISTS: - case TK_SELECT: { - if( pExpr->iColumn==0 ){ - sqlite3CodeSubselect(pParse, pExpr); - } - sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); - VdbeComment((v, "# load subquery result")); - break; - } - case TK_IN: { - int addr; - char affinity; - int ckOffset = pParse->ckOffset; - int eType; - int iLabel = sqlite3VdbeMakeLabel(v); - - eType = sqlite3FindInIndex(pParse, pExpr, 0); - - /* Figure out the affinity to use to create a key from the results - ** of the expression. affinityStr stores a static string suitable for - ** P3 of OP_MakeRecord. - */ - affinity = comparisonAffinity(pExpr); - - sqlite3VdbeAddOp(v, OP_Integer, 1, 0); - pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); - - /* Code the from " IN (...)". The temporary table - ** pExpr->iTable contains the values that make up the (...) set. - */ - sqlite3ExprCode(pParse, pExpr->pLeft); - addr = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ - sqlite3VdbeAddOp(v, OP_Pop, 2, 0); - sqlite3VdbeAddOp(v, OP_Null, 0, 0); - sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel); - if( eType==IN_INDEX_ROWID ){ - int iAddr = sqlite3VdbeCurrentAddr(v)+3; - sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr); - sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr); - sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel); - }else{ - sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ - sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel); - } - sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ - sqlite3VdbeResolveLabel(v, iLabel); - - break; - } -#endif - case TK_BETWEEN: { - Expr *pLeft = pExpr->pLeft; - ExprList::ExprList_item *pLItem = pExpr->pList->a; - Expr *pRight = pLItem->pExpr; - sqlite3ExprCode(pParse, pLeft); - sqlite3VdbeAddOp(v, OP_Dup, 0, 0); - sqlite3ExprCode(pParse, pRight); - codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); - sqlite3VdbeAddOp(v, OP_Pull, 1, 0); - pLItem++; - pRight = pLItem->pExpr; - sqlite3ExprCode(pParse, pRight); - codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); - sqlite3VdbeAddOp(v, OP_And, 0, 0); - break; - } - case TK_UPLUS: { - sqlite3ExprCode(pParse, pExpr->pLeft); - stackChng = 0; - break; - } - case TK_CASE: { - int expr_end_label; - int jumpInst; - int nExpr; - int i; - ExprList *pEList; - ExprList::ExprList_item *aListelem; - - assert(pExpr->pList); - assert((pExpr->pList->nExpr % 2) == 0); - assert(pExpr->pList->nExpr > 0); - pEList = pExpr->pList; - aListelem = pEList->a; - nExpr = pEList->nExpr; - expr_end_label = sqlite3VdbeMakeLabel(v); - if( pExpr->pLeft ){ - sqlite3ExprCode(pParse, pExpr->pLeft); - } - for(i=0; ipLeft ){ - sqlite3VdbeAddOp(v, OP_Dup, 1, 1); - jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, - OP_Ne, 0, 1); - sqlite3VdbeAddOp(v, OP_Pop, 1, 0); - }else{ - jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); - } - sqlite3ExprCode(pParse, aListelem[i+1].pExpr); - sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); - sqlite3VdbeJumpHere(v, jumpInst); - } - if( pExpr->pLeft ){ - sqlite3VdbeAddOp(v, OP_Pop, 1, 0); - } - if( pExpr->pRight ){ - sqlite3ExprCode(pParse, pExpr->pRight); - }else{ - sqlite3VdbeAddOp(v, OP_Null, 0, 0); - } - sqlite3VdbeResolveLabel(v, expr_end_label); - break; - } -#ifndef SQLITE_OMIT_TRIGGER - case TK_RAISE: { - if( !pParse->trigStack ){ - sqlite3ErrorMsg(pParse, - "RAISE() may only be used within a trigger-program"); - return; - } - if( pExpr->iColumn!=OE_Ignore ){ - assert( pExpr->iColumn==OE_Rollback || - pExpr->iColumn == OE_Abort || - pExpr->iColumn == OE_Fail ); - sqlite3DequoteExpr(pParse->db, pExpr); - sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, - (char*)pExpr->token.z, pExpr->token.n); - } else { - assert( pExpr->iColumn == OE_Ignore ); - sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); - sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); - VdbeComment((v, "# raise(IGNORE)")); - } - stackChng = 0; - break; - } -#endif - } - - if( pParse->ckOffset ){ - pParse->ckOffset += stackChng; - assert( pParse->ckOffset ); - } -} - -#ifndef SQLITE_OMIT_TRIGGER -/* -** Generate code that evalutes the given expression and leaves the result -** on the stack. See also sqlite3ExprCode(). -** -** This routine might also cache the result and modify the pExpr tree -** so that it will make use of the cached result on subsequent evaluations -** rather than evaluate the whole expression again. Trivial expressions are -** not cached. If the expression is cached, its result is stored in a -** memory location. -*/ -void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ - Vdbe *v = pParse->pVdbe; - VdbeOp *pOp; - int iMem; - int addr1, addr2; - if( v==0 ) return; - addr1 = sqlite3VdbeCurrentAddr(v); - sqlite3ExprCode(pParse, pExpr); - addr2 = sqlite3VdbeCurrentAddr(v); - if( addr2>addr1+1 - || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){ - iMem = pExpr->iTable = pParse->nMem++; - sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); - pExpr->op = TK_REGISTER; - } -} -#endif - -/* -** Generate code that pushes the value of every element of the given -** expression list onto the stack. -** -** Return the number of elements pushed onto the stack. -*/ -int sqlite3ExprCodeExprList( - Parse *pParse, /* Parsing context */ - ExprList *pList /* The expression list to be coded */ -){ - ExprList::ExprList_item *pItem; - int i, n; - if( pList==0 ) return 0; - n = pList->nExpr; - for(pItem=pList->a, i=n; i>0; i--, pItem++){ - sqlite3ExprCode(pParse, pItem->pExpr); - } - return n; -} - -/* -** Generate code for a boolean expression such that a jump is made -** to the label "dest" if the expression is true but execution -** continues straight thru if the expression is false. -** -** If the expression evaluates to NULL (neither true nor false), then -** take the jump if the jumpIfNull flag is true. -** -** This code depends on the fact that certain token values (ex: TK_EQ) -** are the same as opcode values (ex: OP_Eq) that implement the corresponding -** operation. Special comments in vdbe.c and the mkopcodeh.awk script in -** the make process cause these values to align. Assert()s in the code -** below verify that the numbers are aligned correctly. -*/ -void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ - Vdbe *v = pParse->pVdbe; - int op = 0; - int ckOffset = pParse->ckOffset; - if( v==0 || pExpr==0 ) return; - op = pExpr->op; - switch( op ){ - case TK_AND: { - int d2 = sqlite3VdbeMakeLabel(v); - sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); - sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); - sqlite3VdbeResolveLabel(v, d2); - break; - } - case TK_OR: { - sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); - sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); - break; - } - case TK_NOT: { - sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); - break; - } - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_NE: - case TK_EQ: { - assert( TK_LT==OP_Lt ); - assert( TK_LE==OP_Le ); - assert( TK_GT==OP_Gt ); - assert( TK_GE==OP_Ge ); - assert( TK_EQ==OP_Eq ); - assert( TK_NE==OP_Ne ); - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3ExprCode(pParse, pExpr->pRight); - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); - break; - } - case TK_ISNULL: - case TK_NOTNULL: { - assert( TK_ISNULL==OP_IsNull ); - assert( TK_NOTNULL==OP_NotNull ); - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3VdbeAddOp(v, op, 1, dest); - break; - } - case TK_BETWEEN: { - /* The expression "x BETWEEN y AND z" is implemented as: - ** - ** 1 IF (x < y) GOTO 3 - ** 2 IF (x <= z) GOTO - ** 3 ... - */ - int addr; - Expr *pLeft = pExpr->pLeft; - Expr *pRight = pExpr->pList->a[0].pExpr; - sqlite3ExprCode(pParse, pLeft); - sqlite3VdbeAddOp(v, OP_Dup, 0, 0); - sqlite3ExprCode(pParse, pRight); - addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); - - pRight = pExpr->pList->a[1].pExpr; - sqlite3ExprCode(pParse, pRight); - codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); - - sqlite3VdbeAddOp(v, OP_Integer, 0, 0); - sqlite3VdbeJumpHere(v, addr); - sqlite3VdbeAddOp(v, OP_Pop, 1, 0); - break; - } - default: { - sqlite3ExprCode(pParse, pExpr); - sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); - break; - } - } - pParse->ckOffset = ckOffset; -} - -/* -** Generate code for a boolean expression such that a jump is made -** to the label "dest" if the expression is false but execution -** continues straight thru if the expression is true. -** -** If the expression evaluates to NULL (neither true nor false) then -** jump if jumpIfNull is true or fall through if jumpIfNull is false. -*/ -void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ - Vdbe *v = pParse->pVdbe; - int op = 0; - int ckOffset = pParse->ckOffset; - if( v==0 || pExpr==0 ) return; - - /* The value of pExpr->op and op are related as follows: - ** - ** pExpr->op op - ** --------- ---------- - ** TK_ISNULL OP_NotNull - ** TK_NOTNULL OP_IsNull - ** TK_NE OP_Eq - ** TK_EQ OP_Ne - ** TK_GT OP_Le - ** TK_LE OP_Gt - ** TK_GE OP_Lt - ** TK_LT OP_Ge - ** - ** For other values of pExpr->op, op is undefined and unused. - ** The value of TK_ and OP_ constants are arranged such that we - ** can compute the mapping above using the following expression. - ** Assert()s verify that the computation is correct. - */ - op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); - - /* Verify correct alignment of TK_ and OP_ constants - */ - assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); - assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); - assert( pExpr->op!=TK_NE || op==OP_Eq ); - assert( pExpr->op!=TK_EQ || op==OP_Ne ); - assert( pExpr->op!=TK_LT || op==OP_Ge ); - assert( pExpr->op!=TK_LE || op==OP_Gt ); - assert( pExpr->op!=TK_GT || op==OP_Le ); - assert( pExpr->op!=TK_GE || op==OP_Lt ); - - switch( pExpr->op ){ - case TK_AND: { - sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); - sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); - break; - } - case TK_OR: { - int d2 = sqlite3VdbeMakeLabel(v); - sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); - sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); - sqlite3VdbeResolveLabel(v, d2); - break; - } - case TK_NOT: { - sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); - break; - } - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_NE: - case TK_EQ: { - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3ExprCode(pParse, pExpr->pRight); - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); - break; - } - case TK_ISNULL: - case TK_NOTNULL: { - sqlite3ExprCode(pParse, pExpr->pLeft); - sqlite3VdbeAddOp(v, op, 1, dest); - break; - } - case TK_BETWEEN: { - /* The expression is "x BETWEEN y AND z". It is implemented as: - ** - ** 1 IF (x >= y) GOTO 3 - ** 2 GOTO - ** 3 IF (x > z) GOTO - */ - int addr; - Expr *pLeft = pExpr->pLeft; - Expr *pRight = pExpr->pList->a[0].pExpr; - sqlite3ExprCode(pParse, pLeft); - sqlite3VdbeAddOp(v, OP_Dup, 0, 0); - sqlite3ExprCode(pParse, pRight); - addr = sqlite3VdbeCurrentAddr(v); - codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); - - sqlite3VdbeAddOp(v, OP_Pop, 1, 0); - sqlite3VdbeAddOp(v, OP_Goto, 0, dest); - pRight = pExpr->pList->a[1].pExpr; - sqlite3ExprCode(pParse, pRight); - codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); - break; - } - default: { - sqlite3ExprCode(pParse, pExpr); - sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); - break; - } - } - pParse->ckOffset = ckOffset; -} - -/* -** Do a deep comparison of two expression trees. Return TRUE (non-zero) -** if they are identical and return FALSE if they differ in any way. -** -** Sometimes this routine will return FALSE even if the two expressions -** really are equivalent. If we cannot prove that the expressions are -** identical, we return FALSE just to be safe. So if this routine -** returns false, then you do not really know for certain if the two -** expressions are the same. But if you get a TRUE return, then you -** can be sure the expressions are the same. In the places where -** this routine is used, it does not hurt to get an extra FALSE - that -** just might result in some slightly slower code. But returning -** an incorrect TRUE could lead to a malfunction. -*/ -int sqlite3ExprCompare(Expr *pA, Expr *pB){ - int i; - if( pA==0||pB==0 ){ - return pB==pA; - } - if( pA->op!=pB->op ) return 0; - if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; - if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; - if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; - if( pA->pList ){ - if( pB->pList==0 ) return 0; - if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; - for(i=0; ipList->nExpr; i++){ - if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ - return 0; - } - } - }else if( pB->pList ){ - return 0; - } - if( pA->pSelect || pB->pSelect ) return 0; - if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; - if( pA->op!=TK_COLUMN && pA->token.z ){ - if( pB->token.z==0 ) return 0; - if( pB->token.n!=pA->token.n ) return 0; - if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ - return 0; - } - } - return 1; -} - - -/* -** Add a new element to the pAggInfo->aCol[] array. Return the index of -** the new element. Return a negative number if malloc fails. -*/ -static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ - int i; - pInfo->aCol = (AggInfo::AggInfo_col*)sqlite3ArrayAllocate( - db, - pInfo->aCol, - sizeof(pInfo->aCol[0]), - 3, - &pInfo->nColumn, - &pInfo->nColumnAlloc, - &i - ); - return i; -} - -/* -** Add a new element to the pAggInfo->aFunc[] array. Return the index of -** the new element. Return a negative number if malloc fails. -*/ -static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ - int i; - pInfo->aFunc = (AggInfo::AggInfo_func*)sqlite3ArrayAllocate( - db, - pInfo->aFunc, - sizeof(pInfo->aFunc[0]), - 3, - &pInfo->nFunc, - &pInfo->nFuncAlloc, - &i - ); - return i; -} - -/* -** This is an xFunc for walkExprTree() used to implement -** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates -** for additional information. -** -** This routine analyzes the aggregate function at pExpr. -*/ -static int analyzeAggregate(void *pArg, Expr *pExpr){ - int i; - NameContext *pNC = (NameContext *)pArg; - Parse *pParse = pNC->pParse; - SrcList *pSrcList = pNC->pSrcList; - AggInfo *pAggInfo = pNC->pAggInfo; - - switch( pExpr->op ){ - case TK_AGG_COLUMN: - case TK_COLUMN: { - /* Check to see if the column is in one of the tables in the FROM - ** clause of the aggregate query */ - if( pSrcList ){ - SrcList::SrcList_item *pItem = pSrcList->a; - for(i=0; inSrc; i++, pItem++){ - AggInfo::AggInfo_col *pCol; - if( pExpr->iTable==pItem->iCursor ){ - /* If we reach this point, it means that pExpr refers to a table - ** that is in the FROM clause of the aggregate query. - ** - ** Make an entry for the column in pAggInfo->aCol[] if there - ** is not an entry there already. - */ - int k=0; - pCol = pAggInfo->aCol; - for(k=0; knColumn; k++, pCol++){ - if( pCol->iTable==pExpr->iTable && - pCol->iColumn==pExpr->iColumn ){ - break; - } - } - if( (k>=pAggInfo->nColumn) - && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 - ){ - pCol = &pAggInfo->aCol[k]; - pCol->pTab = pExpr->pTab; - pCol->iTable = pExpr->iTable; - pCol->iColumn = pExpr->iColumn; - pCol->iMem = pParse->nMem++; - pCol->iSorterColumn = -1; - pCol->pExpr = pExpr; - if( pAggInfo->pGroupBy ){ - int j, n; - ExprList *pGB = pAggInfo->pGroupBy; - ExprList::ExprList_item *pTerm = pGB->a; - n = pGB->nExpr; - for(j=0; jpExpr; - if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && - pE->iColumn==pExpr->iColumn ){ - pCol->iSorterColumn = j; - break; - } - } - } - if( pCol->iSorterColumn<0 ){ - pCol->iSorterColumn = pAggInfo->nSortingColumn++; - } - } - /* There is now an entry for pExpr in pAggInfo->aCol[] (either - ** because it was there before or because we just created it). - ** Convert the pExpr to be a TK_AGG_COLUMN referring to that - ** pAggInfo->aCol[] entry. - */ - pExpr->pAggInfo = pAggInfo; - pExpr->op = TK_AGG_COLUMN; - pExpr->iAgg = k; - break; - } /* endif pExpr->iTable==pItem->iCursor */ - } /* end loop over pSrcList */ - } - return 1; - } - case TK_AGG_FUNCTION: { - /* The pNC->nDepth==0 test causes aggregate functions in subqueries - ** to be ignored */ - if( pNC->nDepth==0 ){ - /* Check to see if pExpr is a duplicate of another aggregate - ** function that is already in the pAggInfo structure - */ - AggInfo::AggInfo_func *pItem = pAggInfo->aFunc; - for(i=0; inFunc; i++, pItem++){ - if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ - break; - } - } - if( i>=pAggInfo->nFunc ){ - /* pExpr is original. Make a new entry in pAggInfo->aFunc[] - */ - u8 enc = ENC(pParse->db); - i = addAggInfoFunc(pParse->db, pAggInfo); - if( i>=0 ){ - pItem = &pAggInfo->aFunc[i]; - pItem->pExpr = pExpr; - pItem->iMem = pParse->nMem++; - pItem->pFunc = sqlite3FindFunction(pParse->db, - (char*)pExpr->token.z, pExpr->token.n, - pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); - if( pExpr->flags & EP_Distinct ){ - pItem->iDistinct = pParse->nTab++; - }else{ - pItem->iDistinct = -1; - } - } - } - /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry - */ - pExpr->iAgg = i; - pExpr->pAggInfo = pAggInfo; - return 1; - } - } - } - - /* Recursively walk subqueries looking for TK_COLUMN nodes that need - ** to be changed to TK_AGG_COLUMN. But increment nDepth so that - ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. - */ - if( pExpr->pSelect ){ - pNC->nDepth++; - walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); - pNC->nDepth--; - } - return 0; -} - -/* -** Analyze the given expression looking for aggregate functions and -** for variables that need to be added to the pParse->aAgg[] array. -** Make additional entries to the pParse->aAgg[] array as necessary. -** -** This routine should only be called after the expression has been -** analyzed by sqlite3ExprResolveNames(). -** -** If errors are seen, leave an error message in zErrMsg and return -** the number of errors. -*/ -int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ - int nErr = pNC->pParse->nErr; - walkExprTree(pExpr, analyzeAggregate, pNC); - return pNC->pParse->nErr - nErr; -} - -/* -** Call sqlite3ExprAnalyzeAggregates() for every expression in an -** expression list. Return the number of errors. -** -** If an error is found, the analysis is cut short. -*/ -int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ - ExprList::ExprList_item *pItem; - int i; - int nErr = 0; - if( pList ){ - for(pItem=pList->a, i=0; nErr==0 && inExpr; i++, pItem++){ - nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); - } - } - return nErr; -}