/*
* Copyright (c) 2004 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description: Image Transforms subsystem.
*
*/
// INCLUDE FILES
#include <e32svr.h>
#include <fbs.h>
#include "CVtImageScalerImplWeightedAverage.h"
#include "cvtimage.h"
#include "CVtImageScalerMacros.h"
// MACROS
#ifdef _DEBUG
# define __IF_DEBUG(t) {RDebug::t;}
#else
# define __IF_DEBUG(t)
#endif
// LOCAL CONSTANTS AND MACROS
const TUint32 KDecimalBits = 16; // 16.16 pseudo real format
// ============================ MEMBER FUNCTIONS ===============================
// ======================= CVtImageScalerImplWeightedAverage ===================
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale( TBool& aContinue )
// -----------------------------------------------------------------------------
TInt CVtImageScalerImplWeightedAverage::Scale( TBool& aContinue )
{
TInt result( KErrNone );
aContinue = EFalse;
// this implementation does not support different display modes for source
// and target
if( iSource->DisplayMode() != iTarget->DisplayMode() )
{
return KErrNotSupported;
}
// if sizes are same, just copy the data
if( iSource->Size() == iTarget->Size() )
{
Mem::Copy(
iTarget->DataAddress(),
iSource->DataAddress(),
iTarget->BytesPerRow() * iTarget->Size().iHeight );
}
else if ( ( iSource->Size().iHeight * 2 == iTarget->Size().iHeight )
&& ( iSource->Size().iWidth * 2 == iTarget->Size().iWidth ) )
{
switch( iSource->DisplayMode() )
{
case CVtImage::EVtColor4K:
Scale2x4K64K( 0xeee ); // 0000ggggbbbbrrrr ->
break; // mask = %0000111011101110 = 0xeee
case CVtImage::EVtColor64K:
Scale2x4K64K( 0xf7de ); // bbbbbggggggrrrrr ->
break; // mask = %1111011111011110 = 0xf7de
case CVtImage::EVtColor16M:
Scale2x16M();
break;
case CVtImage::EVtColor16MU:
case CVtImage::EVtColor16MA:
Scale2x16MU16MA();
break;
default:
if ( iSource->Type() == CVtImage::EVtImageBitmap &&
iTarget->Type() == CVtImage::EVtImageBitmap )
{
TRAPD( error,
ScaleWithBitmapScalerL(
CBitmapScaler::EMediumQuality ) );
result = error;
}
else
{
result = KErrNotSupported;
}
}
}
else
{
Initialize();
switch( iSource->DisplayMode() )
{
case CVtImage::EVtColor4K:
Scale4K();
break;
case CVtImage::EVtColor64K:
Scale64K();
break;
case CVtImage::EVtColor16M:
Scale16M();
break;
case CVtImage::EVtColor16MU:
Scale16MU();
break;
case CVtImage::EVtColor16MA:
Scale16MA();
break;
default:
if ( iSource->Type() == CVtImage::EVtImageBitmap &&
iTarget->Type() == CVtImage::EVtImageBitmap )
{
TRAPD( error,
ScaleWithBitmapScalerL(
CBitmapScaler::EMediumQuality ) );
result = error;
}
else
{
result = KErrNotSupported;
}
}
}
return result;
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::ValidateSourceTargetL(
// const CVtImage& aSource, CVtImage& aTarget )
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::ValidateSourceTargetL(
const CVtImage& aSource,
CVtImage& aTarget )
{
// source and target must have same displaymode
if( aSource.DisplayMode() != aTarget.DisplayMode() )
{
User::Leave( KErrNotSupported );
}
// only 4K, 64K, 16M and 16MU modes are supported
switch( aSource.DisplayMode() )
{
case CVtImage::EVtColor4K:
case CVtImage::EVtColor64K:
case CVtImage::EVtColor16M:
case CVtImage::EVtColor16MU:
case CVtImage::EVtColor16MA:
break;
default:
// Scaling for bitmaps is supported for other display modes
if ( !( aSource.Type() == CVtImage::EVtImageBitmap &&
aTarget.Type() == CVtImage::EVtImageBitmap ) )
{
User::Leave( KErrNotSupported );
}
}
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Initialize()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Initialize()
{
iU = ( 1 << KDecimalBits ) * iSource->Size().iWidth /
iTarget->Size().iWidth;
iV = ( 1 << KDecimalBits ) * iSource->Size().iHeight /
iTarget->Size().iHeight;
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale4K()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale4K()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale4K() >>" ), RThread().Id().operator TUint() ) );
TInt width = iTarget->Size().iWidth;
TInt height = iTarget->Size().iHeight;
TInt mod_width = width - ( ( 1 << KDecimalBits ) / iU );
TUint16* t = reinterpret_cast< TUint16* >( iTarget->DataAddress() );
TUint32 sourceY( 0 );
TUint32 b00( 0 );
TUint32 g00( 0 );
TUint32 r00( 0 );
TUint32 b01( 0 );
TUint32 g01( 0 );
TUint32 r01( 0 );
TUint32 b10( 0 );
TUint32 g10( 0 );
TUint32 r10( 0 );
for( TInt y = 0; y < height; y++ )
{
TUint16* s = reinterpret_cast< TUint16* >(
iSource->LineAddress( sourceY >> KDecimalBits ) );
TUint16* snext = reinterpret_cast< TUint16* >(
iSource->LineAddress( ( sourceY >> KDecimalBits ) + 1 ) );
TUint32 invdv = sourceY & ( ( 1 << KDecimalBits ) - 1 ); // decimal part
TUint32 dv = ( 1 << KDecimalBits ) - invdv; // 1 - decimal part
TUint32 sourceX( 0 );
TInt x;
TUint32 x0prev( TUint32( -1 ) );
for( x = 0; x < mod_width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
b00 = UNPACK_4K_BLUE( p0 );
g00 = UNPACK_4K_GREEN( p0 );
r00 = UNPACK_4K_RED( p0 );
p0 = *( s + x0 + 1 );
b01 = UNPACK_4K_BLUE( p0 );
g01 = UNPACK_4K_GREEN( p0 );
r01 = UNPACK_4K_RED( p0 );
p0 = *( snext + x0 );
b10 = UNPACK_4K_BLUE( p0 );
g10 = UNPACK_4K_GREEN( p0 );
r10 = UNPACK_4K_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 );
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_4K_BGR(
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// handle last columns
for( ; x < width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
b01 = b00 = UNPACK_4K_BLUE( p0 );
g01 = g00 = UNPACK_4K_GREEN( p0 );
r01 = r00 = UNPACK_4K_RED( p0 );
p0 = *( snext + x0 );
b10 = UNPACK_4K_BLUE( p0 );
g10 = UNPACK_4K_GREEN( p0 );
r10 = UNPACK_4K_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 ); // decimal
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_4K_BGR(
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// if width is not even -> then we need to skip one additional byte
if( width & 1 )
{
t++;
}
sourceY += iV;
}
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale4K() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale64K()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale64K()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale64K() >>" ), RThread().Id().operator TUint() ) );
TInt width = iTarget->Size().iWidth;
TInt height = iTarget->Size().iHeight;
TInt mod_width = width - ( ( 1 << KDecimalBits ) / iU );
TUint16* t = reinterpret_cast< TUint16* >( iTarget->DataAddress() );
TUint32 sourceY( 0 );
TUint32 b00( 0 );
TUint32 g00( 0 );
TUint32 r00( 0 );
TUint32 b01( 0 );
TUint32 g01( 0 );
TUint32 r01( 0 );
TUint32 b10( 0 );
TUint32 g10( 0 );
TUint32 r10( 0 );
for( TInt y = 0; y < height; y++ )
{
TUint16* s = reinterpret_cast< TUint16* >
( iSource->LineAddress( sourceY >> KDecimalBits ) );
TUint16* snext = reinterpret_cast< TUint16* >
( iSource->LineAddress( ( sourceY >> KDecimalBits ) + 1 ) );
TUint32 invdv = sourceY & ( ( 1 << KDecimalBits ) - 1 ); // decimal part
TUint32 dv = ( 1 << KDecimalBits ) - invdv; // 1 - decimal part
TUint32 sourceX( 0 );
TInt x;
TUint32 x0prev( TUint32( -1 ) );
for( x = 0; x < mod_width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
b00 = UNPACK_64K_BLUE( p0 );
g00 = UNPACK_64K_GREEN( p0 );
r00 = UNPACK_64K_RED( p0 );
p0 = *( s + x0 + 1 );
b01 = UNPACK_64K_BLUE( p0 );
g01 = UNPACK_64K_GREEN( p0 );
r01 = UNPACK_64K_RED( p0 );
p0 = *( snext + x0 );
b10 = UNPACK_64K_BLUE( p0 );
g10 = UNPACK_64K_GREEN( p0 );
r10 = UNPACK_64K_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 );
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_64K_BGR(
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// handle last columns
for( ; x < width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
b01 = b00 = UNPACK_64K_BLUE( p0 );
g01 = g00 = UNPACK_64K_GREEN( p0 );
r01 = r00 = UNPACK_64K_RED( p0 );
p0 = *( snext + x0 );
b10 = UNPACK_64K_BLUE( p0 );
g10 = UNPACK_64K_GREEN( p0 );
r10 = UNPACK_64K_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 ); // decimal
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_64K_BGR(
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// if width is not even -> then we need to skip one additional byte
if( width & 1 )
{
t++;
}
sourceY += iV;
}
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale64K() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale16M()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale16M()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale16M() >>" ), RThread().Id().operator TUint() ) );
TInt width = iTarget->Size().iWidth;
TInt height = iTarget->Size().iHeight;
TInt mod_width = width - ( ( 1 << KDecimalBits ) / iU );
TUint32 t_pitch = iTarget->BytesPerRow();
TUint8* t = reinterpret_cast< TUint8* >( iTarget->DataAddress() );
TUint32 sourceY( 0 );
TUint32 b00( 0 );
TUint32 g00( 0 );
TUint32 r00( 0 );
TUint32 b01( 0 );
TUint32 g01( 0 );
TUint32 r01( 0 );
TUint32 b10( 0 );
TUint32 g10( 0 );
TUint32 r10( 0 );
for( TInt y = 0; y < height; y++ )
{
TUint8* s = reinterpret_cast< TUint8* >(
iSource->LineAddress( sourceY >> KDecimalBits ) );
TUint8* snext = reinterpret_cast< TUint8* >(
iSource->LineAddress( ( sourceY >> KDecimalBits ) + 1 ) );
TUint32 invdv = sourceY & ( ( 1 << KDecimalBits ) - 1 ); // decimal part
TUint32 dv = ( 1 << KDecimalBits ) - invdv; // 1 - decimal part
TUint32 sourceX( 0 );
TInt x;
TUint32 x0prev( TUint32( -1 ) );
TUint8* d = t;
// first columns
for( x = 0; x < mod_width; x++ )
{
TUint32 x0 = ( sourceX >> KDecimalBits ) * 3;
if( x0 != x0prev )
{
TUint8* tempSrc = s + x0;
b00 = *tempSrc++;
g00 = *tempSrc++;
r00 = *tempSrc++;
b01 = *tempSrc++;
g01 = *tempSrc++;
r01 = *tempSrc++;
tempSrc = snext + x0;
b10 = *tempSrc++;
g10 = *tempSrc++;
r10 = *tempSrc++;
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 ); // decimal
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*d++ = static_cast< TUint8 >( bres >> ( KDecimalBits + 1 ) );
*d++ = static_cast< TUint8 >( gres >> ( KDecimalBits + 1 ) );
*d++ = static_cast< TUint8 >( rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// handle last columns
for( ; x < width; x++ )
{
TUint32 x0 = ( sourceX >> KDecimalBits ) * 3;
if( x0 != x0prev )
{
TUint8* tempSrc = s + x0;
b01 = b00 = *tempSrc++;
g01 = g00 = *tempSrc++;
r01 = r00 = *tempSrc++;
tempSrc = snext + x0;
b10 = *tempSrc++;
g10 = *tempSrc++;
r10 = *tempSrc++;
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 ); // decimal
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*d++ = static_cast< TUint8 >( bres >> ( KDecimalBits + 1 ) );
*d++ = static_cast< TUint8 >( gres >> ( KDecimalBits + 1 ) );
*d++ = static_cast< TUint8 >( rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
t += t_pitch;
sourceY += iV;
}
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale16M() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale16MU()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale16MU()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale16MU() >>" ), RThread().Id().operator TUint() ) );
TInt width = iTarget->Size().iWidth;
TInt height = iTarget->Size().iHeight;
TInt mod_width = width - ( ( 1 << KDecimalBits ) / iU );
TUint32* t = iTarget->DataAddress();
TUint32 sourceY( 0 );
TUint32 b00( 0 );
TUint32 g00( 0 );
TUint32 r00( 0 );
TUint32 b01( 0 );
TUint32 g01( 0 );
TUint32 r01( 0 );
TUint32 b10( 0 );
TUint32 g10( 0 );
TUint32 r10( 0 );
for( TInt y = 0; y < height; y++ )
{
TUint32* s = iSource->LineAddress( sourceY >> KDecimalBits );
TUint32* snext = iSource->LineAddress( ( sourceY >> KDecimalBits ) + 1 );
TUint32 invdv = sourceY & ( ( 1 << KDecimalBits ) - 1 ); // decimal part
TUint32 dv = ( 1 << KDecimalBits ) - invdv; // 1 - decimal part
TUint32 sourceX( 0 );
TInt x;
TUint32 x0prev( TUint32( -1 ) );
for( x = 0; x < mod_width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
b00 = UNPACK_16MU_BLUE( p0 );
g00 = UNPACK_16MU_GREEN( p0 );
r00 = UNPACK_16MU_RED( p0 );
p0 = *( s + x0 + 1 );
b01 = UNPACK_16MU_BLUE( p0 );
g01 = UNPACK_16MU_GREEN( p0 );
r01 = UNPACK_16MU_RED( p0 );
p0 = *( snext + x0 );
b10 = UNPACK_16MU_BLUE( p0 );
g10 = UNPACK_16MU_GREEN( p0 );
r10 = UNPACK_16MU_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 );
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_16MU_BGR(
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// handle last columns
for( ; x < width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
b01 = b00 = UNPACK_16MU_BLUE( p0 );
g01 = g00 = UNPACK_16MU_GREEN( p0 );
r01 = r00 = UNPACK_16MU_RED( p0 );
p0 = *( snext + x0 );
b10 = UNPACK_16MU_BLUE( p0 );
g10 = UNPACK_16MU_GREEN( p0 );
r10 = UNPACK_16MU_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 ); // decimal
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_16MU_BGR(
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
sourceY += iV;
}
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale16MU() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale16MA()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale16MA()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale16MA() >>" ), RThread().Id().operator TUint() ) );
TInt width = iTarget->Size().iWidth;
TInt height = iTarget->Size().iHeight;
TInt mod_width = width - ( ( 1 << KDecimalBits ) / iU );
TUint32* t = iTarget->DataAddress();
TUint32 sourceY( 0 );
TUint32 a00( 0 );
TUint32 b00( 0 );
TUint32 g00( 0 );
TUint32 r00( 0 );
TUint32 a01( 0 );
TUint32 b01( 0 );
TUint32 g01( 0 );
TUint32 r01( 0 );
TUint32 a10( 0 );
TUint32 b10( 0 );
TUint32 g10( 0 );
TUint32 r10( 0 );
for( TInt y = 0; y < height; y++ )
{
TUint32* s = iSource->LineAddress( sourceY >> KDecimalBits );
TUint32* snext = iSource->LineAddress( ( sourceY >> KDecimalBits ) + 1 );
TUint32 invdv = sourceY & ( ( 1 << KDecimalBits ) - 1 ); // decimal part
TUint32 dv = ( 1 << KDecimalBits ) - invdv; // 1 - decimal part
TUint32 sourceX( 0 );
TInt x;
TUint32 x0prev( TUint32( -1 ) );
for( x = 0; x < mod_width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
a00 = UNPACK_16MA_ALPHA( p0 );
b00 = UNPACK_16MA_BLUE( p0 );
g00 = UNPACK_16MA_GREEN( p0 );
r00 = UNPACK_16MA_RED( p0 );
p0 = *( s + x0 + 1 );
a01 = UNPACK_16MA_ALPHA( p0 );
b01 = UNPACK_16MA_BLUE( p0 );
g01 = UNPACK_16MA_GREEN( p0 );
r01 = UNPACK_16MA_RED( p0 );
p0 = *( snext + x0 );
a10 = UNPACK_16MA_ALPHA( p0 );
b10 = UNPACK_16MA_BLUE( p0 );
g10 = UNPACK_16MA_GREEN( p0 );
r10 = UNPACK_16MA_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 );
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 ares = ( du + dv ) * a00 + invdu * a01 + invdv * a10;
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_16MA_ABGR(
ares >> ( KDecimalBits + 1 ),
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
// handle last columns
for( ; x < width; x++ )
{
TUint32 x0 = sourceX >> KDecimalBits;
if( x0 != x0prev )
{
TUint32 p0 = *( s + x0 );
a01 = a00 = UNPACK_16MA_ALPHA( p0 );
b01 = b00 = UNPACK_16MA_BLUE( p0 );
g01 = g00 = UNPACK_16MA_GREEN( p0 );
r01 = r00 = UNPACK_16MA_RED( p0 );
p0 = *( snext + x0 );
a10 = UNPACK_16MA_ALPHA( p0 );
b10 = UNPACK_16MA_BLUE( p0 );
g10 = UNPACK_16MA_GREEN( p0 );
r10 = UNPACK_16MA_RED( p0 );
x0prev = x0;
}
TUint32 invdu = sourceX & ( ( 1 << KDecimalBits ) - 1 ); // decimal
TUint32 du = ( 1 << KDecimalBits ) - invdu; // 1 - decimal part
TUint32 ares = ( du + dv ) * a00 + invdu * a01 + invdv * a10;
TUint32 bres = ( du + dv ) * b00 + invdu * b01 + invdv * b10;
TUint32 gres = ( du + dv ) * g00 + invdu * g01 + invdv * g10;
TUint32 rres = ( du + dv ) * r00 + invdu * r01 + invdv * r10;
*t++ = PACK_16MA_ABGR(
ares >> ( KDecimalBits + 1 ),
bres >> ( KDecimalBits + 1 ),
gres >> ( KDecimalBits + 1 ),
rres >> ( KDecimalBits + 1 ) );
sourceX += iU;
}
sourceY += iV;
}
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale16MA() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale2x4K64K( TUint32 aMask )
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale2x4K64K( TUint32 aMask )
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale2x4K64K() >>" ), RThread().Id().operator TUint() ) );
TInt sheight = iSource->Size().iHeight;
TInt swidth = iSource->Size().iWidth;
TInt spitch = iSource->BytesPerRow();
TInt dpitch = iTarget->BytesPerRow();
TUint32* s = iSource->DataAddress();
TUint32* d = iTarget->DataAddress();
TInt y;
// first average source rows
for( y = 0; y < sheight; y++ )
{
TUint32* s1 = s;
TUint32* d1 = d;
TUint32 p = *s1++; // 2 pixels
TUint32 p1 = p & 0xffff;
TUint32 p2 = ( p >> 16 ) & 0xffff;
TInt x;
for( x = 0; x < swidth/2 - 1; x++ )
{
TUint32 p1a = ( ( ( p1 ^ p2 ) & aMask ) >> 1 ) + ( p1 & p2 );
p1a = ( ( ( p1 ^ p1a ) & aMask ) >> 1 ) + ( p1 & p1a );
*d1++ = p1 | ( p1a << 16 );
p = *s1++; // 2 pixels
p1 = p & 0xffff;
TUint32 p2a = ( ( ( p1 ^ p2 ) & aMask ) >> 1 ) + ( p1 & p2 );
p2a = ( ( ( p2a ^ p2 ) & aMask ) >> 1 ) + ( p2a & p2 );
*d1++ = p2 | ( p2a << 16 );
p2 = ( p >> 16 ) & 0xffff;
}
TUint32 p1a = ( ( ( p1 ^ p2 ) & aMask ) >> 1 ) + ( p1 & p2 );
p1a = ( ( ( p1 ^ p1a ) & aMask ) >> 1 ) + ( p1 & p1a );
*d1++ = p1 | ( p1a << 16 );
if( swidth & 1 )
{
p = *s1; // 2 pixels
p1 = p & 0xffff;
TUint32 p2a = ( ( ( p1 ^ p2 ) & aMask ) >> 1 ) + ( p1 & p2 );
p2a = ( ( ( p2a ^ p2 ) & aMask ) >> 1 ) + ( p2a & p2 );
*d1++ = p2 | ( p2a << 16 );
p = *--s1; // 2 pixels
p2 = ( p >> 16 ) & 0xffff;
*d1++ = p1 | ( p1 << 16 );
}
else
{
p = *--s1; // 2 pixels
p2 = ( p >> 16 ) & 0xffff;
*d1++ = p2 | ( p2 << 16 );
}
d = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d ) + dpitch * 2 );
s = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( s ) + spitch );
}
// then average rows between
d = iTarget->DataAddress();
for( y = 0; y < sheight - 1; y++ )
{
TUint32* d1 = reinterpret_cast< TUint32* >( d );
TUint32* d2 = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d1 ) + dpitch );
TUint32* d3 = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d2 ) + dpitch );
TUint32 p1 = *d1++;
for( TInt x = 0; x < swidth - 1; x++ )
{
TUint32 p11 = p1 & 0xffff;
TUint32 p3 = *d3++;
TUint32 p31 = p3 & 0xffff;
TUint32 r1 = ( ( ( p11 ^ p31 ) & aMask ) >> 1 ) + ( p11 & p31 );
r1 = ( ( ( p11 ^ r1 ) & aMask ) >> 1 ) + ( p11 & r1 );
p1 = *d1++; // read ahead
TUint32 p21 = p1 & 0xffff;
TUint32 r2 = ( ( ( p21 ^ p31 ) & aMask ) >> 1 ) + ( p21 & p31 );
r2 = ( ( ( p11 ^ r2 ) & aMask ) >> 1 ) + ( p11 & r2 );
*d2++ = r1 | ( r2 << 16 );
}
TUint32 p11 = p1 & 0xffff;
TUint32 p3 = *d3++;
TUint32 p31 = p3 & 0xffff;
TUint32 r1 = ( ( ( p11 ^ p31 ) & aMask ) >> 1 ) + ( p11 & p31 );
r1 = ( ( ( p11 ^ r1 ) & aMask ) >> 1 ) + ( p11 & r1 );
*d2++ = r1 | ( r1 << 16 );
d = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d ) + dpitch * 2 );
}
// last row is just copy of previous row, because we cannot calculate
// average
Mem::Copy( reinterpret_cast< TUint8* >( d ) + dpitch, d, dpitch );
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale2x4K64K() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale2x16M()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale2x16M()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale2x16M() >>" ), RThread().Id().operator TUint() ) );
TInt sheight = iSource->Size().iHeight;
TInt swidth = iSource->Size().iWidth;
TInt spitch = iSource->BytesPerRow();
TInt dpitch = iTarget->BytesPerRow();
TUint8* s = reinterpret_cast< TUint8* >( iSource->DataAddress() );
TUint8* d = reinterpret_cast< TUint8* >( iTarget->DataAddress() );
TInt y;
for( y = 0; y < sheight; y++ )
{
TUint8* s2 = s;
TUint8* d1 = d;
TUint32 g1 = 0;
TUint32 b1 = 0;
TUint32 r1 = 0;
TUint32 g2 = 0;
TUint32 b2 = 0;
TUint32 r2 = 0;
for( TInt x = 0; x < swidth - 1; x++ )
{
g1 = *s2++;
b1 = *s2++;
r1 = *s2++;
*d1++ = static_cast< TUint8 >( g1 );
*d1++ = static_cast< TUint8 >( b1 );
*d1++ = static_cast< TUint8 >( r1 );
g2 = s2[ 0 ];
b2 = s2[ 1 ];
r2 = s2[ 2 ];
*d1++ = static_cast< TUint8 >( ( g1 + ( ( g1 + g2 ) >> 1 ) ) >> 1 );
*d1++ = static_cast< TUint8 >( ( b1 + ( ( b1 + b2 ) >> 1 ) ) >> 1 );
*d1++ = static_cast< TUint8 >( ( r1 + ( ( r1 + r2 ) >> 1 ) ) >> 1 );
}
*d1++ = static_cast< TUint8 >( ( g1 + g2 ) >> 1 );
*d1++ = static_cast< TUint8 >( ( b1 + b2 ) >> 1 );
*d1++ = static_cast< TUint8 >( ( r1 + r2 ) >> 1 );
*d1++ = static_cast< TUint8 >( g2 );
*d1++ = static_cast< TUint8 >( b2 );
*d1++ = static_cast< TUint8 >( r2 );
d += dpitch * 2;
s += spitch;
}
// then average rows between
d = reinterpret_cast< TUint8* >( iTarget->DataAddress() );
for( y = 0; y < sheight - 1; y++ )
{
TUint8* d1 = d;
TUint8* d2 = d1 + dpitch;
TUint8* d3 = d2 + dpitch;
for( TInt x = 0; x < swidth; x++ )
{
TUint32 g1 = *d1++;
TUint32 g2 = *d3++;
*d2++ = static_cast< TUint8 >( ( g1 + g2 ) >> 1 );
TUint32 b1 = *d1++;
TUint32 b2 = *d3++;
*d2++ = static_cast< TUint8 >( ( b1 + b2 ) >> 1 );
TUint32 r1 = *d1++;
TUint32 r2 = *d3++;
*d2++ = static_cast< TUint8 >( ( r1 + r2 ) >> 1 );
g1 = *d1++;
g2 = *d3++;
*d2++ = static_cast< TUint8 >( ( g1 + g2 ) >> 1 );
b1 = *d1++;
b2 = *d3++;
*d2++ = static_cast< TUint8 >( ( b1 + b2 ) >> 1 );
r1 = *d1++;
r2 = *d3++;
*d2++ = static_cast< TUint8 >( ( r1 + r2 ) >> 1 );
}
d += dpitch * 2;
}
// last row is just copy of previous row, because we cannot calculate
// average
Mem::Copy( reinterpret_cast< TUint8* >( d ) + dpitch, d, dpitch );
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale2x16M() <<" ), RThread().Id().operator TUint() ) );
}
// -----------------------------------------------------------------------------
// CVtImageScalerImplWeightedAverage::Scale2x16MU16MA()
// -----------------------------------------------------------------------------
void CVtImageScalerImplWeightedAverage::Scale2x16MU16MA()
{
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale2x16MU16MA() >>" ), RThread().Id().operator TUint() ) );
TInt sheight = iSource->Size().iHeight;
TInt swidth = iSource->Size().iWidth;
TInt spitch = iSource->BytesPerRow();
TInt dpitch = iTarget->BytesPerRow();
TUint32 mask = 0xfefefefe;
TUint32* s = iSource->DataAddress();
TUint32* d = iTarget->DataAddress();
TInt y;
// first average source rows
for( y = 0; y < sheight; y++ )
{
TInt x;
TUint32* s1 = s;
TUint32* d1 = d;
TUint32 p2 = *s1++;
TUint32 p1 = 0;
for( x = 0; x < swidth - 1; x++ )
{
p1 = p2;
*d1++ = p1;
p2 = *s1++;
TUint32 p1a = ( ( ( p1 ^ p2 ) & mask ) >> 1 ) + ( p1 & p2 );
p1a = ( ( ( p1 ^ p1a ) & mask ) >> 1 ) + ( p1 & p1a );
*d1++ = p1a;
}
if( swidth & 1 )
{
TUint32 p2a = ( ( ( p1 ^ p2 ) & mask ) >> 1 ) + ( p1 & p2 );
p2a = ( ( ( p2a ^ p2 ) & mask ) >> 1 ) + ( p2a & p2 );
*d1++ = p2a;
*d1++ = p2;
}
else
{
p2 = *--s1;
*d1++ = p2;
*d1++ = p2;
}
d = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d ) + dpitch * 2 );
s = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( s ) + spitch );
}
// then average rows between
d = iTarget->DataAddress();
for( y = 0; y < sheight - 1; y++ )
{
TUint32* d1 = reinterpret_cast< TUint32* >( d );
TUint32* d2 = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d1 ) + dpitch );
TUint32* d3 = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d2 ) + dpitch );
TUint32 p1 = *d1++;
for( TInt x = 0; x < swidth - 1; x++ )
{
TUint32 p3 = *d3++;
d3++;
TUint32 r1 = ( ( ( p1 ^ p3 ) & mask ) >> 1 ) + ( p1 & p3 );
r1 = ( ( ( p1 ^ r1 ) & mask ) >> 1 ) + ( p1 & r1 );
*d2++ = r1;
d1++;
TUint32 p2 = *d1++;
TUint32 r2 = ( ( ( p2 ^ p3 ) & mask ) >> 1 ) + ( p2 & p3 );
r2 = ( ( ( p1 ^ r2 ) & mask ) >> 1 ) + ( p1 & r2 );
*d2++ = r2;
p1 = p2;
}
TUint32 p3 = *d3++;
TUint32 r1 = ( ( ( p1 ^ p3 ) & mask ) >> 1 ) + ( p1 & p3 );
r1 = ( ( ( p1 ^ r1 ) & mask ) >> 1 ) + ( p1 & r1 );
*d2++ = r1;
*d2++ = r1;
d = reinterpret_cast< TUint32* >
( reinterpret_cast< TUint8* >( d ) + dpitch * 2 );
}
// last row is just copy of previous row, because we cannot calculate
// average
Mem::Copy( reinterpret_cast< TUint8* >( d ) + dpitch, d, dpitch );
__IF_DEBUG( Print( _L( "ImageScaler [%d]: CVtImageScalerImplWeightedAverage::Scale2x16MU16MA() <<" ), RThread().Id().operator TUint() ) );
}
// End of File