diff -r e1e28b0273b0 -r 93fff7023be8 AppSrc/project.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AppSrc/project.cpp Fri Oct 15 10:18:29 2010 +0900 @@ -0,0 +1,309 @@ +/* +* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies). +* All rights reserved. +* This component and the accompanying materials are made available +* under the terms of "Eclipse Public License v1.0" +* which accompanies this distribution, and is available +* at the URL "http://www.eclipse.org/legal/epl-v10.html". +* +* Initial Contributors: +* Nokia Corporation - initial contribution. +* +* Contributors: Juha Kauppinen, Mika Hokkanen +* +* Description: Photo Browser +* +*/ + +#include "project.h" +#define fabs(x) ((x) < 0 ? -(x) : (x)) +#define MEMCPY(x,y,z) Mem::Copy((x),(y),(z)) + +/* + * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in + * Input: aMatrix - the 4x4 matrix + * aIn - the 4x1 vector + * Output: aOut - the resulting 4x1 vector. + */ +static void TransformPoint(GLdouble aOut[4], const GLdouble aMatrix[16], const GLdouble aIn[4]) + { +#define M(row,col) aMatrix[col*4+row] + aOut[0] = M(0, 0) * aIn[0] + M(0, 1) * aIn[1] + M(0, 2) * aIn[2] + M(0, 3) * aIn[3]; + aOut[1] = M(1, 0) * aIn[0] + M(1, 1) * aIn[1] + M(1, 2) * aIn[2] + M(1, 3) * aIn[3]; + aOut[2] = M(2, 0) * aIn[0] + M(2, 1) * aIn[1] + M(2, 2) * aIn[2] + M(2, 3) * aIn[3]; + aOut[3] = M(3, 0) * aIn[0] + M(3, 1) * aIn[1] + M(3, 2) * aIn[2] + M(3, 3) * aIn[3]; +#undef M + } + +/* + * Perform a 4x4 matrix multiplication (product = a x b). + * Input: a, b - matrices to multiply + * Output: aProduct - product of a and b + */ +static void MultiplyMatrix(GLdouble* aProduct, const GLdouble* a, const GLdouble* b) + { + GLdouble temp[16]; + GLint i; + +#define A(row,col) a[(col<<2)+row] +#define B(row,col) b[(col<<2)+row] +#define T(row,col) temp[(col<<2)+row] + + for (i = 0; i < 4; i++) + { + T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0); + T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1); + T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2); + T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3); + } + +#undef A +#undef B +#undef T + MEMCPY(aProduct, temp, 16 * sizeof(GLdouble)); + } + +/* + * Compute inverse of 4x4 transformation matrix. + * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) + */ +static GLboolean InvertMatrix(const GLdouble * aMatrix, GLdouble * aOut) + { + // OpenGL Matrices are COLUMN major +#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; } +#define MAT(m,r,c) (m)[(c)*4+(r)] + + GLdouble wtmp[4][8]; + GLdouble m0, m1, m2, m3, s; + GLdouble *r0, *r1, *r2, *r3; + + r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; + + r0[0] = MAT(aMatrix, 0, 0), r0[1] = MAT(aMatrix, 0, 1), + r0[2] = MAT(aMatrix, 0, 2), r0[3] = MAT(aMatrix, 0, 3), + r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, + r1[0] = MAT(aMatrix, 1, 0), r1[1] = MAT(aMatrix, 1, 1), + r1[2] = MAT(aMatrix, 1, 2), r1[3] = MAT(aMatrix, 1, 3), + r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, + r2[0] = MAT(aMatrix, 2, 0), r2[1] = MAT(aMatrix, 2, 1), + r2[2] = MAT(aMatrix, 2, 2), r2[3] = MAT(aMatrix, 2, 3), + r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, + r3[0] = MAT(aMatrix, 3, 0), r3[1] = MAT(aMatrix, 3, 1), + r3[2] = MAT(aMatrix, 3, 2), r3[3] = MAT(aMatrix, 3, 3), + r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; + + // choose pivot - or die + if (fabs(r3[0]) > fabs(r2[0])) + SWAP_ROWS(r3, r2); + if (fabs(r2[0]) > fabs(r1[0])) + SWAP_ROWS(r2, r1); + if (fabs(r1[0]) > fabs(r0[0])) + SWAP_ROWS(r1, r0); + if (0.0 == r0[0]) + return GL_FALSE; + + // eliminate first variable + m1 = r1[0] / r0[0]; + m2 = r2[0] / r0[0]; + m3 = r3[0] / r0[0]; + s = r0[1]; + r1[1] -= m1 * s; + r2[1] -= m2 * s; + r3[1] -= m3 * s; + s = r0[2]; + r1[2] -= m1 * s; + r2[2] -= m2 * s; + r3[2] -= m3 * s; + s = r0[3]; + r1[3] -= m1 * s; + r2[3] -= m2 * s; + r3[3] -= m3 * s; + s = r0[4]; + + if (s != 0.0) + { + r1[4] -= m1 * s; + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r0[5]; + + if (s != 0.0) + { + r1[5] -= m1 * s; + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r0[6]; + + if (s != 0.0) + { + r1[6] -= m1 * s; + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r0[7]; + + if (s != 0.0) + { + r1[7] -= m1 * s; + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } + + // choose pivot - or die + if (fabs(r3[1]) > fabs(r2[1])) + SWAP_ROWS(r3, r2); + if (fabs(r2[1]) > fabs(r1[1])) + SWAP_ROWS(r2, r1); + if (0.0 == r1[1]) + return GL_FALSE; + + // eliminate second variable + m2 = r2[1] / r1[1]; + m3 = r3[1] / r1[1]; + r2[2] -= m2 * r1[2]; + r3[2] -= m3 * r1[2]; + r2[3] -= m2 * r1[3]; + r3[3] -= m3 * r1[3]; + s = r1[4]; + + if (0.0 != s) + { + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r1[5]; + + if (0.0 != s) + { + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r1[6]; + + if (0.0 != s) + { + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r1[7]; + + if (0.0 != s) + { + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } + + // choose pivot - or die + if (fabs(r3[2]) > fabs(r2[2])) + SWAP_ROWS(r3, r2); + if (0.0 == r2[2]) + return GL_FALSE; + + // eliminate third variable + m3 = r3[2] / r2[2]; + r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], + r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; + + // last check + if (0.0 == r3[3]) + return GL_FALSE; + + s = 1.0 / r3[3]; /* now back substitute row 3 */ + r3[4] *= s; + r3[5] *= s; + r3[6] *= s; + r3[7] *= s; + + m2 = r2[3]; /* now back substitute row 2 */ + s = 1.0 / r2[2]; + r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), + r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); + m1 = r1[3]; + r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, + r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; + m0 = r0[3]; + r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, + r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; + + m1 = r1[2]; /* now back substitute row 1 */ + s = 1.0 / r1[1]; + r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), + r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); + m0 = r0[2]; + r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, + r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; + + m0 = r0[1]; /* now back substitute row 0 */ + s = 1.0 / r0[0]; + r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), + r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); + + MAT(aOut, 0, 0) = r0[4]; + MAT(aOut, 0, 1) = r0[5], MAT(aOut, 0, 2) = r0[6]; + MAT(aOut, 0, 3) = r0[7], MAT(aOut, 1, 0) = r1[4]; + MAT(aOut, 1, 1) = r1[5], MAT(aOut, 1, 2) = r1[6]; + MAT(aOut, 1, 3) = r1[7], MAT(aOut, 2, 0) = r2[4]; + MAT(aOut, 2, 1) = r2[5], MAT(aOut, 2, 2) = r2[6]; + MAT(aOut, 2, 3) = r2[7], MAT(aOut, 3, 0) = r3[4]; + MAT(aOut, 3, 1) = r3[5], MAT(aOut, 3, 2) = r3[6]; + MAT(aOut, 3, 3) = r3[7]; + + return GL_TRUE; + +#undef MAT +#undef SWAP_ROWS + } + +GLint gluProject(GLdouble objx, GLdouble objy, GLdouble objz, + const GLdouble model[16], const GLdouble proj[16], + const GLint viewport[4], + GLdouble* winx, GLdouble* winy, GLdouble* winz) + { + GLdouble in[4], out[4]; + + in[0] = objx; + in[1] = objy; + in[2] = objz; + in[3] = 1.0; + TransformPoint(out, model, in); + TransformPoint(in, proj, out); + + if (in[3] == 0.0) + return GL_FALSE; + + in[0] /= in[3]; + in[1] /= in[3]; + in[2] /= in[3]; + + *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2; + *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2; + *winz = (1 + in[2]) / 2; + return GL_TRUE; +} + +GLint gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, + const GLdouble model[16], const GLdouble proj[16], + const GLint viewport[4], + GLdouble * objx, GLdouble * objy, GLdouble * objz) + { + GLdouble m[16], A[16]; + GLdouble in[4], out[4]; + + in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; + in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; + in[2] = 2 * winz - 1.0; + in[3] = 1.0; + + MultiplyMatrix(A, proj, model); + InvertMatrix(A, m); + + TransformPoint(out, m, in); + if (out[3] == 0.0) + return GL_FALSE; + *objx = out[0] / out[3]; + *objy = out[1] / out[3]; + *objz = out[2] / out[3]; + return GL_TRUE; + }