	

	Design document
	
	8 (17)

	Python for S60
	Packaging tool
	
	

PyS60

Packaging tool – Design Document

	Name
	Mahesh Sayibabu

	
	

Change history:

	Version
	Date
	Status
	Author
	Comments

	0.1
	29th Jan 09
	Initial Draft
	Mahesh Sayibabu
	

	0.2
	19th Feb 09
	
	Mahesh Sayibabu
	Review comments

	
	
	
	
	

Contents

1. Introduction

· Scope

· Limitation

2. Module Repository

· Module type
· Module dependency list
· Extending module-repo
· Module search path
· Module-repo directory structure
3. Packaging
· Identify the first level dependencies

· Generate complete set of dependencies

· Package the modules

4. Module Import Mechanism
· PYD filename and white-list
· Import hook
· Sys path
· Directory structure on a device
5. ensymble and GUI modifications
6. Terms and Abbreviations
1. Introduction
Starting with 1.9.x series, the Python core in PyS60 is upgraded to Python 2.5. With this, PyS60 1.9.x is loaded with much more core Python modules than the previous PyS60 releases that were based on Python 2.2.2 core. This also means that the size of the runtime SIS file increases by many folds. Bigger runtime SIS means longer time to download it and also longer time to install it on to a device. This also results in slowing down the interpreter load time.
The main idea behind this packaging tool is to reduce the runtime SIS file size, with no compromise on the number of modules supported by the Python runtime. This is achieved by following the below mentioned points.
1. Reducing the runtime SIS size by including only the most essential modules in it.

2. Providing a repository for those modules that are not included in the runtime SIS. This repository is a part of the PyS60 Application packager installed on to the host system.

3. At the time of packaging a Python application it into a SIS, the application is scanned to find the dependency modules and packaged them along with the application files.

 1.1 Scope
Only the PY files in the application source are scanned automatically for detecting the dependency modules. The Python compiled source files (PYO & .PYC) and extension modules (PYD) are not scanned.
 1. 2 Limitations
For detecting the dependency module automatically, the Python source files are expected to import modules in one of the following ways

	import a
	Import a, b
	import a as b

	from a import b
	from a import b, c
	import a.b

	from a.b import c
	from a import b as c
	

2. Module Repository
Module repository (hereafter module-repo) is the name given to the directory structure where all the standard Python modules are placed. This can be extending by the users by adding their own modules in it. This also includes information required to package all the Python modules on which a given Python script is dependent on. This module-repo is installed on the host machine along with the PyS60 Application Packager.
2.1 Module type
To reduce the file size of the Python runtime sis, only a few modules are included in it. These modules are termed as “base-modules”. The rest of the modules are placed in the module-repo and packaged with the application, only if they are needed by the application. The module dependency list, explained in the next section contains this information. This knowledge on a given module is required at the time of packaging to decide whether the module needs to be included in the application package or not.

2.2 Module dependency list

This is the information needed to get the list of all Python modules on which a given module is dependent. This information is present in a config file, module_dependency.cfg, in the form similar to the syntax of the Python map. The advantage of using this syntax is that the entire information can be loaded to the Python program very easily in the form of the map data structure.

This map contains exactly one entry for every Python module that resides in the module repository. The key in this entry is the module name and value is a map that specifies the type of the module (key is “module-type”), a list of Python modules on which the module is directly dependant (key is “deps”) and an optional list of modules which the module imports, but can work even without them (key is “soft-deps”).
The value for module-type can be one of the following
	base
	Standard PyS60 module which is part of base runtime

	repo
	Standard PyS60 module which is not part of base runtime

Example: pickle.py has the following import statements

 from types import *

 from copy_reg import dispatch_table

 from copy_reg import _extension_registry, _inverted_registry, _extension_cache
 import marshal

 import sys

 import struct

 import re
 import binascii as _binascii
 import doctest

 from cStringIO import StringIO

 The entry for the module pickle, in the module_dependency list needs to be like this,

 “pickle”: {“ module-type”: “repo”,

 “deps”: [“types”, “copy_reg”, “marshal”, “sys”, “struct”, “re”, “binascii”,
 “doctest”, “cStringIO”] ,

 “soft-deps”}
2.3 Extending Module-repo
Developers can extend the module-repo by adding the new modules that they develop. Module-repo can be extended by following the steps mentioned below:

· Place all the Python modules in a directory, named with the project name and copy it to module-repo\dev-modules directory.
· The project directory should also contain a configuration file named as module_config.cfg. This file contains the information about the module dependencies. It has one entry for each module in the project directory. The key in this entry is the module name and value is a map that specifies a list of Python modules on which the module is directly dependant (key is “deps”) and an optional list of modules which the module imports, but can work even without them (key is “soft-deps”).
 {“my_mod1”: {“deps”: [“socket”, “btsocket”]}, “soft-deps”: [“e32”],

 “my_mod2”: {“deps”: [“my_mod1”]}
2.4 Module search path
A module when being included in the application package, it is first searched in the module-repo. If it is not found in the module-repo, then it is searched for in the path specified here. These path entries are in the format of Python list and stored in a config file, module-search-path.cfg. This feature is useful in the scenario when the Python modules (especially the extension modules - PYD files), are not present in the module-repo. The developer can just specify the path to be searched for the modules, instead of copying them to the module-repo.
For example, if the developer is developing an extension module, he can specify the path to armv5\urel in the module search path and the module is automatically picked up while packaging. Without this option, the developer needs to copy the module to module-repo every time he compiles the code.
2.5 Module-repo directory structure
The root directory of the module-repo is named as module-repo. The standard PyS60 modules that are PY files are placed in the directory module-repo\standard-modules\lib. The standard PyS60 modules which are compiled into PYD files are placed in the directory module-repo\standard-modules\pyd. All the meta-data files are placed directly under module-repo directory.
The developers can place any extension module they develop under the module-repo\dev-module\py (PY files) or under module-repo\dev-module\pyd (PYD files)
Figure 2.1 in the next page, shows the module-repo directory structure.

 Fig 2.1 module-repo directory structure

[image: image1]
3. Packaging

The steps involved in packaging a Python application along with the Python modules on which it is dependant, can be divided as follows:
i) Identifying the first level dependencies
ii) Generating the complete set of dependencies
iii) Packaging the application
3.1 Identifying the first level dependencies
The first step in creating a package for a Python application is to figure out all the Python modules on which the application is directly dependant. Once this is known, then a list called module-dependency-list is prepared with this information. This list is an input for the next step in creating the application package.
To find out the dependency modules, the Python application (all the PY files) needs to be scanned for the import statements. In addition to the scanning of the source files, an option with ensymble (--extra-modules) can also be used to specify the dependency modules. This option is useful in cases where dependency modules are not identifiable by the above mentioned scanning technique. One such instance can be to specify the dependencies of a PYD module.
3.2 Generate complete set of dependencies
This step involves identifying the nested dependencies for the modules, listed in module-dependency-list in the previous step. The meta-data file in the module-repo, module-dependency.cfg is used to get list of dependency modules. The resultant of this step is the complete list of Python modules imported both directly and indirectly by the Python application. The algorithm below illustrates this.
Algorithm: Gen_complete_dependencies_list

Input : Module-dependency-list (list of dependency modules ie. Imported directly from the application)
Output : Complete_dependency_list (complete list of dependency modules ie. Modules imported both
 directly and indirectly but not part of base runtime)
Gen_complete_dependencies_list (module-dependency-list)
 Complete_dependency_list = []
 While: not end of module-dependency-list
 Module = module-dependency-list.Current () // get a module from the list
 If: is_module_in_core (Module, “module-type.cfg”) or

 Complete_dependency_list.Contains (Module)
 // module and its dependency modules guaranteed to be part of runtime
 // or the module is already processed.

 Continue
 Complete_dependency_list.Append (Module) // this is a dependency module

 // Get the modules on which the current module is directly dependent

 Dependency_list = get_dependency_list_of_a_module (Module,
 “module-dependency.cfg”)
 // Insert the new modules found, at the end of module-dependency-list,
 // if not already present

 Update_dependency_list (module-dependency-list, Dependency_list)
 Return Complete_dependency_list
3.3 Packaging the application

After the dependency modules are identified, they are searched in the module-repo and the paths specified in module-search-path.cfg. If they are found, they are placed in a way such that ensymble can include them in the sis package. If any module is not found, then a suitable exception is raised. The steps followed for packaging are as follows:
1. If the application does not depend on any modules other than the core-module, then nothing more needs to be done and the application can be packaged immediately.

2. If the application has a single PY file, then a project directory needs to be created. The PY files needs to be renamed as default.py and copied to this directory. If the application itself as multiple files, then the project directory would have already been created.

3. The PY|PYC|PYO dependency modules are copied to the project directory. These are basically the modules of the type “standard-py” and “dev-py”.
4. If the application does not have an extras-dir (specified using the --extrasdir) and it depends on any PYD module, create one.

5. Create sys\bin directory structure under extras-dir (if it does not exist) and copy the PYD dependency modules to this directory and rename them based on the application UID. These are basically the modules of the type “standard-pyd” and “dev-pyd”. Also, update the module white-list with PYD modules included in the package. Refer Chapter 4 for more information on this.
6. Package the application as under the project directory.
 Figure 3.1 in the next page, illustrates the entire process of packaging a Python application.

 Fig 3.1 Packaging process

[image: image2]
4. Module Import Mechanism
The PYD modules are compiled as Symbian DLLs and hence all the restrictions applicable to the DLLs, apply to the PYD modules also. One of the restrictions is that the DLLs must be locatable from the sys\bin path, for the applications to be able to load them. Suppose two different Python applications dependent on the same PYD module, are packaged with the PyS60 Application packager. The SIS file that is tried to install on a device first, will install without any error. Where as, the second SIS fails to install on the device as it contains a file already installed on the device by a different SIS. Such problems can be handled by tweaking the filenames of the PYD files and the module import mechanism in the runtime.
4.1 PYD filename and white-list
To avoid situations of the PYD files of different Python applications clashing because the same filename, the PYD modules are renamed so that the filenames are unique. The pattern followed in renaming the PYD file is <currentname>_<UID>, where <currentname> is the original name of the PYD as available from the module-repo and <UID> is the UID associated with the application being packaged. The import mechanism also needs to be altered accordingly. To avoid the possible scenario of code injection (malicious applications can install PYD files with the UID of other applications), a file containing the module names and its actual filename as on the device (white-list.cfg) is generated at the time of application packaging and packaged with the application SIS. This list of entries is in the format of Python lists. Whenever an import request in done, a check is made in this list and the module is tried to be loaded only if the module has an entry in the list.
If a Python application with UID 0xcafe1234 is dependent on cmath and parser modules (both are PYDs), then these PYDs will be renamed to 251_cmath_ cafe1234.pyd and 251_parser_ cafe1234.pyd. The white-list of this application will have entries for cmath and parser modules.
{“cmath”: “251_cmath_<UID>.pyd”, “parser”:” 251_parser_<UID>.pyd”}
4.2 Import hook
An import hook is added in site.py which alters the import mechanism to search for the modules with the filename based on the application UID. It first checks the white-list for the module and if it is present in the list, only then the module is tried to be loaded. If the white-list does not contain the requested module, then the import mechanism should handle the import request as usual.
4.3 Sys path
The module search path on the device (sys.path) needs to be updated with the application’s private directory. This is needed as the dependency PY modules are packaged into the application’s private directory. This requires that there should be a means by which an application’s UID could be found got form the Python level. The best place to add this as a Python level API is e32 module. This may require that the e32 module be made part of the base runtime. Alternatively, the UID can also be known by checking the “current working directory” of the application. On Symbian, when an application is started, its “current working directory” is its private directory.
4.4 Directory structure on a device
 !:\
 private\

 [appp-UID]\

 white-list.cfg

 default.py

 repo-modules [standard-py and dev-py files]
 resource\

 python25\

 core-modules [PY files]
 sys\

 bin\

 core-modules [PYDs]

 repo-modules [standard-pyd and dev-pyd files, renamed with applications UID]

5. ensymble and GUI modifications

Following are the changes done in ensymble

· An option (--extra-modules) is to be added that is used to specify the dependency modules. This option is useful in cases where dependency modules are not identifiable by the auto dependency scanning mechanism. One such instance can be to specify the dependencies of a PYD module.

· All the steps mentioned in Chapter 3 for packaging the applications are implemented in the “ensymble py2sis”.
Following are the changes done in application packager GUI

· Help files should explain the auto dependency scanner and module-repo

6. Improvements
· Ensymble can provide an option, using which a developer can add modules to module-repo. With this, he will not have to edit the module-repo config files manually.

· Ensymble can provide an option which can be used to zip all the PY modules into a zip file before packaging.
7. Terms and Abbreviations
	Term
	Definition

	dev-py
	Module developed and added to module-repo by developers which is a PY|PYC|PYO file

	dev-pyd
	Module developed and added to module-repo by developers which is a PYD file

	DLL
	Dynamic Link Library

	ensymble
	A developer utility tool for Symbian OS. PyS60 Application Packager includes this tool.

	Module-repo
	Directory structure where all the standard PYS60 modules (which are not part of PyS60 base runtime) and user developed modules are placed. This also includes information needed to package all the Python modules on which a given Python script is dependent. This is installed on the host machine with PyS60 Application Packager.

	base-modules
	PyS60 modules that are part of PyS60 base runtime sis.

	repo-modules
	These are Python modules which are not part of PyS60 base runtime sis and hence needs to be packaged with the application SIS file.

	PY
	A Python source file with .py extension

	PYC
	Compiled version of a PY file (with .pyc extension)

	PYO
	Compiled version of a PY file with compiler optimizations (with .pyo extension)

	PYD
	Python extension modules (native modules)

	standard-py and standard-pyd
	Standard PyS60 modules which are part of Module-repo. They include Standard core Python modules and S60 specific extensions.

	SIS
	Application installer file for Symbian devices

	UID
	Unique identifiers needed for Symbian applications

Full Dependency List

Identify first level dependency

Python Application

Module type

Module dependency structure

*.pyd (dev-pyd modules)

module-repo

module-dependency.cfg

module-dependency.cfg

module-dependency.cfg

standard-modules

*.py (dev-py modules)

module-search-path.cfg

*.py (standard-py modules)

*.pyd (standard-pyd modules)

*.pyd (dev-pyd modules)

dev-modules

 User module-1

Directory

Meta-data file

Python module

First level Dependency List

Identify complete dependency

Packaging

Modules under module-repo and user defined path

Application SIS

*.py (dev-py modules)

 User module-2

_935227290.doc

