Merge workaround for bug 2846 to conditionally compile out the use of CAlfEffectObserver.
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#include "object.h"
#include "joint.h"
#include <ode/config.h>
#include <ode/odemath.h>
#include <ode/rotation.h>
#include <ode/timer.h>
#include <ode/error.h>
#include <ode/matrix.h>
#include <ode/misc.h>
#include "lcp.h"
#include "util.h"
//#define ALLOCA dALLOCA16
typedef const dReal *dRealPtr;
typedef dReal *dRealMutablePtr;
#define dRealArray(name,n) dReal name[n];
#define dRealAllocaArray(name,n) dReal *name = (dReal*) malloc ((n)*sizeof(dReal));
//***************************************************************************
// configuration
// for the SOR method:
// uncomment the following line to randomly reorder constraint rows
// during the solution. depending on the situation, this can help a lot
// or hardly at all, but it doesn't seem to hurt.
#define RANDOMLY_REORDER_CONSTRAINTS 1
//****************************************************************************
// special matrix multipliers
// multiply block of B matrix (q x 6) with 12 dReal per row with C vektor (q)
static void Multiply1_12q1 (dReal *A, dReal *B, dReal *C, int q)
{
int k;
dReal sum;
sum = 0;
for (k=0; k<q; k++) sum += dMUL(B[k*12],C[k]);
A[0] = sum;
sum = 0;
for (k=0; k<q; k++) sum += dMUL(B[1+k*12],C[k]);
A[1] = sum;
sum = 0;
for (k=0; k<q; k++) sum += dMUL(B[2+k*12],C[k]);
A[2] = sum;
sum = 0;
for (k=0; k<q; k++) sum += dMUL(B[3+k*12],C[k]);
A[3] = sum;
sum = 0;
for (k=0; k<q; k++) sum += dMUL(B[4+k*12],C[k]);
A[4] = sum;
sum = 0;
for (k=0; k<q; k++) sum += dMUL(B[5+k*12],C[k]);
A[5] = sum;
}
//***************************************************************************
// testing stuff
#ifdef TIMING
#define IFTIMING(x) x
#else
#define IFTIMING(x) /* */
#endif
//***************************************************************************
// various common computations involving the matrix J
// compute iMJ = inv(M)*J'
static void compute_invM_JT (int m, dRealMutablePtr J, dRealMutablePtr iMJ, int *jb,
dxBody * const *body, dRealPtr invI)
{
int i,j;
dRealMutablePtr iMJ_ptr = iMJ;
dRealMutablePtr J_ptr = J;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
dReal k = body[b1]->invMass;
for (j=0; j<3; j++) iMJ_ptr[j] = dMUL(k,J_ptr[j]);
dMULTIPLY0_331 (iMJ_ptr + 3, invI + 12*b1, J_ptr + 3);
if (b2 >= 0) {
k = body[b2]->invMass;
for (j=0; j<3; j++) iMJ_ptr[j+6] = dMUL(k,J_ptr[j+6]);
dMULTIPLY0_331 (iMJ_ptr + 9, invI + 12*b2, J_ptr + 9);
}
J_ptr += 12;
iMJ_ptr += 12;
}
}
// compute out = J*in.
static void multiply_J (int m, dRealMutablePtr J, int *jb,
dRealMutablePtr in, dRealMutablePtr out)
{
int i,j;
dRealPtr J_ptr = J;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
dReal sum = 0;
dRealMutablePtr in_ptr = in + b1*6;
for (j=0; j<6; j++) sum += dMUL(J_ptr[j],in_ptr[j]);
J_ptr += 6;
if (b2 >= 0) {
in_ptr = in + b2*6;
for (j=0; j<6; j++) sum += dMUL(J_ptr[j],in_ptr[j]);
}
J_ptr += 6;
out[i] = sum;
}
}
//***************************************************************************
// SOR-LCP method
// nb is the number of bodies in the body array.
// J is an m*12 matrix of constraint rows
// jb is an array of first and second body numbers for each constraint row
// invI is the global frame inverse inertia for each body (stacked 3x3 matrices)
//
// this returns lambda and fc (the constraint force).
// note: fc is returned as inv(M)*J'*lambda, the constraint force is actually J'*lambda
//
// b, lo and hi are modified on exit
struct IndexError {
dReal error; // error to sort on
int findex;
int index; // row index
};
static void SOR_LCP (int m, int nb, dRealMutablePtr J, int *jb, dxBody * const *body,
dRealPtr invI, dRealMutablePtr lambda, dRealMutablePtr fc, dRealMutablePtr b,
dRealMutablePtr lo, dRealMutablePtr hi, dRealPtr cfm, int *findex,
dxQuickStepParameters *qs)
{
const int num_iterations = qs->num_iterations;
const dReal sor_w = qs->w; // SOR over-relaxation parameter
int i,j;
dSetZero (lambda,m);
// a copy of the 'hi' vector in case findex[] is being used
dRealAllocaArray (hicopy,m);
if(hicopy == NULL) {
return;
}
memcpy (hicopy,hi,m*sizeof(dReal));
// precompute iMJ = inv(M)*J'
dRealAllocaArray (iMJ,m*12);
if(iMJ == NULL) {
free(hicopy);
return;
}
compute_invM_JT (m,J,iMJ,jb,body,invI);
// compute fc=(inv(M)*J')*lambda. we will incrementally maintain fc
// as we change lambda.
dSetZero (fc,nb*6);
// precompute 1 / diagonals of A
dRealAllocaArray (Ad,m);
if(Ad == NULL) {
free(hicopy);
free(iMJ);
return;
}
dRealPtr iMJ_ptr = iMJ;
dRealMutablePtr J_ptr = J;
for (i=0; i<m; i++) {
dReal sum = 0;
for (j=0; j<6; j++) sum += dMUL(iMJ_ptr[j],J_ptr[j]);
if (jb[i*2+1] >= 0) {
for (j=6; j<12; j++) sum += dMUL(iMJ_ptr[j],J_ptr[j]);
}
iMJ_ptr += 12;
J_ptr += 12;
Ad[i] = dDIV(sor_w,(sum + cfm[i]));
}
// scale J and b by Ad
J_ptr = J;
for (i=0; i<m; i++) {
for (j=0; j<12; j++) {
J_ptr[0] = dMUL(J_ptr[0],Ad[i]);
J_ptr++;
}
b[i] = dMUL(b[i],Ad[i]);
// scale Ad by CFM. N.B. this should be done last since it is used above
Ad[i]= dMUL(Ad[i],cfm[i]);
}
// order to solve constraint rows in
IndexError *order = (IndexError*) malloc (m*sizeof(IndexError));
if(order == NULL) {
free(hicopy);
free(iMJ);
free(Ad);
return;
}
#ifndef REORDER_CONSTRAINTS
// make sure constraints with findex < 0 come first.
j=0;
int k=1;
// Fill the array from both ends
for (i=0; i<m; i++)
if (findex[i] < 0)
order[j++].index = i; // Place them at the front
else
order[m-k++].index = i; // Place them at the end
#endif
for (int iteration=0; iteration < num_iterations; iteration++) {
#ifdef RANDOMLY_REORDER_CONSTRAINTS
if ((iteration & 7) == 0) {
for (i=1; i<m; ++i) {
IndexError tmp = order[i];
int swapi = dRandInt(i+1);
order[i] = order[swapi];
order[swapi] = tmp;
}
}
#endif
for (int i=0; i<m; i++) {
// @@@ potential optimization: we could pre-sort J and iMJ, thereby
// linearizing access to those arrays. hmmm, this does not seem
// like a win, but we should think carefully about our memory
// access pattern.
int index = order[i].index;
J_ptr = J + index*12;
iMJ_ptr = iMJ + index*12;
// set the limits for this constraint. note that 'hicopy' is used.
// this is the place where the QuickStep method differs from the
// direct LCP solving method, since that method only performs this
// limit adjustment once per time step, whereas this method performs
// once per iteration per constraint row.
// the constraints are ordered so that all lambda[] values needed have
// already been computed.
if (findex[index] >= 0) {
hi[index] = dFabs (dMUL(hicopy[index],lambda[findex[index]]));
lo[index] = -hi[index];
}
int b1 = jb[index*2];
int b2 = jb[index*2+1];
dReal delta = b[index] - dMUL(lambda[index],Ad[index]);
dRealMutablePtr fc_ptr = fc + 6*b1;
// @@@ potential optimization: SIMD-ize this and the b2 >= 0 case
delta -=dMUL(fc_ptr[0],J_ptr[0]) + dMUL(fc_ptr[1],J_ptr[1]) +
dMUL(fc_ptr[2],J_ptr[2]) + dMUL(fc_ptr[3],J_ptr[3]) +
dMUL(fc_ptr[4],J_ptr[4]) + dMUL(fc_ptr[5],J_ptr[5]);
// @@@ potential optimization: handle 1-body constraints in a separate
// loop to avoid the cost of test & jump?
if (b2 >= 0) {
fc_ptr = fc + 6*b2;
delta -=dMUL(fc_ptr[0],J_ptr[6]) + dMUL(fc_ptr[1],J_ptr[7]) +
dMUL(fc_ptr[2],J_ptr[8]) + dMUL(fc_ptr[3],J_ptr[9]) +
dMUL(fc_ptr[4],J_ptr[10]) + dMUL(fc_ptr[5],J_ptr[11]);
}
// compute lambda and clamp it to [lo,hi].
// @@@ potential optimization: does SSE have clamping instructions
// to save test+jump penalties here?
dReal new_lambda = lambda[index] + delta;
if (new_lambda < lo[index]) {
delta = lo[index]-lambda[index];
lambda[index] = lo[index];
}
else if (new_lambda > hi[index]) {
delta = hi[index]-lambda[index];
lambda[index] = hi[index];
}
else {
lambda[index] = new_lambda;
}
//@@@ a trick that may or may not help
//dReal ramp = (1-((dReal)(iteration+1)/(dReal)num_iterations));
//delta *= ramp;
// update fc.
// @@@ potential optimization: SIMD for this and the b2 >= 0 case
fc_ptr = fc + 6*b1;
fc_ptr[0] += dMUL(delta,iMJ_ptr[0]);
fc_ptr[1] += dMUL(delta,iMJ_ptr[1]);
fc_ptr[2] += dMUL(delta,iMJ_ptr[2]);
fc_ptr[3] += dMUL(delta,iMJ_ptr[3]);
fc_ptr[4] += dMUL(delta,iMJ_ptr[4]);
fc_ptr[5] += dMUL(delta,iMJ_ptr[5]);
// @@@ potential optimization: handle 1-body constraints in a separate
// loop to avoid the cost of test & jump?
if (b2 >= 0) {
fc_ptr = fc + 6*b2;
fc_ptr[0] += dMUL(delta,iMJ_ptr[6]);
fc_ptr[1] += dMUL(delta,iMJ_ptr[7]);
fc_ptr[2] += dMUL(delta,iMJ_ptr[8]);
fc_ptr[3] += dMUL(delta,iMJ_ptr[9]);
fc_ptr[4] += dMUL(delta,iMJ_ptr[10]);
fc_ptr[5] += dMUL(delta,iMJ_ptr[11]);
}
}
}
free(hicopy);
free(iMJ);
free(Ad);
free(order);
}
void dxQuickStepper (dxWorld *world, dxBody * const *body, int nb,
dxJoint * const *_joint, int nj, dReal stepsize)
{
int i,j;
IFTIMING(dTimerStart("preprocessing");)
dReal stepsize1 = dRecip(stepsize);
// number all bodies in the body list - set their tag values
for (i=0; i<nb; i++) body[i]->tag = i;
// make a local copy of the joint array, because we might want to modify it.
// (the "dxJoint *const*" declaration says we're allowed to modify the joints
// but not the joint array, because the caller might need it unchanged).
//@@@ do we really need to do this? we'll be sorting constraint rows individually, not joints
dxJoint **joint = (dxJoint**) malloc (nj * sizeof(dxJoint*));
if(joint == NULL) {
return;
}
memcpy (joint,_joint,nj * sizeof(dxJoint*));
// for all bodies, compute the inertia tensor and its inverse in the global
// frame, and compute the rotational force and add it to the torque
// accumulator. I and invI are a vertical stack of 3x4 matrices, one per body.
//dRealAllocaArray (I,3*4*nb); // need to remember all I's for feedback purposes only
dRealAllocaArray (invI,3*4*nb);
if( invI == NULL) {
free(joint);
return;
}
for (i=0; i<nb; i++) {
dMatrix3 tmp;
// compute inverse inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->invI,body[i]->posr.R);
dMULTIPLY0_333 (invI+i*12,body[i]->posr.R,tmp);
}
// add the gravity force to all bodies
for (i=0; i<nb; i++) {
if ((body[i]->flags & dxBodyNoGravity)==0) {
body[i]->facc[0] += dMUL( body[i]->mass.mass,world->gravity[0]);
body[i]->facc[1] += dMUL(body[i]->mass.mass,world->gravity[1]);
body[i]->facc[2] += dMUL(body[i]->mass.mass,world->gravity[2]);
}
}
// get joint information (m = total constraint dimension, nub = number of unbounded variables).
// joints with m=0 are inactive and are removed from the joints array
// entirely, so that the code that follows does not consider them.
//@@@ do we really need to save all the info1's
dxJoint::Info1 *info = (dxJoint::Info1*) malloc (nj*sizeof(dxJoint::Info1));
if( info == NULL) {
free(joint);
free(invI);
return;
}
for (i=0, j=0; j<nj; j++) { // i=dest, j=src
joint[j]->vtable->getInfo1 (joint[j],info+i);
if (info[i].m > 0) {
joint[i] = joint[j];
i++;
}
}
nj = i;
// create the row offset array
int m = 0;
int *ofs = (int*) malloc (nj*sizeof(int));
if( ofs == NULL) {
free(joint);
free(invI);
free(info);
return;
}
for (i=0; i<nj; i++) {
ofs[i] = m;
m += info[i].m;
}
// if there are constraints, compute the constraint force
dRealAllocaArray (J,m*12);
if( J == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
return;
}
int *jb = (int*) malloc (m*2*sizeof(int));
if( jb == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
return;
}
if (m > 0) {
// create a constraint equation right hand side vector `c', a constraint
// force mixing vector `cfm', and LCP low and high bound vectors, and an
// 'findex' vector.
dRealAllocaArray (c,m);
if( c == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
return;
}
dRealAllocaArray (cfm,m);
if( cfm == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
return;
}
dRealAllocaArray (lo,m);
if( lo == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
return;
}
dRealAllocaArray (hi,m);
if( hi == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
return;
}
int *findex = (int*) malloc (m*sizeof(int));
if( findex == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
free(hi);
return;
}
dSetZero (c,m);
dSetValue (cfm,m,world->global_cfm);
dSetValue (lo,m,-dInfinity);
dSetValue (hi,m, dInfinity);
for (i=0; i<m; i++) findex[i] = -1;
// get jacobian data from constraints. an m*12 matrix will be created
// to store the two jacobian blocks from each constraint. it has this
// format:
//
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 \ .
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 }-- jacobian for joint 0, body 1 and body 2 (3 rows)
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 /
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 }--- jacobian for joint 1, body 1 and body 2 (3 rows)
// etc...
//
// (lll) = linear jacobian data
// (aaa) = angular jacobian data
//
IFTIMING (dTimerNow ("create J");)
dSetZero (J,m*12);
dxJoint::Info2 Jinfo;
Jinfo.rowskip = 12;
Jinfo.fps = stepsize1;
Jinfo.erp = world->global_erp;
int mfb = 0; // number of rows of Jacobian we will have to save for joint feedback
for (i=0; i<nj; i++) {
Jinfo.J1l = J + ofs[i]*12;
Jinfo.J1a = Jinfo.J1l + 3;
Jinfo.J2l = Jinfo.J1l + 6;
Jinfo.J2a = Jinfo.J1l + 9;
Jinfo.c = c + ofs[i];
Jinfo.cfm = cfm + ofs[i];
Jinfo.lo = lo + ofs[i];
Jinfo.hi = hi + ofs[i];
Jinfo.findex = findex + ofs[i];
joint[i]->vtable->getInfo2 (joint[i],&Jinfo);
// adjust returned findex values for global index numbering
for (j=0; j<info[i].m; j++) {
if (findex[ofs[i] + j] >= 0) findex[ofs[i] + j] += ofs[i];
}
if (joint[i]->feedback)
mfb += info[i].m;
}
// we need a copy of Jacobian for joint feedbacks
// because it gets destroyed by SOR solver
// instead of saving all Jacobian, we can save just rows
// for joints, that requested feedback (which is normaly much less)
dRealAllocaArray (Jcopy,mfb*12);
if( Jcopy == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
free(hi);
free(findex);
return;
}
if (mfb > 0) {
mfb = 0;
for (i=0; i<nj; i++)
if (joint[i]->feedback) {
memcpy(Jcopy+mfb*12, J+ofs[i]*12, info[i].m*12*sizeof(dReal));
mfb += info[i].m;
}
}
// create an array of body numbers for each joint row
int *jb_ptr = jb;
for (i=0; i<nj; i++) {
int b1 = (joint[i]->node[0].body) ? (joint[i]->node[0].body->tag) : -1;
int b2 = (joint[i]->node[1].body) ? (joint[i]->node[1].body->tag) : -1;
for (j=0; j<info[i].m; j++) {
jb_ptr[0] = b1;
jb_ptr[1] = b2;
jb_ptr += 2;
}
}
// compute the right hand side `rhs'
IFTIMING (dTimerNow ("compute rhs");)
dRealAllocaArray (tmp1,nb*6);
if( tmp1 == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
free(hi);
free(findex);
free(Jcopy);
return;
}
// put v/h + invM*fe into tmp1
for (i=0; i<nb; i++) {
dReal body_invMass = body[i]->invMass;
for (j=0; j<3; j++) tmp1[i*6+j] = dMUL(body[i]->facc[j],body_invMass) + dMUL(body[i]->lvel[j],stepsize1);
dMULTIPLY0_331 (tmp1 + i*6 + 3,invI + i*12,body[i]->tacc);
for (j=0; j<3; j++) tmp1[i*6+3+j] += dMUL(body[i]->avel[j],stepsize1);
}
// put J*tmp1 into rhs
dRealAllocaArray (rhs,m);
if( rhs == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
free(hi);
free(findex);
free(Jcopy);
free(tmp1);
return;
}
multiply_J (m,J,jb,tmp1,rhs);
// complete rhs
for (i=0; i<m; i++) rhs[i] = dMUL(c[i],stepsize1) - rhs[i];
// scale CFM
for (i=0; i<m; i++) cfm[i] = dMUL(cfm[i],stepsize1);
// load lambda from the value saved on the previous iteration
dRealAllocaArray (lambda,m);
if( lambda == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
free(hi);
free(findex);
free(Jcopy);
free(tmp1);
free(rhs);
return;
}
// solve the LCP problem and get lambda and invM*constraint_force
IFTIMING (dTimerNow ("solving LCP problem");)
dRealAllocaArray (cforce,nb*6);
if( cforce == NULL) {
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
free(c);
free(cfm);
free(lo);
free(hi);
free(findex);
free(Jcopy);
free(tmp1);
free(rhs);
free(lambda);
return;
}
SOR_LCP (m,nb,J,jb,body,invI,lambda,cforce,rhs,lo,hi,cfm,findex,&world->qs);
// note that the SOR method overwrites rhs and J at this point, so
// they should not be used again.
// add stepsize * cforce to the body velocity
for (i=0; i<nb; i++) {
for (j=0; j<3; j++) body[i]->lvel[j] += dMUL(stepsize,cforce[i*6+j]);
for (j=0; j<3; j++) body[i]->avel[j] += dMUL(stepsize,cforce[i*6+3+j]);
}
// if joint feedback is requested, compute the constraint force.
// BUT: cforce is inv(M)*J'*lambda, whereas we want just J'*lambda,
// so we must compute M*cforce.
// @@@ if any joint has a feedback request we compute the entire
// adjusted cforce, which is not the most efficient way to do it.
/*for (j=0; j<nj; j++) {
if (joint[j]->feedback) {
// compute adjusted cforce
for (i=0; i<nb; i++) {
dReal k = body[i]->mass.mass;
cforce [i*6+0] *= k;
cforce [i*6+1] *= k;
cforce [i*6+2] *= k;
dVector3 tmp;
dMULTIPLY0_331 (tmp, I + 12*i, cforce + i*6 + 3);
cforce [i*6+3] = tmp[0];
cforce [i*6+4] = tmp[1];
cforce [i*6+5] = tmp[2];
}
// compute feedback for this and all remaining joints
for (; j<nj; j++) {
dJointFeedback *fb = joint[j]->feedback;
if (fb) {
int b1 = joint[j]->node[0].body->tag;
memcpy (fb->f1,cforce+b1*6,3*sizeof(dReal));
memcpy (fb->t1,cforce+b1*6+3,3*sizeof(dReal));
if (joint[j]->node[1].body) {
int b2 = joint[j]->node[1].body->tag;
memcpy (fb->f2,cforce+b2*6,3*sizeof(dReal));
memcpy (fb->t2,cforce+b2*6+3,3*sizeof(dReal));
}
}
}
}
}*/
if (mfb > 0) {
// straightforward computation of joint constraint forces:
// multiply related lambdas with respective J' block for joints
// where feedback was requested
mfb = 0;
for (i=0; i<nj; i++) {
if (joint[i]->feedback) {
dJointFeedback *fb = joint[i]->feedback;
dReal data[6];
Multiply1_12q1 (data, Jcopy+mfb*12, lambda+ofs[i], info[i].m);
fb->f1[0] = data[0];
fb->f1[1] = data[1];
fb->f1[2] = data[2];
fb->t1[0] = data[3];
fb->t1[1] = data[4];
fb->t1[2] = data[5];
if (joint[i]->node[1].body)
{
Multiply1_12q1 (data, Jcopy+mfb*12+6, lambda+ofs[i], info[i].m);
fb->f2[0] = data[0];
fb->f2[1] = data[1];
fb->f2[2] = data[2];
fb->t2[0] = data[3];
fb->t2[1] = data[4];
fb->t2[2] = data[5];
}
mfb += info[i].m;
}
}
}
free(c);
free(cfm);
free(lo);
free(hi);
free(findex);
free(Jcopy);
free(tmp1);
free(rhs);
free(lambda);
free(cforce);
}
// compute the velocity update:
// add stepsize * invM * fe to the body velocity
IFTIMING (dTimerNow ("compute velocity update");)
for (i=0; i<nb; i++) {
dReal body_invMass = body[i]->invMass;
for (j=0; j<3; j++) body[i]->lvel[j] += dMUL(stepsize,dMUL(body_invMass,body[i]->facc[j]));
for (j=0; j<3; j++) body[i]->tacc[j] = dMUL(body[i]->tacc[j],stepsize);
dMULTIPLYADD0_331 (body[i]->avel,invI + i*12,body[i]->tacc);
}
// update the position and orientation from the new linear/angular velocity
// (over the given timestep)
IFTIMING (dTimerNow ("update position");)
for (i=0; i<nb; i++) dxStepBody (body[i],stepsize);
IFTIMING (dTimerNow ("tidy up");)
// zero all force accumulators
for (i=0; i<nb; i++) {
dSetZero (body[i]->facc,3);
dSetZero (body[i]->tacc,3);
}
IFTIMING (dTimerEnd();)
IFTIMING (if (m > 0) dTimerReport (stdout,1);)
free(joint);
free(invI);
free(info);
free(ofs);
free(J);
free(jb);
}