Merge workaround for bug 2012. Ignore workaround for bug 2584 as no longer appears applicable.
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
quaternions have the format: (s,vx,vy,vz) where (vx,vy,vz) is the
"rotation axis" and s is the "rotation angle".
*/
#include <ode/rotation.h>
#include <ode/odemath.h>
#include <ode/lookup_tables.h>
#define _R(i,j) R[(i)*4+(j)]
#define SET_3x3_IDENTITY \
_R(0,0) = REAL(1.0); \
_R(0,1) = REAL(0.0); \
_R(0,2) = REAL(0.0); \
_R(0,3) = REAL(0.0); \
_R(1,0) = REAL(0.0); \
_R(1,1) = REAL(1.0); \
_R(1,2) = REAL(0.0); \
_R(1,3) = REAL(0.0); \
_R(2,0) = REAL(0.0); \
_R(2,1) = REAL(0.0); \
_R(2,2) = REAL(1.0); \
_R(2,3) = REAL(0.0);
EXPORT_C void dRSetIdentity (dMatrix3 R)
{
SET_3x3_IDENTITY;
}
EXPORT_C void dRFromAxisAndAngle (dMatrix3 R, dReal ax, dReal ay, dReal az,
dReal angle)
{
dQuaternion q;
dQFromAxisAndAngle (q,ax,ay,az,angle);
dQtoR (q,R);
}
EXPORT_C void dRFromEulerAngles (dMatrix3 R, dReal phi, dReal theta, dReal psi)
{
dReal sphi,cphi,stheta,ctheta,spsi,cpsi;
sphi = dSin(phi);
cphi = dCos(phi);
stheta = dSin(theta);
ctheta = dCos(theta);
spsi = dSin(psi);
cpsi = dCos(psi);
_R(0,0) = dMUL(cpsi,ctheta);
_R(0,1) = dMUL(spsi,ctheta);
_R(0,2) =-stheta;
_R(0,3) = REAL(0.0);
_R(1,0) = dMUL(cpsi,dMUL(stheta,sphi)) - dMUL(spsi,cphi);
_R(1,1) = dMUL(spsi,dMUL(stheta,sphi)) + dMUL(cpsi,cphi);
_R(1,2) = dMUL(ctheta,sphi);
_R(1,3) = REAL(0.0);
_R(2,0) = dMUL(cpsi,dMUL(stheta,cphi)) + dMUL(spsi,sphi);
_R(2,1) = dMUL(spsi,dMUL(stheta,cphi)) - dMUL(cpsi,sphi);
_R(2,2) = dMUL(ctheta,cphi);
_R(2,3) = REAL(0.0);
}
EXPORT_C void dRFrom2Axes (dMatrix3 R, dReal ax, dReal ay, dReal az,
dReal bx, dReal by, dReal bz)
{
dReal l,k;
l = dSqrt (dMUL(ax,ax) + dMUL(ay,ay) + dMUL(az,az));
if (l <= REAL(0.0)) {
return;
}
l = dRecip(l);
ax = dMUL(ax,l);
ay = dMUL(ay,l);
az = dMUL(az,l);
k = dMUL(ax,bx) + dMUL(ay,by) + dMUL(az,bz);
bx -= dMUL(k,ax);
by -= dMUL(k,ay);
bz -= dMUL(k,az);
l = dSqrt (dMUL(bx,bx) + dMUL(by,by) + dMUL(bz,bz));
if (l <= REAL(0.0)) {
return;
}
l = dRecip(l);
bx = dMUL(bx,l);
by = dMUL(by,l);
bz = dMUL(bz,l);
_R(0,0) = ax;
_R(1,0) = ay;
_R(2,0) = az;
_R(0,1) = bx;
_R(1,1) = by;
_R(2,1) = bz;
_R(0,2) = - dMUL(by,az) + dMUL(ay,bz);
_R(1,2) = - dMUL(bz,ax) + dMUL(az,bx);
_R(2,2) = - dMUL(bx,ay) + dMUL(ax,by);
_R(0,3) = REAL(0.0);
_R(1,3) = REAL(0.0);
_R(2,3) = REAL(0.0);
}
EXPORT_C void dRFromZAxis (dMatrix3 R, dReal ax, dReal ay, dReal az)
{
dVector3 n,p,q;
n[0] = ax;
n[1] = ay;
n[2] = az;
dNormalize3 (n);
dPlaneSpace (n,p,q);
_R(0,0) = p[0];
_R(1,0) = p[1];
_R(2,0) = p[2];
_R(0,1) = q[0];
_R(1,1) = q[1];
_R(2,1) = q[2];
_R(0,2) = n[0];
_R(1,2) = n[1];
_R(2,2) = n[2];
_R(0,3) = REAL(0.0);
_R(1,3) = REAL(0.0);
_R(2,3) = REAL(0.0);
}
EXPORT_C void dQSetIdentity (dQuaternion q)
{
q[0] = REAL(1.0);
q[1] = 0;
q[2] = 0;
q[3] = 0;
}
EXPORT_C void dQFromAxisAndAngle (dQuaternion q, dReal ax, dReal ay, dReal az,
dReal angle)
{
dReal l = dMUL(ax,ax) + dMUL(ay,ay) + dMUL(az,az);
if (l > REAL(0.0)) {
angle = dMUL(angle,REAL(0.5));
q[0] = dCos (angle);
l = dMUL(dReal(dSin(angle)),dRecipSqrt(l));
q[1] = dMUL(ax,l);
q[2] = dMUL(ay,l);
q[3] = dMUL(az,l);
}
else {
q[0] = REAL(1.0);
q[1] = 0;
q[2] = 0;
q[3] = 0;
}
}
EXPORT_C void dQMultiply0 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc)
{
qa[0] = dMUL(qb[0],qc[0]) - dMUL(qb[1],qc[1]) - dMUL(qb[2],qc[2]) - dMUL(qb[3],qc[3]);
qa[1] = dMUL(qb[0],qc[1]) + dMUL(qb[1],qc[0]) + dMUL(qb[2],qc[3]) - dMUL(qb[3],qc[2]);
qa[2] = dMUL(qb[0],qc[2]) + dMUL(qb[2],qc[0]) + dMUL(qb[3],qc[1]) - dMUL(qb[1],qc[3]);
qa[3] = dMUL(qb[0],qc[3]) + dMUL(qb[3],qc[0]) + dMUL(qb[1],qc[2]) - dMUL(qb[2],qc[1]);
}
EXPORT_C void dQMultiply1 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc)
{
qa[0] = dMUL(qb[0],qc[0]) + dMUL(qb[1],qc[1]) + dMUL(qb[2],qc[2]) + dMUL(qb[3],qc[3]);
qa[1] = dMUL(qb[0],qc[1]) - dMUL(qb[1],qc[0]) - dMUL(qb[2],qc[3]) + dMUL(qb[3],qc[2]);
qa[2] = dMUL(qb[0],qc[2]) - dMUL(qb[2],qc[0]) - dMUL(qb[3],qc[1]) + dMUL(qb[1],qc[3]);
qa[3] = dMUL(qb[0],qc[3]) - dMUL(qb[3],qc[0]) - dMUL(qb[1],qc[2]) + dMUL(qb[2],qc[1]);
}
EXPORT_C void dQMultiply2 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc)
{
qa[0] = dMUL(qb[0],qc[0]) + dMUL(qb[1],qc[1]) + dMUL(qb[2],qc[2]) + dMUL(qb[3],qc[3]);
qa[1] = -dMUL(qb[0],qc[1]) + dMUL(qb[1],qc[0]) - dMUL(qb[2],qc[3]) + dMUL(qb[3],qc[2]);
qa[2] = -dMUL(qb[0],qc[2]) + dMUL(qb[2],qc[0]) - dMUL(qb[3],qc[1]) + dMUL(qb[1],qc[3]);
qa[3] = -dMUL(qb[0],qc[3]) + dMUL(qb[3],qc[0]) - dMUL(qb[1],qc[2]) + dMUL(qb[2],qc[1]);
}
EXPORT_C void dQMultiply3 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc)
{
qa[0] = dMUL(qb[0],qc[0]) - dMUL(qb[1],qc[1]) - dMUL(qb[2],qc[2]) - dMUL(qb[3],qc[3]);
qa[1] = -dMUL(qb[0],qc[1]) - dMUL(qb[1],qc[0]) + dMUL(qb[2],qc[3]) - dMUL(qb[3],qc[2]);
qa[2] = -dMUL(qb[0],qc[2]) - dMUL(qb[2],qc[0]) + dMUL(qb[3],qc[1]) - dMUL(qb[1],qc[3]);
qa[3] = -dMUL(qb[0],qc[3]) - dMUL(qb[3],qc[0]) + dMUL(qb[1],qc[2]) - dMUL(qb[2],qc[1]);
}
// dRfromQ(), dQfromR() and dDQfromW() are derived from equations in "An Introduction
// to Physically Based Modeling: Rigid Body Simulation - 1: Unconstrained
// Rigid Body Dynamics" by David Baraff, Robotics Institute, Carnegie Mellon
// University, 1997.
EXPORT_C void dRfromQ (dMatrix3 R, const dQuaternion q)
{
// q = (s,vx,vy,vz)
dReal qq1 = 2*dMUL(q[1],q[1]);
dReal qq2 = 2*dMUL(q[2],q[2]);
dReal qq3 = 2*dMUL(q[3],q[3]);
_R(0,0) = REAL(1.0) - qq2 - qq3;
_R(0,1) = 2*(dMUL(q[1],q[2]) - dMUL(q[0],q[3]));
_R(0,2) = 2*(dMUL(q[1],q[3]) + dMUL(q[0],q[2]));
_R(0,3) = REAL(0.0);
_R(1,0) = 2*(dMUL(q[1],q[2]) + dMUL(q[0],q[3]));
_R(1,1) = REAL(1.0) - qq1 - qq3;
_R(1,2) = 2*(dMUL(q[2],q[3]) - dMUL(q[0],q[1]));
_R(1,3) = REAL(0.0);
_R(2,0) = 2*(dMUL(q[1],q[3]) - dMUL(q[0],q[2]));
_R(2,1) = 2*(dMUL(q[2],q[3]) + dMUL(q[0],q[1]));
_R(2,2) = REAL(1.0) - qq1 - qq2;
_R(2,3) = REAL(0.0);
}
EXPORT_C void dQfromR (dQuaternion q, const dMatrix3 R)
{
dReal tr,s;
tr = _R(0,0) + _R(1,1) + _R(2,2);
if (tr >= 0) {
s = dSqrt (tr + REAL(1.0));
q[0] = dMUL(REAL(0.5),s);
s = dMUL(REAL(0.5),dRecip(s));
q[1] = dMUL((_R(2,1) - _R(1,2)),s);
q[2] = dMUL((_R(0,2) - _R(2,0)),s);
q[3] = dMUL((_R(1,0) - _R(0,1)),s);
}
else {
// find the largest diagonal element and jump to the appropriate case
if (_R(1,1) > _R(0,0)) {
if (_R(2,2) > _R(1,1)) goto case_2;
goto case_1;
}
if (_R(2,2) > _R(0,0)) goto case_2;
goto case_0;
case_0:
s = dSqrt((_R(0,0) - (_R(1,1) + _R(2,2))) + REAL(1.0));
q[1] = dMUL(REAL(0.5),s);
s = dMUL(REAL(0.5),dRecip(s));
q[2] = dMUL((_R(0,1) + _R(1,0)),s);
q[3] = dMUL((_R(2,0) + _R(0,2)),s);
q[0] = dMUL((_R(2,1) - _R(1,2)),s);
return;
case_1:
s = dSqrt((_R(1,1) - (_R(2,2) + _R(0,0))) + REAL(1.0));
q[2] = dMUL(REAL(0.5),s);
s = dMUL(REAL(0.5),dRecip(s));
q[3] = dMUL((_R(1,2) + _R(2,1)),s);
q[1] = dMUL((_R(0,1) + _R(1,0)),s);
q[0] = dMUL((_R(0,2) - _R(2,0)),s);
return;
case_2:
s = dSqrt((_R(2,2) - (_R(0,0) + _R(1,1))) + REAL(1.0));
q[3] = dMUL(REAL(0.5),s);
s = dMUL(REAL(0.5),dRecip(s));
q[1] = dMUL((_R(2,0) + _R(0,2)),s);
q[2] = dMUL((_R(1,2) + _R(2,1)),s);
q[0] = dMUL((_R(1,0) - _R(0,1)),s);
return;
}
}
EXPORT_C void dDQfromW (dReal dq[4], const dVector3 w, const dQuaternion q)
{
dq[0] = dMUL(REAL(0.5),(- dMUL(w[0],q[1]) - dMUL(w[1],q[2]) - dMUL(w[2],q[3])));
dq[1] = dMUL(REAL(0.5),( dMUL(w[0],q[0]) + dMUL(w[1],q[3]) - dMUL(w[2],q[2])));
dq[2] = dMUL(REAL(0.5),(- dMUL(w[0],q[3]) + dMUL(w[1],q[0]) + dMUL(w[2],q[1])));
dq[3] = dMUL(REAL(0.5),( dMUL(w[0],q[2]) - dMUL(w[1],q[1]) + dMUL(w[2],q[0])));
}