ode/src/collision_cylinder_sphere.cpp
author Pat Downey <patd@symbian.org>
Wed, 01 Sep 2010 12:16:19 +0100
branchRCL_3
changeset 56 d48ab3b357f1
parent 0 2f259fa3e83a
permissions -rw-r--r--
Revert incorrect RCL_3 drop: Revision: 201033 Kit: 201035

/*************************************************************************
*                                                                       *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith.       *
* All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
*                                                                       *
* This library is free software; you can redistribute it and/or         *
* modify it under the terms of EITHER:                                  *
*   (1) The GNU Lesser General Public License as published by the Free  *
*       Software Foundation; either version 2.1 of the License, or (at  *
*       your option) any later version. The text of the GNU Lesser      *
*       General Public License is included with this library in the     *
*       file LICENSE.TXT.                                               *
*   (2) The BSD-style license that is included with this library in     *
*       the file LICENSE-BSD.TXT.                                       *
*                                                                       *
* This library is distributed in the hope that it will be useful,       *
* but WITHOUT ANY WARRANTY; without even the implied warranty of        *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
* LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
*                                                                       *
*************************************************************************/


/*******************************************************************
 *                                                                 *
 * cylinder-sphere collider by Christoph Beyer (boernerb@web.de)   *
 *                                                                 *
 * In Cylinder/Sphere-collisions, there are three possibilies:     *
 * 1. collision with the cylinder's nappe                          *
 * 2. collision with one of the cylinder's disc                    *
 * 3. collision with one of the disc's border                      *
 *                                                                 *
 * This collider computes two distances (s, t) and based on them,  *
 * it decides, which collision we have.                            *
 * This collider always generates 1 (or 0, if we have no collison) *
 * contacts.                                                       *
 * It is able to "separate" cylinder and sphere in all             *
 * configurations, but it never pays attention to velocity.        *
 * So, in extrem situations, "tunneling-effect" is possible.       *
 *                                                                 *
 *******************************************************************/

#include <ode/collision.h>
#include <ode/matrix.h>
#include <ode/rotation.h>
#include <ode/odemath.h>
#include <ode/objects.h>
#include "collision_kernel.h"	// for dxGeom

int dCollideCylinderSphere(dxGeom* Cylinder, dxGeom* Sphere, 
                           int /*flags*/, dContactGeom *contact, int /*skip*/)
{
	int GeomCount = 0; // count of used contacts

	const dReal toleranz = REAL(0.0001f);

	// get the data from the geoms
	dReal radius, length;
	dGeomCylinderGetParams(Cylinder, &radius, &length);
    dVector3 &cylpos = Cylinder->final_posr->pos;
	const dReal* pfRot1 = dGeomGetRotation(Cylinder);

	dReal radius2;
	radius2 = dGeomSphereGetRadius(Sphere);
	const dReal* SpherePos = dGeomGetPosition(Sphere);

	// G1Pos1 is the middle of the first disc
	// G1Pos2 is the middle of the second disc
	// vDir1 is the unit direction of the cylinderaxis
	dVector3 G1Pos1, G1Pos2, vDir1;
	vDir1[0] = Cylinder->final_posr->R[2];
	vDir1[1] = Cylinder->final_posr->R[6];
	vDir1[2] = Cylinder->final_posr->R[10];

	dReal s;
	s = dMUL(length,REAL(0.5)); // just a precomputed factor
	G1Pos2[0] = dMUL(vDir1[0],s) + cylpos[0];
	G1Pos2[1] = dMUL(vDir1[1],s) + cylpos[1];
	G1Pos2[2] = dMUL(vDir1[2],s) + cylpos[2];

	G1Pos1[0] = dMUL(vDir1[0],-s) + cylpos[0];
	G1Pos1[1] = dMUL(vDir1[1],-s) + cylpos[1];
	G1Pos1[2] = dMUL(vDir1[2],-s) + cylpos[2];

	dVector3 C;
	dReal t;
	// Step 1: compute the two distances 's' and 't'
	// 's' is the distance from the first disc (in vDir1-/Zylinderaxis-direction), the disc with G1Pos1 in the middle
	s = dMUL((SpherePos[0] - G1Pos1[0]),vDir1[0]) - dMUL((G1Pos1[1] - SpherePos[1]),vDir1[1]) - dMUL((G1Pos1[2] - SpherePos[2]),vDir1[2]);
	if(s < (-radius2) || s > (length + radius2) )
	{
		// Sphere is too far away from the discs
		// no collision
		return 0;
	}

	// C is the direction from Sphere-middle to the cylinder-axis (vDir1); C is orthogonal to the cylinder-axis
	C[0] = dMUL(s,vDir1[0]) + G1Pos1[0] - SpherePos[0];
	C[1] = dMUL(s,vDir1[1]) + G1Pos1[1] - SpherePos[1];
	C[2] = dMUL(s,vDir1[2]) + G1Pos1[2] - SpherePos[2];
	// t is the distance from the Sphere-middle to the cylinder-axis!
	t = dSqrt(dMUL(C[0],C[0]) + dMUL(C[1],C[1]) + dMUL(C[2],C[2]) );
	if(t > (radius + radius2) )
	{
		// Sphere is too far away from the cylinder axis!
		// no collision
		return 0;
	}

	// decide which kind of collision we have:
	if(t > radius && (s < 0 || s > length) )
	{
		// 3. collision
		if(s <= 0)
		{
			contact->depth = radius2 - dSqrt( dMUL(s,s) + dMUL((t - radius),(t - radius)) );
			if(contact->depth < 0)
			{
				// no collision!
				return 0;
			}
			contact->pos[0] = dMUL(dDIV(C[0],t),-radius) + G1Pos1[0];
			contact->pos[1] = dMUL(dDIV(C[1],t),-radius) + G1Pos1[1];
			contact->pos[2] = dMUL(dDIV(C[2],t),-radius) + G1Pos1[2];
			contact->normal[0] = dDIV((contact->pos[0] - SpherePos[0]),(radius2 - contact->depth));
			contact->normal[1] = dDIV((contact->pos[1] - SpherePos[1]),(radius2 - contact->depth));
			contact->normal[2] = dDIV((contact->pos[2] - SpherePos[2]),(radius2 - contact->depth));
			contact->g1 = Cylinder;
			contact->g2 = Sphere;
			GeomCount++;
			return GeomCount;
		}
		else
		{
			// now s is bigger than length here!
			contact->depth = radius2 - dSqrt( dMUL((s - length),(s - length)) + dMUL((t - radius),(t - radius)) );
			if(contact->depth < 0)
			{
				// no collision!
				return 0;
			}
			contact->pos[0] = dMUL(dDIV(C[0],t),-radius) + G1Pos2[0];
			contact->pos[1] = dMUL(dDIV(C[1],t),-radius) + G1Pos2[1];
			contact->pos[2] = dMUL(dDIV(C[2],t),-radius) + G1Pos2[2];
			contact->normal[0] = dDIV((contact->pos[0] - SpherePos[0]),(radius2 - contact->depth));
			contact->normal[1] = dDIV((contact->pos[1] - SpherePos[1]),(radius2 - contact->depth));
			contact->normal[2] = dDIV((contact->pos[2] - SpherePos[2]),(radius2 - contact->depth));
			contact->g1 = Cylinder;
			contact->g2 = Sphere;
			GeomCount++;
			return GeomCount;
		}
	}
	else if( (radius - t) <= s && (radius - t) <= (length - s) )
	{
		// 1. collsision
		if(t > (radius2 + toleranz))
		{
			// cylinder-axis is outside the sphere
			contact->depth = (radius2 + radius) - t;
			if(contact->depth < 0)
			{
				// should never happen, but just for safeness
				return 0;
			}
			else
			{
				C[0] = dDIV(C[0],t);
				C[1] = dDIV(C[1],t);
				C[2] = dDIV(C[2],t);
				contact->pos[0] = dMUL(C[0],radius2) + SpherePos[0];
				contact->pos[1] = dMUL(C[1],radius2) + SpherePos[1];
				contact->pos[2] = dMUL(C[2],radius2) + SpherePos[2];
				contact->normal[0] = C[0];
				contact->normal[1] = C[1];
				contact->normal[2] = C[2];
				contact->g1 = Cylinder;
				contact->g2 = Sphere;
				GeomCount++;
				return GeomCount;
			}
		}
		else
		{
			// cylinder-axis is outside of the sphere
			contact->depth = (radius2 + radius) - t;
			if(contact->depth < 0)
			{
				// should never happen, but just for safeness
				return 0;
			}
			else
			{
				contact->pos[0] = C[0] + SpherePos[0];
				contact->pos[1] = C[1] + SpherePos[1];
				contact->pos[2] = C[2] + SpherePos[2];
				contact->normal[0] = dDIV(C[0],t);
				contact->normal[1] = dDIV(C[1],t);
				contact->normal[2] = dDIV(C[2],t);
				contact->g1 = Cylinder;
				contact->g2 = Sphere;
				GeomCount++;
				return GeomCount;
			}
		}
	}
	else
	{
		// 2. collision
		if(s <= dMUL(length,REAL(0.5)) )
		{
			// collsision with the first disc
			contact->depth = s + radius2;
			if(contact->depth < 0)
			{
				// should never happen, but just for safeness
				return 0;
			}
			contact->pos[0] = dMUL(radius2,vDir1[0]) + SpherePos[0];
			contact->pos[1] = dMUL(radius2,vDir1[1]) + SpherePos[1];
			contact->pos[2] = dMUL(radius2,vDir1[2]) + SpherePos[2];
			contact->normal[0] = vDir1[0];
			contact->normal[1] = vDir1[1];
			contact->normal[2] = vDir1[2];
			contact->g1 = Cylinder;
			contact->g2 = Sphere;
			GeomCount++;
			return GeomCount;
		}
		else
		{
			// collsision with the second disc
			contact->depth = (radius2 + length - s);
			if(contact->depth < 0)
			{
				// should never happen, but just for safeness
				return 0;
			}
			contact->pos[0] = dMUL(radius2,-vDir1[0]) + SpherePos[0];
			contact->pos[1] = dMUL(radius2,-vDir1[1]) + SpherePos[1];
			contact->pos[2] = dMUL(radius2,-vDir1[2]) + SpherePos[2];
			contact->normal[0] = -vDir1[0];
			contact->normal[1] = -vDir1[1];
			contact->normal[2] = -vDir1[2];
			contact->g1 = Cylinder;
			contact->g2 = Sphere;
			GeomCount++;
			return GeomCount;
		}
	}
}