diff -r 000000000000 -r 2f259fa3e83a ode/src/rotation.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ode/src/rotation.cpp Tue Feb 02 01:00:49 2010 +0200 @@ -0,0 +1,308 @@ +/************************************************************************* + * * + * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * + * All rights reserved. Email: russ@q12.org Web: www.q12.org * + * * + * This library is free software; you can redistribute it and/or * + * modify it under the terms of EITHER: * + * (1) The GNU Lesser General Public License as published by the Free * + * Software Foundation; either version 2.1 of the License, or (at * + * your option) any later version. The text of the GNU Lesser * + * General Public License is included with this library in the * + * file LICENSE.TXT. * + * (2) The BSD-style license that is included with this library in * + * the file LICENSE-BSD.TXT. * + * * + * This library is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * + * LICENSE.TXT and LICENSE-BSD.TXT for more details. * + * * + *************************************************************************/ + +/* + +quaternions have the format: (s,vx,vy,vz) where (vx,vy,vz) is the +"rotation axis" and s is the "rotation angle". + +*/ + +#include +#include + +#include + + +#define _R(i,j) R[(i)*4+(j)] + +#define SET_3x3_IDENTITY \ + _R(0,0) = REAL(1.0); \ + _R(0,1) = REAL(0.0); \ + _R(0,2) = REAL(0.0); \ + _R(0,3) = REAL(0.0); \ + _R(1,0) = REAL(0.0); \ + _R(1,1) = REAL(1.0); \ + _R(1,2) = REAL(0.0); \ + _R(1,3) = REAL(0.0); \ + _R(2,0) = REAL(0.0); \ + _R(2,1) = REAL(0.0); \ + _R(2,2) = REAL(1.0); \ + _R(2,3) = REAL(0.0); + + +EXPORT_C void dRSetIdentity (dMatrix3 R) +{ + SET_3x3_IDENTITY; +} + + +EXPORT_C void dRFromAxisAndAngle (dMatrix3 R, dReal ax, dReal ay, dReal az, + dReal angle) +{ + dQuaternion q; + dQFromAxisAndAngle (q,ax,ay,az,angle); + dQtoR (q,R); +} + + +EXPORT_C void dRFromEulerAngles (dMatrix3 R, dReal phi, dReal theta, dReal psi) +{ + dReal sphi,cphi,stheta,ctheta,spsi,cpsi; + + sphi = dSin(phi); + cphi = dCos(phi); + stheta = dSin(theta); + ctheta = dCos(theta); + spsi = dSin(psi); + cpsi = dCos(psi); + _R(0,0) = dMUL(cpsi,ctheta); + _R(0,1) = dMUL(spsi,ctheta); + _R(0,2) =-stheta; + _R(0,3) = REAL(0.0); + _R(1,0) = dMUL(cpsi,dMUL(stheta,sphi)) - dMUL(spsi,cphi); + _R(1,1) = dMUL(spsi,dMUL(stheta,sphi)) + dMUL(cpsi,cphi); + _R(1,2) = dMUL(ctheta,sphi); + _R(1,3) = REAL(0.0); + _R(2,0) = dMUL(cpsi,dMUL(stheta,cphi)) + dMUL(spsi,sphi); + _R(2,1) = dMUL(spsi,dMUL(stheta,cphi)) - dMUL(cpsi,sphi); + _R(2,2) = dMUL(ctheta,cphi); + _R(2,3) = REAL(0.0); +} + + +EXPORT_C void dRFrom2Axes (dMatrix3 R, dReal ax, dReal ay, dReal az, + dReal bx, dReal by, dReal bz) +{ + dReal l,k; + + l = dSqrt (dMUL(ax,ax) + dMUL(ay,ay) + dMUL(az,az)); + if (l <= REAL(0.0)) { + return; + } + l = dRecip(l); + ax = dMUL(ax,l); + ay = dMUL(ay,l); + az = dMUL(az,l); + k = dMUL(ax,bx) + dMUL(ay,by) + dMUL(az,bz); + bx -= dMUL(k,ax); + by -= dMUL(k,ay); + bz -= dMUL(k,az); + l = dSqrt (dMUL(bx,bx) + dMUL(by,by) + dMUL(bz,bz)); + if (l <= REAL(0.0)) { + return; + } + l = dRecip(l); + bx = dMUL(bx,l); + by = dMUL(by,l); + bz = dMUL(bz,l); + _R(0,0) = ax; + _R(1,0) = ay; + _R(2,0) = az; + _R(0,1) = bx; + _R(1,1) = by; + _R(2,1) = bz; + _R(0,2) = - dMUL(by,az) + dMUL(ay,bz); + _R(1,2) = - dMUL(bz,ax) + dMUL(az,bx); + _R(2,2) = - dMUL(bx,ay) + dMUL(ax,by); + _R(0,3) = REAL(0.0); + _R(1,3) = REAL(0.0); + _R(2,3) = REAL(0.0); +} + + +EXPORT_C void dRFromZAxis (dMatrix3 R, dReal ax, dReal ay, dReal az) +{ + dVector3 n,p,q; + n[0] = ax; + n[1] = ay; + n[2] = az; + dNormalize3 (n); + dPlaneSpace (n,p,q); + _R(0,0) = p[0]; + _R(1,0) = p[1]; + _R(2,0) = p[2]; + _R(0,1) = q[0]; + _R(1,1) = q[1]; + _R(2,1) = q[2]; + _R(0,2) = n[0]; + _R(1,2) = n[1]; + _R(2,2) = n[2]; + _R(0,3) = REAL(0.0); + _R(1,3) = REAL(0.0); + _R(2,3) = REAL(0.0); +} + + +EXPORT_C void dQSetIdentity (dQuaternion q) +{ + q[0] = REAL(1.0); + q[1] = 0; + q[2] = 0; + q[3] = 0; +} + + +EXPORT_C void dQFromAxisAndAngle (dQuaternion q, dReal ax, dReal ay, dReal az, + dReal angle) +{ + dReal l = dMUL(ax,ax) + dMUL(ay,ay) + dMUL(az,az); + if (l > REAL(0.0)) { + angle = dMUL(angle,REAL(0.5)); + q[0] = dCos (angle); + l = dMUL(dReal(dSin(angle)),dRecipSqrt(l)); + q[1] = dMUL(ax,l); + q[2] = dMUL(ay,l); + q[3] = dMUL(az,l); + } + else { + q[0] = REAL(1.0); + q[1] = 0; + q[2] = 0; + q[3] = 0; + } +} + + +EXPORT_C void dQMultiply0 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) +{ + qa[0] = dMUL(qb[0],qc[0]) - dMUL(qb[1],qc[1]) - dMUL(qb[2],qc[2]) - dMUL(qb[3],qc[3]); + qa[1] = dMUL(qb[0],qc[1]) + dMUL(qb[1],qc[0]) + dMUL(qb[2],qc[3]) - dMUL(qb[3],qc[2]); + qa[2] = dMUL(qb[0],qc[2]) + dMUL(qb[2],qc[0]) + dMUL(qb[3],qc[1]) - dMUL(qb[1],qc[3]); + qa[3] = dMUL(qb[0],qc[3]) + dMUL(qb[3],qc[0]) + dMUL(qb[1],qc[2]) - dMUL(qb[2],qc[1]); +} + + +EXPORT_C void dQMultiply1 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) +{ + qa[0] = dMUL(qb[0],qc[0]) + dMUL(qb[1],qc[1]) + dMUL(qb[2],qc[2]) + dMUL(qb[3],qc[3]); + qa[1] = dMUL(qb[0],qc[1]) - dMUL(qb[1],qc[0]) - dMUL(qb[2],qc[3]) + dMUL(qb[3],qc[2]); + qa[2] = dMUL(qb[0],qc[2]) - dMUL(qb[2],qc[0]) - dMUL(qb[3],qc[1]) + dMUL(qb[1],qc[3]); + qa[3] = dMUL(qb[0],qc[3]) - dMUL(qb[3],qc[0]) - dMUL(qb[1],qc[2]) + dMUL(qb[2],qc[1]); +} + + +EXPORT_C void dQMultiply2 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) +{ + qa[0] = dMUL(qb[0],qc[0]) + dMUL(qb[1],qc[1]) + dMUL(qb[2],qc[2]) + dMUL(qb[3],qc[3]); + qa[1] = -dMUL(qb[0],qc[1]) + dMUL(qb[1],qc[0]) - dMUL(qb[2],qc[3]) + dMUL(qb[3],qc[2]); + qa[2] = -dMUL(qb[0],qc[2]) + dMUL(qb[2],qc[0]) - dMUL(qb[3],qc[1]) + dMUL(qb[1],qc[3]); + qa[3] = -dMUL(qb[0],qc[3]) + dMUL(qb[3],qc[0]) - dMUL(qb[1],qc[2]) + dMUL(qb[2],qc[1]); +} + + +EXPORT_C void dQMultiply3 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) +{ + qa[0] = dMUL(qb[0],qc[0]) - dMUL(qb[1],qc[1]) - dMUL(qb[2],qc[2]) - dMUL(qb[3],qc[3]); + qa[1] = -dMUL(qb[0],qc[1]) - dMUL(qb[1],qc[0]) + dMUL(qb[2],qc[3]) - dMUL(qb[3],qc[2]); + qa[2] = -dMUL(qb[0],qc[2]) - dMUL(qb[2],qc[0]) + dMUL(qb[3],qc[1]) - dMUL(qb[1],qc[3]); + qa[3] = -dMUL(qb[0],qc[3]) - dMUL(qb[3],qc[0]) + dMUL(qb[1],qc[2]) - dMUL(qb[2],qc[1]); +} + + +// dRfromQ(), dQfromR() and dDQfromW() are derived from equations in "An Introduction +// to Physically Based Modeling: Rigid Body Simulation - 1: Unconstrained +// Rigid Body Dynamics" by David Baraff, Robotics Institute, Carnegie Mellon +// University, 1997. + +EXPORT_C void dRfromQ (dMatrix3 R, const dQuaternion q) +{ + + // q = (s,vx,vy,vz) + dReal qq1 = 2*dMUL(q[1],q[1]); + dReal qq2 = 2*dMUL(q[2],q[2]); + dReal qq3 = 2*dMUL(q[3],q[3]); + _R(0,0) = REAL(1.0) - qq2 - qq3; + _R(0,1) = 2*(dMUL(q[1],q[2]) - dMUL(q[0],q[3])); + _R(0,2) = 2*(dMUL(q[1],q[3]) + dMUL(q[0],q[2])); + _R(0,3) = REAL(0.0); + _R(1,0) = 2*(dMUL(q[1],q[2]) + dMUL(q[0],q[3])); + _R(1,1) = REAL(1.0) - qq1 - qq3; + _R(1,2) = 2*(dMUL(q[2],q[3]) - dMUL(q[0],q[1])); + _R(1,3) = REAL(0.0); + _R(2,0) = 2*(dMUL(q[1],q[3]) - dMUL(q[0],q[2])); + _R(2,1) = 2*(dMUL(q[2],q[3]) + dMUL(q[0],q[1])); + _R(2,2) = REAL(1.0) - qq1 - qq2; + _R(2,3) = REAL(0.0); +} + + +EXPORT_C void dQfromR (dQuaternion q, const dMatrix3 R) +{ + + dReal tr,s; + tr = _R(0,0) + _R(1,1) + _R(2,2); + if (tr >= 0) { + s = dSqrt (tr + REAL(1.0)); + q[0] = dMUL(REAL(0.5),s); + s = dMUL(REAL(0.5),dRecip(s)); + q[1] = dMUL((_R(2,1) - _R(1,2)),s); + q[2] = dMUL((_R(0,2) - _R(2,0)),s); + q[3] = dMUL((_R(1,0) - _R(0,1)),s); + } + else { + // find the largest diagonal element and jump to the appropriate case + if (_R(1,1) > _R(0,0)) { + if (_R(2,2) > _R(1,1)) goto case_2; + goto case_1; + } + if (_R(2,2) > _R(0,0)) goto case_2; + goto case_0; + + case_0: + s = dSqrt((_R(0,0) - (_R(1,1) + _R(2,2))) + REAL(1.0)); + q[1] = dMUL(REAL(0.5),s); + s = dMUL(REAL(0.5),dRecip(s)); + q[2] = dMUL((_R(0,1) + _R(1,0)),s); + q[3] = dMUL((_R(2,0) + _R(0,2)),s); + q[0] = dMUL((_R(2,1) - _R(1,2)),s); + return; + + case_1: + s = dSqrt((_R(1,1) - (_R(2,2) + _R(0,0))) + REAL(1.0)); + q[2] = dMUL(REAL(0.5),s); + s = dMUL(REAL(0.5),dRecip(s)); + q[3] = dMUL((_R(1,2) + _R(2,1)),s); + q[1] = dMUL((_R(0,1) + _R(1,0)),s); + q[0] = dMUL((_R(0,2) - _R(2,0)),s); + return; + + case_2: + s = dSqrt((_R(2,2) - (_R(0,0) + _R(1,1))) + REAL(1.0)); + q[3] = dMUL(REAL(0.5),s); + s = dMUL(REAL(0.5),dRecip(s)); + q[1] = dMUL((_R(2,0) + _R(0,2)),s); + q[2] = dMUL((_R(1,2) + _R(2,1)),s); + q[0] = dMUL((_R(1,0) - _R(0,1)),s); + return; + } +} + + +EXPORT_C void dDQfromW (dReal dq[4], const dVector3 w, const dQuaternion q) +{ + + dq[0] = dMUL(REAL(0.5),(- dMUL(w[0],q[1]) - dMUL(w[1],q[2]) - dMUL(w[2],q[3]))); + dq[1] = dMUL(REAL(0.5),( dMUL(w[0],q[0]) + dMUL(w[1],q[3]) - dMUL(w[2],q[2]))); + dq[2] = dMUL(REAL(0.5),(- dMUL(w[0],q[3]) + dMUL(w[1],q[0]) + dMUL(w[2],q[1]))); + dq[3] = dMUL(REAL(0.5),( dMUL(w[0],q[2]) - dMUL(w[1],q[1]) + dMUL(w[2],q[0]))); +}