gst_plugins_good/gst/audiofx/audiocheblimit.c
changeset 26 69c7080681bf
parent 24 bc39b352897e
child 28 4ed5253bb6ba
--- a/gst_plugins_good/gst/audiofx/audiocheblimit.c	Fri Jul 09 16:26:45 2010 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,568 +0,0 @@
-/* 
- * GStreamer
- * Copyright (C) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 02111-1307, USA.
- */
-
-/* 
- * Chebyshev type 1 filter design based on
- * "The Scientist and Engineer's Guide to DSP", Chapter 20.
- * http://www.dspguide.com/
- *
- * For type 2 and Chebyshev filters in general read
- * http://en.wikipedia.org/wiki/Chebyshev_filter
- *
- */
-
-/**
- * SECTION:element-audiocheblimit
- *
- * Attenuates all frequencies above the cutoff frequency (low-pass) or all frequencies below the
- * cutoff frequency (high-pass). The number of poles and the ripple parameter control the rolloff.
- *
- * This element has the advantage over the windowed sinc lowpass and highpass filter that it is
- * much faster and produces almost as good results. It's only disadvantages are the highly
- * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel.
- *
- * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e.
- * some frequencies in the passband will be amplified by that value. A higher ripple value will allow
- * a faster rolloff.
- *
- * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will
- * be at most this value. A lower ripple value will allow a faster rolloff.
- *
- * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter.
- * </para>
- * <note><para>
- * Be warned that a too large number of poles can produce noise. The most poles are possible with
- * a cutoff frequency at a quarter of the sampling rate.
- * </para></note>
- * <para>
- * <refsect2>
- * <title>Example launch line</title>
- * |[
- * gst-launch audiotestsrc freq=1500 ! audioconvert ! audiocheblimit mode=low-pass cutoff=1000 poles=4 ! audioconvert ! alsasink
- * gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiocheblimit mode=high-pass cutoff=400 ripple=0.2 ! audioconvert ! alsasink
- * gst-launch audiotestsrc wave=white-noise ! audioconvert ! audiocheblimit mode=low-pass cutoff=800 type=2 ! audioconvert ! alsasink
- * ]|
- * </refsect2>
- */
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <gst/gst.h>
-#include <gst/base/gstbasetransform.h>
-#include <gst/audio/audio.h>
-#include <gst/audio/gstaudiofilter.h>
-#include <gst/controller/gstcontroller.h>
-
-#include <math.h>
-
-#include "math_compat.h"
-
-#include "audiocheblimit.h"
-
-#define GST_CAT_DEFAULT gst_audio_cheb_limit_debug
-GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT);
-
-enum
-{
-  PROP_0,
-  PROP_MODE,
-  PROP_TYPE,
-  PROP_CUTOFF,
-  PROP_RIPPLE,
-  PROP_POLES
-};
-
-#define DEBUG_INIT(bla) \
-  GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_limit_debug, "audiocheblimit", 0, "audiocheblimit element");
-
-GST_BOILERPLATE_FULL (GstAudioChebLimit,
-    gst_audio_cheb_limit, GstAudioFXBaseIIRFilter,
-    GST_TYPE_AUDIO_FX_BASE_IIR_FILTER, DEBUG_INIT);
-
-static void gst_audio_cheb_limit_set_property (GObject * object,
-    guint prop_id, const GValue * value, GParamSpec * pspec);
-static void gst_audio_cheb_limit_get_property (GObject * object,
-    guint prop_id, GValue * value, GParamSpec * pspec);
-static void gst_audio_cheb_limit_finalize (GObject * object);
-
-static gboolean gst_audio_cheb_limit_setup (GstAudioFilter * filter,
-    GstRingBufferSpec * format);
-
-enum
-{
-  MODE_LOW_PASS = 0,
-  MODE_HIGH_PASS
-};
-
-#define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE (gst_audio_cheb_limit_mode_get_type ())
-static GType
-gst_audio_cheb_limit_mode_get_type (void)
-{
-  static GType gtype = 0;
-
-  if (gtype == 0) {
-    static const GEnumValue values[] = {
-      {MODE_LOW_PASS, "Low pass (default)",
-          "low-pass"},
-      {MODE_HIGH_PASS, "High pass",
-          "high-pass"},
-      {0, NULL, NULL}
-    };
-
-    gtype = g_enum_register_static ("GstAudioChebLimitMode", values);
-  }
-  return gtype;
-}
-
-/* GObject vmethod implementations */
-
-static void
-gst_audio_cheb_limit_base_init (gpointer klass)
-{
-  GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
-
-  gst_element_class_set_details_simple (element_class,
-      "Low pass & high pass filter",
-      "Filter/Effect/Audio",
-      "Chebyshev low pass and high pass filter",
-      "Sebastian Dröge <sebastian.droege@collabora.co.uk>");
-}
-
-static void
-gst_audio_cheb_limit_class_init (GstAudioChebLimitClass * klass)
-{
-  GObjectClass *gobject_class = (GObjectClass *) klass;
-  GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass;
-
-  gobject_class->set_property = gst_audio_cheb_limit_set_property;
-  gobject_class->get_property = gst_audio_cheb_limit_get_property;
-  gobject_class->finalize = gst_audio_cheb_limit_finalize;
-
-  g_object_class_install_property (gobject_class, PROP_MODE,
-      g_param_spec_enum ("mode", "Mode",
-          "Low pass or high pass mode",
-          GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE, MODE_LOW_PASS,
-          G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
-  g_object_class_install_property (gobject_class, PROP_TYPE,
-      g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1,
-          G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
-
-  /* FIXME: Don't use the complete possible range but restrict the upper boundary
-   * so automatically generated UIs can use a slider without */
-  g_object_class_install_property (gobject_class, PROP_CUTOFF,
-      g_param_spec_float ("cutoff", "Cutoff", "Cut off frequency (Hz)", 0.0,
-          100000.0, 0.0,
-          G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
-  g_object_class_install_property (gobject_class, PROP_RIPPLE,
-      g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0,
-          200.0, 0.25,
-          G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
-
-  /* FIXME: What to do about this upper boundary? With a cutoff frequency of
-   * rate/4 32 poles are completely possible, with a cutoff frequency very low
-   * or very high 16 poles already produces only noise */
-  g_object_class_install_property (gobject_class, PROP_POLES,
-      g_param_spec_int ("poles", "Poles",
-          "Number of poles to use, will be rounded up to the next even number",
-          2, 32, 4,
-          G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
-
-  filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_limit_setup);
-}
-
-static void
-gst_audio_cheb_limit_init (GstAudioChebLimit * filter,
-    GstAudioChebLimitClass * klass)
-{
-  filter->cutoff = 0.0;
-  filter->mode = MODE_LOW_PASS;
-  filter->type = 1;
-  filter->poles = 4;
-  filter->ripple = 0.25;
-
-  filter->lock = g_mutex_new ();
-}
-
-static void
-generate_biquad_coefficients (GstAudioChebLimit * filter,
-    gint p, gdouble * a0, gdouble * a1, gdouble * a2,
-    gdouble * b1, gdouble * b2)
-{
-  gint np = filter->poles;
-  gdouble ripple = filter->ripple;
-
-  /* pole location in s-plane */
-  gdouble rp, ip;
-
-  /* zero location in s-plane */
-  gdouble iz = 0.0;
-
-  /* transfer function coefficients for the z-plane */
-  gdouble x0, x1, x2, y1, y2;
-  gint type = filter->type;
-
-  /* Calculate pole location for lowpass at frequency 1 */
-  {
-    gdouble angle = (M_PI / 2.0) * (2.0 * p - 1) / np;
-
-    rp = -sin (angle);
-    ip = cos (angle);
-  }
-
-  /* If we allow ripple, move the pole from the unit
-   * circle to an ellipse and keep cutoff at frequency 1 */
-  if (ripple > 0 && type == 1) {
-    gdouble es, vx;
-
-    es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
-
-    vx = (1.0 / np) * asinh (1.0 / es);
-    rp = rp * sinh (vx);
-    ip = ip * cosh (vx);
-  } else if (type == 2) {
-    gdouble es, vx;
-
-    es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
-    vx = (1.0 / np) * asinh (es);
-    rp = rp * sinh (vx);
-    ip = ip * cosh (vx);
-  }
-
-  /* Calculate inverse of the pole location to convert from
-   * type I to type II */
-  if (type == 2) {
-    gdouble mag2 = rp * rp + ip * ip;
-
-    rp /= mag2;
-    ip /= mag2;
-  }
-
-  /* Calculate zero location for frequency 1 on the
-   * unit circle for type 2 */
-  if (type == 2) {
-    gdouble angle = M_PI / (np * 2.0) + ((p - 1) * M_PI) / (np);
-    gdouble mag2;
-
-    iz = cos (angle);
-    mag2 = iz * iz;
-    iz /= mag2;
-  }
-
-  /* Convert from s-domain to z-domain by
-   * using the bilinear Z-transform, i.e.
-   * substitute s by (2/t)*((z-1)/(z+1))
-   * with t = 2 * tan(0.5).
-   */
-  if (type == 1) {
-    gdouble t, m, d;
-
-    t = 2.0 * tan (0.5);
-    m = rp * rp + ip * ip;
-    d = 4.0 - 4.0 * rp * t + m * t * t;
-
-    x0 = (t * t) / d;
-    x1 = 2.0 * x0;
-    x2 = x0;
-    y1 = (8.0 - 2.0 * m * t * t) / d;
-    y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
-  } else {
-    gdouble t, m, d;
-
-    t = 2.0 * tan (0.5);
-    m = rp * rp + ip * ip;
-    d = 4.0 - 4.0 * rp * t + m * t * t;
-
-    x0 = (t * t * iz * iz + 4.0) / d;
-    x1 = (-8.0 + 2.0 * iz * iz * t * t) / d;
-    x2 = x0;
-    y1 = (8.0 - 2.0 * m * t * t) / d;
-    y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
-  }
-
-  /* Convert from lowpass at frequency 1 to either lowpass
-   * or highpass.
-   *
-   * For lowpass substitute z^(-1) with:
-   *  -1
-   * z   - k
-   * ------------
-   *          -1
-   * 1 - k * z
-   *
-   * k = sin((1-w)/2) / sin((1+w)/2)
-   *
-   * For highpass substitute z^(-1) with:
-   *
-   *   -1
-   * -z   - k
-   * ------------
-   *          -1
-   * 1 + k * z
-   *
-   * k = -cos((1+w)/2) / cos((1-w)/2)
-   *
-   */
-  {
-    gdouble k, d;
-    gdouble omega =
-        2.0 * M_PI * (filter->cutoff / GST_AUDIO_FILTER (filter)->format.rate);
-
-    if (filter->mode == MODE_LOW_PASS)
-      k = sin ((1.0 - omega) / 2.0) / sin ((1.0 + omega) / 2.0);
-    else
-      k = -cos ((omega + 1.0) / 2.0) / cos ((omega - 1.0) / 2.0);
-
-    d = 1.0 + y1 * k - y2 * k * k;
-    *a0 = (x0 + k * (-x1 + k * x2)) / d;
-    *a1 = (x1 + k * k * x1 - 2.0 * k * (x0 + x2)) / d;
-    *a2 = (x0 * k * k - x1 * k + x2) / d;
-    *b1 = (2.0 * k + y1 + y1 * k * k - 2.0 * y2 * k) / d;
-    *b2 = (-k * k - y1 * k + y2) / d;
-
-    if (filter->mode == MODE_HIGH_PASS) {
-      *a1 = -*a1;
-      *b1 = -*b1;
-    }
-  }
-}
-
-static void
-generate_coefficients (GstAudioChebLimit * filter)
-{
-  if (GST_AUDIO_FILTER (filter)->format.rate == 0) {
-    gdouble *a = g_new0 (gdouble, 1);
-
-    a[0] = 1.0;
-    gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
-        (filter), a, 1, NULL, 0);
-
-    GST_LOG_OBJECT (filter, "rate was not set yet");
-    return;
-  }
-
-  if (filter->cutoff >= GST_AUDIO_FILTER (filter)->format.rate / 2.0) {
-    gdouble *a = g_new0 (gdouble, 1);
-
-    a[0] = (filter->mode == MODE_LOW_PASS) ? 1.0 : 0.0;
-    gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
-        (filter), a, 1, NULL, 0);
-    GST_LOG_OBJECT (filter, "cutoff was higher than nyquist frequency");
-    return;
-  } else if (filter->cutoff <= 0.0) {
-    gdouble *a = g_new0 (gdouble, 1);
-
-    a[0] = (filter->mode == MODE_LOW_PASS) ? 0.0 : 1.0;
-    gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
-        (filter), a, 1, NULL, 0);
-    GST_LOG_OBJECT (filter, "cutoff is lower than zero");
-    return;
-  }
-
-  /* Calculate coefficients for the chebyshev filter */
-  {
-    gint np = filter->poles;
-    gdouble *a, *b;
-    gint i, p;
-
-    a = g_new0 (gdouble, np + 3);
-    b = g_new0 (gdouble, np + 3);
-
-    /* Calculate transfer function coefficients */
-    a[2] = 1.0;
-    b[2] = 1.0;
-
-    for (p = 1; p <= np / 2; p++) {
-      gdouble a0, a1, a2, b1, b2;
-      gdouble *ta = g_new0 (gdouble, np + 3);
-      gdouble *tb = g_new0 (gdouble, np + 3);
-
-      generate_biquad_coefficients (filter, p, &a0, &a1, &a2, &b1, &b2);
-
-      memcpy (ta, a, sizeof (gdouble) * (np + 3));
-      memcpy (tb, b, sizeof (gdouble) * (np + 3));
-
-      /* add the new coefficients for the new two poles
-       * to the cascade by multiplication of the transfer
-       * functions */
-      for (i = 2; i < np + 3; i++) {
-        a[i] = a0 * ta[i] + a1 * ta[i - 1] + a2 * ta[i - 2];
-        b[i] = tb[i] - b1 * tb[i - 1] - b2 * tb[i - 2];
-      }
-      g_free (ta);
-      g_free (tb);
-    }
-
-    /* Move coefficients to the beginning of the array
-     * and multiply the b coefficients with -1 to move from
-     * the transfer function's coefficients to the difference
-     * equation's coefficients */
-    b[2] = 0.0;
-    for (i = 0; i <= np; i++) {
-      a[i] = a[i + 2];
-      b[i] = -b[i + 2];
-    }
-
-    /* Normalize to unity gain at frequency 0 for lowpass
-     * and frequency 0.5 for highpass */
-    {
-      gdouble gain;
-
-      if (filter->mode == MODE_LOW_PASS)
-        gain =
-            gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
-            1.0, 0.0);
-      else
-        gain =
-            gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
-            -1.0, 0.0);
-
-      for (i = 0; i <= np; i++) {
-        a[i] /= gain;
-      }
-    }
-
-    gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
-        (filter), a, np + 1, b, np + 1);
-
-    GST_LOG_OBJECT (filter,
-        "Generated IIR coefficients for the Chebyshev filter");
-    GST_LOG_OBJECT (filter,
-        "mode: %s, type: %d, poles: %d, cutoff: %.2f Hz, ripple: %.2f dB",
-        (filter->mode == MODE_LOW_PASS) ? "low-pass" : "high-pass",
-        filter->type, filter->poles, filter->cutoff, filter->ripple);
-    GST_LOG_OBJECT (filter, "%.2f dB gain @ 0 Hz",
-        20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
-                np + 1, 1.0, 0.0)));
-
-#ifndef GST_DISABLE_GST_DEBUG
-    {
-      gdouble wc =
-          2.0 * M_PI * (filter->cutoff /
-          GST_AUDIO_FILTER (filter)->format.rate);
-      gdouble zr = cos (wc), zi = sin (wc);
-
-      GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz",
-          20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
-                  b, np + 1, zr, zi)), (int) filter->cutoff);
-    }
-#endif
-
-    GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz",
-        20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
-                np + 1, -1.0, 0.0)),
-        GST_AUDIO_FILTER (filter)->format.rate / 2);
-  }
-}
-
-static void
-gst_audio_cheb_limit_finalize (GObject * object)
-{
-  GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
-
-  g_mutex_free (filter->lock);
-  filter->lock = NULL;
-
-  G_OBJECT_CLASS (parent_class)->finalize (object);
-}
-
-static void
-gst_audio_cheb_limit_set_property (GObject * object, guint prop_id,
-    const GValue * value, GParamSpec * pspec)
-{
-  GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
-
-  switch (prop_id) {
-    case PROP_MODE:
-      g_mutex_lock (filter->lock);
-      filter->mode = g_value_get_enum (value);
-      generate_coefficients (filter);
-      g_mutex_unlock (filter->lock);
-      break;
-    case PROP_TYPE:
-      g_mutex_lock (filter->lock);
-      filter->type = g_value_get_int (value);
-      generate_coefficients (filter);
-      g_mutex_unlock (filter->lock);
-      break;
-    case PROP_CUTOFF:
-      g_mutex_lock (filter->lock);
-      filter->cutoff = g_value_get_float (value);
-      generate_coefficients (filter);
-      g_mutex_unlock (filter->lock);
-      break;
-    case PROP_RIPPLE:
-      g_mutex_lock (filter->lock);
-      filter->ripple = g_value_get_float (value);
-      generate_coefficients (filter);
-      g_mutex_unlock (filter->lock);
-      break;
-    case PROP_POLES:
-      g_mutex_lock (filter->lock);
-      filter->poles = GST_ROUND_UP_2 (g_value_get_int (value));
-      generate_coefficients (filter);
-      g_mutex_unlock (filter->lock);
-      break;
-    default:
-      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
-      break;
-  }
-}
-
-static void
-gst_audio_cheb_limit_get_property (GObject * object, guint prop_id,
-    GValue * value, GParamSpec * pspec)
-{
-  GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
-
-  switch (prop_id) {
-    case PROP_MODE:
-      g_value_set_enum (value, filter->mode);
-      break;
-    case PROP_TYPE:
-      g_value_set_int (value, filter->type);
-      break;
-    case PROP_CUTOFF:
-      g_value_set_float (value, filter->cutoff);
-      break;
-    case PROP_RIPPLE:
-      g_value_set_float (value, filter->ripple);
-      break;
-    case PROP_POLES:
-      g_value_set_int (value, filter->poles);
-      break;
-    default:
-      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
-      break;
-  }
-}
-
-/* GstAudioFilter vmethod implementations */
-
-static gboolean
-gst_audio_cheb_limit_setup (GstAudioFilter * base, GstRingBufferSpec * format)
-{
-  GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (base);
-
-  generate_coefficients (filter);
-
-  return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, format);
-}