diff -r 71e347f905f2 -r 4a7fac7dd34a gst_plugins_good/gst/audiofx/audiocheblimit.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gst_plugins_good/gst/audiofx/audiocheblimit.c Fri Apr 16 15:15:52 2010 +0300 @@ -0,0 +1,568 @@ +/* + * GStreamer + * Copyright (C) 2007-2009 Sebastian Dröge + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 02111-1307, USA. + */ + +/* + * Chebyshev type 1 filter design based on + * "The Scientist and Engineer's Guide to DSP", Chapter 20. + * http://www.dspguide.com/ + * + * For type 2 and Chebyshev filters in general read + * http://en.wikipedia.org/wiki/Chebyshev_filter + * + */ + +/** + * SECTION:element-audiocheblimit + * + * Attenuates all frequencies above the cutoff frequency (low-pass) or all frequencies below the + * cutoff frequency (high-pass). The number of poles and the ripple parameter control the rolloff. + * + * This element has the advantage over the windowed sinc lowpass and highpass filter that it is + * much faster and produces almost as good results. It's only disadvantages are the highly + * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel. + * + * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e. + * some frequencies in the passband will be amplified by that value. A higher ripple value will allow + * a faster rolloff. + * + * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will + * be at most this value. A lower ripple value will allow a faster rolloff. + * + * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter. + * + * + * Be warned that a too large number of poles can produce noise. The most poles are possible with + * a cutoff frequency at a quarter of the sampling rate. + * + * + * + * Example launch line + * |[ + * gst-launch audiotestsrc freq=1500 ! audioconvert ! audiocheblimit mode=low-pass cutoff=1000 poles=4 ! audioconvert ! alsasink + * gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiocheblimit mode=high-pass cutoff=400 ripple=0.2 ! audioconvert ! alsasink + * gst-launch audiotestsrc wave=white-noise ! audioconvert ! audiocheblimit mode=low-pass cutoff=800 type=2 ! audioconvert ! alsasink + * ]| + * + */ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include +#include +#include +#include +#include + +#include + +#include "math_compat.h" + +#include "audiocheblimit.h" + +#define GST_CAT_DEFAULT gst_audio_cheb_limit_debug +GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT); + +enum +{ + PROP_0, + PROP_MODE, + PROP_TYPE, + PROP_CUTOFF, + PROP_RIPPLE, + PROP_POLES +}; + +#define DEBUG_INIT(bla) \ + GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_limit_debug, "audiocheblimit", 0, "audiocheblimit element"); + +GST_BOILERPLATE_FULL (GstAudioChebLimit, + gst_audio_cheb_limit, GstAudioFXBaseIIRFilter, + GST_TYPE_AUDIO_FX_BASE_IIR_FILTER, DEBUG_INIT); + +static void gst_audio_cheb_limit_set_property (GObject * object, + guint prop_id, const GValue * value, GParamSpec * pspec); +static void gst_audio_cheb_limit_get_property (GObject * object, + guint prop_id, GValue * value, GParamSpec * pspec); +static void gst_audio_cheb_limit_finalize (GObject * object); + +static gboolean gst_audio_cheb_limit_setup (GstAudioFilter * filter, + GstRingBufferSpec * format); + +enum +{ + MODE_LOW_PASS = 0, + MODE_HIGH_PASS +}; + +#define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE (gst_audio_cheb_limit_mode_get_type ()) +static GType +gst_audio_cheb_limit_mode_get_type (void) +{ + static GType gtype = 0; + + if (gtype == 0) { + static const GEnumValue values[] = { + {MODE_LOW_PASS, "Low pass (default)", + "low-pass"}, + {MODE_HIGH_PASS, "High pass", + "high-pass"}, + {0, NULL, NULL} + }; + + gtype = g_enum_register_static ("GstAudioChebLimitMode", values); + } + return gtype; +} + +/* GObject vmethod implementations */ + +static void +gst_audio_cheb_limit_base_init (gpointer klass) +{ + GstElementClass *element_class = GST_ELEMENT_CLASS (klass); + + gst_element_class_set_details_simple (element_class, + "Low pass & high pass filter", + "Filter/Effect/Audio", + "Chebyshev low pass and high pass filter", + "Sebastian Dröge "); +} + +static void +gst_audio_cheb_limit_class_init (GstAudioChebLimitClass * klass) +{ + GObjectClass *gobject_class = (GObjectClass *) klass; + GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass; + + gobject_class->set_property = gst_audio_cheb_limit_set_property; + gobject_class->get_property = gst_audio_cheb_limit_get_property; + gobject_class->finalize = gst_audio_cheb_limit_finalize; + + g_object_class_install_property (gobject_class, PROP_MODE, + g_param_spec_enum ("mode", "Mode", + "Low pass or high pass mode", + GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE, MODE_LOW_PASS, + G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); + g_object_class_install_property (gobject_class, PROP_TYPE, + g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1, + G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); + + /* FIXME: Don't use the complete possible range but restrict the upper boundary + * so automatically generated UIs can use a slider without */ + g_object_class_install_property (gobject_class, PROP_CUTOFF, + g_param_spec_float ("cutoff", "Cutoff", "Cut off frequency (Hz)", 0.0, + 100000.0, 0.0, + G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); + g_object_class_install_property (gobject_class, PROP_RIPPLE, + g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0, + 200.0, 0.25, + G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); + + /* FIXME: What to do about this upper boundary? With a cutoff frequency of + * rate/4 32 poles are completely possible, with a cutoff frequency very low + * or very high 16 poles already produces only noise */ + g_object_class_install_property (gobject_class, PROP_POLES, + g_param_spec_int ("poles", "Poles", + "Number of poles to use, will be rounded up to the next even number", + 2, 32, 4, + G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS)); + + filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_limit_setup); +} + +static void +gst_audio_cheb_limit_init (GstAudioChebLimit * filter, + GstAudioChebLimitClass * klass) +{ + filter->cutoff = 0.0; + filter->mode = MODE_LOW_PASS; + filter->type = 1; + filter->poles = 4; + filter->ripple = 0.25; + + filter->lock = g_mutex_new (); +} + +static void +generate_biquad_coefficients (GstAudioChebLimit * filter, + gint p, gdouble * a0, gdouble * a1, gdouble * a2, + gdouble * b1, gdouble * b2) +{ + gint np = filter->poles; + gdouble ripple = filter->ripple; + + /* pole location in s-plane */ + gdouble rp, ip; + + /* zero location in s-plane */ + gdouble iz = 0.0; + + /* transfer function coefficients for the z-plane */ + gdouble x0, x1, x2, y1, y2; + gint type = filter->type; + + /* Calculate pole location for lowpass at frequency 1 */ + { + gdouble angle = (M_PI / 2.0) * (2.0 * p - 1) / np; + + rp = -sin (angle); + ip = cos (angle); + } + + /* If we allow ripple, move the pole from the unit + * circle to an ellipse and keep cutoff at frequency 1 */ + if (ripple > 0 && type == 1) { + gdouble es, vx; + + es = sqrt (pow (10.0, ripple / 10.0) - 1.0); + + vx = (1.0 / np) * asinh (1.0 / es); + rp = rp * sinh (vx); + ip = ip * cosh (vx); + } else if (type == 2) { + gdouble es, vx; + + es = sqrt (pow (10.0, ripple / 10.0) - 1.0); + vx = (1.0 / np) * asinh (es); + rp = rp * sinh (vx); + ip = ip * cosh (vx); + } + + /* Calculate inverse of the pole location to convert from + * type I to type II */ + if (type == 2) { + gdouble mag2 = rp * rp + ip * ip; + + rp /= mag2; + ip /= mag2; + } + + /* Calculate zero location for frequency 1 on the + * unit circle for type 2 */ + if (type == 2) { + gdouble angle = M_PI / (np * 2.0) + ((p - 1) * M_PI) / (np); + gdouble mag2; + + iz = cos (angle); + mag2 = iz * iz; + iz /= mag2; + } + + /* Convert from s-domain to z-domain by + * using the bilinear Z-transform, i.e. + * substitute s by (2/t)*((z-1)/(z+1)) + * with t = 2 * tan(0.5). + */ + if (type == 1) { + gdouble t, m, d; + + t = 2.0 * tan (0.5); + m = rp * rp + ip * ip; + d = 4.0 - 4.0 * rp * t + m * t * t; + + x0 = (t * t) / d; + x1 = 2.0 * x0; + x2 = x0; + y1 = (8.0 - 2.0 * m * t * t) / d; + y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d; + } else { + gdouble t, m, d; + + t = 2.0 * tan (0.5); + m = rp * rp + ip * ip; + d = 4.0 - 4.0 * rp * t + m * t * t; + + x0 = (t * t * iz * iz + 4.0) / d; + x1 = (-8.0 + 2.0 * iz * iz * t * t) / d; + x2 = x0; + y1 = (8.0 - 2.0 * m * t * t) / d; + y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d; + } + + /* Convert from lowpass at frequency 1 to either lowpass + * or highpass. + * + * For lowpass substitute z^(-1) with: + * -1 + * z - k + * ------------ + * -1 + * 1 - k * z + * + * k = sin((1-w)/2) / sin((1+w)/2) + * + * For highpass substitute z^(-1) with: + * + * -1 + * -z - k + * ------------ + * -1 + * 1 + k * z + * + * k = -cos((1+w)/2) / cos((1-w)/2) + * + */ + { + gdouble k, d; + gdouble omega = + 2.0 * M_PI * (filter->cutoff / GST_AUDIO_FILTER (filter)->format.rate); + + if (filter->mode == MODE_LOW_PASS) + k = sin ((1.0 - omega) / 2.0) / sin ((1.0 + omega) / 2.0); + else + k = -cos ((omega + 1.0) / 2.0) / cos ((omega - 1.0) / 2.0); + + d = 1.0 + y1 * k - y2 * k * k; + *a0 = (x0 + k * (-x1 + k * x2)) / d; + *a1 = (x1 + k * k * x1 - 2.0 * k * (x0 + x2)) / d; + *a2 = (x0 * k * k - x1 * k + x2) / d; + *b1 = (2.0 * k + y1 + y1 * k * k - 2.0 * y2 * k) / d; + *b2 = (-k * k - y1 * k + y2) / d; + + if (filter->mode == MODE_HIGH_PASS) { + *a1 = -*a1; + *b1 = -*b1; + } + } +} + +static void +generate_coefficients (GstAudioChebLimit * filter) +{ + if (GST_AUDIO_FILTER (filter)->format.rate == 0) { + gdouble *a = g_new0 (gdouble, 1); + + a[0] = 1.0; + gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER + (filter), a, 1, NULL, 0); + + GST_LOG_OBJECT (filter, "rate was not set yet"); + return; + } + + if (filter->cutoff >= GST_AUDIO_FILTER (filter)->format.rate / 2.0) { + gdouble *a = g_new0 (gdouble, 1); + + a[0] = (filter->mode == MODE_LOW_PASS) ? 1.0 : 0.0; + gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER + (filter), a, 1, NULL, 0); + GST_LOG_OBJECT (filter, "cutoff was higher than nyquist frequency"); + return; + } else if (filter->cutoff <= 0.0) { + gdouble *a = g_new0 (gdouble, 1); + + a[0] = (filter->mode == MODE_LOW_PASS) ? 0.0 : 1.0; + gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER + (filter), a, 1, NULL, 0); + GST_LOG_OBJECT (filter, "cutoff is lower than zero"); + return; + } + + /* Calculate coefficients for the chebyshev filter */ + { + gint np = filter->poles; + gdouble *a, *b; + gint i, p; + + a = g_new0 (gdouble, np + 3); + b = g_new0 (gdouble, np + 3); + + /* Calculate transfer function coefficients */ + a[2] = 1.0; + b[2] = 1.0; + + for (p = 1; p <= np / 2; p++) { + gdouble a0, a1, a2, b1, b2; + gdouble *ta = g_new0 (gdouble, np + 3); + gdouble *tb = g_new0 (gdouble, np + 3); + + generate_biquad_coefficients (filter, p, &a0, &a1, &a2, &b1, &b2); + + memcpy (ta, a, sizeof (gdouble) * (np + 3)); + memcpy (tb, b, sizeof (gdouble) * (np + 3)); + + /* add the new coefficients for the new two poles + * to the cascade by multiplication of the transfer + * functions */ + for (i = 2; i < np + 3; i++) { + a[i] = a0 * ta[i] + a1 * ta[i - 1] + a2 * ta[i - 2]; + b[i] = tb[i] - b1 * tb[i - 1] - b2 * tb[i - 2]; + } + g_free (ta); + g_free (tb); + } + + /* Move coefficients to the beginning of the array + * and multiply the b coefficients with -1 to move from + * the transfer function's coefficients to the difference + * equation's coefficients */ + b[2] = 0.0; + for (i = 0; i <= np; i++) { + a[i] = a[i + 2]; + b[i] = -b[i + 2]; + } + + /* Normalize to unity gain at frequency 0 for lowpass + * and frequency 0.5 for highpass */ + { + gdouble gain; + + if (filter->mode == MODE_LOW_PASS) + gain = + gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, + 1.0, 0.0); + else + gain = + gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, + -1.0, 0.0); + + for (i = 0; i <= np; i++) { + a[i] /= gain; + } + } + + gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER + (filter), a, np + 1, b, np + 1); + + GST_LOG_OBJECT (filter, + "Generated IIR coefficients for the Chebyshev filter"); + GST_LOG_OBJECT (filter, + "mode: %s, type: %d, poles: %d, cutoff: %.2f Hz, ripple: %.2f dB", + (filter->mode == MODE_LOW_PASS) ? "low-pass" : "high-pass", + filter->type, filter->poles, filter->cutoff, filter->ripple); + GST_LOG_OBJECT (filter, "%.2f dB gain @ 0 Hz", + 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, + np + 1, 1.0, 0.0))); + +#ifndef GST_DISABLE_GST_DEBUG + { + gdouble wc = + 2.0 * M_PI * (filter->cutoff / + GST_AUDIO_FILTER (filter)->format.rate); + gdouble zr = cos (wc), zi = sin (wc); + + GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz", + 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, + b, np + 1, zr, zi)), (int) filter->cutoff); + } +#endif + + GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz", + 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, + np + 1, -1.0, 0.0)), + GST_AUDIO_FILTER (filter)->format.rate / 2); + } +} + +static void +gst_audio_cheb_limit_finalize (GObject * object) +{ + GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object); + + g_mutex_free (filter->lock); + filter->lock = NULL; + + G_OBJECT_CLASS (parent_class)->finalize (object); +} + +static void +gst_audio_cheb_limit_set_property (GObject * object, guint prop_id, + const GValue * value, GParamSpec * pspec) +{ + GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object); + + switch (prop_id) { + case PROP_MODE: + g_mutex_lock (filter->lock); + filter->mode = g_value_get_enum (value); + generate_coefficients (filter); + g_mutex_unlock (filter->lock); + break; + case PROP_TYPE: + g_mutex_lock (filter->lock); + filter->type = g_value_get_int (value); + generate_coefficients (filter); + g_mutex_unlock (filter->lock); + break; + case PROP_CUTOFF: + g_mutex_lock (filter->lock); + filter->cutoff = g_value_get_float (value); + generate_coefficients (filter); + g_mutex_unlock (filter->lock); + break; + case PROP_RIPPLE: + g_mutex_lock (filter->lock); + filter->ripple = g_value_get_float (value); + generate_coefficients (filter); + g_mutex_unlock (filter->lock); + break; + case PROP_POLES: + g_mutex_lock (filter->lock); + filter->poles = GST_ROUND_UP_2 (g_value_get_int (value)); + generate_coefficients (filter); + g_mutex_unlock (filter->lock); + break; + default: + G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); + break; + } +} + +static void +gst_audio_cheb_limit_get_property (GObject * object, guint prop_id, + GValue * value, GParamSpec * pspec) +{ + GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object); + + switch (prop_id) { + case PROP_MODE: + g_value_set_enum (value, filter->mode); + break; + case PROP_TYPE: + g_value_set_int (value, filter->type); + break; + case PROP_CUTOFF: + g_value_set_float (value, filter->cutoff); + break; + case PROP_RIPPLE: + g_value_set_float (value, filter->ripple); + break; + case PROP_POLES: + g_value_set_int (value, filter->poles); + break; + default: + G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); + break; + } +} + +/* GstAudioFilter vmethod implementations */ + +static gboolean +gst_audio_cheb_limit_setup (GstAudioFilter * base, GstRingBufferSpec * format) +{ + GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (base); + + generate_coefficients (filter); + + return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, format); +}