diff -r 567bb019e3e3 -r 7e817e7e631c gst_plugins_base/gst/audioresample/resample_float.c --- a/gst_plugins_base/gst/audioresample/resample_float.c Tue Aug 31 15:30:33 2010 +0300 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1346 +0,0 @@ -/* Copyright (C) 2007-2008 Jean-Marc Valin - Copyright (C) 2008 Thorvald Natvig - - File: resample.c - Arbitrary resampling code - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions are - met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. The name of the author may not be used to endorse or promote products - derived from this software without specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, - INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - POSSIBILITY OF SUCH DAMAGE. -*/ - -/* - The design goals of this code are: - - Very fast algorithm - - SIMD-friendly algorithm - - Low memory requirement - - Good *perceptual* quality (and not best SNR) - - Warning: This resampler is relatively new. Although I think I got rid of - all the major bugs and I don't expect the API to change anymore, there - may be something I've missed. So use with caution. - - This algorithm is based on this original resampling algorithm: - Smith, Julius O. Digital Audio Resampling Home Page - Center for Computer Research in Music and Acoustics (CCRMA), - Stanford University, 2007. - Web published at http://www-ccrma.stanford.edu/~jos/resample/. - - There is one main difference, though. This resampler uses cubic - interpolation instead of linear interpolation in the above paper. This - makes the table much smaller and makes it possible to compute that table - on a per-stream basis. In turn, being able to tweak the table for each - stream makes it possible to both reduce complexity on simple ratios - (e.g. 2/3), and get rid of the rounding operations in the inner loop. - The latter both reduces CPU time and makes the algorithm more SIMD-friendly. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#ifdef OUTSIDE_SPEEX -#include - -#include -#include -#include - -#ifndef __SYMBIAN32__ -#define EXPORT EXPORT_C -#else -#define EXPORT G_GNUC_INTERNAL -#endif - -static inline void * -speex_alloc (int size) -{ - return g_malloc0 (size); -} - -static inline void * -speex_realloc (void *ptr, int size) -{ - return g_realloc (ptr, size); -} - -static inline void -speex_free (void *ptr) -{ - g_free (ptr); -} - -#include "speex_resampler.h" -#include "arch_float.h" -#else /* OUTSIDE_SPEEX */ - -#include "speex_resampler.h" -#include "arch.h" -//#include "os_support.h" -#endif /* OUTSIDE_SPEEX */ - -#include - -#ifndef M_PI -#define M_PI 3.14159263 -#endif - -#ifdef FIXED_POINT -#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x))) -#else -#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x)))) -#endif - -#define IMAX(a,b) ((a) > (b) ? (a) : (b)) -#define IMIN(a,b) ((a) < (b) ? (a) : (b)) - -#ifndef NULL -#define NULL 0 -#endif - -#ifdef _USE_SSE -#include "resample_sse.h" -#endif - -/* Numer of elements to allocate on the stack */ -#ifdef VAR_ARRAYS -#define FIXED_STACK_ALLOC 8192 -#else -#define FIXED_STACK_ALLOC 1024 -#endif - -typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t, - const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); - -struct SpeexResamplerState_ -{ - spx_uint32_t in_rate; - spx_uint32_t out_rate; - spx_uint32_t num_rate; - spx_uint32_t den_rate; - - int quality; - spx_uint32_t nb_channels; - spx_uint32_t filt_len; - spx_uint32_t mem_alloc_size; - spx_uint32_t buffer_size; - int int_advance; - int frac_advance; - float cutoff; - spx_uint32_t oversample; - int initialised; - int started; - - /* These are per-channel */ - spx_int32_t *last_sample; - spx_uint32_t *samp_frac_num; - spx_uint32_t *magic_samples; - - spx_word16_t *mem; - spx_word16_t *sinc_table; - spx_uint32_t sinc_table_length; - resampler_basic_func resampler_ptr; - - int in_stride; - int out_stride; -}; - -static double kaiser12_table[68] = { - 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076, - 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014, - 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601, - 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014, - 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490, - 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546, - 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178, - 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947, - 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058, - 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438, - 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734, - 0.00001000, 0.00000000 -}; - -/* -static double kaiser12_table[36] = { - 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741, - 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762, - 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274, - 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466, - 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291, - 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000}; -*/ -static double kaiser10_table[36] = { - 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446, - 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347, - 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962, - 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451, - 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739, - 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000 -}; - -static double kaiser8_table[36] = { - 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200, - 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126, - 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272, - 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758, - 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490, - 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000 -}; - -static double kaiser6_table[36] = { - 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003, - 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565, - 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561, - 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058, - 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600, - 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000 -}; - -struct FuncDef -{ - double *table; - int oversample; -}; - -static struct FuncDef _KAISER12 = { kaiser12_table, 64 }; - -#define KAISER12 (&_KAISER12) -/*static struct FuncDef _KAISER12 = {kaiser12_table, 32}; -#define KAISER12 (&_KAISER12)*/ -static struct FuncDef _KAISER10 = { kaiser10_table, 32 }; - -#define KAISER10 (&_KAISER10) -static struct FuncDef _KAISER8 = { kaiser8_table, 32 }; - -#define KAISER8 (&_KAISER8) -static struct FuncDef _KAISER6 = { kaiser6_table, 32 }; - -#define KAISER6 (&_KAISER6) - -struct QualityMapping -{ - int base_length; - int oversample; - float downsample_bandwidth; - float upsample_bandwidth; - struct FuncDef *window_func; -}; - - -/* This table maps conversion quality to internal parameters. There are two - reasons that explain why the up-sampling bandwidth is larger than the - down-sampling bandwidth: - 1) When up-sampling, we can assume that the spectrum is already attenuated - close to the Nyquist rate (from an A/D or a previous resampling filter) - 2) Any aliasing that occurs very close to the Nyquist rate will be masked - by the sinusoids/noise just below the Nyquist rate (guaranteed only for - up-sampling). -*/ -static const struct QualityMapping quality_map[11] = { - {8, 4, 0.830f, 0.860f, KAISER6}, /* Q0 */ - {16, 4, 0.850f, 0.880f, KAISER6}, /* Q1 */ - {32, 4, 0.882f, 0.910f, KAISER6}, /* Q2 *//* 82.3% cutoff ( ~60 dB stop) 6 */ - {48, 8, 0.895f, 0.917f, KAISER8}, /* Q3 *//* 84.9% cutoff ( ~80 dB stop) 8 */ - {64, 8, 0.921f, 0.940f, KAISER8}, /* Q4 *//* 88.7% cutoff ( ~80 dB stop) 8 */ - {80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 *//* 89.1% cutoff (~100 dB stop) 10 */ - {96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 *//* 91.5% cutoff (~100 dB stop) 10 */ - {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 *//* 93.1% cutoff (~100 dB stop) 10 */ - {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 *//* 94.5% cutoff (~100 dB stop) 10 */ - {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 *//* 95.5% cutoff (~100 dB stop) 10 */ - {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 *//* 96.6% cutoff (~100 dB stop) 10 */ -}; - -/*8,24,40,56,80,104,128,160,200,256,320*/ -#ifdef DOUBLE_PRECISION -static double -compute_func (double x, struct FuncDef *func) -{ - double y, frac; -#else -static double -compute_func (float x, struct FuncDef *func) -{ - float y, frac; -#endif - double interp[4]; - int ind; - y = x * func->oversample; - ind = (int) floor (y); - frac = (y - ind); - /* CSE with handle the repeated powers */ - interp[3] = -0.1666666667 * frac + 0.1666666667 * (frac * frac * frac); - interp[2] = frac + 0.5 * (frac * frac) - 0.5 * (frac * frac * frac); - /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */ - interp[0] = - -0.3333333333 * frac + 0.5 * (frac * frac) - - 0.1666666667 * (frac * frac * frac); - /* Just to make sure we don't have rounding problems */ - interp[1] = 1.f - interp[3] - interp[2] - interp[0]; - - /*sum = frac*accum[1] + (1-frac)*accum[2]; */ - return interp[0] * func->table[ind] + interp[1] * func->table[ind + 1] + - interp[2] * func->table[ind + 2] + interp[3] * func->table[ind + 3]; -} - -#if 0 -#include -int -main (int argc, char **argv) -{ - int i; - for (i = 0; i < 256; i++) { - printf ("%f\n", compute_func (i / 256., KAISER12)); - } - return 0; -} -#endif - -#ifdef FIXED_POINT -/* The slow way of computing a sinc for the table. Should improve that some day */ -static spx_word16_t -sinc (float cutoff, float x, int N, struct FuncDef *window_func) -{ - /*fprintf (stderr, "%f ", x); */ - float xx = x * cutoff; - if (fabs (x) < 1e-6f) - return WORD2INT (32768. * cutoff); - else if (fabs (x) > .5f * N) - return 0; - /*FIXME: Can it really be any slower than this? */ - return WORD2INT (32768. * cutoff * sin (M_PI * xx) / (M_PI * xx) * - compute_func (fabs (2. * x / N), window_func)); -} -#else -/* The slow way of computing a sinc for the table. Should improve that some day */ -#ifdef DOUBLE_PRECISION -static spx_word16_t -sinc (double cutoff, double x, int N, struct FuncDef *window_func) -{ - /*fprintf (stderr, "%f ", x); */ - double xx = x * cutoff; -#else -static spx_word16_t -sinc (float cutoff, float x, int N, struct FuncDef *window_func) -{ - /*fprintf (stderr, "%f ", x); */ - float xx = x * cutoff; -#endif - if (fabs (x) < 1e-6) - return cutoff; - else if (fabs (x) > .5 * N) - return 0; - /*FIXME: Can it really be any slower than this? */ - return cutoff * sin (M_PI * xx) / (M_PI * xx) * compute_func (fabs (2. * x / - N), window_func); -} -#endif - -#ifdef FIXED_POINT -static void -cubic_coef (spx_word16_t x, spx_word16_t interp[4]) -{ - /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation - but I know it's MMSE-optimal on a sinc */ - spx_word16_t x2, x3; - x2 = MULT16_16_P15 (x, x); - x3 = MULT16_16_P15 (x, x2); - interp[0] = - PSHR32 (MULT16_16 (QCONST16 (-0.16667f, 15), - x) + MULT16_16 (QCONST16 (0.16667f, 15), x3), 15); - interp[1] = - EXTRACT16 (EXTEND32 (x) + SHR32 (SUB32 (EXTEND32 (x2), EXTEND32 (x3)), - 1)); - interp[3] = - PSHR32 (MULT16_16 (QCONST16 (-0.33333f, 15), - x) + MULT16_16 (QCONST16 (.5f, 15), - x2) - MULT16_16 (QCONST16 (0.16667f, 15), x3), 15); - /* Just to make sure we don't have rounding problems */ - interp[2] = Q15_ONE - interp[0] - interp[1] - interp[3]; - if (interp[2] < 32767) - interp[2] += 1; -} -#else -static void -cubic_coef (spx_word16_t frac, spx_word16_t interp[4]) -{ - /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation - but I know it's MMSE-optimal on a sinc */ - interp[0] = -0.16667f * frac + 0.16667f * frac * frac * frac; - interp[1] = frac + 0.5f * frac * frac - 0.5f * frac * frac * frac; - /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */ - interp[3] = - -0.33333f * frac + 0.5f * frac * frac - 0.16667f * frac * frac * frac; - /* Just to make sure we don't have rounding problems */ - interp[2] = 1. - interp[0] - interp[1] - interp[3]; -} -#endif - -#ifndef DOUBLE_PRECISION -static int -resampler_basic_direct_single (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, - spx_word16_t * out, spx_uint32_t * out_len) -{ - const int N = st->filt_len; - int out_sample = 0; - int last_sample = st->last_sample[channel_index]; - spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; - const spx_word16_t *sinc_table = st->sinc_table; - const int out_stride = st->out_stride; - const int int_advance = st->int_advance; - const int frac_advance = st->frac_advance; - const spx_uint32_t den_rate = st->den_rate; - spx_word32_t sum; - int j; - - while (!(last_sample >= (spx_int32_t) * in_len - || out_sample >= (spx_int32_t) * out_len)) { - const spx_word16_t *sinc = &sinc_table[samp_frac_num * N]; - const spx_word16_t *iptr = &in[last_sample]; - -#ifndef OVERRIDE_INNER_PRODUCT_SINGLE - float accum[4] = { 0, 0, 0, 0 }; - - for (j = 0; j < N; j += 4) { - accum[0] += sinc[j] * iptr[j]; - accum[1] += sinc[j + 1] * iptr[j + 1]; - accum[2] += sinc[j + 2] * iptr[j + 2]; - accum[3] += sinc[j + 3] * iptr[j + 3]; - } - sum = accum[0] + accum[1] + accum[2] + accum[3]; -#else - sum = inner_product_single (sinc, iptr, N); -#endif - - out[out_stride * out_sample++] = PSHR32 (sum, 15); - last_sample += int_advance; - samp_frac_num += frac_advance; - if (samp_frac_num >= den_rate) { - samp_frac_num -= den_rate; - last_sample++; - } - } - - st->last_sample[channel_index] = last_sample; - st->samp_frac_num[channel_index] = samp_frac_num; - return out_sample; -} -#endif - -#ifdef FIXED_POINT -#else -/* This is the same as the previous function, except with a double-precision accumulator */ -static int -resampler_basic_direct_double (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, - spx_word16_t * out, spx_uint32_t * out_len) -{ - const int N = st->filt_len; - int out_sample = 0; - int last_sample = st->last_sample[channel_index]; - spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; - const spx_word16_t *sinc_table = st->sinc_table; - const int out_stride = st->out_stride; - const int int_advance = st->int_advance; - const int frac_advance = st->frac_advance; - const spx_uint32_t den_rate = st->den_rate; - double sum; - int j; - - while (!(last_sample >= (spx_int32_t) * in_len - || out_sample >= (spx_int32_t) * out_len)) { - const spx_word16_t *sinc = &sinc_table[samp_frac_num * N]; - const spx_word16_t *iptr = &in[last_sample]; - -#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE - double accum[4] = { 0, 0, 0, 0 }; - - for (j = 0; j < N; j += 4) { - accum[0] += sinc[j] * iptr[j]; - accum[1] += sinc[j + 1] * iptr[j + 1]; - accum[2] += sinc[j + 2] * iptr[j + 2]; - accum[3] += sinc[j + 3] * iptr[j + 3]; - } - sum = accum[0] + accum[1] + accum[2] + accum[3]; -#else - sum = inner_product_double (sinc, iptr, N); -#endif - - out[out_stride * out_sample++] = PSHR32 (sum, 15); - last_sample += int_advance; - samp_frac_num += frac_advance; - if (samp_frac_num >= den_rate) { - samp_frac_num -= den_rate; - last_sample++; - } - } - - st->last_sample[channel_index] = last_sample; - st->samp_frac_num[channel_index] = samp_frac_num; - return out_sample; -} -#endif - -#ifndef DOUBLE_PRECISION -static int -resampler_basic_interpolate_single (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, - spx_word16_t * out, spx_uint32_t * out_len) -{ - const int N = st->filt_len; - int out_sample = 0; - int last_sample = st->last_sample[channel_index]; - spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; - const int out_stride = st->out_stride; - const int int_advance = st->int_advance; - const int frac_advance = st->frac_advance; - const spx_uint32_t den_rate = st->den_rate; - int j; - spx_word32_t sum; - - while (!(last_sample >= (spx_int32_t) * in_len - || out_sample >= (spx_int32_t) * out_len)) { - const spx_word16_t *iptr = &in[last_sample]; - - const int offset = samp_frac_num * st->oversample / st->den_rate; -#ifdef FIXED_POINT - const spx_word16_t frac = - PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15), - st->den_rate); -#else - const spx_word16_t frac = - ((float) ((samp_frac_num * st->oversample) % st->den_rate)) / - st->den_rate; -#endif - spx_word16_t interp[4]; - - -#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE - spx_word32_t accum[4] = { 0, 0, 0, 0 }; - - for (j = 0; j < N; j++) { - const spx_word16_t curr_in = iptr[j]; - accum[0] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); - accum[1] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); - accum[2] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset]); - accum[3] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); - } - - cubic_coef (frac, interp); - sum = - MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1], - accum[1]) + MULT16_32_Q15 (interp[2], - accum[2]) + MULT16_32_Q15 (interp[3], accum[3]); -#else - cubic_coef (frac, interp); - sum = - interpolate_product_single (iptr, - st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, - interp); -#endif - - out[out_stride * out_sample++] = PSHR32 (sum, 15); - last_sample += int_advance; - samp_frac_num += frac_advance; - if (samp_frac_num >= den_rate) { - samp_frac_num -= den_rate; - last_sample++; - } - } - - st->last_sample[channel_index] = last_sample; - st->samp_frac_num[channel_index] = samp_frac_num; - return out_sample; -} -#endif - -#ifdef FIXED_POINT -#else -/* This is the same as the previous function, except with a double-precision accumulator */ -static int -resampler_basic_interpolate_double (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, - spx_word16_t * out, spx_uint32_t * out_len) -{ - const int N = st->filt_len; - int out_sample = 0; - int last_sample = st->last_sample[channel_index]; - spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; - const int out_stride = st->out_stride; - const int int_advance = st->int_advance; - const int frac_advance = st->frac_advance; - const spx_uint32_t den_rate = st->den_rate; - int j; - spx_word32_t sum; - - while (!(last_sample >= (spx_int32_t) * in_len - || out_sample >= (spx_int32_t) * out_len)) { - const spx_word16_t *iptr = &in[last_sample]; - - const int offset = samp_frac_num * st->oversample / st->den_rate; -#ifdef FIXED_POINT - const spx_word16_t frac = - PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15), - st->den_rate); -#else -#ifdef DOUBLE_PRECISION - const spx_word16_t frac = - ((double) ((samp_frac_num * st->oversample) % st->den_rate)) / - st->den_rate; -#else - const spx_word16_t frac = - ((float) ((samp_frac_num * st->oversample) % st->den_rate)) / - st->den_rate; -#endif -#endif - spx_word16_t interp[4]; - - -#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE - double accum[4] = { 0, 0, 0, 0 }; - - for (j = 0; j < N; j++) { - const double curr_in = iptr[j]; - accum[0] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); - accum[1] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); - accum[2] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset]); - accum[3] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); - } - - cubic_coef (frac, interp); - sum = - MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1], - accum[1]) + MULT16_32_Q15 (interp[2], - accum[2]) + MULT16_32_Q15 (interp[3], accum[3]); -#else - cubic_coef (frac, interp); - sum = - interpolate_product_double (iptr, - st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, - interp); -#endif - - out[out_stride * out_sample++] = PSHR32 (sum, 15); - last_sample += int_advance; - samp_frac_num += frac_advance; - if (samp_frac_num >= den_rate) { - samp_frac_num -= den_rate; - last_sample++; - } - } - - st->last_sample[channel_index] = last_sample; - st->samp_frac_num[channel_index] = samp_frac_num; - return out_sample; -} -#endif - -static void -update_filter (SpeexResamplerState * st) -{ - spx_uint32_t old_length; - - old_length = st->filt_len; - st->oversample = quality_map[st->quality].oversample; - st->filt_len = quality_map[st->quality].base_length; - - if (st->num_rate > st->den_rate) { - /* down-sampling */ - st->cutoff = - quality_map[st->quality].downsample_bandwidth * st->den_rate / - st->num_rate; - /* FIXME: divide the numerator and denominator by a certain amount if they're too large */ - st->filt_len = st->filt_len * st->num_rate / st->den_rate; - /* Round down to make sure we have a multiple of 4 */ - st->filt_len &= (~0x3); - if (2 * st->den_rate < st->num_rate) - st->oversample >>= 1; - if (4 * st->den_rate < st->num_rate) - st->oversample >>= 1; - if (8 * st->den_rate < st->num_rate) - st->oversample >>= 1; - if (16 * st->den_rate < st->num_rate) - st->oversample >>= 1; - if (st->oversample < 1) - st->oversample = 1; - } else { - /* up-sampling */ - st->cutoff = quality_map[st->quality].upsample_bandwidth; - } - - /* Choose the resampling type that requires the least amount of memory */ - if (st->den_rate <= st->oversample) { - spx_uint32_t i; - if (!st->sinc_table) - st->sinc_table = - (spx_word16_t *) speex_alloc (st->filt_len * st->den_rate * - sizeof (spx_word16_t)); - else if (st->sinc_table_length < st->filt_len * st->den_rate) { - st->sinc_table = - (spx_word16_t *) speex_realloc (st->sinc_table, - st->filt_len * st->den_rate * sizeof (spx_word16_t)); - st->sinc_table_length = st->filt_len * st->den_rate; - } - for (i = 0; i < st->den_rate; i++) { - spx_int32_t j; - for (j = 0; j < st->filt_len; j++) { - st->sinc_table[i * st->filt_len + j] = - sinc (st->cutoff, ((j - (spx_int32_t) st->filt_len / 2 + 1) - -#ifdef DOUBLE_PRECISION - ((double) i) / st->den_rate), st->filt_len, -#else - ((float) i) / st->den_rate), st->filt_len, -#endif - quality_map[st->quality].window_func); - } - } -#ifdef FIXED_POINT - st->resampler_ptr = resampler_basic_direct_single; -#else -#ifdef DOUBLE_PRECISION - st->resampler_ptr = resampler_basic_direct_double; -#else - if (st->quality > 8) - st->resampler_ptr = resampler_basic_direct_double; - else - st->resampler_ptr = resampler_basic_direct_single; -#endif -#endif - /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */ - } else { - spx_int32_t i; - if (!st->sinc_table) - st->sinc_table = - (spx_word16_t *) speex_alloc ((st->filt_len * st->oversample + - 8) * sizeof (spx_word16_t)); - else if (st->sinc_table_length < st->filt_len * st->oversample + 8) { - st->sinc_table = - (spx_word16_t *) speex_realloc (st->sinc_table, - (st->filt_len * st->oversample + 8) * sizeof (spx_word16_t)); - st->sinc_table_length = st->filt_len * st->oversample + 8; - } - for (i = -4; i < (spx_int32_t) (st->oversample * st->filt_len + 4); i++) - st->sinc_table[i + 4] = -#ifdef DOUBLE_PRECISION - sinc (st->cutoff, (i / (double) st->oversample - st->filt_len / 2), -#else - sinc (st->cutoff, (i / (float) st->oversample - st->filt_len / 2), -#endif - st->filt_len, quality_map[st->quality].window_func); -#ifdef FIXED_POINT - st->resampler_ptr = resampler_basic_interpolate_single; -#else -#ifdef DOUBLE_PRECISION - st->resampler_ptr = resampler_basic_interpolate_double; -#else - if (st->quality > 8) - st->resampler_ptr = resampler_basic_interpolate_double; - else - st->resampler_ptr = resampler_basic_interpolate_single; -#endif -#endif - /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff); */ - } - st->int_advance = st->num_rate / st->den_rate; - st->frac_advance = st->num_rate % st->den_rate; - - - /* Here's the place where we update the filter memory to take into account - the change in filter length. It's probably the messiest part of the code - due to handling of lots of corner cases. */ - if (!st->mem) { - spx_uint32_t i; - st->mem_alloc_size = st->filt_len - 1 + st->buffer_size; - st->mem = - (spx_word16_t *) speex_alloc (st->nb_channels * st->mem_alloc_size * - sizeof (spx_word16_t)); - for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++) - st->mem[i] = 0; - /*speex_warning("init filter"); */ - } else if (!st->started) { - spx_uint32_t i; - st->mem_alloc_size = st->filt_len - 1 + st->buffer_size; - st->mem = - (spx_word16_t *) speex_realloc (st->mem, - st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t)); - for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++) - st->mem[i] = 0; - /*speex_warning("reinit filter"); */ - } else if (st->filt_len > old_length) { - spx_int32_t i; - /* Increase the filter length */ - /*speex_warning("increase filter size"); */ - int old_alloc_size = st->mem_alloc_size; - if ((st->filt_len - 1 + st->buffer_size) > st->mem_alloc_size) { - st->mem_alloc_size = st->filt_len - 1 + st->buffer_size; - st->mem = - (spx_word16_t *) speex_realloc (st->mem, - st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t)); - } - for (i = st->nb_channels - 1; i >= 0; i--) { - spx_int32_t j; - spx_uint32_t olen = old_length; - /*if (st->magic_samples[i]) */ - { - /* Try and remove the magic samples as if nothing had happened */ - - /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */ - olen = old_length + 2 * st->magic_samples[i]; - for (j = old_length - 2 + st->magic_samples[i]; j >= 0; j--) - st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]] = - st->mem[i * old_alloc_size + j]; - for (j = 0; j < st->magic_samples[i]; j++) - st->mem[i * st->mem_alloc_size + j] = 0; - st->magic_samples[i] = 0; - } - if (st->filt_len > olen) { - /* If the new filter length is still bigger than the "augmented" length */ - /* Copy data going backward */ - for (j = 0; j < olen - 1; j++) - st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = - st->mem[i * st->mem_alloc_size + (olen - 2 - j)]; - /* Then put zeros for lack of anything better */ - for (; j < st->filt_len - 1; j++) - st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = 0; - /* Adjust last_sample */ - st->last_sample[i] += (st->filt_len - olen) / 2; - } else { - /* Put back some of the magic! */ - st->magic_samples[i] = (olen - st->filt_len) / 2; - for (j = 0; j < st->filt_len - 1 + st->magic_samples[i]; j++) - st->mem[i * st->mem_alloc_size + j] = - st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]]; - } - } - } else if (st->filt_len < old_length) { - spx_uint32_t i; - /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic" - samples so they can be used directly as input the next time(s) */ - for (i = 0; i < st->nb_channels; i++) { - spx_uint32_t j; - spx_uint32_t old_magic = st->magic_samples[i]; - st->magic_samples[i] = (old_length - st->filt_len) / 2; - /* We must copy some of the memory that's no longer used */ - /* Copy data going backward */ - for (j = 0; j < st->filt_len - 1 + st->magic_samples[i] + old_magic; j++) - st->mem[i * st->mem_alloc_size + j] = - st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]]; - st->magic_samples[i] += old_magic; - } - } - -} - -EXPORT SpeexResamplerState * -speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate, - spx_uint32_t out_rate, int quality, int *err) -{ - return speex_resampler_init_frac (nb_channels, in_rate, out_rate, in_rate, - out_rate, quality, err); -} - -EXPORT SpeexResamplerState * -speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num, - spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, - int quality, int *err) -{ - spx_uint32_t i; - SpeexResamplerState *st; - if (quality > 10 || quality < 0) { - if (err) - *err = RESAMPLER_ERR_INVALID_ARG; - return NULL; - } - st = (SpeexResamplerState *) speex_alloc (sizeof (SpeexResamplerState)); - st->initialised = 0; - st->started = 0; - st->in_rate = 0; - st->out_rate = 0; - st->num_rate = 0; - st->den_rate = 0; - st->quality = -1; - st->sinc_table_length = 0; - st->mem_alloc_size = 0; - st->filt_len = 0; - st->mem = 0; - st->resampler_ptr = 0; - - st->cutoff = 1.f; - st->nb_channels = nb_channels; - st->in_stride = 1; - st->out_stride = 1; - -#ifdef FIXED_POINT - st->buffer_size = 160; -#else - st->buffer_size = 160; -#endif - - /* Per channel data */ - st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int)); - st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int)); - st->samp_frac_num = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int)); - for (i = 0; i < nb_channels; i++) { - st->last_sample[i] = 0; - st->magic_samples[i] = 0; - st->samp_frac_num[i] = 0; - } - - speex_resampler_set_quality (st, quality); - speex_resampler_set_rate_frac (st, ratio_num, ratio_den, in_rate, out_rate); - - - update_filter (st); - - st->initialised = 1; - if (err) - *err = RESAMPLER_ERR_SUCCESS; - - return st; -} - -EXPORT void -speex_resampler_destroy (SpeexResamplerState * st) -{ - speex_free (st->mem); - speex_free (st->sinc_table); - speex_free (st->last_sample); - speex_free (st->magic_samples); - speex_free (st->samp_frac_num); - speex_free (st); -} - -static int -speex_resampler_process_native (SpeexResamplerState * st, - spx_uint32_t channel_index, spx_uint32_t * in_len, spx_word16_t * out, - spx_uint32_t * out_len) -{ - int j = 0; - const int N = st->filt_len; - int out_sample = 0; - spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; - spx_uint32_t ilen; - - st->started = 1; - - /* Call the right resampler through the function ptr */ - out_sample = st->resampler_ptr (st, channel_index, mem, in_len, out, out_len); - - if (st->last_sample[channel_index] < (spx_int32_t) * in_len) - *in_len = st->last_sample[channel_index]; - *out_len = out_sample; - st->last_sample[channel_index] -= *in_len; - - ilen = *in_len; - - for (j = 0; j < N - 1; ++j) - mem[j] = mem[j + ilen]; - - return RESAMPLER_ERR_SUCCESS; -} - -static int -speex_resampler_magic (SpeexResamplerState * st, spx_uint32_t channel_index, - spx_word16_t ** out, spx_uint32_t out_len) -{ - spx_uint32_t tmp_in_len = st->magic_samples[channel_index]; - spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; - const int N = st->filt_len; - - speex_resampler_process_native (st, channel_index, &tmp_in_len, *out, - &out_len); - - st->magic_samples[channel_index] -= tmp_in_len; - - /* If we couldn't process all "magic" input samples, save the rest for next time */ - if (st->magic_samples[channel_index]) { - spx_uint32_t i; - for (i = 0; i < st->magic_samples[channel_index]; i++) - mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len]; - } - *out += out_len * st->out_stride; - return out_len; -} - -#ifdef FIXED_POINT -EXPORT int -speex_resampler_process_int (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len, - spx_int16_t * out, spx_uint32_t * out_len) -#else -#ifdef DOUBLE_PRECISION -EXPORT int -speex_resampler_process_float (SpeexResamplerState * st, - spx_uint32_t channel_index, const double *in, spx_uint32_t * in_len, - double *out, spx_uint32_t * out_len) -#else -EXPORT int -speex_resampler_process_float (SpeexResamplerState * st, - spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, - float *out, spx_uint32_t * out_len) -#endif -#endif -{ - int j; - spx_uint32_t ilen = *in_len; - spx_uint32_t olen = *out_len; - spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; - const int filt_offs = st->filt_len - 1; - const spx_uint32_t xlen = st->mem_alloc_size - filt_offs; - const int istride = st->in_stride; - - if (st->magic_samples[channel_index]) - olen -= speex_resampler_magic (st, channel_index, &out, olen); - if (!st->magic_samples[channel_index]) { - while (ilen && olen) { - spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; - spx_uint32_t ochunk = olen; - - if (in) { - for (j = 0; j < ichunk; ++j) - x[j + filt_offs] = in[j * istride]; - } else { - for (j = 0; j < ichunk; ++j) - x[j + filt_offs] = 0; - } - speex_resampler_process_native (st, channel_index, &ichunk, out, &ochunk); - ilen -= ichunk; - olen -= ochunk; - out += ochunk * st->out_stride; - if (in) - in += ichunk * istride; - } - } - *in_len -= ilen; - *out_len -= olen; - return RESAMPLER_ERR_SUCCESS; -} - -#ifdef FIXED_POINT -EXPORT int -speex_resampler_process_float (SpeexResamplerState * st, - spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, - float *out, spx_uint32_t * out_len) -#else -EXPORT int -speex_resampler_process_int (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len, - spx_int16_t * out, spx_uint32_t * out_len) -#endif -{ - int j; - const int istride_save = st->in_stride; - const int ostride_save = st->out_stride; - spx_uint32_t ilen = *in_len; - spx_uint32_t olen = *out_len; - spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; - const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1); -#ifdef VAR_ARRAYS - const unsigned int ylen = - (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC; - VARDECL (spx_word16_t * ystack); - ALLOC (ystack, ylen, spx_word16_t); -#else - const unsigned int ylen = FIXED_STACK_ALLOC; - spx_word16_t ystack[FIXED_STACK_ALLOC]; -#endif - - st->out_stride = 1; - - while (ilen && olen) { - spx_word16_t *y = ystack; - spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; - spx_uint32_t ochunk = (olen > ylen) ? ylen : olen; - spx_uint32_t omagic = 0; - - if (st->magic_samples[channel_index]) { - omagic = speex_resampler_magic (st, channel_index, &y, ochunk); - ochunk -= omagic; - olen -= omagic; - } - if (!st->magic_samples[channel_index]) { - if (in) { - for (j = 0; j < ichunk; ++j) -#ifdef FIXED_POINT - x[j + st->filt_len - 1] = WORD2INT (in[j * istride_save]); -#else - x[j + st->filt_len - 1] = in[j * istride_save]; -#endif - } else { - for (j = 0; j < ichunk; ++j) - x[j + st->filt_len - 1] = 0; - } - - speex_resampler_process_native (st, channel_index, &ichunk, y, &ochunk); - } else { - ichunk = 0; - ochunk = 0; - } - - for (j = 0; j < ochunk + omagic; ++j) -#ifdef FIXED_POINT - out[j * ostride_save] = ystack[j]; -#else - out[j * ostride_save] = WORD2INT (ystack[j]); -#endif - - ilen -= ichunk; - olen -= ochunk; - out += (ochunk + omagic) * ostride_save; - if (in) - in += ichunk * istride_save; - } - st->out_stride = ostride_save; - *in_len -= ilen; - *out_len -= olen; - - return RESAMPLER_ERR_SUCCESS; -} - -#ifdef DOUBLE_PRECISION -EXPORT int -speex_resampler_process_interleaved_float (SpeexResamplerState * st, - const double *in, spx_uint32_t * in_len, double *out, - spx_uint32_t * out_len) -#else -EXPORT int -speex_resampler_process_interleaved_float (SpeexResamplerState * st, - const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len) -#endif -{ - spx_uint32_t i; - int istride_save, ostride_save; - spx_uint32_t bak_len = *out_len; - istride_save = st->in_stride; - ostride_save = st->out_stride; - st->in_stride = st->out_stride = st->nb_channels; - for (i = 0; i < st->nb_channels; i++) { - *out_len = bak_len; - if (in != NULL) - speex_resampler_process_float (st, i, in + i, in_len, out + i, out_len); - else - speex_resampler_process_float (st, i, NULL, in_len, out + i, out_len); - } - st->in_stride = istride_save; - st->out_stride = ostride_save; - return RESAMPLER_ERR_SUCCESS; -} - -EXPORT int -speex_resampler_process_interleaved_int (SpeexResamplerState * st, - const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out, - spx_uint32_t * out_len) -{ - spx_uint32_t i; - int istride_save, ostride_save; - spx_uint32_t bak_len = *out_len; - istride_save = st->in_stride; - ostride_save = st->out_stride; - st->in_stride = st->out_stride = st->nb_channels; - for (i = 0; i < st->nb_channels; i++) { - *out_len = bak_len; - if (in != NULL) - speex_resampler_process_int (st, i, in + i, in_len, out + i, out_len); - else - speex_resampler_process_int (st, i, NULL, in_len, out + i, out_len); - } - st->in_stride = istride_save; - st->out_stride = ostride_save; - return RESAMPLER_ERR_SUCCESS; -} - -EXPORT int -speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate, - spx_uint32_t out_rate) -{ - return speex_resampler_set_rate_frac (st, in_rate, out_rate, in_rate, - out_rate); -} - -EXPORT void -speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate, - spx_uint32_t * out_rate) -{ - *in_rate = st->in_rate; - *out_rate = st->out_rate; -} - -EXPORT int -speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num, - spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate) -{ - spx_uint32_t fact; - spx_uint32_t old_den; - spx_uint32_t i; - if (st->in_rate == in_rate && st->out_rate == out_rate - && st->num_rate == ratio_num && st->den_rate == ratio_den) - return RESAMPLER_ERR_SUCCESS; - - old_den = st->den_rate; - st->in_rate = in_rate; - st->out_rate = out_rate; - st->num_rate = ratio_num; - st->den_rate = ratio_den; - /* FIXME: This is terribly inefficient, but who cares (at least for now)? */ - for (fact = 2; fact <= IMIN (st->num_rate, st->den_rate); fact++) { - while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0)) { - st->num_rate /= fact; - st->den_rate /= fact; - } - } - - if (old_den > 0) { - for (i = 0; i < st->nb_channels; i++) { - st->samp_frac_num[i] = st->samp_frac_num[i] * st->den_rate / old_den; - /* Safety net */ - if (st->samp_frac_num[i] >= st->den_rate) - st->samp_frac_num[i] = st->den_rate - 1; - } - } - - if (st->initialised) - update_filter (st); - return RESAMPLER_ERR_SUCCESS; -} - -EXPORT void -speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num, - spx_uint32_t * ratio_den) -{ - *ratio_num = st->num_rate; - *ratio_den = st->den_rate; -} - -EXPORT int -speex_resampler_set_quality (SpeexResamplerState * st, int quality) -{ - if (quality > 10 || quality < 0) - return RESAMPLER_ERR_INVALID_ARG; - if (st->quality == quality) - return RESAMPLER_ERR_SUCCESS; - st->quality = quality; - if (st->initialised) - update_filter (st); - return RESAMPLER_ERR_SUCCESS; -} - -EXPORT void -speex_resampler_get_quality (SpeexResamplerState * st, int *quality) -{ - *quality = st->quality; -} - -EXPORT void -speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride) -{ - st->in_stride = stride; -} - -EXPORT void -speex_resampler_get_input_stride (SpeexResamplerState * st, - spx_uint32_t * stride) -{ - *stride = st->in_stride; -} - -EXPORT void -speex_resampler_set_output_stride (SpeexResamplerState * st, - spx_uint32_t stride) -{ - st->out_stride = stride; -} - -EXPORT void -speex_resampler_get_output_stride (SpeexResamplerState * st, - spx_uint32_t * stride) -{ - *stride = st->out_stride; -} - -EXPORT int -speex_resampler_get_input_latency (SpeexResamplerState * st) -{ - return st->filt_len / 2; -} - -EXPORT int -speex_resampler_get_output_latency (SpeexResamplerState * st) -{ - return ((st->filt_len / 2) * st->den_rate + - (st->num_rate >> 1)) / st->num_rate; -} - -EXPORT int -speex_resampler_skip_zeros (SpeexResamplerState * st) -{ - spx_uint32_t i; - for (i = 0; i < st->nb_channels; i++) - st->last_sample[i] = st->filt_len / 2; - return RESAMPLER_ERR_SUCCESS; -} - -EXPORT int -speex_resampler_reset_mem (SpeexResamplerState * st) -{ - spx_uint32_t i; - for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) - st->mem[i] = 0; - return RESAMPLER_ERR_SUCCESS; -} - -EXPORT const char * -speex_resampler_strerror (int err) -{ - switch (err) { - case RESAMPLER_ERR_SUCCESS: - return "Success."; - case RESAMPLER_ERR_ALLOC_FAILED: - return "Memory allocation failed."; - case RESAMPLER_ERR_BAD_STATE: - return "Bad resampler state."; - case RESAMPLER_ERR_INVALID_ARG: - return "Invalid argument."; - case RESAMPLER_ERR_PTR_OVERLAP: - return "Input and output buffers overlap."; - default: - return "Unknown error. Bad error code or strange version mismatch."; - } -}