[image: image1.wmf]

Email Smoke Test Harness
DocRef

Owner:
Emlyn Howell

Last revised:
11 April 2003

Revision:
0.04

Status:
DRAFT

Contributors:
Michael Ullrich

Key Reviewers:

Distribution
Messaging Team

Approved By:

Approval Ref.:

Contents

3

1. Introduction

1. 1 Purpose and scope
3

1. 2 References
3

1. 3 Open Issues
3

1. 4 Glossary
3

1. 5 Document History
3

2. Heading 1 Section Level
4

2. 1 Heading 2 Section Level
4

2. 1 .1 Heading 3 Section Level
4

Appendix A - Level 1 heading
5

A.1 - FIRST level 2 headings in an appendix
5

A.1.1 - FIRST level 3 headings in an appendix
5

A.1.2 - SUBSEQUENT level 3 headings in an appendix
5

A.2 - SUBSEQUENT level 2 headings in an appendix
5

Introduction

This is version 3 of the Symbian “Heavyweight” Technical Document Template. For short documents, use the Lightweight Template in Symbian Standard PS.QM0003.01 Technical Document Template. [Clive Craske 14/4/2000]

1.1 Purpose and scope

This document describes the Email Smoke Test Harness, how it works, and how to add further tests to it. This document is for those who will be using and adding to the Test Harness.

1.2 References

Document: “Messaging Server API”, By Martin Armstrong, M98005

Document: “Message Type Module Design Notes”, By Ralph Greenwell, M98007

Document: “Test Utils API”, By Anthony Alexander.

1.3 Open Issues

1.4 Glossary

The following technical terms and abbreviations are used within this document.

1.5 Document History

Date
Version
Status
Description

18-12-2000
0.01
Draft
Created first draft.

20-03-2003
0.02
Draft
Additions made for secure connections.

07-04-2003
0.03
Draft
Commands added to monitor connection progress.

11-04-2003
0.04
Draft
Additional commands added for Unseen flag testing.

Overview

1.6 The Parser

The Email Smoke Test Harness (hereby known as just the “Test Harness”) is a utility used for testing MTMs and the Message Server. Essentially it is a dynamic state machine, which parses a script file to build up a state tree of tests. Once the file has been completely parsed, and if there are no parsing errors, the state machine will then execute the tests. During execution of the test harness, log files are produced containing the results of the tests.

The test harness has been designed modularly so new tests can be easily be added, these can consist of commands specific to a MTM, or generic commands. The currently implemented commands a listed in the Appendices.

[insert diagram of “state tree”]

1.7 The Processor

The processor will execute through each branch of the state tree (which was built by the parser) until it comes along an error. The Test Harness will only successfully complete if all states are executed successfully.

The states can be synchronous or asynchronous (ie: derived from an Active Object) dependant upon what is required. Each state is represented by a class, and each command usually represents one of these states (however some commands do create multiple states).

How to use the Test Harness

1.8 Writing a script file

The Test Harness parses a text file called “script.txt”. (A further addition to the Test Harness could be to allow it to take a parameter from the command line stating the name of the script.) The test script is broken up into several sections dependant upon the number, or type of tests. An example test file is shown below:

// ***

// Example Test Script

//

// Author:
Michael Ullrich

// Date:
4 Dec 00

//

// ***

[main]

email_client_test email

[email]

smtp_client_test smtp_1

imap_client_test imap_1

[smtp_1]

// ***

// Clean Message Server

// ***

clean_message_folder

start_client_session

// ***

// Create Smtp Service

// ***

select_root_folder

add_comment Creating Smtp Service

smtp_service smtp_service_1

// ***

// Create some test messages and send them

// ***

select_destination_folder test_smtp_service

select_root_folder

select_folder local

select_folder outbox

add_comment Creating Test Messages

create_email_message emailsmoke TMsg1.txt

create_email_message emailsmoke TMsg2.txt

create_email_message emailsmoke TMsg3.txt

create_email_message emailsmoke TMsg4.txt

select_all_messages

add_comment Sending Test Messages

copy

check_smtp_error 0

reset_client

[imap_1]

// ***

// Clean Message Server

// ***

clean_message_folder

start_client_session

// ***

// Connect to IMAP service (dial up account)

// ***

select_root_folder

imap_service imap_service_1

select_folder test_imap_service

connect

check_imap_error 0

// ***

// Sync tree (gets the latest tree from the server)

// ***

add_comment Synchronising tree

sync_tree

check_imap_error 0

// ***

// Check inbox (gets latest messages in inbox)

// ***

add_comment Checking remote inbox

check_remote_inbox

check_imap_error 0

// ***

// Populate inbox (gets bodies for message headers in inbox)

// ***

select_folder inbox

select_all_messages

add_comment Populating remote inbox

populate_folder

check_imap_error 0

add_comment Counting children of remote inbox

count_children

// ***

// Select service to disconnect from...

// ***

select_root_folder

select_folder test_imap_service

disconnect

check_imap_error 0

reset_client

[smtp_service_1]

// ***

// Smtp Service Settings

// ***

set_alias test_smtp_service

set_server a.b.com

set_email_address x.y@exchtest.com

set_reply_address x.y@exchtest.com

set_receipt_address x.y@exchtest.com

add_iap 9

[imap_service_1]

// ***

// IMAP Service Settings

// ***

set_name test_imap_service

set_server a.b.com

set_user x.y

set_pass z

add_iap 9

Rules for test scripts:

· Only one command is allowed per line

· In script comments are allowed and should be prefixed with ‘//’

· Sections are prefixed with a ‘[‘ and suffixed with a ‘]’

· Sections can occur in any order

· Sections are separated by at least one blank line

· As well as a blank line ending a section, they can also be ended by a ‘.’

· Sections should be commented

Currently implemented commands and their syntax are listed in the Appendices.

1.9 Equipment required and setting it up

Thought should be given to how the tests will run, and to which server the tests will be used with. While basic functionality can be tested without using an external mail server (such as moving and copying messages between internal folders), it is envisaged that the majority of tests will require a modem and external access.

The Messaging Team has four test servers internally for their use (see “Messaging Development” Lotus Notes Database for further information), as well as external accounts too (see “Messaging & Comms Library” Lotus Notes Database for further information).

This information can be used to set up the Comms DB used by the EPOC emulator. To reset the settings in the emulator the utility T_DB.exe can be used, and to edit these settings T_EditDB.exe can be used.

Note: When an external modem is connected to the serial port of a PC, the EPOC comm port is always one less than the PC comm port. eg: PC COM2 = EPOC COM1.

Before execution the following file is required to be present on the following EPOC relative path:

c:\msgtest\emailsmoke\script.txt

Result scripts are contained in:

c:\msglogs\ EMAILSMOKE.WINS.DEB.LOG (produced by the Test Harness)

c:\msgtest\logs\email*.txt (produced by the Message Server, and MTM)

1.10 Executing and Reviewing the results

The executable file is named emailsmoke.exe, and this can be executed directly. The Test Harness incrementally writes to the log and this can be viewed by any text viewer.

An example of a portion of a Test Harness results file is shown:

13/12/00 18:46:12 Test Results

13/12/00 18:46:12 [9] Starting test: [email]

13/12/00 18:46:12 [12] Starting test: [smtp_1]

13/12/00 18:47:02 [25] Creating Smtp Service

13/12/00 18:47:08 [34] Creating Test Messages

…

As can be seen, each log entry is date and time stamped, as well as each reportable command being line numbered. Note: the only reportable commands shown in this example are add_comment, see the Appendices for information about other reportable commands.

Architecture

1.11 Class Hierarchy for Parsers

1.11.1 Heading 3 Section Level

1.12 Class Hierarchy for Commands

1.12.1 Heading 3 Section Level

1.12.1.1 Heading 4 Section Level

Appendix A – Commands Implemented

A.1 – Generic CommandsAtc ".1 - FIRST level 2 headings in an appendix" \f \l2

The parsers for these commands can be found in emailsmokeparse.cpp, and the implementations of these commands can be found in emailsmokecommands.cpp.

A.1.2 – Test Setup Atc “.1.0 – FIRST level 3 headings in an appendix” \f \l3

Parser Class
Command
Description

CemailServiceCommands
add_iap
1 parameter, uses an IAP (internet access point) as defined in CommDB.

CnewEmailTestCommandParser
email_client_test
1 parameter, creates an Email test section. The parameter is the name of the script file section which defines the Email section.

CmsvUtilitiesParser
start_client_session
0 parameters, initialises CMsvTestUtils, and frees resources. Should be called at the start of every section.

CmsvUtilitiesParser
reset_client
0 parameters, resets CMsvTestUtils, and frees resources. Should be called at the end of every section.

A.1.3 – Utility CommandsAtc ".1.0 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CMsvUtilitiesParser
clean_message_folder
0 parameters, deletes the message store.

CMsvUtilitiesParser
check_message_store
2 parameters, creates the file store file c:\logs\email\Entry_Structure.txt and compares it with c:\MsgTest\component (param1)\filename (param2)

CMsvUtilitiesParser
add_comment
n parameters, adds a comment to the log, concatenates parameters together.

CEmailUtilitiesParser
count_children
0 parameters, counts entries in current folder and logs result.

CEmailUtilitiesParser
check_service
0 parameters, checks that a service has been created or selected.

CEmailUtilitiesParser
wait
0 parameters, waits for 5 seconds...

CEmailUtilitiesParser
create_email_message
2 parameters, creates a message from a text file (param 2) from directory (param 1).

CMsvTestEntryCommandParser
visible
1 parameter - <true> or <false> to set the selected entry visibility.

CMsvTestEntryCommandParser
complete
1 parameter - <true> or <false> to set the selected entry completeness.

CmsvTestEntryCommandParser
test_entry
0 parameters, compares the selected entry visibility and completeness set by “visible” and “complete” commands.

CMsvOperationParser
copy
0 parameters, copies a 'selection' (CMsvClientTest::iCurrentSelection) to a 'destination folder' (CMsvClientTest::iDestinationFolder).

CmsvOperationParser
move
0 parameters, moves a 'selection' (CMsvClientTest::iCurrentSelection) to a 'destination folder' (CMsvClientTest::iDestinationFolder).

CmsvOperationParser
delete
0 parameters, deletes a 'selection' (CMsvClientTest::iCurrentSelection).

CmsvOperationParser
delete_children
1 parameter, deletes the children of the selected entry (with the index Parameter). Please note that this command sets 'selection' to the children of the selected entry.

A.1.4 – Selection CommandsAtc ".1.0 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CmsvSelectParser
select_folder
1 parameter, selects a folder.

CmsvSelectParser
select_entry
1 parameter, select an entry by looking in iDetails and iDescription (Note: can only take 1 parameter).

CmsvSelectParser
select_root_folder
0 parameters, selects root of Message Server.

CmsvSelectParser
select_all_messages
0 parameters, selects all entries in the current folder.

CmsvSelectParser
select_destination_folder
1 parameter, selects a destination folder used for copying and moving.

CmsvSelectParser
select_last_in_selection
1 parameter, reduces the current selection to its last n entries.

CmsvSelectParser
select_first_in_selection
1 parameter, reduces the current selection to its first n entries.

CmsvSelectParser
select_populated
0 parameters, selects populated messages in the current selection.

CmsvSelectParser
check_selection_count
1 parameter, tests the current selection count == parameter.

CmsvSelectParser
check_remote_folder_size
1 parameter, checks the remote folder size is what is expected

CmsvSelectParser
check_new_flag
2 parameters, tests if the selected entry(with the index Parameter1) has its New flag == parameter2.

CmsvSelectParser
check_priority
2 parameters, tests if the selected entry(with the index Parameter1) has its Priority flag == parameter2.

CmsvSelectParser
check_attachment
2 parameters, tests if the selected entry(with the index Parameter1) has its Attachment flag == parameter2.

CmsvSelectParser
check_body_text
2 parameters, tests if the selected entry(with the index Parameter1) has Body Text == parameter2.

CmsvSelectParser
check_children
2 parameters, tests if the selected entry(with the index Parameter1) has children == parameter2

Atc ".1.0 - FIRST level 3 headings in an appendix" \f \l3

A.2 – SMTP Specific CommandsAtc ".1 - FIRST level 2 headings in an appendix" \f \l2

The parsers for these commands can be found in smtptestparsers.cpp, and the implementations of these commands can be found in smtptests.cpp.

A.2.1 – SMTP Test Setup Atc “.1.1 – FIRST level 3 headings in an appendix” \f \l3
and Service Selection

Parser Class
Command
Description

CnewSmtpTestCommandParser
smtp_client_test
1 parameter, creates a SMTP test section. The parameter is the name of the script file section which defines the SMTP section.

CsmtpServiceCommandParser
smtp_service
1 parameter, creates an SMTP service. The parameter is the name of the script file section which defines the service.

A.2.2 – SMTP Service SetupAtc ".1.1 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CSmtpServiceCommands
set_server
1 parameter, sets the SMTP server.

CSmtpServiceCommands
set_alias
1 parameter, sets the name of the SMTP service.

CSmtpServiceCommands
set_email_address
1 parameter, sets the email address.

CSmtpServiceCommands
set_reply_address
1 parameter, sets the email reply to address.

CSmtpServiceCommands
set_receipt_address
1 parameter, sets the receipt address.

CSmtpServiceCommands
set_tls
1 parameter, sets secure connection. Value should be 1 or 0

CSmtpServiceCommands
set_wrapped_tls
1 parameter, sets the secure connection for SMTP service. Value should be 1 or 0

CSmtpServiceCommands
set_port
1 parameter, sets the port no for SMTP service.

A.2.3 – SMTP CommandsAtc ".1.1 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CSmtpCheckStatusParser
check_smtp_error
1 parameter, checks the last error code and compares it to param 1. Note: must only be used to check commands that have been set using CMsvClientTest::SetCurrentOperation.

CSmtpOperationParser
use_service
0 parameters, uses the currently selected service

CSmtpCheckStatusParser
copy_and_monitor
0 parameters, copies a 'selection' to a 'destination folder' and monitors the copying.

A.3 – POP3 Specific CommandsAtc ".1 - FIRST level 2 headings in an appendix" \f \l2

The parsers for these commands can be found in poptestparsers.cpp, and the implementations of these commands can be found in poptests.cpp.

A.3.1 – POP3 Test Setup Atc “.1.1 – FIRST level 3 headings in an appendix” \f \l3
and Service Selection

Parser Class
Command
Description

CNewPop3TestCommandParser
pop3_client_test
1 parameter, creates a POP3 test section. The parameter is the name of the script file section which defines the POP3 section.

CPop3ServiceCommandParser
pop3_service
1 parameter, creates an POP3 service. The parameter is the name of the script file section which defines the service.

CPop3OperationParser
use_service
0 parameters, uses the currently selected service.

A.3.2 – POP3 Service SetupAtc ".1.1 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CPop3ServiceCommands
set_server
1 parameter, sets the POP3 server.

CPop3ServiceCommands
set_user
1 parameter, sets the username for the POP3 service.

CPop3ServiceCommands
set_pass
1 parameter, sets the password for the POP3 service.

CPop3ServiceCommands
set_name
1 parameter, sets the name of the POP3 service.

CPop3ServiceCommands
set_tls
1 parameter, sets the secure connection of the POP3 service. Value should be 1 or 0

CPop3ServiceCommands
set_wrapped_tls
1 parameter, sets the secure connection for POP service. Value should be 1 or 0

CPop3ServiceCommands
set_port
1 parameter, sets the port no for POP service.

A.3.3 – POP3 CommandsAtc ".1.1 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CPop3OperationParser
connect
0 parameters, connects to the POP3 service.

CPop3OperationParser
connect_and_monitor
0 parameters, connects to the POP3 service and monitors the progress of the connection.

CPop3OperationParser
disconnect
0 parameters, disconnects from the POP3 service.

CPop3CheckStatusParser
check_pop3_error
1 parameter, checks the last error code and compares it to param 1. Note: must only be used to check commands that have been set using CMsvClientTest::SetCurrentOperation.

CPop3OperationParser
set_sync_limits
2 parameters, resets the sync limits for currently selected pop service

A.4 – IMAP Specific CommandsAtc ".1 - FIRST level 2 headings in an appendix" \f \l2

The parsers for these commands can be found in imaptestparsers.cpp, and the implementations of these commands can be found in imaptests.cpp.

A.4.1 – IMAP Test Setup Atc “.1.1 – FIRST level 3 headings in an appendix” \f \l3
and Service Selection

Parser Class
Command
Description

CNewImapTestCommandParser
imap_client_test
1 parameter, creates an IMAP test section. The parameter is the name of the script file section which defines the IMAP section.

CImapServiceCommandParser
imap_service
1 parameter, creates an IMAP service. The parameter is the name of the script file section which defines the service.

CImapOperationParser
use_service
0 parameters, uses the currently selected service.

A.4.2 – IMAP Service SetupAtc ".1.1 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CImapServiceCommands
set_server
1 parameter, sets the IMAP server.

CImapServiceCommands
set_user
1 parameter, sets the username for the IMAP service.

CImapServiceCommands
set_pass
1 parameter, sets the password for the IMAP service.

CImapServiceCommands
set_name
1 parameter, sets the name of the IMAP service.

CImapServiceCommands
set_folder_path
1 parameter, sets the folder path of the IMAP service.

CImapServiceCommands
set_tls

1 parameter, sets the secure connection of the IMAP service.

CImapServiceCommands
set_updating_seen_flag
1 parameter, sets the updating seen flag value to the parameter value.

CImapServiceCommands
set_wrapped_tls
1 parameter, sets the secure connection for IMAP service. Value should be 1 or 0.

CImapServiceCommands
set_port
1 parameter, sets the port no for IMAP service.

A.4.3 – IMAP CommandsAtc ".1.1 - FIRST level 3 headings in an appendix" \f \l3

Parser Class
Command
Description

CImapOperationParser
connect
0 parameters, connects to the IMAP service.

CImapOperationParser
connect_and_sync
0 parameters, connects to the IMAP service and automatically synchronises.

CImapOperationParser
connect_and_monitor
0 parameters, connects to the IMAP service and monitors the connection progress.

CImapOperationParser
disconnect
0 parameters, disconnects from the IMAP service.

CImapOperationParser
check_remote_inbox
0 parameters, checks the remote inbox for new mail and retrieves headers.

CImapOperationParser
sync_tree
0 parameters, synchronises the local IMAP tree structure with the remote tree structure.

CImapOperationParser
sync_folder
0 parameters, synchonises the currently selected IMAP folder with the one stored on the server.

CImapOperationParser
subscribe_folder
0 parameters, subscribes to the currently selected folder.

CImapOperationParser
unsubscribe_folder
0 parameters, unsubscribes from the currently selected folder.

CImapOperationParser
populate_folder
0 parameters, populates the bodies of the currently selected messages.

CImapOperationParser
perform_full_sync
0 parameters, performs a full synchronisation with the selected remote service.

CImapOperationParser
set_sync_limits
2 parameters, resets the sync limits for currently selected imap service.

CImapCheckStatusParser
check_imap_error
1 parameter, checks the last error code and compares it to param 1. Note: must only be used to check commands that have been set using CMsvClientTest::SetCurrentOperation.

CImapOperationParser
mark_selection_unread
1 parameter, marks all the messages in mailbox as specified in parameter.

CImapOperationParser
check_selection_unread
1 parameter, checks the unread flag all the messages in mailbox as specified in parameter.

CImapOperationParser
check_selection_seen
1 parameter, checks the seen flag all the messages in mailbox as specified in parameter.

CImapOperationParser
mark_selected_mail
0 parameters, marks selected messages in mailbox as read.

CImapOperationParser
check_selected_mail
0 parameters, checks selected messages in mailbox.

© Copyright Symbian LTD 2000 . This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder.

1 of 1

[image: image2.wmf]