0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "qsimplex_p.h"
|
|
43 |
|
|
44 |
#include <QtCore/qset.h>
|
|
45 |
#include <QtCore/qdebug.h>
|
|
46 |
|
|
47 |
#include <stdlib.h>
|
|
48 |
|
|
49 |
QT_BEGIN_NAMESPACE
|
|
50 |
|
|
51 |
/*!
|
|
52 |
\internal
|
|
53 |
\class QSimplex
|
|
54 |
|
|
55 |
The QSimplex class is a Linear Programming problem solver based on the two-phase
|
|
56 |
simplex method.
|
|
57 |
|
|
58 |
It takes a set of QSimplexConstraints as its restrictive constraints and an
|
|
59 |
additional QSimplexConstraint as its objective function. Then methods to maximize
|
|
60 |
and minimize the problem solution are provided.
|
|
61 |
|
|
62 |
The two-phase simplex method is based on the following steps:
|
|
63 |
First phase:
|
|
64 |
1.a) Modify the original, complex, and possibly not feasible problem, into a new,
|
|
65 |
easy to solve problem.
|
|
66 |
1.b) Set as the objective of the new problem, a feasible solution for the original
|
|
67 |
complex problem.
|
|
68 |
1.c) Run simplex to optimize the modified problem and check whether a solution for
|
|
69 |
the original problem exists.
|
|
70 |
|
|
71 |
Second phase:
|
|
72 |
2.a) Go back to the original problem with the feasibl (but not optimal) solution
|
|
73 |
found in the first phase.
|
|
74 |
2.b) Set the original objective.
|
|
75 |
3.c) Run simplex to optimize the original problem towards its optimal solution.
|
|
76 |
*/
|
|
77 |
|
|
78 |
/*!
|
|
79 |
\internal
|
|
80 |
*/
|
|
81 |
QSimplex::QSimplex() : objective(0), rows(0), columns(0), firstArtificial(0), matrix(0)
|
|
82 |
{
|
|
83 |
}
|
|
84 |
|
|
85 |
/*!
|
|
86 |
\internal
|
|
87 |
*/
|
|
88 |
QSimplex::~QSimplex()
|
|
89 |
{
|
|
90 |
clearDataStructures();
|
|
91 |
}
|
|
92 |
|
|
93 |
/*!
|
|
94 |
\internal
|
|
95 |
*/
|
|
96 |
void QSimplex::clearDataStructures()
|
|
97 |
{
|
|
98 |
if (matrix == 0)
|
|
99 |
return;
|
|
100 |
|
|
101 |
// Matrix
|
|
102 |
rows = 0;
|
|
103 |
columns = 0;
|
|
104 |
firstArtificial = 0;
|
|
105 |
free(matrix);
|
|
106 |
matrix = 0;
|
|
107 |
|
|
108 |
// Constraints
|
|
109 |
for (int i = 0; i < constraints.size(); ++i) {
|
|
110 |
delete constraints[i]->helper.first;
|
|
111 |
constraints[i]->helper.first = 0;
|
|
112 |
constraints[i]->helper.second = 0.0;
|
|
113 |
delete constraints[i]->artificial;
|
|
114 |
constraints[i]->artificial = 0;
|
|
115 |
}
|
|
116 |
constraints.clear();
|
|
117 |
|
|
118 |
// Other
|
|
119 |
variables.clear();
|
|
120 |
objective = 0;
|
|
121 |
}
|
|
122 |
|
|
123 |
/*!
|
|
124 |
\internal
|
|
125 |
Sets the new constraints in the simplex solver and returns whether the problem
|
|
126 |
is feasible.
|
|
127 |
|
|
128 |
This method sets the new constraints, normalizes them, creates the simplex matrix
|
|
129 |
and runs the first simplex phase.
|
|
130 |
*/
|
|
131 |
bool QSimplex::setConstraints(const QList<QSimplexConstraint *> newConstraints)
|
|
132 |
{
|
|
133 |
////////////////////////////
|
|
134 |
// Reset to initial state //
|
|
135 |
////////////////////////////
|
|
136 |
clearDataStructures();
|
|
137 |
|
|
138 |
if (newConstraints.isEmpty())
|
|
139 |
return true; // we are ok with no constraints
|
|
140 |
constraints = newConstraints;
|
|
141 |
|
|
142 |
///////////////////////////////////////
|
|
143 |
// Prepare variables and constraints //
|
|
144 |
///////////////////////////////////////
|
|
145 |
|
|
146 |
// Set Variables direct mapping.
|
|
147 |
// "variables" is a list that provides a stable, indexed list of all variables
|
|
148 |
// used in this problem.
|
|
149 |
QSet<QSimplexVariable *> variablesSet;
|
|
150 |
for (int i = 0; i < constraints.size(); ++i)
|
|
151 |
variablesSet += \
|
|
152 |
QSet<QSimplexVariable *>::fromList(constraints[i]->variables.keys());
|
|
153 |
variables = variablesSet.toList();
|
|
154 |
|
|
155 |
// Set Variables reverse mapping
|
|
156 |
// We also need to be able to find the index for a given variable, to do that
|
|
157 |
// we store in each variable its index.
|
|
158 |
for (int i = 0; i < variables.size(); ++i) {
|
|
159 |
// The variable "0" goes at the column "1", etc...
|
|
160 |
variables[i]->index = i + 1;
|
|
161 |
}
|
|
162 |
|
|
163 |
// Normalize Constraints
|
|
164 |
// In this step, we prepare the constraints in two ways:
|
|
165 |
// Firstly, we modify all constraints of type "LessOrEqual" or "MoreOrEqual"
|
|
166 |
// by the adding slack or surplus variables and making them "Equal" constraints.
|
|
167 |
// Secondly, we need every single constraint to have a direct, easy feasible
|
|
168 |
// solution. Constraints that have slack variables are already easy to solve,
|
|
169 |
// to all the others we add artificial variables.
|
|
170 |
//
|
|
171 |
// At the end we modify the constraints as follows:
|
|
172 |
// - LessOrEqual: SLACK variable is added.
|
|
173 |
// - Equal: ARTIFICIAL variable is added.
|
|
174 |
// - More or Equal: ARTIFICIAL and SURPLUS variables are added.
|
|
175 |
int variableIndex = variables.size();
|
|
176 |
QList <QSimplexVariable *> artificialList;
|
|
177 |
|
|
178 |
for (int i = 0; i < constraints.size(); ++i) {
|
|
179 |
QSimplexVariable *slack;
|
|
180 |
QSimplexVariable *surplus;
|
|
181 |
QSimplexVariable *artificial;
|
|
182 |
|
|
183 |
Q_ASSERT(constraints[i]->helper.first == 0);
|
|
184 |
Q_ASSERT(constraints[i]->artificial == 0);
|
|
185 |
|
|
186 |
switch(constraints[i]->ratio) {
|
|
187 |
case QSimplexConstraint::LessOrEqual:
|
|
188 |
slack = new QSimplexVariable;
|
|
189 |
slack->index = ++variableIndex;
|
|
190 |
constraints[i]->helper.first = slack;
|
|
191 |
constraints[i]->helper.second = 1.0;
|
|
192 |
break;
|
|
193 |
case QSimplexConstraint::MoreOrEqual:
|
|
194 |
surplus = new QSimplexVariable;
|
|
195 |
surplus->index = ++variableIndex;
|
|
196 |
constraints[i]->helper.first = surplus;
|
|
197 |
constraints[i]->helper.second = -1.0;
|
|
198 |
// fall through
|
|
199 |
case QSimplexConstraint::Equal:
|
|
200 |
artificial = new QSimplexVariable;
|
|
201 |
constraints[i]->artificial = artificial;
|
|
202 |
artificialList += constraints[i]->artificial;
|
|
203 |
break;
|
|
204 |
}
|
|
205 |
}
|
|
206 |
|
|
207 |
// All original, slack and surplus have already had its index set
|
|
208 |
// at this point. We now set the index of the artificial variables
|
|
209 |
// as to ensure they are at the end of the variable list and therefore
|
|
210 |
// can be easily removed at the end of this method.
|
|
211 |
firstArtificial = variableIndex + 1;
|
|
212 |
for (int i = 0; i < artificialList.size(); ++i)
|
|
213 |
artificialList[i]->index = ++variableIndex;
|
|
214 |
artificialList.clear();
|
|
215 |
|
|
216 |
/////////////////////////////
|
|
217 |
// Fill the Simplex matrix //
|
|
218 |
/////////////////////////////
|
|
219 |
|
|
220 |
// One for each variable plus the Basic and BFS columns (first and last)
|
|
221 |
columns = variableIndex + 2;
|
|
222 |
// One for each constraint plus the objective function
|
|
223 |
rows = constraints.size() + 1;
|
|
224 |
|
|
225 |
matrix = (qreal *)malloc(sizeof(qreal) * columns * rows);
|
|
226 |
if (!matrix) {
|
|
227 |
qWarning() << "QSimplex: Unable to allocate memory!";
|
|
228 |
return false;
|
|
229 |
}
|
|
230 |
for (int i = columns * rows - 1; i >= 0; --i)
|
|
231 |
matrix[i] = 0.0;
|
|
232 |
|
|
233 |
// Fill Matrix
|
|
234 |
for (int i = 1; i <= constraints.size(); ++i) {
|
|
235 |
QSimplexConstraint *c = constraints[i - 1];
|
|
236 |
|
|
237 |
if (c->artificial) {
|
|
238 |
// Will use artificial basic variable
|
|
239 |
setValueAt(i, 0, c->artificial->index);
|
|
240 |
setValueAt(i, c->artificial->index, 1.0);
|
|
241 |
|
|
242 |
if (c->helper.second != 0.0) {
|
|
243 |
// Surplus variable
|
|
244 |
setValueAt(i, c->helper.first->index, c->helper.second);
|
|
245 |
}
|
|
246 |
} else {
|
|
247 |
// Slack is used as the basic variable
|
|
248 |
Q_ASSERT(c->helper.second == 1.0);
|
|
249 |
setValueAt(i, 0, c->helper.first->index);
|
|
250 |
setValueAt(i, c->helper.first->index, 1.0);
|
|
251 |
}
|
|
252 |
|
|
253 |
QHash<QSimplexVariable *, qreal>::const_iterator iter;
|
|
254 |
for (iter = c->variables.constBegin();
|
|
255 |
iter != c->variables.constEnd();
|
|
256 |
++iter) {
|
|
257 |
setValueAt(i, iter.key()->index, iter.value());
|
|
258 |
}
|
|
259 |
|
|
260 |
setValueAt(i, columns - 1, c->constant);
|
|
261 |
}
|
|
262 |
|
|
263 |
// Set objective for the first-phase Simplex.
|
|
264 |
// Z = -1 * sum_of_artificial_vars
|
|
265 |
for (int j = firstArtificial; j < columns - 1; ++j)
|
|
266 |
setValueAt(0, j, 1.0);
|
|
267 |
|
|
268 |
// Maximize our objective (artificial vars go to zero)
|
|
269 |
solveMaxHelper();
|
|
270 |
|
|
271 |
// If there is a solution where the sum of all artificial
|
|
272 |
// variables is zero, then all of them can be removed and yet
|
|
273 |
// we will have a feasible (but not optimal) solution for the
|
|
274 |
// original problem.
|
|
275 |
// Otherwise, we clean up our structures and report there is
|
|
276 |
// no feasible solution.
|
|
277 |
if (valueAt(0, columns - 1) != 0.0) {
|
|
278 |
qWarning() << "QSimplex: No feasible solution!";
|
|
279 |
clearDataStructures();
|
|
280 |
return false;
|
|
281 |
}
|
|
282 |
|
|
283 |
// Remove artificial variables. We already have a feasible
|
|
284 |
// solution for the first problem, thus we don't need them
|
|
285 |
// anymore.
|
|
286 |
clearColumns(firstArtificial, columns - 2);
|
|
287 |
|
|
288 |
return true;
|
|
289 |
}
|
|
290 |
|
|
291 |
/*!
|
|
292 |
\internal
|
|
293 |
|
|
294 |
Run simplex on the current matrix with the current objective.
|
|
295 |
|
|
296 |
This is the iterative method. The matrix lines are combined
|
|
297 |
as to modify the variable values towards the best solution possible.
|
|
298 |
The method returns when the matrix is in the optimal state.
|
|
299 |
*/
|
|
300 |
void QSimplex::solveMaxHelper()
|
|
301 |
{
|
|
302 |
reducedRowEchelon();
|
|
303 |
while (iterate()) ;
|
|
304 |
}
|
|
305 |
|
|
306 |
/*!
|
|
307 |
\internal
|
|
308 |
*/
|
|
309 |
void QSimplex::setObjective(QSimplexConstraint *newObjective)
|
|
310 |
{
|
|
311 |
objective = newObjective;
|
|
312 |
}
|
|
313 |
|
|
314 |
/*!
|
|
315 |
\internal
|
|
316 |
*/
|
|
317 |
void QSimplex::clearRow(int rowIndex)
|
|
318 |
{
|
|
319 |
qreal *item = matrix + rowIndex * columns;
|
|
320 |
for (int i = 0; i < columns; ++i)
|
|
321 |
item[i] = 0.0;
|
|
322 |
}
|
|
323 |
|
|
324 |
/*!
|
|
325 |
\internal
|
|
326 |
*/
|
|
327 |
void QSimplex::clearColumns(int first, int last)
|
|
328 |
{
|
|
329 |
for (int i = 0; i < rows; ++i) {
|
|
330 |
qreal *row = matrix + i * columns;
|
|
331 |
for (int j = first; j <= last; ++j)
|
|
332 |
row[j] = 0.0;
|
|
333 |
}
|
|
334 |
}
|
|
335 |
|
|
336 |
/*!
|
|
337 |
\internal
|
|
338 |
*/
|
|
339 |
void QSimplex::dumpMatrix()
|
|
340 |
{
|
|
341 |
qDebug("---- Simplex Matrix ----\n");
|
|
342 |
|
|
343 |
QString str(QLatin1String(" "));
|
|
344 |
for (int j = 0; j < columns; ++j)
|
|
345 |
str += QString::fromAscii(" <%1 >").arg(j, 2);
|
|
346 |
qDebug("%s", qPrintable(str));
|
|
347 |
for (int i = 0; i < rows; ++i) {
|
|
348 |
str = QString::fromAscii("Row %1:").arg(i, 2);
|
|
349 |
|
|
350 |
qreal *row = matrix + i * columns;
|
|
351 |
for (int j = 0; j < columns; ++j)
|
|
352 |
str += QString::fromAscii("%1").arg(row[j], 7, 'f', 2);
|
|
353 |
qDebug("%s", qPrintable(str));
|
|
354 |
}
|
|
355 |
qDebug("------------------------\n");
|
|
356 |
}
|
|
357 |
|
|
358 |
/*!
|
|
359 |
\internal
|
|
360 |
*/
|
|
361 |
void QSimplex::combineRows(int toIndex, int fromIndex, qreal factor)
|
|
362 |
{
|
|
363 |
if (!factor)
|
|
364 |
return;
|
|
365 |
|
|
366 |
qreal *from = matrix + fromIndex * columns;
|
|
367 |
qreal *to = matrix + toIndex * columns;
|
|
368 |
|
|
369 |
for (int j = 1; j < columns; ++j) {
|
|
370 |
qreal value = from[j];
|
|
371 |
|
|
372 |
// skip to[j] = to[j] + factor*0.0
|
|
373 |
if (value == 0.0)
|
|
374 |
continue;
|
|
375 |
|
|
376 |
to[j] += factor * value;
|
|
377 |
|
|
378 |
// ### Avoid Numerical errors
|
|
379 |
if (qAbs(to[j]) < 0.0000000001)
|
|
380 |
to[j] = 0.0;
|
|
381 |
}
|
|
382 |
}
|
|
383 |
|
|
384 |
/*!
|
|
385 |
\internal
|
|
386 |
*/
|
|
387 |
int QSimplex::findPivotColumn()
|
|
388 |
{
|
|
389 |
qreal min = 0;
|
|
390 |
int minIndex = -1;
|
|
391 |
|
|
392 |
for (int j = 0; j < columns-1; ++j) {
|
|
393 |
if (valueAt(0, j) < min) {
|
|
394 |
min = valueAt(0, j);
|
|
395 |
minIndex = j;
|
|
396 |
}
|
|
397 |
}
|
|
398 |
|
|
399 |
return minIndex;
|
|
400 |
}
|
|
401 |
|
|
402 |
/*!
|
|
403 |
\internal
|
|
404 |
|
|
405 |
For a given pivot column, find the pivot row. That is, the row with the
|
|
406 |
minimum associated "quotient" where:
|
|
407 |
|
|
408 |
- quotient is the division of the value in the last column by the value
|
|
409 |
in the pivot column.
|
|
410 |
- rows with value less or equal to zero are ignored
|
|
411 |
- if two rows have the same quotient, lines are chosen based on the
|
|
412 |
highest variable index (value in the first column)
|
|
413 |
|
|
414 |
The last condition avoids a bug where artificial variables would be
|
|
415 |
left behind for the second-phase simplex, and with 'good'
|
|
416 |
constraints would be removed before it, what would lead to incorrect
|
|
417 |
results.
|
|
418 |
*/
|
|
419 |
int QSimplex::pivotRowForColumn(int column)
|
|
420 |
{
|
|
421 |
qreal min = qreal(999999999999.0); // ###
|
|
422 |
int minIndex = -1;
|
|
423 |
|
|
424 |
for (int i = 1; i < rows; ++i) {
|
|
425 |
qreal divisor = valueAt(i, column);
|
|
426 |
if (divisor <= 0)
|
|
427 |
continue;
|
|
428 |
|
|
429 |
qreal quotient = valueAt(i, columns - 1) / divisor;
|
|
430 |
if (quotient < min) {
|
|
431 |
min = quotient;
|
|
432 |
minIndex = i;
|
|
433 |
} else if ((quotient == min) && (valueAt(i, 0) > valueAt(minIndex, 0))) {
|
|
434 |
minIndex = i;
|
|
435 |
}
|
|
436 |
}
|
|
437 |
|
|
438 |
return minIndex;
|
|
439 |
}
|
|
440 |
|
|
441 |
/*!
|
|
442 |
\internal
|
|
443 |
*/
|
|
444 |
void QSimplex::reducedRowEchelon()
|
|
445 |
{
|
|
446 |
for (int i = 1; i < rows; ++i) {
|
|
447 |
int factorInObjectiveRow = valueAt(i, 0);
|
|
448 |
combineRows(0, i, -1 * valueAt(0, factorInObjectiveRow));
|
|
449 |
}
|
|
450 |
}
|
|
451 |
|
|
452 |
/*!
|
|
453 |
\internal
|
|
454 |
|
|
455 |
Does one iteration towards a better solution for the problem.
|
|
456 |
See 'solveMaxHelper'.
|
|
457 |
*/
|
|
458 |
bool QSimplex::iterate()
|
|
459 |
{
|
|
460 |
// Find Pivot column
|
|
461 |
int pivotColumn = findPivotColumn();
|
|
462 |
if (pivotColumn == -1)
|
|
463 |
return false;
|
|
464 |
|
|
465 |
// Find Pivot row for column
|
|
466 |
int pivotRow = pivotRowForColumn(pivotColumn);
|
|
467 |
if (pivotRow == -1) {
|
|
468 |
qWarning() << "QSimplex: Unbounded problem!";
|
|
469 |
return false;
|
|
470 |
}
|
|
471 |
|
|
472 |
// Normalize Pivot Row
|
|
473 |
qreal pivot = valueAt(pivotRow, pivotColumn);
|
|
474 |
if (pivot != 1.0)
|
|
475 |
combineRows(pivotRow, pivotRow, (1.0 - pivot) / pivot);
|
|
476 |
|
|
477 |
// Update other rows
|
|
478 |
for (int row=0; row < rows; ++row) {
|
|
479 |
if (row == pivotRow)
|
|
480 |
continue;
|
|
481 |
|
|
482 |
combineRows(row, pivotRow, -1 * valueAt(row, pivotColumn));
|
|
483 |
}
|
|
484 |
|
|
485 |
// Update first column
|
|
486 |
setValueAt(pivotRow, 0, pivotColumn);
|
|
487 |
|
|
488 |
// dumpMatrix();
|
|
489 |
// qDebug("------------ end of iteration --------------\n");
|
|
490 |
return true;
|
|
491 |
}
|
|
492 |
|
|
493 |
/*!
|
|
494 |
\internal
|
|
495 |
|
|
496 |
Both solveMin and solveMax are interfaces to this method.
|
|
497 |
|
|
498 |
The enum solverFactor admits 2 values: Minimum (-1) and Maximum (+1).
|
|
499 |
|
|
500 |
This method sets the original objective and runs the second phase
|
|
501 |
Simplex to obtain the optimal solution for the problem. As the internal
|
|
502 |
simplex solver is only able to _maximize_ objectives, we handle the
|
|
503 |
minimization case by inverting the original objective and then
|
|
504 |
maximizing it.
|
|
505 |
*/
|
|
506 |
qreal QSimplex::solver(solverFactor factor)
|
|
507 |
{
|
|
508 |
// Remove old objective
|
|
509 |
clearRow(0);
|
|
510 |
|
|
511 |
// Set new objective
|
|
512 |
QHash<QSimplexVariable *, qreal>::const_iterator iter;
|
|
513 |
for (iter = objective->variables.constBegin();
|
|
514 |
iter != objective->variables.constEnd();
|
|
515 |
++iter) {
|
|
516 |
setValueAt(0, iter.key()->index, -1 * factor * iter.value());
|
|
517 |
}
|
|
518 |
|
|
519 |
solveMaxHelper();
|
|
520 |
collectResults();
|
|
521 |
|
|
522 |
#ifdef QT_DEBUG
|
|
523 |
for (int i = 0; i < constraints.size(); ++i) {
|
|
524 |
Q_ASSERT(constraints[i]->isSatisfied());
|
|
525 |
}
|
|
526 |
#endif
|
|
527 |
|
|
528 |
return factor * valueAt(0, columns - 1);
|
|
529 |
}
|
|
530 |
|
|
531 |
/*!
|
|
532 |
\internal
|
|
533 |
Minimize the original objective.
|
|
534 |
*/
|
|
535 |
qreal QSimplex::solveMin()
|
|
536 |
{
|
|
537 |
return solver(Minimum);
|
|
538 |
}
|
|
539 |
|
|
540 |
/*!
|
|
541 |
\internal
|
|
542 |
Maximize the original objective.
|
|
543 |
*/
|
|
544 |
qreal QSimplex::solveMax()
|
|
545 |
{
|
|
546 |
return solver(Maximum);
|
|
547 |
}
|
|
548 |
|
|
549 |
/*!
|
|
550 |
\internal
|
|
551 |
|
|
552 |
Reads results from the simplified matrix and saves them in the
|
|
553 |
"result" member of each QSimplexVariable.
|
|
554 |
*/
|
|
555 |
void QSimplex::collectResults()
|
|
556 |
{
|
|
557 |
// All variables are zero unless overridden below.
|
|
558 |
|
|
559 |
// ### Is this really needed? Is there any chance that an
|
|
560 |
// important variable remains as non-basic at the end of simplex?
|
|
561 |
for (int i = 0; i < variables.size(); ++i)
|
|
562 |
variables[i]->result = 0;
|
|
563 |
|
|
564 |
// Basic variables
|
|
565 |
// Update the variable indicated in the first column with the value
|
|
566 |
// in the last column.
|
|
567 |
for (int i = 1; i < rows; ++i) {
|
|
568 |
int index = valueAt(i, 0) - 1;
|
|
569 |
if (index < variables.size())
|
|
570 |
variables[index]->result = valueAt(i, columns - 1);
|
|
571 |
}
|
|
572 |
}
|
|
573 |
|
|
574 |
QT_END_NAMESPACE
|