0
|
1 |
/*
|
|
2 |
* jdsample.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1996, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains upsampling routines.
|
|
9 |
*
|
|
10 |
* Upsampling input data is counted in "row groups". A row group
|
|
11 |
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
|
12 |
* sample rows of each component. Upsampling will normally produce
|
|
13 |
* max_v_samp_factor pixel rows from each row group (but this could vary
|
|
14 |
* if the upsampler is applying a scale factor of its own).
|
|
15 |
*
|
|
16 |
* An excellent reference for image resampling is
|
|
17 |
* Digital Image Warping, George Wolberg, 1990.
|
|
18 |
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
|
19 |
*/
|
|
20 |
|
|
21 |
#define JPEG_INTERNALS
|
|
22 |
#include "jinclude.h"
|
|
23 |
#include "jpeglib.h"
|
|
24 |
|
|
25 |
|
|
26 |
/* Pointer to routine to upsample a single component */
|
|
27 |
typedef JMETHOD(void, upsample1_ptr,
|
|
28 |
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
29 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
|
|
30 |
|
|
31 |
/* Private subobject */
|
|
32 |
|
|
33 |
typedef struct {
|
|
34 |
struct jpeg_upsampler pub; /* public fields */
|
|
35 |
|
|
36 |
/* Color conversion buffer. When using separate upsampling and color
|
|
37 |
* conversion steps, this buffer holds one upsampled row group until it
|
|
38 |
* has been color converted and output.
|
|
39 |
* Note: we do not allocate any storage for component(s) which are full-size,
|
|
40 |
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
|
41 |
* simply set to point to the input data array, thereby avoiding copying.
|
|
42 |
*/
|
|
43 |
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
|
44 |
|
|
45 |
/* Per-component upsampling method pointers */
|
|
46 |
upsample1_ptr methods[MAX_COMPONENTS];
|
|
47 |
|
|
48 |
int next_row_out; /* counts rows emitted from color_buf */
|
|
49 |
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
|
50 |
|
|
51 |
/* Height of an input row group for each component. */
|
|
52 |
int rowgroup_height[MAX_COMPONENTS];
|
|
53 |
|
|
54 |
/* These arrays save pixel expansion factors so that int_expand need not
|
|
55 |
* recompute them each time. They are unused for other upsampling methods.
|
|
56 |
*/
|
|
57 |
UINT8 h_expand[MAX_COMPONENTS];
|
|
58 |
UINT8 v_expand[MAX_COMPONENTS];
|
|
59 |
} my_upsampler;
|
|
60 |
|
|
61 |
typedef my_upsampler * my_upsample_ptr;
|
|
62 |
|
|
63 |
|
|
64 |
/*
|
|
65 |
* Initialize for an upsampling pass.
|
|
66 |
*/
|
|
67 |
|
|
68 |
METHODDEF(void)
|
|
69 |
start_pass_upsample (j_decompress_ptr cinfo)
|
|
70 |
{
|
|
71 |
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
|
72 |
|
|
73 |
/* Mark the conversion buffer empty */
|
|
74 |
upsample->next_row_out = cinfo->max_v_samp_factor;
|
|
75 |
/* Initialize total-height counter for detecting bottom of image */
|
|
76 |
upsample->rows_to_go = cinfo->output_height;
|
|
77 |
}
|
|
78 |
|
|
79 |
|
|
80 |
/*
|
|
81 |
* Control routine to do upsampling (and color conversion).
|
|
82 |
*
|
|
83 |
* In this version we upsample each component independently.
|
|
84 |
* We upsample one row group into the conversion buffer, then apply
|
|
85 |
* color conversion a row at a time.
|
|
86 |
*/
|
|
87 |
|
|
88 |
METHODDEF(void)
|
|
89 |
sep_upsample (j_decompress_ptr cinfo,
|
|
90 |
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
|
91 |
JDIMENSION in_row_groups_avail,
|
|
92 |
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
|
93 |
JDIMENSION out_rows_avail)
|
|
94 |
{
|
|
95 |
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
|
96 |
int ci;
|
|
97 |
jpeg_component_info * compptr;
|
|
98 |
JDIMENSION num_rows;
|
|
99 |
|
|
100 |
/* Fill the conversion buffer, if it's empty */
|
|
101 |
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
|
102 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
103 |
ci++, compptr++) {
|
|
104 |
/* Invoke per-component upsample method. Notice we pass a POINTER
|
|
105 |
* to color_buf[ci], so that fullsize_upsample can change it.
|
|
106 |
*/
|
|
107 |
(*upsample->methods[ci]) (cinfo, compptr,
|
|
108 |
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
|
109 |
upsample->color_buf + ci);
|
|
110 |
}
|
|
111 |
upsample->next_row_out = 0;
|
|
112 |
}
|
|
113 |
|
|
114 |
/* Color-convert and emit rows */
|
|
115 |
|
|
116 |
/* How many we have in the buffer: */
|
|
117 |
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
|
|
118 |
/* Not more than the distance to the end of the image. Need this test
|
|
119 |
* in case the image height is not a multiple of max_v_samp_factor:
|
|
120 |
*/
|
|
121 |
if (num_rows > upsample->rows_to_go)
|
|
122 |
num_rows = upsample->rows_to_go;
|
|
123 |
/* And not more than what the client can accept: */
|
|
124 |
out_rows_avail -= *out_row_ctr;
|
|
125 |
if (num_rows > out_rows_avail)
|
|
126 |
num_rows = out_rows_avail;
|
|
127 |
|
|
128 |
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
|
129 |
(JDIMENSION) upsample->next_row_out,
|
|
130 |
output_buf + *out_row_ctr,
|
|
131 |
(int) num_rows);
|
|
132 |
|
|
133 |
/* Adjust counts */
|
|
134 |
*out_row_ctr += num_rows;
|
|
135 |
upsample->rows_to_go -= num_rows;
|
|
136 |
upsample->next_row_out += num_rows;
|
|
137 |
/* When the buffer is emptied, declare this input row group consumed */
|
|
138 |
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
|
139 |
(*in_row_group_ctr)++;
|
|
140 |
}
|
|
141 |
|
|
142 |
|
|
143 |
/*
|
|
144 |
* These are the routines invoked by sep_upsample to upsample pixel values
|
|
145 |
* of a single component. One row group is processed per call.
|
|
146 |
*/
|
|
147 |
|
|
148 |
|
|
149 |
/*
|
|
150 |
* For full-size components, we just make color_buf[ci] point at the
|
|
151 |
* input buffer, and thus avoid copying any data. Note that this is
|
|
152 |
* safe only because sep_upsample doesn't declare the input row group
|
|
153 |
* "consumed" until we are done color converting and emitting it.
|
|
154 |
*/
|
|
155 |
|
|
156 |
METHODDEF(void)
|
|
157 |
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
158 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
159 |
{
|
|
160 |
*output_data_ptr = input_data;
|
|
161 |
}
|
|
162 |
|
|
163 |
|
|
164 |
/*
|
|
165 |
* This is a no-op version used for "uninteresting" components.
|
|
166 |
* These components will not be referenced by color conversion.
|
|
167 |
*/
|
|
168 |
|
|
169 |
METHODDEF(void)
|
|
170 |
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
171 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
172 |
{
|
|
173 |
*output_data_ptr = NULL; /* safety check */
|
|
174 |
}
|
|
175 |
|
|
176 |
|
|
177 |
/*
|
|
178 |
* This version handles any integral sampling ratios.
|
|
179 |
* This is not used for typical JPEG files, so it need not be fast.
|
|
180 |
* Nor, for that matter, is it particularly accurate: the algorithm is
|
|
181 |
* simple replication of the input pixel onto the corresponding output
|
|
182 |
* pixels. The hi-falutin sampling literature refers to this as a
|
|
183 |
* "box filter". A box filter tends to introduce visible artifacts,
|
|
184 |
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
|
185 |
* you would be well advised to improve this code.
|
|
186 |
*/
|
|
187 |
|
|
188 |
METHODDEF(void)
|
|
189 |
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
190 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
191 |
{
|
|
192 |
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
|
193 |
JSAMPARRAY output_data = *output_data_ptr;
|
|
194 |
register JSAMPROW inptr, outptr;
|
|
195 |
register JSAMPLE invalue;
|
|
196 |
register int h;
|
|
197 |
JSAMPROW outend;
|
|
198 |
int h_expand, v_expand;
|
|
199 |
int inrow, outrow;
|
|
200 |
|
|
201 |
h_expand = upsample->h_expand[compptr->component_index];
|
|
202 |
v_expand = upsample->v_expand[compptr->component_index];
|
|
203 |
|
|
204 |
inrow = outrow = 0;
|
|
205 |
while (outrow < cinfo->max_v_samp_factor) {
|
|
206 |
/* Generate one output row with proper horizontal expansion */
|
|
207 |
inptr = input_data[inrow];
|
|
208 |
outptr = output_data[outrow];
|
|
209 |
outend = outptr + cinfo->output_width;
|
|
210 |
while (outptr < outend) {
|
|
211 |
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
|
212 |
for (h = h_expand; h > 0; h--) {
|
|
213 |
*outptr++ = invalue;
|
|
214 |
}
|
|
215 |
}
|
|
216 |
/* Generate any additional output rows by duplicating the first one */
|
|
217 |
if (v_expand > 1) {
|
|
218 |
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
|
219 |
v_expand-1, cinfo->output_width);
|
|
220 |
}
|
|
221 |
inrow++;
|
|
222 |
outrow += v_expand;
|
|
223 |
}
|
|
224 |
}
|
|
225 |
|
|
226 |
|
|
227 |
/*
|
|
228 |
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
|
229 |
* It's still a box filter.
|
|
230 |
*/
|
|
231 |
|
|
232 |
METHODDEF(void)
|
|
233 |
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
234 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
235 |
{
|
|
236 |
JSAMPARRAY output_data = *output_data_ptr;
|
|
237 |
register JSAMPROW inptr, outptr;
|
|
238 |
register JSAMPLE invalue;
|
|
239 |
JSAMPROW outend;
|
|
240 |
int inrow;
|
|
241 |
|
|
242 |
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
|
243 |
inptr = input_data[inrow];
|
|
244 |
outptr = output_data[inrow];
|
|
245 |
outend = outptr + cinfo->output_width;
|
|
246 |
while (outptr < outend) {
|
|
247 |
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
|
248 |
*outptr++ = invalue;
|
|
249 |
*outptr++ = invalue;
|
|
250 |
}
|
|
251 |
}
|
|
252 |
}
|
|
253 |
|
|
254 |
|
|
255 |
/*
|
|
256 |
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
|
257 |
* It's still a box filter.
|
|
258 |
*/
|
|
259 |
|
|
260 |
METHODDEF(void)
|
|
261 |
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
262 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
263 |
{
|
|
264 |
JSAMPARRAY output_data = *output_data_ptr;
|
|
265 |
register JSAMPROW inptr, outptr;
|
|
266 |
register JSAMPLE invalue;
|
|
267 |
JSAMPROW outend;
|
|
268 |
int inrow, outrow;
|
|
269 |
|
|
270 |
inrow = outrow = 0;
|
|
271 |
while (outrow < cinfo->max_v_samp_factor) {
|
|
272 |
inptr = input_data[inrow];
|
|
273 |
outptr = output_data[outrow];
|
|
274 |
outend = outptr + cinfo->output_width;
|
|
275 |
while (outptr < outend) {
|
|
276 |
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
|
277 |
*outptr++ = invalue;
|
|
278 |
*outptr++ = invalue;
|
|
279 |
}
|
|
280 |
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
|
281 |
1, cinfo->output_width);
|
|
282 |
inrow++;
|
|
283 |
outrow += 2;
|
|
284 |
}
|
|
285 |
}
|
|
286 |
|
|
287 |
|
|
288 |
/*
|
|
289 |
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
|
|
290 |
*
|
|
291 |
* The upsampling algorithm is linear interpolation between pixel centers,
|
|
292 |
* also known as a "triangle filter". This is a good compromise between
|
|
293 |
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
|
|
294 |
* of the way between input pixel centers.
|
|
295 |
*
|
|
296 |
* A note about the "bias" calculations: when rounding fractional values to
|
|
297 |
* integer, we do not want to always round 0.5 up to the next integer.
|
|
298 |
* If we did that, we'd introduce a noticeable bias towards larger values.
|
|
299 |
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
|
300 |
* alternate pixel locations (a simple ordered dither pattern).
|
|
301 |
*/
|
|
302 |
|
|
303 |
METHODDEF(void)
|
|
304 |
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
305 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
306 |
{
|
|
307 |
JSAMPARRAY output_data = *output_data_ptr;
|
|
308 |
register JSAMPROW inptr, outptr;
|
|
309 |
register int invalue;
|
|
310 |
register JDIMENSION colctr;
|
|
311 |
int inrow;
|
|
312 |
|
|
313 |
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
|
314 |
inptr = input_data[inrow];
|
|
315 |
outptr = output_data[inrow];
|
|
316 |
/* Special case for first column */
|
|
317 |
invalue = GETJSAMPLE(*inptr++);
|
|
318 |
*outptr++ = (JSAMPLE) invalue;
|
|
319 |
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
|
|
320 |
|
|
321 |
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
|
322 |
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
|
|
323 |
invalue = GETJSAMPLE(*inptr++) * 3;
|
|
324 |
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
|
|
325 |
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
|
|
326 |
}
|
|
327 |
|
|
328 |
/* Special case for last column */
|
|
329 |
invalue = GETJSAMPLE(*inptr);
|
|
330 |
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
|
|
331 |
*outptr++ = (JSAMPLE) invalue;
|
|
332 |
}
|
|
333 |
}
|
|
334 |
|
|
335 |
|
|
336 |
/*
|
|
337 |
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
|
|
338 |
* Again a triangle filter; see comments for h2v1 case, above.
|
|
339 |
*
|
|
340 |
* It is OK for us to reference the adjacent input rows because we demanded
|
|
341 |
* context from the main buffer controller (see initialization code).
|
|
342 |
*/
|
|
343 |
|
|
344 |
METHODDEF(void)
|
|
345 |
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
346 |
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
|
347 |
{
|
|
348 |
JSAMPARRAY output_data = *output_data_ptr;
|
|
349 |
register JSAMPROW inptr0, inptr1, outptr;
|
|
350 |
#if BITS_IN_JSAMPLE == 8
|
|
351 |
register int thiscolsum, lastcolsum, nextcolsum;
|
|
352 |
#else
|
|
353 |
register INT32 thiscolsum, lastcolsum, nextcolsum;
|
|
354 |
#endif
|
|
355 |
register JDIMENSION colctr;
|
|
356 |
int inrow, outrow, v;
|
|
357 |
|
|
358 |
inrow = outrow = 0;
|
|
359 |
while (outrow < cinfo->max_v_samp_factor) {
|
|
360 |
for (v = 0; v < 2; v++) {
|
|
361 |
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
|
362 |
inptr0 = input_data[inrow];
|
|
363 |
if (v == 0) /* next nearest is row above */
|
|
364 |
inptr1 = input_data[inrow-1];
|
|
365 |
else /* next nearest is row below */
|
|
366 |
inptr1 = input_data[inrow+1];
|
|
367 |
outptr = output_data[outrow++];
|
|
368 |
|
|
369 |
/* Special case for first column */
|
|
370 |
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
371 |
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
372 |
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
|
|
373 |
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
|
374 |
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
|
375 |
|
|
376 |
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
|
377 |
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
|
|
378 |
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
|
|
379 |
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
380 |
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
|
381 |
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
|
382 |
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
|
383 |
}
|
|
384 |
|
|
385 |
/* Special case for last column */
|
|
386 |
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
|
387 |
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
|
|
388 |
}
|
|
389 |
inrow++;
|
|
390 |
}
|
|
391 |
}
|
|
392 |
|
|
393 |
|
|
394 |
/*
|
|
395 |
* Module initialization routine for upsampling.
|
|
396 |
*/
|
|
397 |
|
|
398 |
GLOBAL(void)
|
|
399 |
jinit_upsampler (j_decompress_ptr cinfo)
|
|
400 |
{
|
|
401 |
my_upsample_ptr upsample;
|
|
402 |
int ci;
|
|
403 |
jpeg_component_info * compptr;
|
|
404 |
boolean need_buffer, do_fancy;
|
|
405 |
int h_in_group, v_in_group, h_out_group, v_out_group;
|
|
406 |
|
|
407 |
upsample = (my_upsample_ptr)
|
|
408 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
409 |
SIZEOF(my_upsampler));
|
|
410 |
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
|
411 |
upsample->pub.start_pass = start_pass_upsample;
|
|
412 |
upsample->pub.upsample = sep_upsample;
|
|
413 |
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
|
414 |
|
|
415 |
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
|
416 |
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
|
417 |
|
|
418 |
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
|
|
419 |
* so don't ask for it.
|
|
420 |
*/
|
|
421 |
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
|
|
422 |
|
|
423 |
/* Verify we can handle the sampling factors, select per-component methods,
|
|
424 |
* and create storage as needed.
|
|
425 |
*/
|
|
426 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
427 |
ci++, compptr++) {
|
|
428 |
/* Compute size of an "input group" after IDCT scaling. This many samples
|
|
429 |
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
|
430 |
*/
|
|
431 |
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
|
|
432 |
cinfo->min_DCT_scaled_size;
|
|
433 |
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
|
434 |
cinfo->min_DCT_scaled_size;
|
|
435 |
h_out_group = cinfo->max_h_samp_factor;
|
|
436 |
v_out_group = cinfo->max_v_samp_factor;
|
|
437 |
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
|
438 |
need_buffer = TRUE;
|
|
439 |
if (! compptr->component_needed) {
|
|
440 |
/* Don't bother to upsample an uninteresting component. */
|
|
441 |
upsample->methods[ci] = noop_upsample;
|
|
442 |
need_buffer = FALSE;
|
|
443 |
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
|
444 |
/* Fullsize components can be processed without any work. */
|
|
445 |
upsample->methods[ci] = fullsize_upsample;
|
|
446 |
need_buffer = FALSE;
|
|
447 |
} else if (h_in_group * 2 == h_out_group &&
|
|
448 |
v_in_group == v_out_group) {
|
|
449 |
/* Special cases for 2h1v upsampling */
|
|
450 |
if (do_fancy && compptr->downsampled_width > 2)
|
|
451 |
upsample->methods[ci] = h2v1_fancy_upsample;
|
|
452 |
else
|
|
453 |
upsample->methods[ci] = h2v1_upsample;
|
|
454 |
} else if (h_in_group * 2 == h_out_group &&
|
|
455 |
v_in_group * 2 == v_out_group) {
|
|
456 |
/* Special cases for 2h2v upsampling */
|
|
457 |
if (do_fancy && compptr->downsampled_width > 2) {
|
|
458 |
upsample->methods[ci] = h2v2_fancy_upsample;
|
|
459 |
upsample->pub.need_context_rows = TRUE;
|
|
460 |
} else
|
|
461 |
upsample->methods[ci] = h2v2_upsample;
|
|
462 |
} else if ((h_out_group % h_in_group) == 0 &&
|
|
463 |
(v_out_group % v_in_group) == 0) {
|
|
464 |
/* Generic integral-factors upsampling method */
|
|
465 |
upsample->methods[ci] = int_upsample;
|
|
466 |
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
|
|
467 |
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
|
|
468 |
} else
|
|
469 |
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
|
470 |
if (need_buffer) {
|
|
471 |
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
|
472 |
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
473 |
(JDIMENSION) jround_up((long) cinfo->output_width,
|
|
474 |
(long) cinfo->max_h_samp_factor),
|
|
475 |
(JDIMENSION) cinfo->max_v_samp_factor);
|
|
476 |
}
|
|
477 |
}
|
|
478 |
}
|