0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtCore module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "qregexp.h"
|
|
43 |
|
|
44 |
#include "qalgorithms.h"
|
|
45 |
#include "qbitarray.h"
|
|
46 |
#include "qcache.h"
|
|
47 |
#include "qdatastream.h"
|
|
48 |
#include "qlist.h"
|
|
49 |
#include "qmap.h"
|
|
50 |
#include "qmutex.h"
|
|
51 |
#include "qstring.h"
|
|
52 |
#include "qstringlist.h"
|
|
53 |
#include "qstringmatcher.h"
|
|
54 |
#include "qvector.h"
|
|
55 |
#include "private/qfunctions_p.h"
|
|
56 |
|
|
57 |
#include <limits.h>
|
|
58 |
|
|
59 |
QT_BEGIN_NAMESPACE
|
|
60 |
|
|
61 |
int qFindString(const QChar *haystack, int haystackLen, int from,
|
|
62 |
const QChar *needle, int needleLen, Qt::CaseSensitivity cs);
|
|
63 |
|
|
64 |
// error strings for the regexp parser
|
|
65 |
#define RXERR_OK QT_TRANSLATE_NOOP("QRegExp", "no error occurred")
|
|
66 |
#define RXERR_DISABLED QT_TRANSLATE_NOOP("QRegExp", "disabled feature used")
|
|
67 |
#define RXERR_CHARCLASS QT_TRANSLATE_NOOP("QRegExp", "bad char class syntax")
|
|
68 |
#define RXERR_LOOKAHEAD QT_TRANSLATE_NOOP("QRegExp", "bad lookahead syntax")
|
|
69 |
#define RXERR_REPETITION QT_TRANSLATE_NOOP("QRegExp", "bad repetition syntax")
|
|
70 |
#define RXERR_OCTAL QT_TRANSLATE_NOOP("QRegExp", "invalid octal value")
|
|
71 |
#define RXERR_LEFTDELIM QT_TRANSLATE_NOOP("QRegExp", "missing left delim")
|
|
72 |
#define RXERR_END QT_TRANSLATE_NOOP("QRegExp", "unexpected end")
|
|
73 |
#define RXERR_LIMIT QT_TRANSLATE_NOOP("QRegExp", "met internal limit")
|
|
74 |
#define RXERR_INTERVAL QT_TRANSLATE_NOOP("QRegExp", "invalid interval")
|
|
75 |
#define RXERR_CATEGORY QT_TRANSLATE_NOOP("QRegExp", "invalid category")
|
|
76 |
|
|
77 |
/*
|
|
78 |
WARNING! Be sure to read qregexp.tex before modifying this file.
|
|
79 |
*/
|
|
80 |
|
|
81 |
/*!
|
|
82 |
\class QRegExp
|
|
83 |
\reentrant
|
|
84 |
\brief The QRegExp class provides pattern matching using regular expressions.
|
|
85 |
|
|
86 |
\ingroup tools
|
|
87 |
\ingroup shared
|
|
88 |
|
|
89 |
\keyword regular expression
|
|
90 |
|
|
91 |
A regular expression, or "regexp", is a pattern for matching
|
|
92 |
substrings in a text. This is useful in many contexts, e.g.,
|
|
93 |
|
|
94 |
\table
|
|
95 |
\row \i Validation
|
|
96 |
\i A regexp can test whether a substring meets some criteria,
|
|
97 |
e.g. is an integer or contains no whitespace.
|
|
98 |
\row \i Searching
|
|
99 |
\i A regexp provides more powerful pattern matching than
|
|
100 |
simple substring matching, e.g., match one of the words
|
|
101 |
\e{mail}, \e{letter} or \e{correspondence}, but none of the
|
|
102 |
words \e{email}, \e{mailman}, \e{mailer}, \e{letterbox}, etc.
|
|
103 |
\row \i Search and Replace
|
|
104 |
\i A regexp can replace all occurrences of a substring with a
|
|
105 |
different substring, e.g., replace all occurrences of \e{&}
|
|
106 |
with \e{\&} except where the \e{&} is already followed by
|
|
107 |
an \e{amp;}.
|
|
108 |
\row \i String Splitting
|
|
109 |
\i A regexp can be used to identify where a string should be
|
|
110 |
split apart, e.g. splitting tab-delimited strings.
|
|
111 |
\endtable
|
|
112 |
|
|
113 |
A brief introduction to regexps is presented, a description of
|
|
114 |
Qt's regexp language, some examples, and the function
|
|
115 |
documentation itself. QRegExp is modeled on Perl's regexp
|
|
116 |
language. It fully supports Unicode. QRegExp can also be used in a
|
|
117 |
simpler, \e{wildcard mode} that is similar to the functionality
|
|
118 |
found in command shells. The syntax rules used by QRegExp can be
|
|
119 |
changed with setPatternSyntax(). In particular, the pattern syntax
|
|
120 |
can be set to QRegExp::FixedString, which means the pattern to be
|
|
121 |
matched is interpreted as a plain string, i.e., special characters
|
|
122 |
(e.g., backslash) are not escaped.
|
|
123 |
|
|
124 |
A good text on regexps is \e {Mastering Regular Expressions}
|
|
125 |
(Third Edition) by Jeffrey E. F. Friedl, ISBN 0-596-52812-4.
|
|
126 |
|
|
127 |
\tableofcontents
|
|
128 |
|
|
129 |
\section1 Introduction
|
|
130 |
|
|
131 |
Regexps are built up from expressions, quantifiers, and
|
|
132 |
assertions. The simplest expression is a character, e.g. \bold{x}
|
|
133 |
or \bold{5}. An expression can also be a set of characters
|
|
134 |
enclosed in square brackets. \bold{[ABCD]} will match an \bold{A}
|
|
135 |
or a \bold{B} or a \bold{C} or a \bold{D}. We can write this same
|
|
136 |
expression as \bold{[A-D]}, and an experession to match any
|
|
137 |
captital letter in the English alphabet is written as
|
|
138 |
\bold{[A-Z]}.
|
|
139 |
|
|
140 |
A quantifier specifies the number of occurrences of an expression
|
|
141 |
that must be matched. \bold{x{1,1}} means match one and only one
|
|
142 |
\bold{x}. \bold{x{1,5}} means match a sequence of \bold{x}
|
|
143 |
characters that contains at least one \bold{x} but no more than
|
|
144 |
five.
|
|
145 |
|
|
146 |
Note that in general regexps cannot be used to check for balanced
|
|
147 |
brackets or tags. For example, a regexp can be written to match an
|
|
148 |
opening html \c{<b>} and its closing \c{</b>}, if the \c{<b>} tags
|
|
149 |
are not nested, but if the \c{<b>} tags are nested, that same
|
|
150 |
regexp will match an opening \c{<b>} tag with the wrong closing
|
|
151 |
\c{</b>}. For the fragment \c{<b>bold <b>bolder</b></b>}, the
|
|
152 |
first \c{<b>} would be matched with the first \c{</b>}, which is
|
|
153 |
not correct. However, it is possible to write a regexp that will
|
|
154 |
match nested brackets or tags correctly, but only if the number of
|
|
155 |
nesting levels is fixed and known. If the number of nesting levels
|
|
156 |
is not fixed and known, it is impossible to write a regexp that
|
|
157 |
will not fail.
|
|
158 |
|
|
159 |
Suppose we want a regexp to match integers in the range 0 to 99.
|
|
160 |
At least one digit is required, so we start with the expression
|
|
161 |
\bold{[0-9]{1,1}}, which matches a single digit exactly once. This
|
|
162 |
regexp matches integers in the range 0 to 9. To match integers up
|
|
163 |
to 99, increase the maximum number of occurrences to 2, so the
|
|
164 |
regexp becomes \bold{[0-9]{1,2}}. This regexp satisfies the
|
|
165 |
original requirement to match integers from 0 to 99, but it will
|
|
166 |
also match integers that occur in the middle of strings. If we
|
|
167 |
want the matched integer to be the whole string, we must use the
|
|
168 |
anchor assertions, \bold{^} (caret) and \bold{$} (dollar). When
|
|
169 |
\bold{^} is the first character in a regexp, it means the regexp
|
|
170 |
must match from the beginning of the string. When \bold{$} is the
|
|
171 |
last character of the regexp, it means the regexp must match to
|
|
172 |
the end of the string. The regexp becomes \bold{^[0-9]{1,2}$}.
|
|
173 |
Note that assertions, e.g. \bold{^} and \bold{$}, do not match
|
|
174 |
characters but locations in the string.
|
|
175 |
|
|
176 |
If you have seen regexps described elsewhere, they may have looked
|
|
177 |
different from the ones shown here. This is because some sets of
|
|
178 |
characters and some quantifiers are so common that they have been
|
|
179 |
given special symbols to represent them. \bold{[0-9]} can be
|
|
180 |
replaced with the symbol \bold{\\d}. The quantifier to match
|
|
181 |
exactly one occurrence, \bold{{1,1}}, can be replaced with the
|
|
182 |
expression itself, i.e. \bold{x{1,1}} is the same as \bold{x}. So
|
|
183 |
our 0 to 99 matcher could be written as \bold{^\\d{1,2}$}. It can
|
|
184 |
also be written \bold{^\\d\\d{0,1}$}, i.e. \e{From the start of
|
|
185 |
the string, match a digit, followed immediately by 0 or 1 digits}.
|
|
186 |
In practice, it would be written as \bold{^\\d\\d?$}. The \bold{?}
|
|
187 |
is shorthand for the quantifier \bold{{0,1}}, i.e. 0 or 1
|
|
188 |
occurrences. \bold{?} makes an expression optional. The regexp
|
|
189 |
\bold{^\\d\\d?$} means \e{From the beginning of the string, match
|
|
190 |
one digit, followed immediately by 0 or 1 more digit, followed
|
|
191 |
immediately by end of string}.
|
|
192 |
|
|
193 |
To write a regexp that matches one of the words 'mail' \e or
|
|
194 |
'letter' \e or 'correspondence' but does not match words that
|
|
195 |
contain these words, e.g., 'email', 'mailman', 'mailer', and
|
|
196 |
'letterbox', start with a regexp that matches 'mail'. Expressed
|
|
197 |
fully, the regexp is \bold{m{1,1}a{1,1}i{1,1}l{1,1}}, but because
|
|
198 |
a character expression is automatically quantified by
|
|
199 |
\bold{{1,1}}, we can simplify the regexp to \bold{mail}, i.e., an
|
|
200 |
'm' followed by an 'a' followed by an 'i' followed by an 'l'. Now
|
|
201 |
we can use the vertical bar \bold{|}, which means \bold{or}, to
|
|
202 |
include the other two words, so our regexp for matching any of the
|
|
203 |
three words becomes \bold{mail|letter|correspondence}. Match
|
|
204 |
'mail' \bold{or} 'letter' \bold{or} 'correspondence'. While this
|
|
205 |
regexp will match one of the three words we want to match, it will
|
|
206 |
also match words we don't want to match, e.g., 'email'. To
|
|
207 |
prevent the regexp from matching unwanted words, we must tell it
|
|
208 |
to begin and end the match at word boundaries. First we enclose
|
|
209 |
our regexp in parentheses, \bold{(mail|letter|correspondence)}.
|
|
210 |
Parentheses group expressions together, and they identify a part
|
|
211 |
of the regexp that we wish to \l{capturing text}{capture}.
|
|
212 |
Enclosing the expression in parentheses allows us to use it as a
|
|
213 |
component in more complex regexps. It also allows us to examine
|
|
214 |
which of the three words was actually matched. To force the match
|
|
215 |
to begin and end on word boundaries, we enclose the regexp in
|
|
216 |
\bold{\\b} \e{word boundary} assertions:
|
|
217 |
\bold{\\b(mail|letter|correspondence)\\b}. Now the regexp means:
|
|
218 |
\e{Match a word boundary, followed by the regexp in parentheses,
|
|
219 |
followed by a word boundary}. The \bold{\\b} assertion matches a
|
|
220 |
\e position in the regexp, not a \e character. A word boundary is
|
|
221 |
any non-word character, e.g., a space, newline, or the beginning
|
|
222 |
or ending of a string.
|
|
223 |
|
|
224 |
If we want to replace ampersand characters with the HTML entity
|
|
225 |
\bold{\&}, the regexp to match is simply \bold{\&}. But this
|
|
226 |
regexp will also match ampersands that have already been converted
|
|
227 |
to HTML entities. We want to replace only ampersands that are not
|
|
228 |
already followed by \bold{amp;}. For this, we need the negative
|
|
229 |
lookahead assertion, \bold{(?!}__\bold{)}. The regexp can then be
|
|
230 |
written as \bold{\&(?!amp;)}, i.e. \e{Match an ampersand that is}
|
|
231 |
\bold{not} \e{followed by} \bold{amp;}.
|
|
232 |
|
|
233 |
If we want to count all the occurrences of 'Eric' and 'Eirik' in a
|
|
234 |
string, two valid solutions are \bold{\\b(Eric|Eirik)\\b} and
|
|
235 |
\bold{\\bEi?ri[ck]\\b}. The word boundary assertion '\\b' is
|
|
236 |
required to avoid matching words that contain either name,
|
|
237 |
e.g. 'Ericsson'. Note that the second regexp matches more
|
|
238 |
spellings than we want: 'Eric', 'Erik', 'Eiric' and 'Eirik'.
|
|
239 |
|
|
240 |
Some of the examples discussed above are implemented in the
|
|
241 |
\link #code-examples code examples \endlink section.
|
|
242 |
|
|
243 |
\target characters-and-abbreviations-for-sets-of-characters
|
|
244 |
\section1 Characters and Abbreviations for Sets of Characters
|
|
245 |
|
|
246 |
\table
|
|
247 |
\header \i Element \i Meaning
|
|
248 |
\row \i \bold{c}
|
|
249 |
\i A character represents itself unless it has a special
|
|
250 |
regexp meaning. e.g. \bold{c} matches the character \e c.
|
|
251 |
\row \i \bold{\\c}
|
|
252 |
\i A character that follows a backslash matches the character
|
|
253 |
itself, except as specified below. e.g., To match a literal
|
|
254 |
caret at the beginning of a string, write \bold{\\^}.
|
|
255 |
\row \i \bold{\\a}
|
|
256 |
\i Matches the ASCII bell (BEL, 0x07).
|
|
257 |
\row \i \bold{\\f}
|
|
258 |
\i Matches the ASCII form feed (FF, 0x0C).
|
|
259 |
\row \i \bold{\\n}
|
|
260 |
\i Matches the ASCII line feed (LF, 0x0A, Unix newline).
|
|
261 |
\row \i \bold{\\r}
|
|
262 |
\i Matches the ASCII carriage return (CR, 0x0D).
|
|
263 |
\row \i \bold{\\t}
|
|
264 |
\i Matches the ASCII horizontal tab (HT, 0x09).
|
|
265 |
\row \i \bold{\\v}
|
|
266 |
\i Matches the ASCII vertical tab (VT, 0x0B).
|
|
267 |
\row \i \bold{\\x\e{hhhh}}
|
|
268 |
\i Matches the Unicode character corresponding to the
|
|
269 |
hexadecimal number \e{hhhh} (between 0x0000 and 0xFFFF).
|
|
270 |
\row \i \bold{\\0\e{ooo}} (i.e., \\zero \e{ooo})
|
|
271 |
\i matches the ASCII/Latin1 character for the octal number
|
|
272 |
\e{ooo} (between 0 and 0377).
|
|
273 |
\row \i \bold{. (dot)}
|
|
274 |
\i Matches any character (including newline).
|
|
275 |
\row \i \bold{\\d}
|
|
276 |
\i Matches a digit (QChar::isDigit()).
|
|
277 |
\row \i \bold{\\D}
|
|
278 |
\i Matches a non-digit.
|
|
279 |
\row \i \bold{\\s}
|
|
280 |
\i Matches a whitespace character (QChar::isSpace()).
|
|
281 |
\row \i \bold{\\S}
|
|
282 |
\i Matches a non-whitespace character.
|
|
283 |
\row \i \bold{\\w}
|
|
284 |
\i Matches a word character (QChar::isLetterOrNumber(), QChar::isMark(), or '_').
|
|
285 |
\row \i \bold{\\W}
|
|
286 |
\i Matches a non-word character.
|
|
287 |
\row \i \bold{\\\e{n}}
|
|
288 |
\i The \e{n}-th \l backreference, e.g. \\1, \\2, etc.
|
|
289 |
\endtable
|
|
290 |
|
|
291 |
\bold{Note:} The C++ compiler transforms backslashes in strings.
|
|
292 |
To include a \bold{\\} in a regexp, enter it twice, i.e. \c{\\}.
|
|
293 |
To match the backslash character itself, enter it four times, i.e.
|
|
294 |
\c{\\\\}.
|
|
295 |
|
|
296 |
\target sets-of-characters
|
|
297 |
\section1 Sets of Characters
|
|
298 |
|
|
299 |
Square brackets mean match any character contained in the square
|
|
300 |
brackets. The character set abbreviations described above can
|
|
301 |
appear in a character set in square brackets. Except for the
|
|
302 |
character set abbreviations and the following two exceptions,
|
|
303 |
characters do not have special meanings in square brackets.
|
|
304 |
|
|
305 |
\table
|
|
306 |
\row \i \bold{^}
|
|
307 |
|
|
308 |
\i The caret negates the character set if it occurs as the
|
|
309 |
first character (i.e. immediately after the opening square
|
|
310 |
bracket). \bold{[abc]} matches 'a' or 'b' or 'c', but
|
|
311 |
\bold{[^abc]} matches anything \e but 'a' or 'b' or 'c'.
|
|
312 |
|
|
313 |
\row \i \bold{-}
|
|
314 |
|
|
315 |
\i The dash indicates a range of characters. \bold{[W-Z]}
|
|
316 |
matches 'W' or 'X' or 'Y' or 'Z'.
|
|
317 |
|
|
318 |
\endtable
|
|
319 |
|
|
320 |
Using the predefined character set abbreviations is more portable
|
|
321 |
than using character ranges across platforms and languages. For
|
|
322 |
example, \bold{[0-9]} matches a digit in Western alphabets but
|
|
323 |
\bold{\\d} matches a digit in \e any alphabet.
|
|
324 |
|
|
325 |
Note: In other regexp documentation, sets of characters are often
|
|
326 |
called "character classes".
|
|
327 |
|
|
328 |
\target quantifiers
|
|
329 |
\section1 Quantifiers
|
|
330 |
|
|
331 |
By default, an expression is automatically quantified by
|
|
332 |
\bold{{1,1}}, i.e. it should occur exactly once. In the following
|
|
333 |
list, \bold{\e {E}} stands for expression. An expression is a
|
|
334 |
character, or an abbreviation for a set of characters, or a set of
|
|
335 |
characters in square brackets, or an expression in parentheses.
|
|
336 |
|
|
337 |
\table
|
|
338 |
\row \i \bold{\e {E}?}
|
|
339 |
|
|
340 |
\i Matches zero or one occurrences of \e E. This quantifier
|
|
341 |
means \e{The previous expression is optional}, because it
|
|
342 |
will match whether or not the expression is found. \bold{\e
|
|
343 |
{E}?} is the same as \bold{\e {E}{0,1}}. e.g., \bold{dents?}
|
|
344 |
matches 'dent' or 'dents'.
|
|
345 |
|
|
346 |
\row \i \bold{\e {E}+}
|
|
347 |
|
|
348 |
\i Matches one or more occurrences of \e E. \bold{\e {E}+} is
|
|
349 |
the same as \bold{\e {E}{1,}}. e.g., \bold{0+} matches '0',
|
|
350 |
'00', '000', etc.
|
|
351 |
|
|
352 |
\row \i \bold{\e {E}*}
|
|
353 |
|
|
354 |
\i Matches zero or more occurrences of \e E. It is the same
|
|
355 |
as \bold{\e {E}{0,}}. The \bold{*} quantifier is often used
|
|
356 |
in error where \bold{+} should be used. For example, if
|
|
357 |
\bold{\\s*$} is used in an expression to match strings that
|
|
358 |
end in whitespace, it will match every string because
|
|
359 |
\bold{\\s*$} means \e{Match zero or more whitespaces followed
|
|
360 |
by end of string}. The correct regexp to match strings that
|
|
361 |
have at least one trailing whitespace character is
|
|
362 |
\bold{\\s+$}.
|
|
363 |
|
|
364 |
\row \i \bold{\e {E}{n}}
|
|
365 |
|
|
366 |
\i Matches exactly \e n occurrences of \e E. \bold{\e {E}{n}}
|
|
367 |
is the same as repeating \e E \e n times. For example,
|
|
368 |
\bold{x{5}} is the same as \bold{xxxxx}. It is also the same
|
|
369 |
as \bold{\e {E}{n,n}}, e.g. \bold{x{5,5}}.
|
|
370 |
|
|
371 |
\row \i \bold{\e {E}{n,}}
|
|
372 |
\i Matches at least \e n occurrences of \e E.
|
|
373 |
|
|
374 |
\row \i \bold{\e {E}{,m}}
|
|
375 |
\i Matches at most \e m occurrences of \e E. \bold{\e {E}{,m}}
|
|
376 |
is the same as \bold{\e {E}{0,m}}.
|
|
377 |
|
|
378 |
\row \i \bold{\e {E}{n,m}}
|
|
379 |
\i Matches at least \e n and at most \e m occurrences of \e E.
|
|
380 |
\endtable
|
|
381 |
|
|
382 |
To apply a quantifier to more than just the preceding character,
|
|
383 |
use parentheses to group characters together in an expression. For
|
|
384 |
example, \bold{tag+} matches a 't' followed by an 'a' followed by
|
|
385 |
at least one 'g', whereas \bold{(tag)+} matches at least one
|
|
386 |
occurrence of 'tag'.
|
|
387 |
|
|
388 |
Note: Quantifiers are normally "greedy". They always match as much
|
|
389 |
text as they can. For example, \bold{0+} matches the first zero it
|
|
390 |
finds and all the consecutive zeros after the first zero. Applied
|
|
391 |
to '20005', it matches'2\underline{000}5'. Quantifiers can be made
|
|
392 |
non-greedy, see setMinimal().
|
|
393 |
|
|
394 |
\target capturing parentheses
|
|
395 |
\target backreferences
|
|
396 |
\section1 Capturing Text
|
|
397 |
|
|
398 |
Parentheses allow us to group elements together so that we can
|
|
399 |
quantify and capture them. For example if we have the expression
|
|
400 |
\bold{mail|letter|correspondence} that matches a string we know
|
|
401 |
that \e one of the words matched but not which one. Using
|
|
402 |
parentheses allows us to "capture" whatever is matched within
|
|
403 |
their bounds, so if we used \bold{(mail|letter|correspondence)}
|
|
404 |
and matched this regexp against the string "I sent you some email"
|
|
405 |
we can use the cap() or capturedTexts() functions to extract the
|
|
406 |
matched characters, in this case 'mail'.
|
|
407 |
|
|
408 |
We can use captured text within the regexp itself. To refer to the
|
|
409 |
captured text we use \e backreferences which are indexed from 1,
|
|
410 |
the same as for cap(). For example we could search for duplicate
|
|
411 |
words in a string using \bold{\\b(\\w+)\\W+\\1\\b} which means match a
|
|
412 |
word boundary followed by one or more word characters followed by
|
|
413 |
one or more non-word characters followed by the same text as the
|
|
414 |
first parenthesized expression followed by a word boundary.
|
|
415 |
|
|
416 |
If we want to use parentheses purely for grouping and not for
|
|
417 |
capturing we can use the non-capturing syntax, e.g.
|
|
418 |
\bold{(?:green|blue)}. Non-capturing parentheses begin '(?:' and
|
|
419 |
end ')'. In this example we match either 'green' or 'blue' but we
|
|
420 |
do not capture the match so we only know whether or not we matched
|
|
421 |
but not which color we actually found. Using non-capturing
|
|
422 |
parentheses is more efficient than using capturing parentheses
|
|
423 |
since the regexp engine has to do less book-keeping.
|
|
424 |
|
|
425 |
Both capturing and non-capturing parentheses may be nested.
|
|
426 |
|
|
427 |
\target greedy quantifiers
|
|
428 |
|
|
429 |
For historical reasons, quantifiers (e.g. \bold{*}) that apply to
|
|
430 |
capturing parentheses are more "greedy" than other quantifiers.
|
|
431 |
For example, \bold{a*(a)*} will match "aaa" with cap(1) == "aaa".
|
|
432 |
This behavior is different from what other regexp engines do
|
|
433 |
(notably, Perl). To obtain a more intuitive capturing behavior,
|
|
434 |
specify QRegExp::RegExp2 to the QRegExp constructor or call
|
|
435 |
setPatternSyntax(QRegExp::RegExp2).
|
|
436 |
|
|
437 |
\target cap_in_a_loop
|
|
438 |
|
|
439 |
When the number of matches cannot be determined in advance, a
|
|
440 |
common idiom is to use cap() in a loop. For example:
|
|
441 |
|
|
442 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 0
|
|
443 |
|
|
444 |
\target assertions
|
|
445 |
\section1 Assertions
|
|
446 |
|
|
447 |
Assertions make some statement about the text at the point where
|
|
448 |
they occur in the regexp but they do not match any characters. In
|
|
449 |
the following list \bold{\e {E}} stands for any expression.
|
|
450 |
|
|
451 |
\table
|
|
452 |
\row \i \bold{^}
|
|
453 |
\i The caret signifies the beginning of the string. If you
|
|
454 |
wish to match a literal \c{^} you must escape it by
|
|
455 |
writing \c{\\^}. For example, \bold{^#include} will only
|
|
456 |
match strings which \e begin with the characters '#include'.
|
|
457 |
(When the caret is the first character of a character set it
|
|
458 |
has a special meaning, see \link #sets-of-characters Sets of
|
|
459 |
Characters \endlink.)
|
|
460 |
|
|
461 |
\row \i \bold{$}
|
|
462 |
\i The dollar signifies the end of the string. For example
|
|
463 |
\bold{\\d\\s*$} will match strings which end with a digit
|
|
464 |
optionally followed by whitespace. If you wish to match a
|
|
465 |
literal \c{$} you must escape it by writing
|
|
466 |
\c{\\$}.
|
|
467 |
|
|
468 |
\row \i \bold{\\b}
|
|
469 |
\i A word boundary. For example the regexp
|
|
470 |
\bold{\\bOK\\b} means match immediately after a word
|
|
471 |
boundary (e.g. start of string or whitespace) the letter 'O'
|
|
472 |
then the letter 'K' immediately before another word boundary
|
|
473 |
(e.g. end of string or whitespace). But note that the
|
|
474 |
assertion does not actually match any whitespace so if we
|
|
475 |
write \bold{(\\bOK\\b)} and we have a match it will only
|
|
476 |
contain 'OK' even if the string is "It's \underline{OK} now".
|
|
477 |
|
|
478 |
\row \i \bold{\\B}
|
|
479 |
\i A non-word boundary. This assertion is true wherever
|
|
480 |
\bold{\\b} is false. For example if we searched for
|
|
481 |
\bold{\\Bon\\B} in "Left on" the match would fail (space
|
|
482 |
and end of string aren't non-word boundaries), but it would
|
|
483 |
match in "t\underline{on}ne".
|
|
484 |
|
|
485 |
\row \i \bold{(?=\e E)}
|
|
486 |
\i Positive lookahead. This assertion is true if the
|
|
487 |
expression matches at this point in the regexp. For example,
|
|
488 |
\bold{const(?=\\s+char)} matches 'const' whenever it is
|
|
489 |
followed by 'char', as in 'static \underline{const} char *'.
|
|
490 |
(Compare with \bold{const\\s+char}, which matches 'static
|
|
491 |
\underline{const char} *'.)
|
|
492 |
|
|
493 |
\row \i \bold{(?!\e E)}
|
|
494 |
\i Negative lookahead. This assertion is true if the
|
|
495 |
expression does not match at this point in the regexp. For
|
|
496 |
example, \bold{const(?!\\s+char)} matches 'const' \e except
|
|
497 |
when it is followed by 'char'.
|
|
498 |
\endtable
|
|
499 |
|
|
500 |
\keyword QRegExp wildcard matching
|
|
501 |
\section1 Wildcard Matching
|
|
502 |
|
|
503 |
Most command shells such as \e bash or \e cmd.exe support "file
|
|
504 |
globbing", the ability to identify a group of files by using
|
|
505 |
wildcards. The setPatternSyntax() function is used to switch
|
|
506 |
between regexp and wildcard mode. Wildcard matching is much
|
|
507 |
simpler than full regexps and has only four features:
|
|
508 |
|
|
509 |
\table
|
|
510 |
\row \i \bold{c}
|
|
511 |
\i Any character represents itself apart from those mentioned
|
|
512 |
below. Thus \bold{c} matches the character \e c.
|
|
513 |
\row \i \bold{?}
|
|
514 |
\i Matches any single character. It is the same as
|
|
515 |
\bold{.} in full regexps.
|
|
516 |
\row \i \bold{*}
|
|
517 |
\i Matches zero or more of any characters. It is the
|
|
518 |
same as \bold{.*} in full regexps.
|
|
519 |
\row \i \bold{[...]}
|
|
520 |
\i Sets of characters can be represented in square brackets,
|
|
521 |
similar to full regexps. Within the character class, like
|
|
522 |
outside, backslash has no special meaning.
|
|
523 |
\endtable
|
|
524 |
|
|
525 |
In the mode Wildcard, the wildcard characters cannot be
|
|
526 |
escaped. In the mode WildcardUnix, the character '\' escapes the
|
|
527 |
wildcard.
|
|
528 |
|
|
529 |
For example if we are in wildcard mode and have strings which
|
|
530 |
contain filenames we could identify HTML files with \bold{*.html}.
|
|
531 |
This will match zero or more characters followed by a dot followed
|
|
532 |
by 'h', 't', 'm' and 'l'.
|
|
533 |
|
|
534 |
To test a string against a wildcard expression, use exactMatch().
|
|
535 |
For example:
|
|
536 |
|
|
537 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 1
|
|
538 |
|
|
539 |
\target perl-users
|
|
540 |
\section1 Notes for Perl Users
|
|
541 |
|
|
542 |
Most of the character class abbreviations supported by Perl are
|
|
543 |
supported by QRegExp, see \link
|
|
544 |
#characters-and-abbreviations-for-sets-of-characters characters
|
|
545 |
and abbreviations for sets of characters \endlink.
|
|
546 |
|
|
547 |
In QRegExp, apart from within character classes, \c{^} always
|
|
548 |
signifies the start of the string, so carets must always be
|
|
549 |
escaped unless used for that purpose. In Perl the meaning of caret
|
|
550 |
varies automagically depending on where it occurs so escaping it
|
|
551 |
is rarely necessary. The same applies to \c{$} which in
|
|
552 |
QRegExp always signifies the end of the string.
|
|
553 |
|
|
554 |
QRegExp's quantifiers are the same as Perl's greedy quantifiers
|
|
555 |
(but see the \l{greedy quantifiers}{note above}). Non-greedy
|
|
556 |
matching cannot be applied to individual quantifiers, but can be
|
|
557 |
applied to all the quantifiers in the pattern. For example, to
|
|
558 |
match the Perl regexp \bold{ro+?m} requires:
|
|
559 |
|
|
560 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 2
|
|
561 |
|
|
562 |
The equivalent of Perl's \c{/i} option is
|
|
563 |
setCaseSensitivity(Qt::CaseInsensitive).
|
|
564 |
|
|
565 |
Perl's \c{/g} option can be emulated using a \l{#cap_in_a_loop}{loop}.
|
|
566 |
|
|
567 |
In QRegExp \bold{.} matches any character, therefore all QRegExp
|
|
568 |
regexps have the equivalent of Perl's \c{/s} option. QRegExp
|
|
569 |
does not have an equivalent to Perl's \c{/m} option, but this
|
|
570 |
can be emulated in various ways for example by splitting the input
|
|
571 |
into lines or by looping with a regexp that searches for newlines.
|
|
572 |
|
|
573 |
Because QRegExp is string oriented, there are no \\A, \\Z, or \\z
|
|
574 |
assertions. The \\G assertion is not supported but can be emulated
|
|
575 |
in a loop.
|
|
576 |
|
|
577 |
Perl's $& is cap(0) or capturedTexts()[0]. There are no QRegExp
|
|
578 |
equivalents for $`, $' or $+. Perl's capturing variables, $1, $2,
|
|
579 |
... correspond to cap(1) or capturedTexts()[1], cap(2) or
|
|
580 |
capturedTexts()[2], etc.
|
|
581 |
|
|
582 |
To substitute a pattern use QString::replace().
|
|
583 |
|
|
584 |
Perl's extended \c{/x} syntax is not supported, nor are
|
|
585 |
directives, e.g. (?i), or regexp comments, e.g. (?#comment). On
|
|
586 |
the other hand, C++'s rules for literal strings can be used to
|
|
587 |
achieve the same:
|
|
588 |
|
|
589 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 3
|
|
590 |
|
|
591 |
Both zero-width positive and zero-width negative lookahead
|
|
592 |
assertions (?=pattern) and (?!pattern) are supported with the same
|
|
593 |
syntax as Perl. Perl's lookbehind assertions, "independent"
|
|
594 |
subexpressions and conditional expressions are not supported.
|
|
595 |
|
|
596 |
Non-capturing parentheses are also supported, with the same
|
|
597 |
(?:pattern) syntax.
|
|
598 |
|
|
599 |
See QString::split() and QStringList::join() for equivalents
|
|
600 |
to Perl's split and join functions.
|
|
601 |
|
|
602 |
Note: because C++ transforms \\'s they must be written \e twice in
|
|
603 |
code, e.g. \bold{\\b} must be written \bold{\\\\b}.
|
|
604 |
|
|
605 |
\target code-examples
|
|
606 |
\section1 Code Examples
|
|
607 |
|
|
608 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 4
|
|
609 |
|
|
610 |
The third string matches '\underline{6}'. This is a simple validation
|
|
611 |
regexp for integers in the range 0 to 99.
|
|
612 |
|
|
613 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 5
|
|
614 |
|
|
615 |
The second string matches '\underline{This_is-OK}'. We've used the
|
|
616 |
character set abbreviation '\\S' (non-whitespace) and the anchors
|
|
617 |
to match strings which contain no whitespace.
|
|
618 |
|
|
619 |
In the following example we match strings containing 'mail' or
|
|
620 |
'letter' or 'correspondence' but only match whole words i.e. not
|
|
621 |
'email'
|
|
622 |
|
|
623 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 6
|
|
624 |
|
|
625 |
The second string matches "Please write the \underline{letter}". The
|
|
626 |
word 'letter' is also captured (because of the parentheses). We
|
|
627 |
can see what text we've captured like this:
|
|
628 |
|
|
629 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 7
|
|
630 |
|
|
631 |
This will capture the text from the first set of capturing
|
|
632 |
parentheses (counting capturing left parentheses from left to
|
|
633 |
right). The parentheses are counted from 1 since cap(0) is the
|
|
634 |
whole matched regexp (equivalent to '&' in most regexp engines).
|
|
635 |
|
|
636 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 8
|
|
637 |
|
|
638 |
Here we've passed the QRegExp to QString's replace() function to
|
|
639 |
replace the matched text with new text.
|
|
640 |
|
|
641 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 9
|
|
642 |
|
|
643 |
We've used the indexIn() function to repeatedly match the regexp in
|
|
644 |
the string. Note that instead of moving forward by one character
|
|
645 |
at a time \c pos++ we could have written \c {pos +=
|
|
646 |
rx.matchedLength()} to skip over the already matched string. The
|
|
647 |
count will equal 3, matching 'One \underline{Eric} another
|
|
648 |
\underline{Eirik}, and an Ericsson. How many Eiriks, \underline{Eric}?'; it
|
|
649 |
doesn't match 'Ericsson' or 'Eiriks' because they are not bounded
|
|
650 |
by non-word boundaries.
|
|
651 |
|
|
652 |
One common use of regexps is to split lines of delimited data into
|
|
653 |
their component fields.
|
|
654 |
|
|
655 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 10
|
|
656 |
|
|
657 |
In this example our input lines have the format company name, web
|
|
658 |
address and country. Unfortunately the regexp is rather long and
|
|
659 |
not very versatile -- the code will break if we add any more
|
|
660 |
fields. A simpler and better solution is to look for the
|
|
661 |
separator, '\\t' in this case, and take the surrounding text. The
|
|
662 |
QString::split() function can take a separator string or regexp
|
|
663 |
as an argument and split a string accordingly.
|
|
664 |
|
|
665 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 11
|
|
666 |
|
|
667 |
Here field[0] is the company, field[1] the web address and so on.
|
|
668 |
|
|
669 |
To imitate the matching of a shell we can use wildcard mode.
|
|
670 |
|
|
671 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 12
|
|
672 |
|
|
673 |
Wildcard matching can be convenient because of its simplicity, but
|
|
674 |
any wildcard regexp can be defined using full regexps, e.g.
|
|
675 |
\bold{.*\.html$}. Notice that we can't match both \c .html and \c
|
|
676 |
.htm files with a wildcard unless we use \bold{*.htm*} which will
|
|
677 |
also match 'test.html.bak'. A full regexp gives us the precision
|
|
678 |
we need, \bold{.*\\.html?$}.
|
|
679 |
|
|
680 |
QRegExp can match case insensitively using setCaseSensitivity(),
|
|
681 |
and can use non-greedy matching, see setMinimal(). By
|
|
682 |
default QRegExp uses full regexps but this can be changed with
|
|
683 |
setWildcard(). Searching can be forward with indexIn() or backward
|
|
684 |
with lastIndexIn(). Captured text can be accessed using
|
|
685 |
capturedTexts() which returns a string list of all captured
|
|
686 |
strings, or using cap() which returns the captured string for the
|
|
687 |
given index. The pos() function takes a match index and returns
|
|
688 |
the position in the string where the match was made (or -1 if
|
|
689 |
there was no match).
|
|
690 |
|
|
691 |
\sa QString, QStringList, QRegExpValidator, QSortFilterProxyModel,
|
|
692 |
{tools/regexp}{Regular Expression Example}
|
|
693 |
*/
|
|
694 |
|
|
695 |
#if defined(Q_OS_VXWORKS) && defined(EOS)
|
|
696 |
# undef EOS
|
|
697 |
#endif
|
|
698 |
|
|
699 |
const int NumBadChars = 64;
|
|
700 |
#define BadChar(ch) ((ch).unicode() % NumBadChars)
|
|
701 |
|
|
702 |
const int NoOccurrence = INT_MAX;
|
|
703 |
const int EmptyCapture = INT_MAX;
|
|
704 |
const int InftyLen = INT_MAX;
|
|
705 |
const int InftyRep = 1025;
|
|
706 |
const int EOS = -1;
|
|
707 |
|
|
708 |
static bool isWord(QChar ch)
|
|
709 |
{
|
|
710 |
return ch.isLetterOrNumber() || ch.isMark() || ch == QLatin1Char('_');
|
|
711 |
}
|
|
712 |
|
|
713 |
/*
|
|
714 |
Merges two vectors of ints and puts the result into the first
|
|
715 |
one.
|
|
716 |
*/
|
|
717 |
static void mergeInto(QVector<int> *a, const QVector<int> &b)
|
|
718 |
{
|
|
719 |
int asize = a->size();
|
|
720 |
int bsize = b.size();
|
|
721 |
if (asize == 0) {
|
|
722 |
*a = b;
|
|
723 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
724 |
} else if (bsize == 1 && a->at(asize - 1) < b.at(0)) {
|
|
725 |
a->resize(asize + 1);
|
|
726 |
(*a)[asize] = b.at(0);
|
|
727 |
#endif
|
|
728 |
} else if (bsize >= 1) {
|
|
729 |
int csize = asize + bsize;
|
|
730 |
QVector<int> c(csize);
|
|
731 |
int i = 0, j = 0, k = 0;
|
|
732 |
while (i < asize) {
|
|
733 |
if (j < bsize) {
|
|
734 |
if (a->at(i) == b.at(j)) {
|
|
735 |
++i;
|
|
736 |
--csize;
|
|
737 |
} else if (a->at(i) < b.at(j)) {
|
|
738 |
c[k++] = a->at(i++);
|
|
739 |
} else {
|
|
740 |
c[k++] = b.at(j++);
|
|
741 |
}
|
|
742 |
} else {
|
|
743 |
memcpy(c.data() + k, a->constData() + i, (asize - i) * sizeof(int));
|
|
744 |
break;
|
|
745 |
}
|
|
746 |
}
|
|
747 |
c.resize(csize);
|
|
748 |
if (j < bsize)
|
|
749 |
memcpy(c.data() + k, b.constData() + j, (bsize - j) * sizeof(int));
|
|
750 |
*a = c;
|
|
751 |
}
|
|
752 |
}
|
|
753 |
|
|
754 |
#ifndef QT_NO_REGEXP_WILDCARD
|
|
755 |
/*
|
|
756 |
Translates a wildcard pattern to an equivalent regular expression
|
|
757 |
pattern (e.g., *.cpp to .*\.cpp).
|
|
758 |
|
|
759 |
If enableEscaping is true, it is possible to escape the wildcard
|
|
760 |
characters with \
|
|
761 |
*/
|
|
762 |
static QString wc2rx(const QString &wc_str, const bool enableEscaping)
|
|
763 |
{
|
|
764 |
const int wclen = wc_str.length();
|
|
765 |
QString rx;
|
|
766 |
int i = 0;
|
|
767 |
bool isEscaping = false; // the previous character is '\'
|
|
768 |
const QChar *wc = wc_str.unicode();
|
|
769 |
|
|
770 |
while (i < wclen) {
|
|
771 |
const QChar c = wc[i++];
|
|
772 |
switch (c.unicode()) {
|
|
773 |
case '\\':
|
|
774 |
if (enableEscaping) {
|
|
775 |
if (isEscaping) {
|
|
776 |
rx += QLatin1String("\\\\");
|
|
777 |
} // we insert the \\ later if necessary
|
|
778 |
if (i+1 == wclen) { // the end
|
|
779 |
rx += QLatin1String("\\\\");
|
|
780 |
}
|
|
781 |
} else {
|
|
782 |
rx += QLatin1String("\\\\");
|
|
783 |
}
|
|
784 |
isEscaping = true;
|
|
785 |
break;
|
|
786 |
case '*':
|
|
787 |
if (isEscaping) {
|
|
788 |
rx += QLatin1String("\\*");
|
|
789 |
isEscaping = false;
|
|
790 |
} else {
|
|
791 |
rx += QLatin1String(".*");
|
|
792 |
}
|
|
793 |
break;
|
|
794 |
case '?':
|
|
795 |
if (isEscaping) {
|
|
796 |
rx += QLatin1String("\\?");
|
|
797 |
isEscaping = false;
|
|
798 |
} else {
|
|
799 |
rx += QLatin1Char('.');
|
|
800 |
}
|
|
801 |
|
|
802 |
break;
|
|
803 |
case '$':
|
|
804 |
case '(':
|
|
805 |
case ')':
|
|
806 |
case '+':
|
|
807 |
case '.':
|
|
808 |
case '^':
|
|
809 |
case '{':
|
|
810 |
case '|':
|
|
811 |
case '}':
|
|
812 |
if (isEscaping) {
|
|
813 |
isEscaping = false;
|
|
814 |
rx += QLatin1String("\\\\");
|
|
815 |
}
|
|
816 |
rx += QLatin1Char('\\');
|
|
817 |
rx += c;
|
|
818 |
break;
|
|
819 |
case '[':
|
|
820 |
if (isEscaping) {
|
|
821 |
isEscaping = false;
|
|
822 |
rx += QLatin1String("\\[");
|
|
823 |
} else {
|
|
824 |
rx += c;
|
|
825 |
if (wc[i] == QLatin1Char('^'))
|
|
826 |
rx += wc[i++];
|
|
827 |
if (i < wclen) {
|
|
828 |
if (rx[i] == QLatin1Char(']'))
|
|
829 |
rx += wc[i++];
|
|
830 |
while (i < wclen && wc[i] != QLatin1Char(']')) {
|
|
831 |
if (wc[i] == QLatin1Char('\\'))
|
|
832 |
rx += QLatin1Char('\\');
|
|
833 |
rx += wc[i++];
|
|
834 |
}
|
|
835 |
}
|
|
836 |
}
|
|
837 |
break;
|
|
838 |
|
|
839 |
case ']':
|
|
840 |
if(isEscaping){
|
|
841 |
isEscaping = false;
|
|
842 |
rx += QLatin1String("\\");
|
|
843 |
}
|
|
844 |
rx += c;
|
|
845 |
break;
|
|
846 |
|
|
847 |
default:
|
|
848 |
if(isEscaping){
|
|
849 |
isEscaping = false;
|
|
850 |
rx += QLatin1String("\\\\");
|
|
851 |
}
|
|
852 |
rx += c;
|
|
853 |
}
|
|
854 |
}
|
|
855 |
return rx;
|
|
856 |
}
|
|
857 |
#endif
|
|
858 |
|
|
859 |
static int caretIndex(int offset, QRegExp::CaretMode caretMode)
|
|
860 |
{
|
|
861 |
if (caretMode == QRegExp::CaretAtZero) {
|
|
862 |
return 0;
|
|
863 |
} else if (caretMode == QRegExp::CaretAtOffset) {
|
|
864 |
return offset;
|
|
865 |
} else { // QRegExp::CaretWontMatch
|
|
866 |
return -1;
|
|
867 |
}
|
|
868 |
}
|
|
869 |
|
|
870 |
/*
|
|
871 |
The QRegExpEngineKey struct uniquely identifies an engine.
|
|
872 |
*/
|
|
873 |
struct QRegExpEngineKey
|
|
874 |
{
|
|
875 |
QString pattern;
|
|
876 |
QRegExp::PatternSyntax patternSyntax;
|
|
877 |
Qt::CaseSensitivity cs;
|
|
878 |
|
|
879 |
inline QRegExpEngineKey(const QString &pattern, QRegExp::PatternSyntax patternSyntax,
|
|
880 |
Qt::CaseSensitivity cs)
|
|
881 |
: pattern(pattern), patternSyntax(patternSyntax), cs(cs) {}
|
|
882 |
|
|
883 |
inline void clear() {
|
|
884 |
pattern.clear();
|
|
885 |
patternSyntax = QRegExp::RegExp;
|
|
886 |
cs = Qt::CaseSensitive;
|
|
887 |
}
|
|
888 |
};
|
|
889 |
|
|
890 |
Q_STATIC_GLOBAL_OPERATOR bool operator==(const QRegExpEngineKey &key1, const QRegExpEngineKey &key2)
|
|
891 |
{
|
|
892 |
return key1.pattern == key2.pattern && key1.patternSyntax == key2.patternSyntax
|
|
893 |
&& key1.cs == key2.cs;
|
|
894 |
}
|
|
895 |
|
|
896 |
class QRegExpEngine;
|
|
897 |
|
|
898 |
//Q_DECLARE_TYPEINFO(QVector<int>, Q_MOVABLE_TYPE);
|
|
899 |
|
|
900 |
/*
|
|
901 |
This is the engine state during matching.
|
|
902 |
*/
|
|
903 |
struct QRegExpMatchState
|
|
904 |
{
|
|
905 |
const QChar *in; // a pointer to the input string data
|
|
906 |
int pos; // the current position in the string
|
|
907 |
int caretPos;
|
|
908 |
int len; // the length of the input string
|
|
909 |
bool minimal; // minimal matching?
|
|
910 |
int *bigArray; // big array holding the data for the next pointers
|
|
911 |
int *inNextStack; // is state is nextStack?
|
|
912 |
int *curStack; // stack of current states
|
|
913 |
int *nextStack; // stack of next states
|
|
914 |
int *curCapBegin; // start of current states' captures
|
|
915 |
int *nextCapBegin; // start of next states' captures
|
|
916 |
int *curCapEnd; // end of current states' captures
|
|
917 |
int *nextCapEnd; // end of next states' captures
|
|
918 |
int *tempCapBegin; // start of temporary captures
|
|
919 |
int *tempCapEnd; // end of temporary captures
|
|
920 |
int *capBegin; // start of captures for a next state
|
|
921 |
int *capEnd; // end of captures for a next state
|
|
922 |
int *slideTab; // bump-along slide table for bad-character heuristic
|
|
923 |
int *captured; // what match() returned last
|
|
924 |
int slideTabSize; // size of slide table
|
|
925 |
int capturedSize;
|
|
926 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
927 |
QList<QVector<int> > sleeping; // list of back-reference sleepers
|
|
928 |
#endif
|
|
929 |
int matchLen; // length of match
|
|
930 |
int oneTestMatchedLen; // length of partial match
|
|
931 |
|
|
932 |
const QRegExpEngine *eng;
|
|
933 |
|
|
934 |
inline QRegExpMatchState() : bigArray(0), captured(0) {}
|
|
935 |
inline ~QRegExpMatchState() { free(bigArray); }
|
|
936 |
|
|
937 |
void drain() { free(bigArray); bigArray = 0; captured = 0; } // to save memory
|
|
938 |
void prepareForMatch(QRegExpEngine *eng);
|
|
939 |
void match(const QChar *str, int len, int pos, bool minimal,
|
|
940 |
bool oneTest, int caretIndex);
|
|
941 |
bool matchHere();
|
|
942 |
bool testAnchor(int i, int a, const int *capBegin);
|
|
943 |
};
|
|
944 |
|
|
945 |
/*
|
|
946 |
The struct QRegExpAutomatonState represents one state in a modified NFA. The
|
|
947 |
input characters matched are stored in the state instead of on
|
|
948 |
the transitions, something possible for an automaton
|
|
949 |
constructed from a regular expression.
|
|
950 |
*/
|
|
951 |
struct QRegExpAutomatonState
|
|
952 |
{
|
|
953 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
954 |
int atom; // which atom does this state belong to?
|
|
955 |
#endif
|
|
956 |
int match; // what does it match? (see CharClassBit and BackRefBit)
|
|
957 |
QVector<int> outs; // out-transitions
|
|
958 |
QMap<int, int> reenter; // atoms reentered when transiting out
|
|
959 |
QMap<int, int> anchors; // anchors met when transiting out
|
|
960 |
|
|
961 |
inline QRegExpAutomatonState() { }
|
|
962 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
963 |
inline QRegExpAutomatonState(int a, int m)
|
|
964 |
: atom(a), match(m) { }
|
|
965 |
#else
|
|
966 |
inline QRegExpAutomatonState(int m)
|
|
967 |
: match(m) { }
|
|
968 |
#endif
|
|
969 |
};
|
|
970 |
|
|
971 |
Q_DECLARE_TYPEINFO(QRegExpAutomatonState, Q_MOVABLE_TYPE);
|
|
972 |
|
|
973 |
/*
|
|
974 |
The struct QRegExpCharClassRange represents a range of characters (e.g.,
|
|
975 |
[0-9] denotes range 48 to 57).
|
|
976 |
*/
|
|
977 |
struct QRegExpCharClassRange
|
|
978 |
{
|
|
979 |
ushort from; // 48
|
|
980 |
ushort len; // 10
|
|
981 |
};
|
|
982 |
|
|
983 |
Q_DECLARE_TYPEINFO(QRegExpCharClassRange, Q_PRIMITIVE_TYPE);
|
|
984 |
|
|
985 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
986 |
/*
|
|
987 |
The struct QRegExpAtom represents one node in the hierarchy of regular
|
|
988 |
expression atoms.
|
|
989 |
*/
|
|
990 |
struct QRegExpAtom
|
|
991 |
{
|
|
992 |
enum { NoCapture = -1, OfficialCapture = -2, UnofficialCapture = -3 };
|
|
993 |
|
|
994 |
int parent; // index of parent in array of atoms
|
|
995 |
int capture; // index of capture, from 1 to ncap - 1
|
|
996 |
};
|
|
997 |
|
|
998 |
Q_DECLARE_TYPEINFO(QRegExpAtom, Q_PRIMITIVE_TYPE);
|
|
999 |
#endif
|
|
1000 |
|
|
1001 |
struct QRegExpLookahead;
|
|
1002 |
|
|
1003 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
1004 |
/*
|
|
1005 |
The struct QRegExpAnchorAlternation represents a pair of anchors with
|
|
1006 |
OR semantics.
|
|
1007 |
*/
|
|
1008 |
struct QRegExpAnchorAlternation
|
|
1009 |
{
|
|
1010 |
int a; // this anchor...
|
|
1011 |
int b; // ...or this one
|
|
1012 |
};
|
|
1013 |
|
|
1014 |
Q_DECLARE_TYPEINFO(QRegExpAnchorAlternation, Q_PRIMITIVE_TYPE);
|
|
1015 |
#endif
|
|
1016 |
|
|
1017 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
1018 |
/*
|
|
1019 |
The class QRegExpCharClass represents a set of characters, such as can
|
|
1020 |
be found in regular expressions (e.g., [a-z] denotes the set
|
|
1021 |
{a, b, ..., z}).
|
|
1022 |
*/
|
|
1023 |
class QRegExpCharClass
|
|
1024 |
{
|
|
1025 |
public:
|
|
1026 |
QRegExpCharClass();
|
|
1027 |
inline QRegExpCharClass(const QRegExpCharClass &cc) { operator=(cc); }
|
|
1028 |
|
|
1029 |
QRegExpCharClass &operator=(const QRegExpCharClass &cc);
|
|
1030 |
|
|
1031 |
void clear();
|
|
1032 |
bool negative() const { return n; }
|
|
1033 |
void setNegative(bool negative);
|
|
1034 |
void addCategories(int cats);
|
|
1035 |
void addRange(ushort from, ushort to);
|
|
1036 |
void addSingleton(ushort ch) { addRange(ch, ch); }
|
|
1037 |
|
|
1038 |
bool in(QChar ch) const;
|
|
1039 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1040 |
const QVector<int> &firstOccurrence() const { return occ1; }
|
|
1041 |
#endif
|
|
1042 |
|
|
1043 |
#if defined(QT_DEBUG)
|
|
1044 |
void dump() const;
|
|
1045 |
#endif
|
|
1046 |
|
|
1047 |
private:
|
|
1048 |
int c; // character classes
|
|
1049 |
QVector<QRegExpCharClassRange> r; // character ranges
|
|
1050 |
bool n; // negative?
|
|
1051 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1052 |
QVector<int> occ1; // first-occurrence array
|
|
1053 |
#endif
|
|
1054 |
};
|
|
1055 |
#else
|
|
1056 |
struct QRegExpCharClass
|
|
1057 |
{
|
|
1058 |
int dummy;
|
|
1059 |
|
|
1060 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1061 |
QRegExpCharClass() { occ1.fill(0, NumBadChars); }
|
|
1062 |
|
|
1063 |
const QVector<int> &firstOccurrence() const { return occ1; }
|
|
1064 |
QVector<int> occ1;
|
|
1065 |
#endif
|
|
1066 |
};
|
|
1067 |
#endif
|
|
1068 |
|
|
1069 |
Q_DECLARE_TYPEINFO(QRegExpCharClass, Q_MOVABLE_TYPE);
|
|
1070 |
|
|
1071 |
/*
|
|
1072 |
The QRegExpEngine class encapsulates a modified nondeterministic
|
|
1073 |
finite automaton (NFA).
|
|
1074 |
*/
|
|
1075 |
class QRegExpEngine
|
|
1076 |
{
|
|
1077 |
public:
|
|
1078 |
QRegExpEngine(Qt::CaseSensitivity cs, bool greedyQuantifiers)
|
|
1079 |
: cs(cs), greedyQuantifiers(greedyQuantifiers) { setup(); }
|
|
1080 |
|
|
1081 |
QRegExpEngine(const QRegExpEngineKey &key);
|
|
1082 |
~QRegExpEngine();
|
|
1083 |
|
|
1084 |
bool isValid() const { return valid; }
|
|
1085 |
const QString &errorString() const { return yyError; }
|
|
1086 |
int numCaptures() const { return officialncap; }
|
|
1087 |
|
|
1088 |
int createState(QChar ch);
|
|
1089 |
int createState(const QRegExpCharClass &cc);
|
|
1090 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1091 |
int createState(int bref);
|
|
1092 |
#endif
|
|
1093 |
|
|
1094 |
void addCatTransitions(const QVector<int> &from, const QVector<int> &to);
|
|
1095 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1096 |
void addPlusTransitions(const QVector<int> &from, const QVector<int> &to, int atom);
|
|
1097 |
#endif
|
|
1098 |
|
|
1099 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
1100 |
int anchorAlternation(int a, int b);
|
|
1101 |
int anchorConcatenation(int a, int b);
|
|
1102 |
#else
|
|
1103 |
int anchorAlternation(int a, int b) { return a & b; }
|
|
1104 |
int anchorConcatenation(int a, int b) { return a | b; }
|
|
1105 |
#endif
|
|
1106 |
void addAnchors(int from, int to, int a);
|
|
1107 |
|
|
1108 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1109 |
void heuristicallyChooseHeuristic();
|
|
1110 |
#endif
|
|
1111 |
|
|
1112 |
#if defined(QT_DEBUG)
|
|
1113 |
void dump() const;
|
|
1114 |
#endif
|
|
1115 |
|
|
1116 |
QAtomicInt ref;
|
|
1117 |
|
|
1118 |
private:
|
|
1119 |
enum { CharClassBit = 0x10000, BackRefBit = 0x20000 };
|
|
1120 |
enum { InitialState = 0, FinalState = 1 };
|
|
1121 |
|
|
1122 |
void setup();
|
|
1123 |
int setupState(int match);
|
|
1124 |
|
|
1125 |
/*
|
|
1126 |
Let's hope that 13 lookaheads and 14 back-references are
|
|
1127 |
enough.
|
|
1128 |
*/
|
|
1129 |
enum { MaxLookaheads = 13, MaxBackRefs = 14 };
|
|
1130 |
enum { Anchor_Dollar = 0x00000001, Anchor_Caret = 0x00000002, Anchor_Word = 0x00000004,
|
|
1131 |
Anchor_NonWord = 0x00000008, Anchor_FirstLookahead = 0x00000010,
|
|
1132 |
Anchor_BackRef1Empty = Anchor_FirstLookahead << MaxLookaheads,
|
|
1133 |
Anchor_BackRef0Empty = Anchor_BackRef1Empty >> 1,
|
|
1134 |
Anchor_Alternation = unsigned(Anchor_BackRef1Empty) << MaxBackRefs,
|
|
1135 |
|
|
1136 |
Anchor_LookaheadMask = (Anchor_FirstLookahead - 1) ^
|
|
1137 |
((Anchor_FirstLookahead << MaxLookaheads) - 1) };
|
|
1138 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1139 |
int startAtom(bool officialCapture);
|
|
1140 |
void finishAtom(int atom, bool needCapture);
|
|
1141 |
#endif
|
|
1142 |
|
|
1143 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1144 |
int addLookahead(QRegExpEngine *eng, bool negative);
|
|
1145 |
#endif
|
|
1146 |
|
|
1147 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1148 |
bool goodStringMatch(QRegExpMatchState &matchState) const;
|
|
1149 |
bool badCharMatch(QRegExpMatchState &matchState) const;
|
|
1150 |
#else
|
|
1151 |
bool bruteMatch(QRegExpMatchState &matchState) const;
|
|
1152 |
#endif
|
|
1153 |
|
|
1154 |
QVector<QRegExpAutomatonState> s; // array of states
|
|
1155 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1156 |
QVector<QRegExpAtom> f; // atom hierarchy
|
|
1157 |
int nf; // number of atoms
|
|
1158 |
int cf; // current atom
|
|
1159 |
QVector<int> captureForOfficialCapture;
|
|
1160 |
#endif
|
|
1161 |
int officialncap; // number of captures, seen from the outside
|
|
1162 |
int ncap; // number of captures, seen from the inside
|
|
1163 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
1164 |
QVector<QRegExpCharClass> cl; // array of character classes
|
|
1165 |
#endif
|
|
1166 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1167 |
QVector<QRegExpLookahead *> ahead; // array of lookaheads
|
|
1168 |
#endif
|
|
1169 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
1170 |
QVector<QRegExpAnchorAlternation> aa; // array of (a, b) pairs of anchors
|
|
1171 |
#endif
|
|
1172 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1173 |
bool caretAnchored; // does the regexp start with ^?
|
|
1174 |
bool trivial; // is the good-string all that needs to match?
|
|
1175 |
#endif
|
|
1176 |
bool valid; // is the regular expression valid?
|
|
1177 |
Qt::CaseSensitivity cs; // case sensitive?
|
|
1178 |
bool greedyQuantifiers; // RegExp2?
|
|
1179 |
bool xmlSchemaExtensions;
|
|
1180 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1181 |
int nbrefs; // number of back-references
|
|
1182 |
#endif
|
|
1183 |
|
|
1184 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1185 |
bool useGoodStringHeuristic; // use goodStringMatch? otherwise badCharMatch
|
|
1186 |
|
|
1187 |
int goodEarlyStart; // the index where goodStr can first occur in a match
|
|
1188 |
int goodLateStart; // the index where goodStr can last occur in a match
|
|
1189 |
QString goodStr; // the string that any match has to contain
|
|
1190 |
|
|
1191 |
int minl; // the minimum length of a match
|
|
1192 |
QVector<int> occ1; // first-occurrence array
|
|
1193 |
#endif
|
|
1194 |
|
|
1195 |
/*
|
|
1196 |
The class Box is an abstraction for a regular expression
|
|
1197 |
fragment. It can also be seen as one node in the syntax tree of
|
|
1198 |
a regular expression with synthetized attributes.
|
|
1199 |
|
|
1200 |
Its interface is ugly for performance reasons.
|
|
1201 |
*/
|
|
1202 |
class Box
|
|
1203 |
{
|
|
1204 |
public:
|
|
1205 |
Box(QRegExpEngine *engine);
|
|
1206 |
Box(const Box &b) { operator=(b); }
|
|
1207 |
|
|
1208 |
Box &operator=(const Box &b);
|
|
1209 |
|
|
1210 |
void clear() { operator=(Box(eng)); }
|
|
1211 |
void set(QChar ch);
|
|
1212 |
void set(const QRegExpCharClass &cc);
|
|
1213 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1214 |
void set(int bref);
|
|
1215 |
#endif
|
|
1216 |
|
|
1217 |
void cat(const Box &b);
|
|
1218 |
void orx(const Box &b);
|
|
1219 |
void plus(int atom);
|
|
1220 |
void opt();
|
|
1221 |
void catAnchor(int a);
|
|
1222 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1223 |
void setupHeuristics();
|
|
1224 |
#endif
|
|
1225 |
|
|
1226 |
#if defined(QT_DEBUG)
|
|
1227 |
void dump() const;
|
|
1228 |
#endif
|
|
1229 |
|
|
1230 |
private:
|
|
1231 |
void addAnchorsToEngine(const Box &to) const;
|
|
1232 |
|
|
1233 |
QRegExpEngine *eng; // the automaton under construction
|
|
1234 |
QVector<int> ls; // the left states (firstpos)
|
|
1235 |
QVector<int> rs; // the right states (lastpos)
|
|
1236 |
QMap<int, int> lanchors; // the left anchors
|
|
1237 |
QMap<int, int> ranchors; // the right anchors
|
|
1238 |
int skipanchors; // the anchors to match if the box is skipped
|
|
1239 |
|
|
1240 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1241 |
int earlyStart; // the index where str can first occur
|
|
1242 |
int lateStart; // the index where str can last occur
|
|
1243 |
QString str; // a string that has to occur in any match
|
|
1244 |
QString leftStr; // a string occurring at the left of this box
|
|
1245 |
QString rightStr; // a string occurring at the right of this box
|
|
1246 |
int maxl; // the maximum length of this box (possibly InftyLen)
|
|
1247 |
#endif
|
|
1248 |
|
|
1249 |
int minl; // the minimum length of this box
|
|
1250 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1251 |
QVector<int> occ1; // first-occurrence array
|
|
1252 |
#endif
|
|
1253 |
};
|
|
1254 |
|
|
1255 |
friend class Box;
|
|
1256 |
|
|
1257 |
void setupCategoriesRangeMap();
|
|
1258 |
|
|
1259 |
/*
|
|
1260 |
This is the lexical analyzer for regular expressions.
|
|
1261 |
*/
|
|
1262 |
enum { Tok_Eos, Tok_Dollar, Tok_LeftParen, Tok_MagicLeftParen, Tok_PosLookahead,
|
|
1263 |
Tok_NegLookahead, Tok_RightParen, Tok_CharClass, Tok_Caret, Tok_Quantifier, Tok_Bar,
|
|
1264 |
Tok_Word, Tok_NonWord, Tok_Char = 0x10000, Tok_BackRef = 0x20000 };
|
|
1265 |
int getChar();
|
|
1266 |
int getEscape();
|
|
1267 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
1268 |
int getRep(int def);
|
|
1269 |
#endif
|
|
1270 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1271 |
void skipChars(int n);
|
|
1272 |
#endif
|
|
1273 |
void error(const char *msg);
|
|
1274 |
void startTokenizer(const QChar *rx, int len);
|
|
1275 |
int getToken();
|
|
1276 |
|
|
1277 |
const QChar *yyIn; // a pointer to the input regular expression pattern
|
|
1278 |
int yyPos0; // the position of yyTok in the input pattern
|
|
1279 |
int yyPos; // the position of the next character to read
|
|
1280 |
int yyLen; // the length of yyIn
|
|
1281 |
int yyCh; // the last character read
|
|
1282 |
QScopedPointer<QRegExpCharClass> yyCharClass; // attribute for Tok_CharClass tokens
|
|
1283 |
int yyMinRep; // attribute for Tok_Quantifier
|
|
1284 |
int yyMaxRep; // ditto
|
|
1285 |
QString yyError; // syntax error or overflow during parsing?
|
|
1286 |
|
|
1287 |
/*
|
|
1288 |
This is the syntactic analyzer for regular expressions.
|
|
1289 |
*/
|
|
1290 |
int parse(const QChar *rx, int len);
|
|
1291 |
void parseAtom(Box *box);
|
|
1292 |
void parseFactor(Box *box);
|
|
1293 |
void parseTerm(Box *box);
|
|
1294 |
void parseExpression(Box *box);
|
|
1295 |
|
|
1296 |
int yyTok; // the last token read
|
|
1297 |
bool yyMayCapture; // set this to false to disable capturing
|
|
1298 |
QHash<QByteArray, QPair<int, int> > categoriesRangeMap; // fast lookup hash for xml schema extensions
|
|
1299 |
|
|
1300 |
friend struct QRegExpMatchState;
|
|
1301 |
};
|
|
1302 |
|
|
1303 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1304 |
/*
|
|
1305 |
The struct QRegExpLookahead represents a lookahead a la Perl (e.g.,
|
|
1306 |
(?=foo) and (?!bar)).
|
|
1307 |
*/
|
|
1308 |
struct QRegExpLookahead
|
|
1309 |
{
|
|
1310 |
QRegExpEngine *eng; // NFA representing the embedded regular expression
|
|
1311 |
bool neg; // negative lookahead?
|
|
1312 |
|
|
1313 |
inline QRegExpLookahead(QRegExpEngine *eng0, bool neg0)
|
|
1314 |
: eng(eng0), neg(neg0) { }
|
|
1315 |
inline ~QRegExpLookahead() { delete eng; }
|
|
1316 |
};
|
|
1317 |
#endif
|
|
1318 |
|
|
1319 |
/*! \internal
|
|
1320 |
convert the pattern string to the RegExp syntax.
|
|
1321 |
|
|
1322 |
This is also used by QScriptEngine::newRegExp to convert to a pattern that JavaScriptCore can understan
|
|
1323 |
*/
|
|
1324 |
Q_CORE_EXPORT QString qt_regexp_toCanonical(const QString &pattern, QRegExp::PatternSyntax patternSyntax)
|
|
1325 |
{
|
|
1326 |
switch (patternSyntax) {
|
|
1327 |
#ifndef QT_NO_REGEXP_WILDCARD
|
|
1328 |
case QRegExp::Wildcard:
|
|
1329 |
return wc2rx(pattern, false);
|
|
1330 |
break;
|
|
1331 |
case QRegExp::WildcardUnix:
|
|
1332 |
return wc2rx(pattern, true);
|
|
1333 |
break;
|
|
1334 |
#endif
|
|
1335 |
case QRegExp::FixedString:
|
|
1336 |
return QRegExp::escape(pattern);
|
|
1337 |
break;
|
|
1338 |
case QRegExp::W3CXmlSchema11:
|
|
1339 |
default:
|
|
1340 |
return pattern;
|
|
1341 |
}
|
|
1342 |
}
|
|
1343 |
|
|
1344 |
QRegExpEngine::QRegExpEngine(const QRegExpEngineKey &key)
|
|
1345 |
: cs(key.cs), greedyQuantifiers(key.patternSyntax == QRegExp::RegExp2),
|
|
1346 |
xmlSchemaExtensions(key.patternSyntax == QRegExp::W3CXmlSchema11)
|
|
1347 |
{
|
|
1348 |
setup();
|
|
1349 |
|
|
1350 |
QString rx = qt_regexp_toCanonical(key.pattern, key.patternSyntax);
|
|
1351 |
|
|
1352 |
valid = (parse(rx.unicode(), rx.length()) == rx.length());
|
|
1353 |
if (!valid) {
|
|
1354 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1355 |
trivial = false;
|
|
1356 |
#endif
|
|
1357 |
error(RXERR_LEFTDELIM);
|
|
1358 |
}
|
|
1359 |
}
|
|
1360 |
|
|
1361 |
QRegExpEngine::~QRegExpEngine()
|
|
1362 |
{
|
|
1363 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1364 |
qDeleteAll(ahead);
|
|
1365 |
#endif
|
|
1366 |
}
|
|
1367 |
|
|
1368 |
void QRegExpMatchState::prepareForMatch(QRegExpEngine *eng)
|
|
1369 |
{
|
|
1370 |
/*
|
|
1371 |
We use one QVector<int> for all the big data used a lot in
|
|
1372 |
matchHere() and friends.
|
|
1373 |
*/
|
|
1374 |
int ns = eng->s.size(); // number of states
|
|
1375 |
int ncap = eng->ncap;
|
|
1376 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1377 |
int newSlideTabSize = qMax(eng->minl + 1, 16);
|
|
1378 |
#else
|
|
1379 |
int newSlideTabSize = 0;
|
|
1380 |
#endif
|
|
1381 |
int numCaptures = eng->numCaptures();
|
|
1382 |
int newCapturedSize = 2 + 2 * numCaptures;
|
|
1383 |
bigArray = q_check_ptr((int *)realloc(bigArray, ((3 + 4 * ncap) * ns + 4 * ncap + newSlideTabSize + newCapturedSize)*sizeof(int)));
|
|
1384 |
|
|
1385 |
// set all internal variables only _after_ bigArray is realloc'ed
|
|
1386 |
// to prevent a broken regexp in oom case
|
|
1387 |
|
|
1388 |
slideTabSize = newSlideTabSize;
|
|
1389 |
capturedSize = newCapturedSize;
|
|
1390 |
inNextStack = bigArray;
|
|
1391 |
memset(inNextStack, -1, ns * sizeof(int));
|
|
1392 |
curStack = inNextStack + ns;
|
|
1393 |
nextStack = inNextStack + 2 * ns;
|
|
1394 |
|
|
1395 |
curCapBegin = inNextStack + 3 * ns;
|
|
1396 |
nextCapBegin = curCapBegin + ncap * ns;
|
|
1397 |
curCapEnd = curCapBegin + 2 * ncap * ns;
|
|
1398 |
nextCapEnd = curCapBegin + 3 * ncap * ns;
|
|
1399 |
|
|
1400 |
tempCapBegin = curCapBegin + 4 * ncap * ns;
|
|
1401 |
tempCapEnd = tempCapBegin + ncap;
|
|
1402 |
capBegin = tempCapBegin + 2 * ncap;
|
|
1403 |
capEnd = tempCapBegin + 3 * ncap;
|
|
1404 |
|
|
1405 |
slideTab = tempCapBegin + 4 * ncap;
|
|
1406 |
captured = slideTab + slideTabSize;
|
|
1407 |
memset(captured, -1, capturedSize*sizeof(int));
|
|
1408 |
this->eng = eng;
|
|
1409 |
}
|
|
1410 |
|
|
1411 |
/*
|
|
1412 |
Tries to match in str and returns an array of (begin, length) pairs
|
|
1413 |
for captured text. If there is no match, all pairs are (-1, -1).
|
|
1414 |
*/
|
|
1415 |
void QRegExpMatchState::match(const QChar *str0, int len0, int pos0,
|
|
1416 |
bool minimal0, bool oneTest, int caretIndex)
|
|
1417 |
{
|
|
1418 |
bool matched = false;
|
|
1419 |
QChar char_null;
|
|
1420 |
|
|
1421 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1422 |
if (eng->trivial && !oneTest) {
|
|
1423 |
pos = qFindString(str0, len0, pos0, eng->goodStr.unicode(), eng->goodStr.length(), eng->cs);
|
|
1424 |
matchLen = eng->goodStr.length();
|
|
1425 |
matched = (pos != -1);
|
|
1426 |
} else
|
|
1427 |
#endif
|
|
1428 |
{
|
|
1429 |
in = str0;
|
|
1430 |
if (in == 0)
|
|
1431 |
in = &char_null;
|
|
1432 |
pos = pos0;
|
|
1433 |
caretPos = caretIndex;
|
|
1434 |
len = len0;
|
|
1435 |
minimal = minimal0;
|
|
1436 |
matchLen = 0;
|
|
1437 |
oneTestMatchedLen = 0;
|
|
1438 |
|
|
1439 |
if (eng->valid && pos >= 0 && pos <= len) {
|
|
1440 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1441 |
if (oneTest) {
|
|
1442 |
matched = matchHere();
|
|
1443 |
} else {
|
|
1444 |
if (pos <= len - eng->minl) {
|
|
1445 |
if (eng->caretAnchored) {
|
|
1446 |
matched = matchHere();
|
|
1447 |
} else if (eng->useGoodStringHeuristic) {
|
|
1448 |
matched = eng->goodStringMatch(*this);
|
|
1449 |
} else {
|
|
1450 |
matched = eng->badCharMatch(*this);
|
|
1451 |
}
|
|
1452 |
}
|
|
1453 |
}
|
|
1454 |
#else
|
|
1455 |
matched = oneTest ? matchHere() : eng->bruteMatch(*this);
|
|
1456 |
#endif
|
|
1457 |
}
|
|
1458 |
}
|
|
1459 |
|
|
1460 |
if (matched) {
|
|
1461 |
int *c = captured;
|
|
1462 |
*c++ = pos;
|
|
1463 |
*c++ = matchLen;
|
|
1464 |
|
|
1465 |
int numCaptures = (capturedSize - 2) >> 1;
|
|
1466 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1467 |
for (int i = 0; i < numCaptures; ++i) {
|
|
1468 |
int j = eng->captureForOfficialCapture.at(i);
|
|
1469 |
int len = capEnd[j] - capBegin[j];
|
|
1470 |
*c++ = (len > 0) ? pos + capBegin[j] : 0;
|
|
1471 |
*c++ = len;
|
|
1472 |
}
|
|
1473 |
#endif
|
|
1474 |
} else {
|
|
1475 |
// we rely on 2's complement here
|
|
1476 |
memset(captured, -1, capturedSize * sizeof(int));
|
|
1477 |
}
|
|
1478 |
}
|
|
1479 |
|
|
1480 |
/*
|
|
1481 |
The three following functions add one state to the automaton and
|
|
1482 |
return the number of the state.
|
|
1483 |
*/
|
|
1484 |
|
|
1485 |
int QRegExpEngine::createState(QChar ch)
|
|
1486 |
{
|
|
1487 |
return setupState(ch.unicode());
|
|
1488 |
}
|
|
1489 |
|
|
1490 |
int QRegExpEngine::createState(const QRegExpCharClass &cc)
|
|
1491 |
{
|
|
1492 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
1493 |
int n = cl.size();
|
|
1494 |
cl += QRegExpCharClass(cc);
|
|
1495 |
return setupState(CharClassBit | n);
|
|
1496 |
#else
|
|
1497 |
Q_UNUSED(cc);
|
|
1498 |
return setupState(CharClassBit);
|
|
1499 |
#endif
|
|
1500 |
}
|
|
1501 |
|
|
1502 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1503 |
int QRegExpEngine::createState(int bref)
|
|
1504 |
{
|
|
1505 |
if (bref > nbrefs) {
|
|
1506 |
nbrefs = bref;
|
|
1507 |
if (nbrefs > MaxBackRefs) {
|
|
1508 |
error(RXERR_LIMIT);
|
|
1509 |
return 0;
|
|
1510 |
}
|
|
1511 |
}
|
|
1512 |
return setupState(BackRefBit | bref);
|
|
1513 |
}
|
|
1514 |
#endif
|
|
1515 |
|
|
1516 |
/*
|
|
1517 |
The two following functions add a transition between all pairs of
|
|
1518 |
states (i, j) where i is found in from, and j is found in to.
|
|
1519 |
|
|
1520 |
Cat-transitions are distinguished from plus-transitions for
|
|
1521 |
capturing.
|
|
1522 |
*/
|
|
1523 |
|
|
1524 |
void QRegExpEngine::addCatTransitions(const QVector<int> &from, const QVector<int> &to)
|
|
1525 |
{
|
|
1526 |
for (int i = 0; i < from.size(); i++)
|
|
1527 |
mergeInto(&s[from.at(i)].outs, to);
|
|
1528 |
}
|
|
1529 |
|
|
1530 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1531 |
void QRegExpEngine::addPlusTransitions(const QVector<int> &from, const QVector<int> &to, int atom)
|
|
1532 |
{
|
|
1533 |
for (int i = 0; i < from.size(); i++) {
|
|
1534 |
QRegExpAutomatonState &st = s[from.at(i)];
|
|
1535 |
const QVector<int> oldOuts = st.outs;
|
|
1536 |
mergeInto(&st.outs, to);
|
|
1537 |
if (f.at(atom).capture != QRegExpAtom::NoCapture) {
|
|
1538 |
for (int j = 0; j < to.size(); j++) {
|
|
1539 |
// ### st.reenter.contains(to.at(j)) check looks suspicious
|
|
1540 |
if (!st.reenter.contains(to.at(j)) &&
|
|
1541 |
qBinaryFind(oldOuts.constBegin(), oldOuts.constEnd(), to.at(j)) == oldOuts.end())
|
|
1542 |
st.reenter.insert(to.at(j), atom);
|
|
1543 |
}
|
|
1544 |
}
|
|
1545 |
}
|
|
1546 |
}
|
|
1547 |
#endif
|
|
1548 |
|
|
1549 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
1550 |
/*
|
|
1551 |
Returns an anchor that means a OR b.
|
|
1552 |
*/
|
|
1553 |
int QRegExpEngine::anchorAlternation(int a, int b)
|
|
1554 |
{
|
|
1555 |
if (((a & b) == a || (a & b) == b) && ((a | b) & Anchor_Alternation) == 0)
|
|
1556 |
return a & b;
|
|
1557 |
|
|
1558 |
int n = aa.size();
|
|
1559 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1560 |
if (n > 0 && aa.at(n - 1).a == a && aa.at(n - 1).b == b)
|
|
1561 |
return Anchor_Alternation | (n - 1);
|
|
1562 |
#endif
|
|
1563 |
|
|
1564 |
QRegExpAnchorAlternation element = {a, b};
|
|
1565 |
aa.append(element);
|
|
1566 |
return Anchor_Alternation | n;
|
|
1567 |
}
|
|
1568 |
|
|
1569 |
/*
|
|
1570 |
Returns an anchor that means a AND b.
|
|
1571 |
*/
|
|
1572 |
int QRegExpEngine::anchorConcatenation(int a, int b)
|
|
1573 |
{
|
|
1574 |
if (((a | b) & Anchor_Alternation) == 0)
|
|
1575 |
return a | b;
|
|
1576 |
if ((b & Anchor_Alternation) != 0)
|
|
1577 |
qSwap(a, b);
|
|
1578 |
|
|
1579 |
int aprime = anchorConcatenation(aa.at(a ^ Anchor_Alternation).a, b);
|
|
1580 |
int bprime = anchorConcatenation(aa.at(a ^ Anchor_Alternation).b, b);
|
|
1581 |
return anchorAlternation(aprime, bprime);
|
|
1582 |
}
|
|
1583 |
#endif
|
|
1584 |
|
|
1585 |
/*
|
|
1586 |
Adds anchor a on a transition caracterised by its from state and
|
|
1587 |
its to state.
|
|
1588 |
*/
|
|
1589 |
void QRegExpEngine::addAnchors(int from, int to, int a)
|
|
1590 |
{
|
|
1591 |
QRegExpAutomatonState &st = s[from];
|
|
1592 |
if (st.anchors.contains(to))
|
|
1593 |
a = anchorAlternation(st.anchors.value(to), a);
|
|
1594 |
st.anchors.insert(to, a);
|
|
1595 |
}
|
|
1596 |
|
|
1597 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1598 |
/*
|
|
1599 |
This function chooses between the good-string and the bad-character
|
|
1600 |
heuristics. It computes two scores and chooses the heuristic with
|
|
1601 |
the highest score.
|
|
1602 |
|
|
1603 |
Here are some common-sense constraints on the scores that should be
|
|
1604 |
respected if the formulas are ever modified: (1) If goodStr is
|
|
1605 |
empty, the good-string heuristic scores 0. (2) If the regular
|
|
1606 |
expression is trivial, the good-string heuristic should be used.
|
|
1607 |
(3) If the search is case insensitive, the good-string heuristic
|
|
1608 |
should be used, unless it scores 0. (Case insensitivity turns all
|
|
1609 |
entries of occ1 to 0.) (4) If (goodLateStart - goodEarlyStart) is
|
|
1610 |
big, the good-string heuristic should score less.
|
|
1611 |
*/
|
|
1612 |
void QRegExpEngine::heuristicallyChooseHeuristic()
|
|
1613 |
{
|
|
1614 |
if (minl == 0) {
|
|
1615 |
useGoodStringHeuristic = false;
|
|
1616 |
} else if (trivial) {
|
|
1617 |
useGoodStringHeuristic = true;
|
|
1618 |
} else {
|
|
1619 |
/*
|
|
1620 |
Magic formula: The good string has to constitute a good
|
|
1621 |
proportion of the minimum-length string, and appear at a
|
|
1622 |
more-or-less known index.
|
|
1623 |
*/
|
|
1624 |
int goodStringScore = (64 * goodStr.length() / minl) -
|
|
1625 |
(goodLateStart - goodEarlyStart);
|
|
1626 |
/*
|
|
1627 |
Less magic formula: We pick some characters at random, and
|
|
1628 |
check whether they are good or bad.
|
|
1629 |
*/
|
|
1630 |
int badCharScore = 0;
|
|
1631 |
int step = qMax(1, NumBadChars / 32);
|
|
1632 |
for (int i = 1; i < NumBadChars; i += step) {
|
|
1633 |
if (occ1.at(i) == NoOccurrence)
|
|
1634 |
badCharScore += minl;
|
|
1635 |
else
|
|
1636 |
badCharScore += occ1.at(i);
|
|
1637 |
}
|
|
1638 |
badCharScore /= minl;
|
|
1639 |
useGoodStringHeuristic = (goodStringScore > badCharScore);
|
|
1640 |
}
|
|
1641 |
}
|
|
1642 |
#endif
|
|
1643 |
|
|
1644 |
#if defined(QT_DEBUG)
|
|
1645 |
void QRegExpEngine::dump() const
|
|
1646 |
{
|
|
1647 |
int i, j;
|
|
1648 |
qDebug("Case %ssensitive engine", cs ? "" : "in");
|
|
1649 |
qDebug(" States");
|
|
1650 |
for (i = 0; i < s.size(); i++) {
|
|
1651 |
qDebug(" %d%s", i, i == InitialState ? " (initial)" : i == FinalState ? " (final)" : "");
|
|
1652 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1653 |
if (nf > 0)
|
|
1654 |
qDebug(" in atom %d", s[i].atom);
|
|
1655 |
#endif
|
|
1656 |
int m = s[i].match;
|
|
1657 |
if ((m & CharClassBit) != 0) {
|
|
1658 |
qDebug(" match character class %d", m ^ CharClassBit);
|
|
1659 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
1660 |
cl[m ^ CharClassBit].dump();
|
|
1661 |
#else
|
|
1662 |
qDebug(" negative character class");
|
|
1663 |
#endif
|
|
1664 |
} else if ((m & BackRefBit) != 0) {
|
|
1665 |
qDebug(" match back-reference %d", m ^ BackRefBit);
|
|
1666 |
} else if (m >= 0x20 && m <= 0x7e) {
|
|
1667 |
qDebug(" match 0x%.4x (%c)", m, m);
|
|
1668 |
} else {
|
|
1669 |
qDebug(" match 0x%.4x", m);
|
|
1670 |
}
|
|
1671 |
for (j = 0; j < s[i].outs.size(); j++) {
|
|
1672 |
int next = s[i].outs[j];
|
|
1673 |
qDebug(" -> %d", next);
|
|
1674 |
if (s[i].reenter.contains(next))
|
|
1675 |
qDebug(" [reenter %d]", s[i].reenter[next]);
|
|
1676 |
if (s[i].anchors.value(next) != 0)
|
|
1677 |
qDebug(" [anchors 0x%.8x]", s[i].anchors[next]);
|
|
1678 |
}
|
|
1679 |
}
|
|
1680 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1681 |
if (nf > 0) {
|
|
1682 |
qDebug(" Atom Parent Capture");
|
|
1683 |
for (i = 0; i < nf; i++) {
|
|
1684 |
if (f[i].capture == QRegExpAtom::NoCapture) {
|
|
1685 |
qDebug(" %6d %6d nil", i, f[i].parent);
|
|
1686 |
} else {
|
|
1687 |
int cap = f[i].capture;
|
|
1688 |
bool official = captureForOfficialCapture.contains(cap);
|
|
1689 |
qDebug(" %6d %6d %6d %s", i, f[i].parent, f[i].capture,
|
|
1690 |
official ? "official" : "");
|
|
1691 |
}
|
|
1692 |
}
|
|
1693 |
}
|
|
1694 |
#endif
|
|
1695 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
1696 |
for (i = 0; i < aa.size(); i++)
|
|
1697 |
qDebug(" Anchor alternation 0x%.8x: 0x%.8x 0x%.9x", i, aa[i].a, aa[i].b);
|
|
1698 |
#endif
|
|
1699 |
}
|
|
1700 |
#endif
|
|
1701 |
|
|
1702 |
void QRegExpEngine::setup()
|
|
1703 |
{
|
|
1704 |
ref = 1;
|
|
1705 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1706 |
f.resize(32);
|
|
1707 |
nf = 0;
|
|
1708 |
cf = -1;
|
|
1709 |
#endif
|
|
1710 |
officialncap = 0;
|
|
1711 |
ncap = 0;
|
|
1712 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1713 |
caretAnchored = true;
|
|
1714 |
trivial = true;
|
|
1715 |
#endif
|
|
1716 |
valid = false;
|
|
1717 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1718 |
nbrefs = 0;
|
|
1719 |
#endif
|
|
1720 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1721 |
useGoodStringHeuristic = true;
|
|
1722 |
minl = 0;
|
|
1723 |
occ1.fill(0, NumBadChars);
|
|
1724 |
#endif
|
|
1725 |
}
|
|
1726 |
|
|
1727 |
int QRegExpEngine::setupState(int match)
|
|
1728 |
{
|
|
1729 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1730 |
s += QRegExpAutomatonState(cf, match);
|
|
1731 |
#else
|
|
1732 |
s += QRegExpAutomatonState(match);
|
|
1733 |
#endif
|
|
1734 |
return s.size() - 1;
|
|
1735 |
}
|
|
1736 |
|
|
1737 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1738 |
/*
|
|
1739 |
Functions startAtom() and finishAtom() should be called to delimit
|
|
1740 |
atoms. When a state is created, it is assigned to the current atom.
|
|
1741 |
The information is later used for capturing.
|
|
1742 |
*/
|
|
1743 |
int QRegExpEngine::startAtom(bool officialCapture)
|
|
1744 |
{
|
|
1745 |
if ((nf & (nf + 1)) == 0 && nf + 1 >= f.size())
|
|
1746 |
f.resize((nf + 1) << 1);
|
|
1747 |
f[nf].parent = cf;
|
|
1748 |
cf = nf++;
|
|
1749 |
f[cf].capture = officialCapture ? QRegExpAtom::OfficialCapture : QRegExpAtom::NoCapture;
|
|
1750 |
return cf;
|
|
1751 |
}
|
|
1752 |
|
|
1753 |
void QRegExpEngine::finishAtom(int atom, bool needCapture)
|
|
1754 |
{
|
|
1755 |
if (greedyQuantifiers && needCapture && f[atom].capture == QRegExpAtom::NoCapture)
|
|
1756 |
f[atom].capture = QRegExpAtom::UnofficialCapture;
|
|
1757 |
cf = f.at(atom).parent;
|
|
1758 |
}
|
|
1759 |
#endif
|
|
1760 |
|
|
1761 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1762 |
/*
|
|
1763 |
Creates a lookahead anchor.
|
|
1764 |
*/
|
|
1765 |
int QRegExpEngine::addLookahead(QRegExpEngine *eng, bool negative)
|
|
1766 |
{
|
|
1767 |
int n = ahead.size();
|
|
1768 |
if (n == MaxLookaheads) {
|
|
1769 |
error(RXERR_LIMIT);
|
|
1770 |
return 0;
|
|
1771 |
}
|
|
1772 |
ahead += new QRegExpLookahead(eng, negative);
|
|
1773 |
return Anchor_FirstLookahead << n;
|
|
1774 |
}
|
|
1775 |
#endif
|
|
1776 |
|
|
1777 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1778 |
/*
|
|
1779 |
We want the longest leftmost captures.
|
|
1780 |
*/
|
|
1781 |
static bool isBetterCapture(int ncap, const int *begin1, const int *end1, const int *begin2,
|
|
1782 |
const int *end2)
|
|
1783 |
{
|
|
1784 |
for (int i = 0; i < ncap; i++) {
|
|
1785 |
int delta = begin2[i] - begin1[i]; // it has to start early...
|
|
1786 |
if (delta == 0)
|
|
1787 |
delta = end1[i] - end2[i]; // ...and end late
|
|
1788 |
|
|
1789 |
if (delta != 0)
|
|
1790 |
return delta > 0;
|
|
1791 |
}
|
|
1792 |
return false;
|
|
1793 |
}
|
|
1794 |
#endif
|
|
1795 |
|
|
1796 |
/*
|
|
1797 |
Returns true if anchor a matches at position pos + i in the input
|
|
1798 |
string, otherwise false.
|
|
1799 |
*/
|
|
1800 |
bool QRegExpMatchState::testAnchor(int i, int a, const int *capBegin)
|
|
1801 |
{
|
|
1802 |
int j;
|
|
1803 |
|
|
1804 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
1805 |
if ((a & QRegExpEngine::Anchor_Alternation) != 0)
|
|
1806 |
return testAnchor(i, eng->aa.at(a ^ QRegExpEngine::Anchor_Alternation).a, capBegin)
|
|
1807 |
|| testAnchor(i, eng->aa.at(a ^ QRegExpEngine::Anchor_Alternation).b, capBegin);
|
|
1808 |
#endif
|
|
1809 |
|
|
1810 |
if ((a & QRegExpEngine::Anchor_Caret) != 0) {
|
|
1811 |
if (pos + i != caretPos)
|
|
1812 |
return false;
|
|
1813 |
}
|
|
1814 |
if ((a & QRegExpEngine::Anchor_Dollar) != 0) {
|
|
1815 |
if (pos + i != len)
|
|
1816 |
return false;
|
|
1817 |
}
|
|
1818 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
1819 |
if ((a & (QRegExpEngine::Anchor_Word | QRegExpEngine::Anchor_NonWord)) != 0) {
|
|
1820 |
bool before = false;
|
|
1821 |
bool after = false;
|
|
1822 |
if (pos + i != 0)
|
|
1823 |
before = isWord(in[pos + i - 1]);
|
|
1824 |
if (pos + i != len)
|
|
1825 |
after = isWord(in[pos + i]);
|
|
1826 |
if ((a & QRegExpEngine::Anchor_Word) != 0 && (before == after))
|
|
1827 |
return false;
|
|
1828 |
if ((a & QRegExpEngine::Anchor_NonWord) != 0 && (before != after))
|
|
1829 |
return false;
|
|
1830 |
}
|
|
1831 |
#endif
|
|
1832 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
1833 |
if ((a & QRegExpEngine::Anchor_LookaheadMask) != 0) {
|
|
1834 |
const QVector<QRegExpLookahead *> &ahead = eng->ahead;
|
|
1835 |
for (j = 0; j < ahead.size(); j++) {
|
|
1836 |
if ((a & (QRegExpEngine::Anchor_FirstLookahead << j)) != 0) {
|
|
1837 |
QRegExpMatchState matchState;
|
|
1838 |
matchState.prepareForMatch(ahead[j]->eng);
|
|
1839 |
matchState.match(in + pos + i, len - pos - i, 0,
|
|
1840 |
true, true, matchState.caretPos - matchState.pos - i);
|
|
1841 |
if ((matchState.captured[0] == 0) == ahead[j]->neg)
|
|
1842 |
return false;
|
|
1843 |
}
|
|
1844 |
}
|
|
1845 |
}
|
|
1846 |
#endif
|
|
1847 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1848 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1849 |
for (j = 0; j < eng->nbrefs; j++) {
|
|
1850 |
if ((a & (QRegExpEngine::Anchor_BackRef1Empty << j)) != 0) {
|
|
1851 |
int i = eng->captureForOfficialCapture.at(j);
|
|
1852 |
if (capBegin[i] != EmptyCapture)
|
|
1853 |
return false;
|
|
1854 |
}
|
|
1855 |
}
|
|
1856 |
#endif
|
|
1857 |
#endif
|
|
1858 |
return true;
|
|
1859 |
}
|
|
1860 |
|
|
1861 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
1862 |
/*
|
|
1863 |
The three following functions are what Jeffrey Friedl would call
|
|
1864 |
transmissions (or bump-alongs). Using one or the other should make
|
|
1865 |
no difference except in performance.
|
|
1866 |
*/
|
|
1867 |
|
|
1868 |
bool QRegExpEngine::goodStringMatch(QRegExpMatchState &matchState) const
|
|
1869 |
{
|
|
1870 |
int k = matchState.pos + goodEarlyStart;
|
|
1871 |
QStringMatcher matcher(goodStr.unicode(), goodStr.length(), cs);
|
|
1872 |
while ((k = matcher.indexIn(matchState.in, matchState.len, k)) != -1) {
|
|
1873 |
int from = k - goodLateStart;
|
|
1874 |
int to = k - goodEarlyStart;
|
|
1875 |
if (from > matchState.pos)
|
|
1876 |
matchState.pos = from;
|
|
1877 |
|
|
1878 |
while (matchState.pos <= to) {
|
|
1879 |
if (matchState.matchHere())
|
|
1880 |
return true;
|
|
1881 |
++matchState.pos;
|
|
1882 |
}
|
|
1883 |
++k;
|
|
1884 |
}
|
|
1885 |
return false;
|
|
1886 |
}
|
|
1887 |
|
|
1888 |
bool QRegExpEngine::badCharMatch(QRegExpMatchState &matchState) const
|
|
1889 |
{
|
|
1890 |
int slideHead = 0;
|
|
1891 |
int slideNext = 0;
|
|
1892 |
int i;
|
|
1893 |
int lastPos = matchState.len - minl;
|
|
1894 |
memset(matchState.slideTab, 0, matchState.slideTabSize * sizeof(int));
|
|
1895 |
|
|
1896 |
/*
|
|
1897 |
Set up the slide table, used for the bad-character heuristic,
|
|
1898 |
using the table of first occurrence of each character.
|
|
1899 |
*/
|
|
1900 |
for (i = 0; i < minl; i++) {
|
|
1901 |
int sk = occ1[BadChar(matchState.in[matchState.pos + i])];
|
|
1902 |
if (sk == NoOccurrence)
|
|
1903 |
sk = i + 1;
|
|
1904 |
if (sk > 0) {
|
|
1905 |
int k = i + 1 - sk;
|
|
1906 |
if (k < 0) {
|
|
1907 |
sk = i + 1;
|
|
1908 |
k = 0;
|
|
1909 |
}
|
|
1910 |
if (sk > matchState.slideTab[k])
|
|
1911 |
matchState.slideTab[k] = sk;
|
|
1912 |
}
|
|
1913 |
}
|
|
1914 |
|
|
1915 |
if (matchState.pos > lastPos)
|
|
1916 |
return false;
|
|
1917 |
|
|
1918 |
for (;;) {
|
|
1919 |
if (++slideNext >= matchState.slideTabSize)
|
|
1920 |
slideNext = 0;
|
|
1921 |
if (matchState.slideTab[slideHead] > 0) {
|
|
1922 |
if (matchState.slideTab[slideHead] - 1 > matchState.slideTab[slideNext])
|
|
1923 |
matchState.slideTab[slideNext] = matchState.slideTab[slideHead] - 1;
|
|
1924 |
matchState.slideTab[slideHead] = 0;
|
|
1925 |
} else {
|
|
1926 |
if (matchState.matchHere())
|
|
1927 |
return true;
|
|
1928 |
}
|
|
1929 |
|
|
1930 |
if (matchState.pos == lastPos)
|
|
1931 |
break;
|
|
1932 |
|
|
1933 |
/*
|
|
1934 |
Update the slide table. This code has much in common with
|
|
1935 |
the initialization code.
|
|
1936 |
*/
|
|
1937 |
int sk = occ1[BadChar(matchState.in[matchState.pos + minl])];
|
|
1938 |
if (sk == NoOccurrence) {
|
|
1939 |
matchState.slideTab[slideNext] = minl;
|
|
1940 |
} else if (sk > 0) {
|
|
1941 |
int k = slideNext + minl - sk;
|
|
1942 |
if (k >= matchState.slideTabSize)
|
|
1943 |
k -= matchState.slideTabSize;
|
|
1944 |
if (sk > matchState.slideTab[k])
|
|
1945 |
matchState.slideTab[k] = sk;
|
|
1946 |
}
|
|
1947 |
slideHead = slideNext;
|
|
1948 |
++matchState.pos;
|
|
1949 |
}
|
|
1950 |
return false;
|
|
1951 |
}
|
|
1952 |
#else
|
|
1953 |
bool QRegExpEngine::bruteMatch(QRegExpMatchState &matchState) const
|
|
1954 |
{
|
|
1955 |
while (matchState.pos <= matchState.len) {
|
|
1956 |
if (matchState.matchHere())
|
|
1957 |
return true;
|
|
1958 |
++matchState.pos;
|
|
1959 |
}
|
|
1960 |
return false;
|
|
1961 |
}
|
|
1962 |
#endif
|
|
1963 |
|
|
1964 |
/*
|
|
1965 |
Here's the core of the engine. It tries to do a match here and now.
|
|
1966 |
*/
|
|
1967 |
bool QRegExpMatchState::matchHere()
|
|
1968 |
{
|
|
1969 |
int ncur = 1, nnext = 0;
|
|
1970 |
int i = 0, j, k, m;
|
|
1971 |
bool stop = false;
|
|
1972 |
|
|
1973 |
matchLen = -1;
|
|
1974 |
oneTestMatchedLen = -1;
|
|
1975 |
curStack[0] = QRegExpEngine::InitialState;
|
|
1976 |
|
|
1977 |
int ncap = eng->ncap;
|
|
1978 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
1979 |
if (ncap > 0) {
|
|
1980 |
for (j = 0; j < ncap; j++) {
|
|
1981 |
curCapBegin[j] = EmptyCapture;
|
|
1982 |
curCapEnd[j] = EmptyCapture;
|
|
1983 |
}
|
|
1984 |
}
|
|
1985 |
#endif
|
|
1986 |
|
|
1987 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
1988 |
while ((ncur > 0 || !sleeping.isEmpty()) && i <= len - pos && !stop)
|
|
1989 |
#else
|
|
1990 |
while (ncur > 0 && i <= len - pos && !stop)
|
|
1991 |
#endif
|
|
1992 |
{
|
|
1993 |
int ch = (i < len - pos) ? in[pos + i].unicode() : 0;
|
|
1994 |
for (j = 0; j < ncur; j++) {
|
|
1995 |
int cur = curStack[j];
|
|
1996 |
const QRegExpAutomatonState &scur = eng->s.at(cur);
|
|
1997 |
const QVector<int> &outs = scur.outs;
|
|
1998 |
for (k = 0; k < outs.size(); k++) {
|
|
1999 |
int next = outs.at(k);
|
|
2000 |
const QRegExpAutomatonState &snext = eng->s.at(next);
|
|
2001 |
bool inside = true;
|
|
2002 |
#if !defined(QT_NO_REGEXP_BACKREF) && !defined(QT_NO_REGEXP_CAPTURE)
|
|
2003 |
int needSomeSleep = 0;
|
|
2004 |
#endif
|
|
2005 |
|
|
2006 |
/*
|
|
2007 |
First, check if the anchors are anchored properly.
|
|
2008 |
*/
|
|
2009 |
int a = scur.anchors.value(next);
|
|
2010 |
if (a != 0 && !testAnchor(i, a, curCapBegin + j * ncap))
|
|
2011 |
inside = false;
|
|
2012 |
|
|
2013 |
/*
|
|
2014 |
If indeed they are, check if the input character is
|
|
2015 |
correct for this transition.
|
|
2016 |
*/
|
|
2017 |
if (inside) {
|
|
2018 |
m = snext.match;
|
|
2019 |
if ((m & (QRegExpEngine::CharClassBit | QRegExpEngine::BackRefBit)) == 0) {
|
|
2020 |
if (eng->cs)
|
|
2021 |
inside = (m == ch);
|
|
2022 |
else
|
|
2023 |
inside = (QChar(m).toLower() == QChar(ch).toLower());
|
|
2024 |
} else if (next == QRegExpEngine::FinalState) {
|
|
2025 |
matchLen = i;
|
|
2026 |
stop = minimal;
|
|
2027 |
inside = true;
|
|
2028 |
} else if ((m & QRegExpEngine::CharClassBit) != 0) {
|
|
2029 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
2030 |
const QRegExpCharClass &cc = eng->cl.at(m ^ QRegExpEngine::CharClassBit);
|
|
2031 |
if (eng->cs)
|
|
2032 |
inside = cc.in(ch);
|
|
2033 |
else if (cc.negative())
|
|
2034 |
inside = cc.in(QChar(ch).toLower()) &&
|
|
2035 |
cc.in(QChar(ch).toUpper());
|
|
2036 |
else
|
|
2037 |
inside = cc.in(QChar(ch).toLower()) ||
|
|
2038 |
cc.in(QChar(ch).toUpper());
|
|
2039 |
#endif
|
|
2040 |
#if !defined(QT_NO_REGEXP_BACKREF) && !defined(QT_NO_REGEXP_CAPTURE)
|
|
2041 |
} else { /* ((m & QRegExpEngine::BackRefBit) != 0) */
|
|
2042 |
int bref = m ^ QRegExpEngine::BackRefBit;
|
|
2043 |
int ell = j * ncap + eng->captureForOfficialCapture.at(bref - 1);
|
|
2044 |
|
|
2045 |
inside = bref <= ncap && curCapBegin[ell] != EmptyCapture;
|
|
2046 |
if (inside) {
|
|
2047 |
if (eng->cs)
|
|
2048 |
inside = (in[pos + curCapBegin[ell]] == QChar(ch));
|
|
2049 |
else
|
|
2050 |
inside = (in[pos + curCapBegin[ell]].toLower()
|
|
2051 |
== QChar(ch).toLower());
|
|
2052 |
}
|
|
2053 |
|
|
2054 |
if (inside) {
|
|
2055 |
int delta;
|
|
2056 |
if (curCapEnd[ell] == EmptyCapture)
|
|
2057 |
delta = i - curCapBegin[ell];
|
|
2058 |
else
|
|
2059 |
delta = curCapEnd[ell] - curCapBegin[ell];
|
|
2060 |
|
|
2061 |
inside = (delta <= len - (pos + i));
|
|
2062 |
if (inside && delta > 1) {
|
|
2063 |
int n = 1;
|
|
2064 |
if (eng->cs) {
|
|
2065 |
while (n < delta) {
|
|
2066 |
if (in[pos + curCapBegin[ell] + n]
|
|
2067 |
!= in[pos + i + n])
|
|
2068 |
break;
|
|
2069 |
++n;
|
|
2070 |
}
|
|
2071 |
} else {
|
|
2072 |
while (n < delta) {
|
|
2073 |
QChar a = in[pos + curCapBegin[ell] + n];
|
|
2074 |
QChar b = in[pos + i + n];
|
|
2075 |
if (a.toLower() != b.toLower())
|
|
2076 |
break;
|
|
2077 |
++n;
|
|
2078 |
}
|
|
2079 |
}
|
|
2080 |
inside = (n == delta);
|
|
2081 |
if (inside)
|
|
2082 |
needSomeSleep = delta - 1;
|
|
2083 |
}
|
|
2084 |
}
|
|
2085 |
#endif
|
|
2086 |
}
|
|
2087 |
}
|
|
2088 |
|
|
2089 |
/*
|
|
2090 |
We must now update our data structures.
|
|
2091 |
*/
|
|
2092 |
if (inside) {
|
|
2093 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
2094 |
int *capBegin, *capEnd;
|
|
2095 |
#endif
|
|
2096 |
/*
|
|
2097 |
If the next state was not encountered yet, all
|
|
2098 |
is fine.
|
|
2099 |
*/
|
|
2100 |
if ((m = inNextStack[next]) == -1) {
|
|
2101 |
m = nnext++;
|
|
2102 |
nextStack[m] = next;
|
|
2103 |
inNextStack[next] = m;
|
|
2104 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
2105 |
capBegin = nextCapBegin + m * ncap;
|
|
2106 |
capEnd = nextCapEnd + m * ncap;
|
|
2107 |
|
|
2108 |
/*
|
|
2109 |
Otherwise, we'll first maintain captures in
|
|
2110 |
temporary arrays, and decide at the end whether
|
|
2111 |
it's best to keep the previous capture zones or
|
|
2112 |
the new ones.
|
|
2113 |
*/
|
|
2114 |
} else {
|
|
2115 |
capBegin = tempCapBegin;
|
|
2116 |
capEnd = tempCapEnd;
|
|
2117 |
#endif
|
|
2118 |
}
|
|
2119 |
|
|
2120 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
2121 |
/*
|
|
2122 |
Updating the capture zones is much of a task.
|
|
2123 |
*/
|
|
2124 |
if (ncap > 0) {
|
|
2125 |
memcpy(capBegin, curCapBegin + j * ncap, ncap * sizeof(int));
|
|
2126 |
memcpy(capEnd, curCapEnd + j * ncap, ncap * sizeof(int));
|
|
2127 |
int c = scur.atom, n = snext.atom;
|
|
2128 |
int p = -1, q = -1;
|
|
2129 |
int cap;
|
|
2130 |
|
|
2131 |
/*
|
|
2132 |
Lemma 1. For any x in the range [0..nf), we
|
|
2133 |
have f[x].parent < x.
|
|
2134 |
|
|
2135 |
Proof. By looking at startAtom(), it is
|
|
2136 |
clear that cf < nf holds all the time, and
|
|
2137 |
thus that f[nf].parent < nf.
|
|
2138 |
*/
|
|
2139 |
|
|
2140 |
/*
|
|
2141 |
If we are reentering an atom, we empty all
|
|
2142 |
capture zones inside it.
|
|
2143 |
*/
|
|
2144 |
if ((q = scur.reenter.value(next)) != 0) {
|
|
2145 |
QBitArray b(eng->nf, false);
|
|
2146 |
b.setBit(q, true);
|
|
2147 |
for (int ell = q + 1; ell < eng->nf; ell++) {
|
|
2148 |
if (b.testBit(eng->f.at(ell).parent)) {
|
|
2149 |
b.setBit(ell, true);
|
|
2150 |
cap = eng->f.at(ell).capture;
|
|
2151 |
if (cap >= 0) {
|
|
2152 |
capBegin[cap] = EmptyCapture;
|
|
2153 |
capEnd[cap] = EmptyCapture;
|
|
2154 |
}
|
|
2155 |
}
|
|
2156 |
}
|
|
2157 |
p = eng->f.at(q).parent;
|
|
2158 |
|
|
2159 |
/*
|
|
2160 |
Otherwise, close the capture zones we are
|
|
2161 |
leaving. We are leaving f[c].capture,
|
|
2162 |
f[f[c].parent].capture,
|
|
2163 |
f[f[f[c].parent].parent].capture, ...,
|
|
2164 |
until f[x].capture, with x such that
|
|
2165 |
f[x].parent is the youngest common ancestor
|
|
2166 |
for c and n.
|
|
2167 |
|
|
2168 |
We go up along c's and n's ancestry until
|
|
2169 |
we find x.
|
|
2170 |
*/
|
|
2171 |
} else {
|
|
2172 |
p = c;
|
|
2173 |
q = n;
|
|
2174 |
while (p != q) {
|
|
2175 |
if (p > q) {
|
|
2176 |
cap = eng->f.at(p).capture;
|
|
2177 |
if (cap >= 0) {
|
|
2178 |
if (capBegin[cap] == i) {
|
|
2179 |
capBegin[cap] = EmptyCapture;
|
|
2180 |
capEnd[cap] = EmptyCapture;
|
|
2181 |
} else {
|
|
2182 |
capEnd[cap] = i;
|
|
2183 |
}
|
|
2184 |
}
|
|
2185 |
p = eng->f.at(p).parent;
|
|
2186 |
} else {
|
|
2187 |
q = eng->f.at(q).parent;
|
|
2188 |
}
|
|
2189 |
}
|
|
2190 |
}
|
|
2191 |
|
|
2192 |
/*
|
|
2193 |
In any case, we now open the capture zones
|
|
2194 |
we are entering. We work upwards from n
|
|
2195 |
until we reach p (the parent of the atom we
|
|
2196 |
reenter or the youngest common ancestor).
|
|
2197 |
*/
|
|
2198 |
while (n > p) {
|
|
2199 |
cap = eng->f.at(n).capture;
|
|
2200 |
if (cap >= 0) {
|
|
2201 |
capBegin[cap] = i;
|
|
2202 |
capEnd[cap] = EmptyCapture;
|
|
2203 |
}
|
|
2204 |
n = eng->f.at(n).parent;
|
|
2205 |
}
|
|
2206 |
/*
|
|
2207 |
If the next state was already in
|
|
2208 |
nextStack, we must choose carefully which
|
|
2209 |
capture zones we want to keep.
|
|
2210 |
*/
|
|
2211 |
if (capBegin == tempCapBegin &&
|
|
2212 |
isBetterCapture(ncap, capBegin, capEnd, nextCapBegin + m * ncap,
|
|
2213 |
nextCapEnd + m * ncap)) {
|
|
2214 |
memcpy(nextCapBegin + m * ncap, capBegin, ncap * sizeof(int));
|
|
2215 |
memcpy(nextCapEnd + m * ncap, capEnd, ncap * sizeof(int));
|
|
2216 |
}
|
|
2217 |
}
|
|
2218 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
2219 |
/*
|
|
2220 |
We are done with updating the capture zones.
|
|
2221 |
It's now time to put the next state to sleep,
|
|
2222 |
if it needs to, and to remove it from
|
|
2223 |
nextStack.
|
|
2224 |
*/
|
|
2225 |
if (needSomeSleep > 0) {
|
|
2226 |
QVector<int> zzZ(2 + 2 * ncap);
|
|
2227 |
zzZ[0] = i + needSomeSleep;
|
|
2228 |
zzZ[1] = next;
|
|
2229 |
if (ncap > 0) {
|
|
2230 |
memcpy(zzZ.data() + 2, capBegin, ncap * sizeof(int));
|
|
2231 |
memcpy(zzZ.data() + 2 + ncap, capEnd, ncap * sizeof(int));
|
|
2232 |
}
|
|
2233 |
inNextStack[nextStack[--nnext]] = -1;
|
|
2234 |
sleeping.append(zzZ);
|
|
2235 |
}
|
|
2236 |
#endif
|
|
2237 |
#endif
|
|
2238 |
}
|
|
2239 |
}
|
|
2240 |
}
|
|
2241 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
2242 |
/*
|
|
2243 |
If we reached the final state, hurray! Copy the captured
|
|
2244 |
zone.
|
|
2245 |
*/
|
|
2246 |
if (ncap > 0 && (m = inNextStack[QRegExpEngine::FinalState]) != -1) {
|
|
2247 |
memcpy(capBegin, nextCapBegin + m * ncap, ncap * sizeof(int));
|
|
2248 |
memcpy(capEnd, nextCapEnd + m * ncap, ncap * sizeof(int));
|
|
2249 |
}
|
|
2250 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
2251 |
/*
|
|
2252 |
It's time to wake up the sleepers.
|
|
2253 |
*/
|
|
2254 |
j = 0;
|
|
2255 |
while (j < sleeping.count()) {
|
|
2256 |
if (sleeping.at(j)[0] == i) {
|
|
2257 |
const QVector<int> &zzZ = sleeping.at(j);
|
|
2258 |
int next = zzZ[1];
|
|
2259 |
const int *capBegin = zzZ.data() + 2;
|
|
2260 |
const int *capEnd = zzZ.data() + 2 + ncap;
|
|
2261 |
bool copyOver = true;
|
|
2262 |
|
|
2263 |
if ((m = inNextStack[next]) == -1) {
|
|
2264 |
m = nnext++;
|
|
2265 |
nextStack[m] = next;
|
|
2266 |
inNextStack[next] = m;
|
|
2267 |
} else {
|
|
2268 |
copyOver = isBetterCapture(ncap, nextCapBegin + m * ncap, nextCapEnd + m * ncap,
|
|
2269 |
capBegin, capEnd);
|
|
2270 |
}
|
|
2271 |
if (copyOver) {
|
|
2272 |
memcpy(nextCapBegin + m * ncap, capBegin, ncap * sizeof(int));
|
|
2273 |
memcpy(nextCapEnd + m * ncap, capEnd, ncap * sizeof(int));
|
|
2274 |
}
|
|
2275 |
|
|
2276 |
sleeping.removeAt(j);
|
|
2277 |
} else {
|
|
2278 |
++j;
|
|
2279 |
}
|
|
2280 |
}
|
|
2281 |
#endif
|
|
2282 |
#endif
|
|
2283 |
for (j = 0; j < nnext; j++)
|
|
2284 |
inNextStack[nextStack[j]] = -1;
|
|
2285 |
|
|
2286 |
// avoid needless iteration that confuses oneTestMatchedLen
|
|
2287 |
if (nnext == 1 && nextStack[0] == QRegExpEngine::FinalState
|
|
2288 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
2289 |
&& sleeping.isEmpty()
|
|
2290 |
#endif
|
|
2291 |
)
|
|
2292 |
stop = true;
|
|
2293 |
|
|
2294 |
qSwap(curStack, nextStack);
|
|
2295 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
2296 |
qSwap(curCapBegin, nextCapBegin);
|
|
2297 |
qSwap(curCapEnd, nextCapEnd);
|
|
2298 |
#endif
|
|
2299 |
ncur = nnext;
|
|
2300 |
nnext = 0;
|
|
2301 |
++i;
|
|
2302 |
}
|
|
2303 |
|
|
2304 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
2305 |
/*
|
|
2306 |
If minimal matching is enabled, we might have some sleepers
|
|
2307 |
left.
|
|
2308 |
*/
|
|
2309 |
if (!sleeping.isEmpty())
|
|
2310 |
sleeping.clear();
|
|
2311 |
#endif
|
|
2312 |
|
|
2313 |
oneTestMatchedLen = i - 1;
|
|
2314 |
return (matchLen >= 0);
|
|
2315 |
}
|
|
2316 |
|
|
2317 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
2318 |
|
|
2319 |
QRegExpCharClass::QRegExpCharClass()
|
|
2320 |
: c(0), n(false)
|
|
2321 |
{
|
|
2322 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2323 |
occ1.fill(NoOccurrence, NumBadChars);
|
|
2324 |
#endif
|
|
2325 |
}
|
|
2326 |
|
|
2327 |
QRegExpCharClass &QRegExpCharClass::operator=(const QRegExpCharClass &cc)
|
|
2328 |
{
|
|
2329 |
c = cc.c;
|
|
2330 |
r = cc.r;
|
|
2331 |
n = cc.n;
|
|
2332 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2333 |
occ1 = cc.occ1;
|
|
2334 |
#endif
|
|
2335 |
return *this;
|
|
2336 |
}
|
|
2337 |
|
|
2338 |
void QRegExpCharClass::clear()
|
|
2339 |
{
|
|
2340 |
c = 0;
|
|
2341 |
r.resize(0);
|
|
2342 |
n = false;
|
|
2343 |
}
|
|
2344 |
|
|
2345 |
void QRegExpCharClass::setNegative(bool negative)
|
|
2346 |
{
|
|
2347 |
n = negative;
|
|
2348 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2349 |
occ1.fill(0, NumBadChars);
|
|
2350 |
#endif
|
|
2351 |
}
|
|
2352 |
|
|
2353 |
void QRegExpCharClass::addCategories(int cats)
|
|
2354 |
{
|
|
2355 |
c |= cats;
|
|
2356 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2357 |
occ1.fill(0, NumBadChars);
|
|
2358 |
#endif
|
|
2359 |
}
|
|
2360 |
|
|
2361 |
void QRegExpCharClass::addRange(ushort from, ushort to)
|
|
2362 |
{
|
|
2363 |
if (from > to)
|
|
2364 |
qSwap(from, to);
|
|
2365 |
int m = r.size();
|
|
2366 |
r.resize(m + 1);
|
|
2367 |
r[m].from = from;
|
|
2368 |
r[m].len = to - from + 1;
|
|
2369 |
|
|
2370 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2371 |
int i;
|
|
2372 |
|
|
2373 |
if (to - from < NumBadChars) {
|
|
2374 |
if (from % NumBadChars <= to % NumBadChars) {
|
|
2375 |
for (i = from % NumBadChars; i <= to % NumBadChars; i++)
|
|
2376 |
occ1[i] = 0;
|
|
2377 |
} else {
|
|
2378 |
for (i = 0; i <= to % NumBadChars; i++)
|
|
2379 |
occ1[i] = 0;
|
|
2380 |
for (i = from % NumBadChars; i < NumBadChars; i++)
|
|
2381 |
occ1[i] = 0;
|
|
2382 |
}
|
|
2383 |
} else {
|
|
2384 |
occ1.fill(0, NumBadChars);
|
|
2385 |
}
|
|
2386 |
#endif
|
|
2387 |
}
|
|
2388 |
|
|
2389 |
bool QRegExpCharClass::in(QChar ch) const
|
|
2390 |
{
|
|
2391 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2392 |
if (occ1.at(BadChar(ch)) == NoOccurrence)
|
|
2393 |
return n;
|
|
2394 |
#endif
|
|
2395 |
|
|
2396 |
if (c != 0 && (c & (1 << (int)ch.category())) != 0)
|
|
2397 |
return !n;
|
|
2398 |
|
|
2399 |
const int uc = ch.unicode();
|
|
2400 |
int size = r.size();
|
|
2401 |
|
|
2402 |
for (int i = 0; i < size; ++i) {
|
|
2403 |
const QRegExpCharClassRange &range = r.at(i);
|
|
2404 |
if (uint(uc - range.from) < uint(r.at(i).len))
|
|
2405 |
return !n;
|
|
2406 |
}
|
|
2407 |
return n;
|
|
2408 |
}
|
|
2409 |
|
|
2410 |
#if defined(QT_DEBUG)
|
|
2411 |
void QRegExpCharClass::dump() const
|
|
2412 |
{
|
|
2413 |
int i;
|
|
2414 |
qDebug(" %stive character class", n ? "nega" : "posi");
|
|
2415 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
2416 |
if (c != 0)
|
|
2417 |
qDebug(" categories 0x%.8x", c);
|
|
2418 |
#endif
|
|
2419 |
for (i = 0; i < r.size(); i++)
|
|
2420 |
qDebug(" 0x%.4x through 0x%.4x", r[i].from, r[i].from + r[i].len - 1);
|
|
2421 |
}
|
|
2422 |
#endif
|
|
2423 |
#endif
|
|
2424 |
|
|
2425 |
QRegExpEngine::Box::Box(QRegExpEngine *engine)
|
|
2426 |
: eng(engine), skipanchors(0)
|
|
2427 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2428 |
, earlyStart(0), lateStart(0), maxl(0)
|
|
2429 |
#endif
|
|
2430 |
{
|
|
2431 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2432 |
occ1.fill(NoOccurrence, NumBadChars);
|
|
2433 |
#endif
|
|
2434 |
minl = 0;
|
|
2435 |
}
|
|
2436 |
|
|
2437 |
QRegExpEngine::Box &QRegExpEngine::Box::operator=(const Box &b)
|
|
2438 |
{
|
|
2439 |
eng = b.eng;
|
|
2440 |
ls = b.ls;
|
|
2441 |
rs = b.rs;
|
|
2442 |
lanchors = b.lanchors;
|
|
2443 |
ranchors = b.ranchors;
|
|
2444 |
skipanchors = b.skipanchors;
|
|
2445 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2446 |
earlyStart = b.earlyStart;
|
|
2447 |
lateStart = b.lateStart;
|
|
2448 |
str = b.str;
|
|
2449 |
leftStr = b.leftStr;
|
|
2450 |
rightStr = b.rightStr;
|
|
2451 |
maxl = b.maxl;
|
|
2452 |
occ1 = b.occ1;
|
|
2453 |
#endif
|
|
2454 |
minl = b.minl;
|
|
2455 |
return *this;
|
|
2456 |
}
|
|
2457 |
|
|
2458 |
void QRegExpEngine::Box::set(QChar ch)
|
|
2459 |
{
|
|
2460 |
ls.resize(1);
|
|
2461 |
ls[0] = eng->createState(ch);
|
|
2462 |
rs = ls;
|
|
2463 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2464 |
str = ch;
|
|
2465 |
leftStr = ch;
|
|
2466 |
rightStr = ch;
|
|
2467 |
maxl = 1;
|
|
2468 |
occ1[BadChar(ch)] = 0;
|
|
2469 |
#endif
|
|
2470 |
minl = 1;
|
|
2471 |
}
|
|
2472 |
|
|
2473 |
void QRegExpEngine::Box::set(const QRegExpCharClass &cc)
|
|
2474 |
{
|
|
2475 |
ls.resize(1);
|
|
2476 |
ls[0] = eng->createState(cc);
|
|
2477 |
rs = ls;
|
|
2478 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2479 |
maxl = 1;
|
|
2480 |
occ1 = cc.firstOccurrence();
|
|
2481 |
#endif
|
|
2482 |
minl = 1;
|
|
2483 |
}
|
|
2484 |
|
|
2485 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
2486 |
void QRegExpEngine::Box::set(int bref)
|
|
2487 |
{
|
|
2488 |
ls.resize(1);
|
|
2489 |
ls[0] = eng->createState(bref);
|
|
2490 |
rs = ls;
|
|
2491 |
if (bref >= 1 && bref <= MaxBackRefs)
|
|
2492 |
skipanchors = Anchor_BackRef0Empty << bref;
|
|
2493 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2494 |
maxl = InftyLen;
|
|
2495 |
#endif
|
|
2496 |
minl = 0;
|
|
2497 |
}
|
|
2498 |
#endif
|
|
2499 |
|
|
2500 |
void QRegExpEngine::Box::cat(const Box &b)
|
|
2501 |
{
|
|
2502 |
eng->addCatTransitions(rs, b.ls);
|
|
2503 |
addAnchorsToEngine(b);
|
|
2504 |
if (minl == 0) {
|
|
2505 |
lanchors.unite(b.lanchors);
|
|
2506 |
if (skipanchors != 0) {
|
|
2507 |
for (int i = 0; i < b.ls.size(); i++) {
|
|
2508 |
int a = eng->anchorConcatenation(lanchors.value(b.ls.at(i), 0), skipanchors);
|
|
2509 |
lanchors.insert(b.ls.at(i), a);
|
|
2510 |
}
|
|
2511 |
}
|
|
2512 |
mergeInto(&ls, b.ls);
|
|
2513 |
}
|
|
2514 |
if (b.minl == 0) {
|
|
2515 |
ranchors.unite(b.ranchors);
|
|
2516 |
if (b.skipanchors != 0) {
|
|
2517 |
for (int i = 0; i < rs.size(); i++) {
|
|
2518 |
int a = eng->anchorConcatenation(ranchors.value(rs.at(i), 0), b.skipanchors);
|
|
2519 |
ranchors.insert(rs.at(i), a);
|
|
2520 |
}
|
|
2521 |
}
|
|
2522 |
mergeInto(&rs, b.rs);
|
|
2523 |
} else {
|
|
2524 |
ranchors = b.ranchors;
|
|
2525 |
rs = b.rs;
|
|
2526 |
}
|
|
2527 |
|
|
2528 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2529 |
if (maxl != InftyLen) {
|
|
2530 |
if (rightStr.length() + b.leftStr.length() >
|
|
2531 |
qMax(str.length(), b.str.length())) {
|
|
2532 |
earlyStart = minl - rightStr.length();
|
|
2533 |
lateStart = maxl - rightStr.length();
|
|
2534 |
str = rightStr + b.leftStr;
|
|
2535 |
} else if (b.str.length() > str.length()) {
|
|
2536 |
earlyStart = minl + b.earlyStart;
|
|
2537 |
lateStart = maxl + b.lateStart;
|
|
2538 |
str = b.str;
|
|
2539 |
}
|
|
2540 |
}
|
|
2541 |
|
|
2542 |
if (leftStr.length() == maxl)
|
|
2543 |
leftStr += b.leftStr;
|
|
2544 |
|
|
2545 |
if (b.rightStr.length() == b.maxl) {
|
|
2546 |
rightStr += b.rightStr;
|
|
2547 |
} else {
|
|
2548 |
rightStr = b.rightStr;
|
|
2549 |
}
|
|
2550 |
|
|
2551 |
if (maxl == InftyLen || b.maxl == InftyLen) {
|
|
2552 |
maxl = InftyLen;
|
|
2553 |
} else {
|
|
2554 |
maxl += b.maxl;
|
|
2555 |
}
|
|
2556 |
|
|
2557 |
for (int i = 0; i < NumBadChars; i++) {
|
|
2558 |
if (b.occ1.at(i) != NoOccurrence && minl + b.occ1.at(i) < occ1.at(i))
|
|
2559 |
occ1[i] = minl + b.occ1.at(i);
|
|
2560 |
}
|
|
2561 |
#endif
|
|
2562 |
|
|
2563 |
minl += b.minl;
|
|
2564 |
if (minl == 0)
|
|
2565 |
skipanchors = eng->anchorConcatenation(skipanchors, b.skipanchors);
|
|
2566 |
else
|
|
2567 |
skipanchors = 0;
|
|
2568 |
}
|
|
2569 |
|
|
2570 |
void QRegExpEngine::Box::orx(const Box &b)
|
|
2571 |
{
|
|
2572 |
mergeInto(&ls, b.ls);
|
|
2573 |
lanchors.unite(b.lanchors);
|
|
2574 |
mergeInto(&rs, b.rs);
|
|
2575 |
ranchors.unite(b.ranchors);
|
|
2576 |
|
|
2577 |
if (b.minl == 0) {
|
|
2578 |
if (minl == 0)
|
|
2579 |
skipanchors = eng->anchorAlternation(skipanchors, b.skipanchors);
|
|
2580 |
else
|
|
2581 |
skipanchors = b.skipanchors;
|
|
2582 |
}
|
|
2583 |
|
|
2584 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2585 |
for (int i = 0; i < NumBadChars; i++) {
|
|
2586 |
if (occ1.at(i) > b.occ1.at(i))
|
|
2587 |
occ1[i] = b.occ1.at(i);
|
|
2588 |
}
|
|
2589 |
earlyStart = 0;
|
|
2590 |
lateStart = 0;
|
|
2591 |
str = QString();
|
|
2592 |
leftStr = QString();
|
|
2593 |
rightStr = QString();
|
|
2594 |
if (b.maxl > maxl)
|
|
2595 |
maxl = b.maxl;
|
|
2596 |
#endif
|
|
2597 |
if (b.minl < minl)
|
|
2598 |
minl = b.minl;
|
|
2599 |
}
|
|
2600 |
|
|
2601 |
void QRegExpEngine::Box::plus(int atom)
|
|
2602 |
{
|
|
2603 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
2604 |
eng->addPlusTransitions(rs, ls, atom);
|
|
2605 |
#else
|
|
2606 |
Q_UNUSED(atom);
|
|
2607 |
eng->addCatTransitions(rs, ls);
|
|
2608 |
#endif
|
|
2609 |
addAnchorsToEngine(*this);
|
|
2610 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2611 |
maxl = InftyLen;
|
|
2612 |
#endif
|
|
2613 |
}
|
|
2614 |
|
|
2615 |
void QRegExpEngine::Box::opt()
|
|
2616 |
{
|
|
2617 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2618 |
earlyStart = 0;
|
|
2619 |
lateStart = 0;
|
|
2620 |
str = QString();
|
|
2621 |
leftStr = QString();
|
|
2622 |
rightStr = QString();
|
|
2623 |
#endif
|
|
2624 |
skipanchors = 0;
|
|
2625 |
minl = 0;
|
|
2626 |
}
|
|
2627 |
|
|
2628 |
void QRegExpEngine::Box::catAnchor(int a)
|
|
2629 |
{
|
|
2630 |
if (a != 0) {
|
|
2631 |
for (int i = 0; i < rs.size(); i++) {
|
|
2632 |
a = eng->anchorConcatenation(ranchors.value(rs.at(i), 0), a);
|
|
2633 |
ranchors.insert(rs.at(i), a);
|
|
2634 |
}
|
|
2635 |
if (minl == 0)
|
|
2636 |
skipanchors = eng->anchorConcatenation(skipanchors, a);
|
|
2637 |
}
|
|
2638 |
}
|
|
2639 |
|
|
2640 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
2641 |
void QRegExpEngine::Box::setupHeuristics()
|
|
2642 |
{
|
|
2643 |
eng->goodEarlyStart = earlyStart;
|
|
2644 |
eng->goodLateStart = lateStart;
|
|
2645 |
eng->goodStr = eng->cs ? str : str.toLower();
|
|
2646 |
|
|
2647 |
eng->minl = minl;
|
|
2648 |
if (eng->cs) {
|
|
2649 |
/*
|
|
2650 |
A regular expression such as 112|1 has occ1['2'] = 2 and minl =
|
|
2651 |
1 at this point. An entry of occ1 has to be at most minl or
|
|
2652 |
infinity for the rest of the algorithm to go well.
|
|
2653 |
|
|
2654 |
We waited until here before normalizing these cases (instead of
|
|
2655 |
doing it in Box::orx()) because sometimes things improve by
|
|
2656 |
themselves. Consider for example (112|1)34.
|
|
2657 |
*/
|
|
2658 |
for (int i = 0; i < NumBadChars; i++) {
|
|
2659 |
if (occ1.at(i) != NoOccurrence && occ1.at(i) >= minl)
|
|
2660 |
occ1[i] = minl;
|
|
2661 |
}
|
|
2662 |
eng->occ1 = occ1;
|
|
2663 |
} else {
|
|
2664 |
eng->occ1.fill(0, NumBadChars);
|
|
2665 |
}
|
|
2666 |
|
|
2667 |
eng->heuristicallyChooseHeuristic();
|
|
2668 |
}
|
|
2669 |
#endif
|
|
2670 |
|
|
2671 |
#if defined(QT_DEBUG)
|
|
2672 |
void QRegExpEngine::Box::dump() const
|
|
2673 |
{
|
|
2674 |
int i;
|
|
2675 |
qDebug("Box of at least %d character%s", minl, minl == 1 ? "" : "s");
|
|
2676 |
qDebug(" Left states:");
|
|
2677 |
for (i = 0; i < ls.size(); i++) {
|
|
2678 |
if (lanchors.value(ls[i], 0) == 0)
|
|
2679 |
qDebug(" %d", ls[i]);
|
|
2680 |
else
|
|
2681 |
qDebug(" %d [anchors 0x%.8x]", ls[i], lanchors[ls[i]]);
|
|
2682 |
}
|
|
2683 |
qDebug(" Right states:");
|
|
2684 |
for (i = 0; i < rs.size(); i++) {
|
|
2685 |
if (ranchors.value(rs[i], 0) == 0)
|
|
2686 |
qDebug(" %d", rs[i]);
|
|
2687 |
else
|
|
2688 |
qDebug(" %d [anchors 0x%.8x]", rs[i], ranchors[rs[i]]);
|
|
2689 |
}
|
|
2690 |
qDebug(" Skip anchors: 0x%.8x", skipanchors);
|
|
2691 |
}
|
|
2692 |
#endif
|
|
2693 |
|
|
2694 |
void QRegExpEngine::Box::addAnchorsToEngine(const Box &to) const
|
|
2695 |
{
|
|
2696 |
for (int i = 0; i < to.ls.size(); i++) {
|
|
2697 |
for (int j = 0; j < rs.size(); j++) {
|
|
2698 |
int a = eng->anchorConcatenation(ranchors.value(rs.at(j), 0),
|
|
2699 |
to.lanchors.value(to.ls.at(i), 0));
|
|
2700 |
eng->addAnchors(rs[j], to.ls[i], a);
|
|
2701 |
}
|
|
2702 |
}
|
|
2703 |
}
|
|
2704 |
|
|
2705 |
void QRegExpEngine::setupCategoriesRangeMap()
|
|
2706 |
{
|
|
2707 |
categoriesRangeMap.insert("IsBasicLatin", qMakePair(0x0000, 0x007F));
|
|
2708 |
categoriesRangeMap.insert("IsLatin-1Supplement", qMakePair(0x0080, 0x00FF));
|
|
2709 |
categoriesRangeMap.insert("IsLatinExtended-A", qMakePair(0x0100, 0x017F));
|
|
2710 |
categoriesRangeMap.insert("IsLatinExtended-B", qMakePair(0x0180, 0x024F));
|
|
2711 |
categoriesRangeMap.insert("IsIPAExtensions", qMakePair(0x0250, 0x02AF));
|
|
2712 |
categoriesRangeMap.insert("IsSpacingModifierLetters", qMakePair(0x02B0, 0x02FF));
|
|
2713 |
categoriesRangeMap.insert("IsCombiningDiacriticalMarks", qMakePair(0x0300, 0x036F));
|
|
2714 |
categoriesRangeMap.insert("IsGreek", qMakePair(0x0370, 0x03FF));
|
|
2715 |
categoriesRangeMap.insert("IsCyrillic", qMakePair(0x0400, 0x04FF));
|
|
2716 |
categoriesRangeMap.insert("IsCyrillicSupplement", qMakePair(0x0500, 0x052F));
|
|
2717 |
categoriesRangeMap.insert("IsArmenian", qMakePair(0x0530, 0x058F));
|
|
2718 |
categoriesRangeMap.insert("IsHebrew", qMakePair(0x0590, 0x05FF));
|
|
2719 |
categoriesRangeMap.insert("IsArabic", qMakePair(0x0600, 0x06FF));
|
|
2720 |
categoriesRangeMap.insert("IsSyriac", qMakePair(0x0700, 0x074F));
|
|
2721 |
categoriesRangeMap.insert("IsArabicSupplement", qMakePair(0x0750, 0x077F));
|
|
2722 |
categoriesRangeMap.insert("IsThaana", qMakePair(0x0780, 0x07BF));
|
|
2723 |
categoriesRangeMap.insert("IsDevanagari", qMakePair(0x0900, 0x097F));
|
|
2724 |
categoriesRangeMap.insert("IsBengali", qMakePair(0x0980, 0x09FF));
|
|
2725 |
categoriesRangeMap.insert("IsGurmukhi", qMakePair(0x0A00, 0x0A7F));
|
|
2726 |
categoriesRangeMap.insert("IsGujarati", qMakePair(0x0A80, 0x0AFF));
|
|
2727 |
categoriesRangeMap.insert("IsOriya", qMakePair(0x0B00, 0x0B7F));
|
|
2728 |
categoriesRangeMap.insert("IsTamil", qMakePair(0x0B80, 0x0BFF));
|
|
2729 |
categoriesRangeMap.insert("IsTelugu", qMakePair(0x0C00, 0x0C7F));
|
|
2730 |
categoriesRangeMap.insert("IsKannada", qMakePair(0x0C80, 0x0CFF));
|
|
2731 |
categoriesRangeMap.insert("IsMalayalam", qMakePair(0x0D00, 0x0D7F));
|
|
2732 |
categoriesRangeMap.insert("IsSinhala", qMakePair(0x0D80, 0x0DFF));
|
|
2733 |
categoriesRangeMap.insert("IsThai", qMakePair(0x0E00, 0x0E7F));
|
|
2734 |
categoriesRangeMap.insert("IsLao", qMakePair(0x0E80, 0x0EFF));
|
|
2735 |
categoriesRangeMap.insert("IsTibetan", qMakePair(0x0F00, 0x0FFF));
|
|
2736 |
categoriesRangeMap.insert("IsMyanmar", qMakePair(0x1000, 0x109F));
|
|
2737 |
categoriesRangeMap.insert("IsGeorgian", qMakePair(0x10A0, 0x10FF));
|
|
2738 |
categoriesRangeMap.insert("IsHangulJamo", qMakePair(0x1100, 0x11FF));
|
|
2739 |
categoriesRangeMap.insert("IsEthiopic", qMakePair(0x1200, 0x137F));
|
|
2740 |
categoriesRangeMap.insert("IsEthiopicSupplement", qMakePair(0x1380, 0x139F));
|
|
2741 |
categoriesRangeMap.insert("IsCherokee", qMakePair(0x13A0, 0x13FF));
|
|
2742 |
categoriesRangeMap.insert("IsUnifiedCanadianAboriginalSyllabics", qMakePair(0x1400, 0x167F));
|
|
2743 |
categoriesRangeMap.insert("IsOgham", qMakePair(0x1680, 0x169F));
|
|
2744 |
categoriesRangeMap.insert("IsRunic", qMakePair(0x16A0, 0x16FF));
|
|
2745 |
categoriesRangeMap.insert("IsTagalog", qMakePair(0x1700, 0x171F));
|
|
2746 |
categoriesRangeMap.insert("IsHanunoo", qMakePair(0x1720, 0x173F));
|
|
2747 |
categoriesRangeMap.insert("IsBuhid", qMakePair(0x1740, 0x175F));
|
|
2748 |
categoriesRangeMap.insert("IsTagbanwa", qMakePair(0x1760, 0x177F));
|
|
2749 |
categoriesRangeMap.insert("IsKhmer", qMakePair(0x1780, 0x17FF));
|
|
2750 |
categoriesRangeMap.insert("IsMongolian", qMakePair(0x1800, 0x18AF));
|
|
2751 |
categoriesRangeMap.insert("IsLimbu", qMakePair(0x1900, 0x194F));
|
|
2752 |
categoriesRangeMap.insert("IsTaiLe", qMakePair(0x1950, 0x197F));
|
|
2753 |
categoriesRangeMap.insert("IsNewTaiLue", qMakePair(0x1980, 0x19DF));
|
|
2754 |
categoriesRangeMap.insert("IsKhmerSymbols", qMakePair(0x19E0, 0x19FF));
|
|
2755 |
categoriesRangeMap.insert("IsBuginese", qMakePair(0x1A00, 0x1A1F));
|
|
2756 |
categoriesRangeMap.insert("IsPhoneticExtensions", qMakePair(0x1D00, 0x1D7F));
|
|
2757 |
categoriesRangeMap.insert("IsPhoneticExtensionsSupplement", qMakePair(0x1D80, 0x1DBF));
|
|
2758 |
categoriesRangeMap.insert("IsCombiningDiacriticalMarksSupplement", qMakePair(0x1DC0, 0x1DFF));
|
|
2759 |
categoriesRangeMap.insert("IsLatinExtendedAdditional", qMakePair(0x1E00, 0x1EFF));
|
|
2760 |
categoriesRangeMap.insert("IsGreekExtended", qMakePair(0x1F00, 0x1FFF));
|
|
2761 |
categoriesRangeMap.insert("IsGeneralPunctuation", qMakePair(0x2000, 0x206F));
|
|
2762 |
categoriesRangeMap.insert("IsSuperscriptsandSubscripts", qMakePair(0x2070, 0x209F));
|
|
2763 |
categoriesRangeMap.insert("IsCurrencySymbols", qMakePair(0x20A0, 0x20CF));
|
|
2764 |
categoriesRangeMap.insert("IsCombiningMarksforSymbols", qMakePair(0x20D0, 0x20FF));
|
|
2765 |
categoriesRangeMap.insert("IsLetterlikeSymbols", qMakePair(0x2100, 0x214F));
|
|
2766 |
categoriesRangeMap.insert("IsNumberForms", qMakePair(0x2150, 0x218F));
|
|
2767 |
categoriesRangeMap.insert("IsArrows", qMakePair(0x2190, 0x21FF));
|
|
2768 |
categoriesRangeMap.insert("IsMathematicalOperators", qMakePair(0x2200, 0x22FF));
|
|
2769 |
categoriesRangeMap.insert("IsMiscellaneousTechnical", qMakePair(0x2300, 0x23FF));
|
|
2770 |
categoriesRangeMap.insert("IsControlPictures", qMakePair(0x2400, 0x243F));
|
|
2771 |
categoriesRangeMap.insert("IsOpticalCharacterRecognition", qMakePair(0x2440, 0x245F));
|
|
2772 |
categoriesRangeMap.insert("IsEnclosedAlphanumerics", qMakePair(0x2460, 0x24FF));
|
|
2773 |
categoriesRangeMap.insert("IsBoxDrawing", qMakePair(0x2500, 0x257F));
|
|
2774 |
categoriesRangeMap.insert("IsBlockElements", qMakePair(0x2580, 0x259F));
|
|
2775 |
categoriesRangeMap.insert("IsGeometricShapes", qMakePair(0x25A0, 0x25FF));
|
|
2776 |
categoriesRangeMap.insert("IsMiscellaneousSymbols", qMakePair(0x2600, 0x26FF));
|
|
2777 |
categoriesRangeMap.insert("IsDingbats", qMakePair(0x2700, 0x27BF));
|
|
2778 |
categoriesRangeMap.insert("IsMiscellaneousMathematicalSymbols-A", qMakePair(0x27C0, 0x27EF));
|
|
2779 |
categoriesRangeMap.insert("IsSupplementalArrows-A", qMakePair(0x27F0, 0x27FF));
|
|
2780 |
categoriesRangeMap.insert("IsBraillePatterns", qMakePair(0x2800, 0x28FF));
|
|
2781 |
categoriesRangeMap.insert("IsSupplementalArrows-B", qMakePair(0x2900, 0x297F));
|
|
2782 |
categoriesRangeMap.insert("IsMiscellaneousMathematicalSymbols-B", qMakePair(0x2980, 0x29FF));
|
|
2783 |
categoriesRangeMap.insert("IsSupplementalMathematicalOperators", qMakePair(0x2A00, 0x2AFF));
|
|
2784 |
categoriesRangeMap.insert("IsMiscellaneousSymbolsandArrows", qMakePair(0x2B00, 0x2BFF));
|
|
2785 |
categoriesRangeMap.insert("IsGlagolitic", qMakePair(0x2C00, 0x2C5F));
|
|
2786 |
categoriesRangeMap.insert("IsCoptic", qMakePair(0x2C80, 0x2CFF));
|
|
2787 |
categoriesRangeMap.insert("IsGeorgianSupplement", qMakePair(0x2D00, 0x2D2F));
|
|
2788 |
categoriesRangeMap.insert("IsTifinagh", qMakePair(0x2D30, 0x2D7F));
|
|
2789 |
categoriesRangeMap.insert("IsEthiopicExtended", qMakePair(0x2D80, 0x2DDF));
|
|
2790 |
categoriesRangeMap.insert("IsSupplementalPunctuation", qMakePair(0x2E00, 0x2E7F));
|
|
2791 |
categoriesRangeMap.insert("IsCJKRadicalsSupplement", qMakePair(0x2E80, 0x2EFF));
|
|
2792 |
categoriesRangeMap.insert("IsKangxiRadicals", qMakePair(0x2F00, 0x2FDF));
|
|
2793 |
categoriesRangeMap.insert("IsIdeographicDescriptionCharacters", qMakePair(0x2FF0, 0x2FFF));
|
|
2794 |
categoriesRangeMap.insert("IsCJKSymbolsandPunctuation", qMakePair(0x3000, 0x303F));
|
|
2795 |
categoriesRangeMap.insert("IsHiragana", qMakePair(0x3040, 0x309F));
|
|
2796 |
categoriesRangeMap.insert("IsKatakana", qMakePair(0x30A0, 0x30FF));
|
|
2797 |
categoriesRangeMap.insert("IsBopomofo", qMakePair(0x3100, 0x312F));
|
|
2798 |
categoriesRangeMap.insert("IsHangulCompatibilityJamo", qMakePair(0x3130, 0x318F));
|
|
2799 |
categoriesRangeMap.insert("IsKanbun", qMakePair(0x3190, 0x319F));
|
|
2800 |
categoriesRangeMap.insert("IsBopomofoExtended", qMakePair(0x31A0, 0x31BF));
|
|
2801 |
categoriesRangeMap.insert("IsCJKStrokes", qMakePair(0x31C0, 0x31EF));
|
|
2802 |
categoriesRangeMap.insert("IsKatakanaPhoneticExtensions", qMakePair(0x31F0, 0x31FF));
|
|
2803 |
categoriesRangeMap.insert("IsEnclosedCJKLettersandMonths", qMakePair(0x3200, 0x32FF));
|
|
2804 |
categoriesRangeMap.insert("IsCJKCompatibility", qMakePair(0x3300, 0x33FF));
|
|
2805 |
categoriesRangeMap.insert("IsCJKUnifiedIdeographsExtensionA", qMakePair(0x3400, 0x4DB5));
|
|
2806 |
categoriesRangeMap.insert("IsYijingHexagramSymbols", qMakePair(0x4DC0, 0x4DFF));
|
|
2807 |
categoriesRangeMap.insert("IsCJKUnifiedIdeographs", qMakePair(0x4E00, 0x9FFF));
|
|
2808 |
categoriesRangeMap.insert("IsYiSyllables", qMakePair(0xA000, 0xA48F));
|
|
2809 |
categoriesRangeMap.insert("IsYiRadicals", qMakePair(0xA490, 0xA4CF));
|
|
2810 |
categoriesRangeMap.insert("IsModifierToneLetters", qMakePair(0xA700, 0xA71F));
|
|
2811 |
categoriesRangeMap.insert("IsSylotiNagri", qMakePair(0xA800, 0xA82F));
|
|
2812 |
categoriesRangeMap.insert("IsHangulSyllables", qMakePair(0xAC00, 0xD7A3));
|
|
2813 |
categoriesRangeMap.insert("IsPrivateUse", qMakePair(0xE000, 0xF8FF));
|
|
2814 |
categoriesRangeMap.insert("IsCJKCompatibilityIdeographs", qMakePair(0xF900, 0xFAFF));
|
|
2815 |
categoriesRangeMap.insert("IsAlphabeticPresentationForms", qMakePair(0xFB00, 0xFB4F));
|
|
2816 |
categoriesRangeMap.insert("IsArabicPresentationForms-A", qMakePair(0xFB50, 0xFDFF));
|
|
2817 |
categoriesRangeMap.insert("IsVariationSelectors", qMakePair(0xFE00, 0xFE0F));
|
|
2818 |
categoriesRangeMap.insert("IsVerticalForms", qMakePair(0xFE10, 0xFE1F));
|
|
2819 |
categoriesRangeMap.insert("IsCombiningHalfMarks", qMakePair(0xFE20, 0xFE2F));
|
|
2820 |
categoriesRangeMap.insert("IsCJKCompatibilityForms", qMakePair(0xFE30, 0xFE4F));
|
|
2821 |
categoriesRangeMap.insert("IsSmallFormVariants", qMakePair(0xFE50, 0xFE6F));
|
|
2822 |
categoriesRangeMap.insert("IsArabicPresentationForms-B", qMakePair(0xFE70, 0xFEFF));
|
|
2823 |
categoriesRangeMap.insert("IsHalfwidthandFullwidthForms", qMakePair(0xFF00, 0xFFEF));
|
|
2824 |
categoriesRangeMap.insert("IsSpecials", qMakePair(0xFFF0, 0xFFFF));
|
|
2825 |
categoriesRangeMap.insert("IsLinearBSyllabary", qMakePair(0x10000, 0x1007F));
|
|
2826 |
categoriesRangeMap.insert("IsLinearBIdeograms", qMakePair(0x10080, 0x100FF));
|
|
2827 |
categoriesRangeMap.insert("IsAegeanNumbers", qMakePair(0x10100, 0x1013F));
|
|
2828 |
categoriesRangeMap.insert("IsAncientGreekNumbers", qMakePair(0x10140, 0x1018F));
|
|
2829 |
categoriesRangeMap.insert("IsOldItalic", qMakePair(0x10300, 0x1032F));
|
|
2830 |
categoriesRangeMap.insert("IsGothic", qMakePair(0x10330, 0x1034F));
|
|
2831 |
categoriesRangeMap.insert("IsUgaritic", qMakePair(0x10380, 0x1039F));
|
|
2832 |
categoriesRangeMap.insert("IsOldPersian", qMakePair(0x103A0, 0x103DF));
|
|
2833 |
categoriesRangeMap.insert("IsDeseret", qMakePair(0x10400, 0x1044F));
|
|
2834 |
categoriesRangeMap.insert("IsShavian", qMakePair(0x10450, 0x1047F));
|
|
2835 |
categoriesRangeMap.insert("IsOsmanya", qMakePair(0x10480, 0x104AF));
|
|
2836 |
categoriesRangeMap.insert("IsCypriotSyllabary", qMakePair(0x10800, 0x1083F));
|
|
2837 |
categoriesRangeMap.insert("IsKharoshthi", qMakePair(0x10A00, 0x10A5F));
|
|
2838 |
categoriesRangeMap.insert("IsByzantineMusicalSymbols", qMakePair(0x1D000, 0x1D0FF));
|
|
2839 |
categoriesRangeMap.insert("IsMusicalSymbols", qMakePair(0x1D100, 0x1D1FF));
|
|
2840 |
categoriesRangeMap.insert("IsAncientGreekMusicalNotation", qMakePair(0x1D200, 0x1D24F));
|
|
2841 |
categoriesRangeMap.insert("IsTaiXuanJingSymbols", qMakePair(0x1D300, 0x1D35F));
|
|
2842 |
categoriesRangeMap.insert("IsMathematicalAlphanumericSymbols", qMakePair(0x1D400, 0x1D7FF));
|
|
2843 |
categoriesRangeMap.insert("IsCJKUnifiedIdeographsExtensionB", qMakePair(0x20000, 0x2A6DF));
|
|
2844 |
categoriesRangeMap.insert("IsCJKCompatibilityIdeographsSupplement", qMakePair(0x2F800, 0x2FA1F));
|
|
2845 |
categoriesRangeMap.insert("IsTags", qMakePair(0xE0000, 0xE007F));
|
|
2846 |
categoriesRangeMap.insert("IsVariationSelectorsSupplement", qMakePair(0xE0100, 0xE01EF));
|
|
2847 |
categoriesRangeMap.insert("IsSupplementaryPrivateUseArea-A", qMakePair(0xF0000, 0xFFFFF));
|
|
2848 |
categoriesRangeMap.insert("IsSupplementaryPrivateUseArea-B", qMakePair(0x100000, 0x10FFFF));
|
|
2849 |
}
|
|
2850 |
|
|
2851 |
int QRegExpEngine::getChar()
|
|
2852 |
{
|
|
2853 |
return (yyPos == yyLen) ? EOS : yyIn[yyPos++].unicode();
|
|
2854 |
}
|
|
2855 |
|
|
2856 |
int QRegExpEngine::getEscape()
|
|
2857 |
{
|
|
2858 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
2859 |
const char tab[] = "afnrtv"; // no b, as \b means word boundary
|
|
2860 |
const char backTab[] = "\a\f\n\r\t\v";
|
|
2861 |
ushort low;
|
|
2862 |
int i;
|
|
2863 |
#endif
|
|
2864 |
ushort val;
|
|
2865 |
int prevCh = yyCh;
|
|
2866 |
|
|
2867 |
if (prevCh == EOS) {
|
|
2868 |
error(RXERR_END);
|
|
2869 |
return Tok_Char | '\\';
|
|
2870 |
}
|
|
2871 |
yyCh = getChar();
|
|
2872 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
2873 |
if ((prevCh & ~0xff) == 0) {
|
|
2874 |
const char *p = strchr(tab, prevCh);
|
|
2875 |
if (p != 0)
|
|
2876 |
return Tok_Char | backTab[p - tab];
|
|
2877 |
}
|
|
2878 |
#endif
|
|
2879 |
|
|
2880 |
switch (prevCh) {
|
|
2881 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
2882 |
case '0':
|
|
2883 |
val = 0;
|
|
2884 |
for (i = 0; i < 3; i++) {
|
|
2885 |
if (yyCh >= '0' && yyCh <= '7')
|
|
2886 |
val = (val << 3) | (yyCh - '0');
|
|
2887 |
else
|
|
2888 |
break;
|
|
2889 |
yyCh = getChar();
|
|
2890 |
}
|
|
2891 |
if ((val & ~0377) != 0)
|
|
2892 |
error(RXERR_OCTAL);
|
|
2893 |
return Tok_Char | val;
|
|
2894 |
#endif
|
|
2895 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
2896 |
case 'B':
|
|
2897 |
return Tok_NonWord;
|
|
2898 |
#endif
|
|
2899 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
2900 |
case 'D':
|
|
2901 |
// see QChar::isDigit()
|
|
2902 |
yyCharClass->addCategories(0x7fffffef);
|
|
2903 |
return Tok_CharClass;
|
|
2904 |
case 'S':
|
|
2905 |
// see QChar::isSpace()
|
|
2906 |
yyCharClass->addCategories(0x7ffff87f);
|
|
2907 |
yyCharClass->addRange(0x0000, 0x0008);
|
|
2908 |
yyCharClass->addRange(0x000e, 0x001f);
|
|
2909 |
yyCharClass->addRange(0x007f, 0x009f);
|
|
2910 |
return Tok_CharClass;
|
|
2911 |
case 'W':
|
|
2912 |
// see QChar::isLetterOrNumber() and QChar::isMark()
|
|
2913 |
yyCharClass->addCategories(0x7fe07f81);
|
|
2914 |
yyCharClass->addRange(0x203f, 0x2040);
|
|
2915 |
yyCharClass->addSingleton(0x2040);
|
|
2916 |
yyCharClass->addSingleton(0x2054);
|
|
2917 |
yyCharClass->addSingleton(0x30fb);
|
|
2918 |
yyCharClass->addRange(0xfe33, 0xfe34);
|
|
2919 |
yyCharClass->addRange(0xfe4d, 0xfe4f);
|
|
2920 |
yyCharClass->addSingleton(0xff3f);
|
|
2921 |
yyCharClass->addSingleton(0xff65);
|
|
2922 |
return Tok_CharClass;
|
|
2923 |
#endif
|
|
2924 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
2925 |
case 'b':
|
|
2926 |
return Tok_Word;
|
|
2927 |
#endif
|
|
2928 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
2929 |
case 'd':
|
|
2930 |
// see QChar::isDigit()
|
|
2931 |
yyCharClass->addCategories(0x00000010);
|
|
2932 |
return Tok_CharClass;
|
|
2933 |
case 's':
|
|
2934 |
// see QChar::isSpace()
|
|
2935 |
yyCharClass->addCategories(0x00000380);
|
|
2936 |
yyCharClass->addRange(0x0009, 0x000d);
|
|
2937 |
return Tok_CharClass;
|
|
2938 |
case 'w':
|
|
2939 |
// see QChar::isLetterOrNumber() and QChar::isMark()
|
|
2940 |
yyCharClass->addCategories(0x000f807e);
|
|
2941 |
yyCharClass->addSingleton(0x005f); // '_'
|
|
2942 |
return Tok_CharClass;
|
|
2943 |
case 'I':
|
|
2944 |
if (xmlSchemaExtensions) {
|
|
2945 |
yyCharClass->setNegative(!yyCharClass->negative());
|
|
2946 |
// fall through
|
|
2947 |
}
|
|
2948 |
case 'i':
|
|
2949 |
if (xmlSchemaExtensions) {
|
|
2950 |
yyCharClass->addCategories(0x000f807e);
|
|
2951 |
yyCharClass->addSingleton(0x003a); // ':'
|
|
2952 |
yyCharClass->addSingleton(0x005f); // '_'
|
|
2953 |
yyCharClass->addRange(0x0041, 0x005a); // [A-Z]
|
|
2954 |
yyCharClass->addRange(0x0061, 0x007a); // [a-z]
|
|
2955 |
yyCharClass->addRange(0xc0, 0xd6);
|
|
2956 |
yyCharClass->addRange(0xd8, 0xf6);
|
|
2957 |
yyCharClass->addRange(0xf8, 0x2ff);
|
|
2958 |
yyCharClass->addRange(0x370, 0x37d);
|
|
2959 |
yyCharClass->addRange(0x37f, 0x1fff);
|
|
2960 |
yyCharClass->addRange(0x200c, 0x200d);
|
|
2961 |
yyCharClass->addRange(0x2070, 0x218f);
|
|
2962 |
yyCharClass->addRange(0x2c00, 0x2fef);
|
|
2963 |
yyCharClass->addRange(0x3001, 0xd7ff);
|
|
2964 |
yyCharClass->addRange(0xf900, 0xfdcf);
|
|
2965 |
yyCharClass->addRange(0xfdf0, 0xfffd);
|
|
2966 |
yyCharClass->addRange((ushort)0x10000, (ushort)0xeffff);
|
|
2967 |
}
|
|
2968 |
return Tok_CharClass;
|
|
2969 |
case 'C':
|
|
2970 |
if (xmlSchemaExtensions) {
|
|
2971 |
yyCharClass->setNegative(!yyCharClass->negative());
|
|
2972 |
// fall through
|
|
2973 |
}
|
|
2974 |
case 'c':
|
|
2975 |
if (xmlSchemaExtensions) {
|
|
2976 |
yyCharClass->addCategories(0x000f807e);
|
|
2977 |
yyCharClass->addSingleton(0x002d); // '-'
|
|
2978 |
yyCharClass->addSingleton(0x002e); // '.'
|
|
2979 |
yyCharClass->addSingleton(0x003a); // ':'
|
|
2980 |
yyCharClass->addSingleton(0x005f); // '_'
|
|
2981 |
yyCharClass->addSingleton(0xb7);
|
|
2982 |
yyCharClass->addRange(0x0030, 0x0039); // [0-9]
|
|
2983 |
yyCharClass->addRange(0x0041, 0x005a); // [A-Z]
|
|
2984 |
yyCharClass->addRange(0x0061, 0x007a); // [a-z]
|
|
2985 |
yyCharClass->addRange(0xc0, 0xd6);
|
|
2986 |
yyCharClass->addRange(0xd8, 0xf6);
|
|
2987 |
yyCharClass->addRange(0xf8, 0x2ff);
|
|
2988 |
yyCharClass->addRange(0x370, 0x37d);
|
|
2989 |
yyCharClass->addRange(0x37f, 0x1fff);
|
|
2990 |
yyCharClass->addRange(0x200c, 0x200d);
|
|
2991 |
yyCharClass->addRange(0x2070, 0x218f);
|
|
2992 |
yyCharClass->addRange(0x2c00, 0x2fef);
|
|
2993 |
yyCharClass->addRange(0x3001, 0xd7ff);
|
|
2994 |
yyCharClass->addRange(0xf900, 0xfdcf);
|
|
2995 |
yyCharClass->addRange(0xfdf0, 0xfffd);
|
|
2996 |
yyCharClass->addRange((ushort)0x10000, (ushort)0xeffff);
|
|
2997 |
yyCharClass->addRange(0x0300, 0x036f);
|
|
2998 |
yyCharClass->addRange(0x203f, 0x2040);
|
|
2999 |
}
|
|
3000 |
return Tok_CharClass;
|
|
3001 |
case 'P':
|
|
3002 |
if (xmlSchemaExtensions) {
|
|
3003 |
yyCharClass->setNegative(!yyCharClass->negative());
|
|
3004 |
// fall through
|
|
3005 |
}
|
|
3006 |
case 'p':
|
|
3007 |
if (xmlSchemaExtensions) {
|
|
3008 |
if (yyCh != '{') {
|
|
3009 |
error(RXERR_CHARCLASS);
|
|
3010 |
return Tok_CharClass;
|
|
3011 |
}
|
|
3012 |
|
|
3013 |
QByteArray category;
|
|
3014 |
yyCh = getChar();
|
|
3015 |
while (yyCh != '}') {
|
|
3016 |
if (yyCh == EOS) {
|
|
3017 |
error(RXERR_END);
|
|
3018 |
return Tok_CharClass;
|
|
3019 |
}
|
|
3020 |
category.append(yyCh);
|
|
3021 |
yyCh = getChar();
|
|
3022 |
}
|
|
3023 |
yyCh = getChar(); // skip closing '}'
|
|
3024 |
|
|
3025 |
if (category == "M") {
|
|
3026 |
yyCharClass->addCategories(0x0000000e);
|
|
3027 |
} else if (category == "Mn") {
|
|
3028 |
yyCharClass->addCategories(0x00000002);
|
|
3029 |
} else if (category == "Mc") {
|
|
3030 |
yyCharClass->addCategories(0x00000004);
|
|
3031 |
} else if (category == "Me") {
|
|
3032 |
yyCharClass->addCategories(0x00000008);
|
|
3033 |
} else if (category == "N") {
|
|
3034 |
yyCharClass->addCategories(0x00000070);
|
|
3035 |
} else if (category == "Nd") {
|
|
3036 |
yyCharClass->addCategories(0x00000010);
|
|
3037 |
} else if (category == "Nl") {
|
|
3038 |
yyCharClass->addCategories(0x00000020);
|
|
3039 |
} else if (category == "No") {
|
|
3040 |
yyCharClass->addCategories(0x00000040);
|
|
3041 |
} else if (category == "Z") {
|
|
3042 |
yyCharClass->addCategories(0x00000380);
|
|
3043 |
} else if (category == "Zs") {
|
|
3044 |
yyCharClass->addCategories(0x00000080);
|
|
3045 |
} else if (category == "Zl") {
|
|
3046 |
yyCharClass->addCategories(0x00000100);
|
|
3047 |
} else if (category == "Zp") {
|
|
3048 |
yyCharClass->addCategories(0x00000200);
|
|
3049 |
} else if (category == "C") {
|
|
3050 |
yyCharClass->addCategories(0x00006c00);
|
|
3051 |
} else if (category == "Cc") {
|
|
3052 |
yyCharClass->addCategories(0x00000400);
|
|
3053 |
} else if (category == "Cf") {
|
|
3054 |
yyCharClass->addCategories(0x00000800);
|
|
3055 |
} else if (category == "Cs") {
|
|
3056 |
yyCharClass->addCategories(0x00001000);
|
|
3057 |
} else if (category == "Co") {
|
|
3058 |
yyCharClass->addCategories(0x00002000);
|
|
3059 |
} else if (category == "Cn") {
|
|
3060 |
yyCharClass->addCategories(0x00004000);
|
|
3061 |
} else if (category == "L") {
|
|
3062 |
yyCharClass->addCategories(0x000f8000);
|
|
3063 |
} else if (category == "Lu") {
|
|
3064 |
yyCharClass->addCategories(0x00008000);
|
|
3065 |
} else if (category == "Ll") {
|
|
3066 |
yyCharClass->addCategories(0x00010000);
|
|
3067 |
} else if (category == "Lt") {
|
|
3068 |
yyCharClass->addCategories(0x00020000);
|
|
3069 |
} else if (category == "Lm") {
|
|
3070 |
yyCharClass->addCategories(0x00040000);
|
|
3071 |
} else if (category == "Lo") {
|
|
3072 |
yyCharClass->addCategories(0x00080000);
|
|
3073 |
} else if (category == "P") {
|
|
3074 |
yyCharClass->addCategories(0x4f580780);
|
|
3075 |
} else if (category == "Pc") {
|
|
3076 |
yyCharClass->addCategories(0x00100000);
|
|
3077 |
} else if (category == "Pd") {
|
|
3078 |
yyCharClass->addCategories(0x00200000);
|
|
3079 |
} else if (category == "Ps") {
|
|
3080 |
yyCharClass->addCategories(0x00400000);
|
|
3081 |
} else if (category == "Pe") {
|
|
3082 |
yyCharClass->addCategories(0x00800000);
|
|
3083 |
} else if (category == "Pi") {
|
|
3084 |
yyCharClass->addCategories(0x01000000);
|
|
3085 |
} else if (category == "Pf") {
|
|
3086 |
yyCharClass->addCategories(0x02000000);
|
|
3087 |
} else if (category == "Po") {
|
|
3088 |
yyCharClass->addCategories(0x04000000);
|
|
3089 |
} else if (category == "S") {
|
|
3090 |
yyCharClass->addCategories(0x78000000);
|
|
3091 |
} else if (category == "Sm") {
|
|
3092 |
yyCharClass->addCategories(0x08000000);
|
|
3093 |
} else if (category == "Sc") {
|
|
3094 |
yyCharClass->addCategories(0x10000000);
|
|
3095 |
} else if (category == "Sk") {
|
|
3096 |
yyCharClass->addCategories(0x20000000);
|
|
3097 |
} else if (category == "So") {
|
|
3098 |
yyCharClass->addCategories(0x40000000);
|
|
3099 |
} else if (category.startsWith("Is")) {
|
|
3100 |
if (categoriesRangeMap.isEmpty())
|
|
3101 |
setupCategoriesRangeMap();
|
|
3102 |
|
|
3103 |
if (categoriesRangeMap.contains(category)) {
|
|
3104 |
const QPair<int, int> range = categoriesRangeMap.value(category);
|
|
3105 |
yyCharClass->addRange(range.first, range.second);
|
|
3106 |
} else {
|
|
3107 |
error(RXERR_CATEGORY);
|
|
3108 |
}
|
|
3109 |
} else {
|
|
3110 |
error(RXERR_CATEGORY);
|
|
3111 |
}
|
|
3112 |
}
|
|
3113 |
return Tok_CharClass;
|
|
3114 |
#endif
|
|
3115 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
3116 |
case 'x':
|
|
3117 |
val = 0;
|
|
3118 |
for (i = 0; i < 4; i++) {
|
|
3119 |
low = QChar(yyCh).toLower().unicode();
|
|
3120 |
if (low >= '0' && low <= '9')
|
|
3121 |
val = (val << 4) | (low - '0');
|
|
3122 |
else if (low >= 'a' && low <= 'f')
|
|
3123 |
val = (val << 4) | (low - 'a' + 10);
|
|
3124 |
else
|
|
3125 |
break;
|
|
3126 |
yyCh = getChar();
|
|
3127 |
}
|
|
3128 |
return Tok_Char | val;
|
|
3129 |
#endif
|
|
3130 |
default:
|
|
3131 |
if (prevCh >= '1' && prevCh <= '9') {
|
|
3132 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
3133 |
val = prevCh - '0';
|
|
3134 |
while (yyCh >= '0' && yyCh <= '9') {
|
|
3135 |
val = (val * 10) + (yyCh - '0');
|
|
3136 |
yyCh = getChar();
|
|
3137 |
}
|
|
3138 |
return Tok_BackRef | val;
|
|
3139 |
#else
|
|
3140 |
error(RXERR_DISABLED);
|
|
3141 |
#endif
|
|
3142 |
}
|
|
3143 |
return Tok_Char | prevCh;
|
|
3144 |
}
|
|
3145 |
}
|
|
3146 |
|
|
3147 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
3148 |
int QRegExpEngine::getRep(int def)
|
|
3149 |
{
|
|
3150 |
if (yyCh >= '0' && yyCh <= '9') {
|
|
3151 |
int rep = 0;
|
|
3152 |
do {
|
|
3153 |
rep = 10 * rep + yyCh - '0';
|
|
3154 |
if (rep >= InftyRep) {
|
|
3155 |
error(RXERR_REPETITION);
|
|
3156 |
rep = def;
|
|
3157 |
}
|
|
3158 |
yyCh = getChar();
|
|
3159 |
} while (yyCh >= '0' && yyCh <= '9');
|
|
3160 |
return rep;
|
|
3161 |
} else {
|
|
3162 |
return def;
|
|
3163 |
}
|
|
3164 |
}
|
|
3165 |
#endif
|
|
3166 |
|
|
3167 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
3168 |
void QRegExpEngine::skipChars(int n)
|
|
3169 |
{
|
|
3170 |
if (n > 0) {
|
|
3171 |
yyPos += n - 1;
|
|
3172 |
yyCh = getChar();
|
|
3173 |
}
|
|
3174 |
}
|
|
3175 |
#endif
|
|
3176 |
|
|
3177 |
void QRegExpEngine::error(const char *msg)
|
|
3178 |
{
|
|
3179 |
if (yyError.isEmpty())
|
|
3180 |
yyError = QLatin1String(msg);
|
|
3181 |
}
|
|
3182 |
|
|
3183 |
void QRegExpEngine::startTokenizer(const QChar *rx, int len)
|
|
3184 |
{
|
|
3185 |
yyIn = rx;
|
|
3186 |
yyPos0 = 0;
|
|
3187 |
yyPos = 0;
|
|
3188 |
yyLen = len;
|
|
3189 |
yyCh = getChar();
|
|
3190 |
yyCharClass.reset(new QRegExpCharClass);
|
|
3191 |
yyMinRep = 0;
|
|
3192 |
yyMaxRep = 0;
|
|
3193 |
yyError = QString();
|
|
3194 |
}
|
|
3195 |
|
|
3196 |
int QRegExpEngine::getToken()
|
|
3197 |
{
|
|
3198 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
3199 |
ushort pendingCh = 0;
|
|
3200 |
bool charPending;
|
|
3201 |
bool rangePending;
|
|
3202 |
int tok;
|
|
3203 |
#endif
|
|
3204 |
int prevCh = yyCh;
|
|
3205 |
|
|
3206 |
yyPos0 = yyPos - 1;
|
|
3207 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
3208 |
yyCharClass->clear();
|
|
3209 |
#endif
|
|
3210 |
yyMinRep = 0;
|
|
3211 |
yyMaxRep = 0;
|
|
3212 |
yyCh = getChar();
|
|
3213 |
|
|
3214 |
switch (prevCh) {
|
|
3215 |
case EOS:
|
|
3216 |
yyPos0 = yyPos;
|
|
3217 |
return Tok_Eos;
|
|
3218 |
case '$':
|
|
3219 |
return Tok_Dollar;
|
|
3220 |
case '(':
|
|
3221 |
if (yyCh == '?') {
|
|
3222 |
prevCh = getChar();
|
|
3223 |
yyCh = getChar();
|
|
3224 |
switch (prevCh) {
|
|
3225 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
3226 |
case '!':
|
|
3227 |
return Tok_NegLookahead;
|
|
3228 |
case '=':
|
|
3229 |
return Tok_PosLookahead;
|
|
3230 |
#endif
|
|
3231 |
case ':':
|
|
3232 |
return Tok_MagicLeftParen;
|
|
3233 |
default:
|
|
3234 |
error(RXERR_LOOKAHEAD);
|
|
3235 |
return Tok_MagicLeftParen;
|
|
3236 |
}
|
|
3237 |
} else {
|
|
3238 |
return Tok_LeftParen;
|
|
3239 |
}
|
|
3240 |
case ')':
|
|
3241 |
return Tok_RightParen;
|
|
3242 |
case '*':
|
|
3243 |
yyMinRep = 0;
|
|
3244 |
yyMaxRep = InftyRep;
|
|
3245 |
return Tok_Quantifier;
|
|
3246 |
case '+':
|
|
3247 |
yyMinRep = 1;
|
|
3248 |
yyMaxRep = InftyRep;
|
|
3249 |
return Tok_Quantifier;
|
|
3250 |
case '.':
|
|
3251 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
3252 |
yyCharClass->setNegative(true);
|
|
3253 |
#endif
|
|
3254 |
return Tok_CharClass;
|
|
3255 |
case '?':
|
|
3256 |
yyMinRep = 0;
|
|
3257 |
yyMaxRep = 1;
|
|
3258 |
return Tok_Quantifier;
|
|
3259 |
case '[':
|
|
3260 |
#ifndef QT_NO_REGEXP_CCLASS
|
|
3261 |
if (yyCh == '^') {
|
|
3262 |
yyCharClass->setNegative(true);
|
|
3263 |
yyCh = getChar();
|
|
3264 |
}
|
|
3265 |
charPending = false;
|
|
3266 |
rangePending = false;
|
|
3267 |
do {
|
|
3268 |
if (yyCh == '-' && charPending && !rangePending) {
|
|
3269 |
rangePending = true;
|
|
3270 |
yyCh = getChar();
|
|
3271 |
} else {
|
|
3272 |
if (charPending && !rangePending) {
|
|
3273 |
yyCharClass->addSingleton(pendingCh);
|
|
3274 |
charPending = false;
|
|
3275 |
}
|
|
3276 |
if (yyCh == '\\') {
|
|
3277 |
yyCh = getChar();
|
|
3278 |
tok = getEscape();
|
|
3279 |
if (tok == Tok_Word)
|
|
3280 |
tok = '\b';
|
|
3281 |
} else {
|
|
3282 |
tok = Tok_Char | yyCh;
|
|
3283 |
yyCh = getChar();
|
|
3284 |
}
|
|
3285 |
if (tok == Tok_CharClass) {
|
|
3286 |
if (rangePending) {
|
|
3287 |
yyCharClass->addSingleton('-');
|
|
3288 |
yyCharClass->addSingleton(pendingCh);
|
|
3289 |
charPending = false;
|
|
3290 |
rangePending = false;
|
|
3291 |
}
|
|
3292 |
} else if ((tok & Tok_Char) != 0) {
|
|
3293 |
if (rangePending) {
|
|
3294 |
yyCharClass->addRange(pendingCh, tok ^ Tok_Char);
|
|
3295 |
charPending = false;
|
|
3296 |
rangePending = false;
|
|
3297 |
} else {
|
|
3298 |
pendingCh = tok ^ Tok_Char;
|
|
3299 |
charPending = true;
|
|
3300 |
}
|
|
3301 |
} else {
|
|
3302 |
error(RXERR_CHARCLASS);
|
|
3303 |
}
|
|
3304 |
}
|
|
3305 |
} while (yyCh != ']' && yyCh != EOS);
|
|
3306 |
if (rangePending)
|
|
3307 |
yyCharClass->addSingleton('-');
|
|
3308 |
if (charPending)
|
|
3309 |
yyCharClass->addSingleton(pendingCh);
|
|
3310 |
if (yyCh == EOS)
|
|
3311 |
error(RXERR_END);
|
|
3312 |
else
|
|
3313 |
yyCh = getChar();
|
|
3314 |
return Tok_CharClass;
|
|
3315 |
#else
|
|
3316 |
error(RXERR_END);
|
|
3317 |
return Tok_Char | '[';
|
|
3318 |
#endif
|
|
3319 |
case '\\':
|
|
3320 |
return getEscape();
|
|
3321 |
case ']':
|
|
3322 |
error(RXERR_LEFTDELIM);
|
|
3323 |
return Tok_Char | ']';
|
|
3324 |
case '^':
|
|
3325 |
return Tok_Caret;
|
|
3326 |
case '{':
|
|
3327 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
3328 |
yyMinRep = getRep(0);
|
|
3329 |
yyMaxRep = yyMinRep;
|
|
3330 |
if (yyCh == ',') {
|
|
3331 |
yyCh = getChar();
|
|
3332 |
yyMaxRep = getRep(InftyRep);
|
|
3333 |
}
|
|
3334 |
if (yyMaxRep < yyMinRep)
|
|
3335 |
error(RXERR_INTERVAL);
|
|
3336 |
if (yyCh != '}')
|
|
3337 |
error(RXERR_REPETITION);
|
|
3338 |
yyCh = getChar();
|
|
3339 |
return Tok_Quantifier;
|
|
3340 |
#else
|
|
3341 |
error(RXERR_DISABLED);
|
|
3342 |
return Tok_Char | '{';
|
|
3343 |
#endif
|
|
3344 |
case '|':
|
|
3345 |
return Tok_Bar;
|
|
3346 |
case '}':
|
|
3347 |
error(RXERR_LEFTDELIM);
|
|
3348 |
return Tok_Char | '}';
|
|
3349 |
default:
|
|
3350 |
return Tok_Char | prevCh;
|
|
3351 |
}
|
|
3352 |
}
|
|
3353 |
|
|
3354 |
int QRegExpEngine::parse(const QChar *pattern, int len)
|
|
3355 |
{
|
|
3356 |
valid = true;
|
|
3357 |
startTokenizer(pattern, len);
|
|
3358 |
yyTok = getToken();
|
|
3359 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3360 |
yyMayCapture = true;
|
|
3361 |
#else
|
|
3362 |
yyMayCapture = false;
|
|
3363 |
#endif
|
|
3364 |
|
|
3365 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3366 |
int atom = startAtom(false);
|
|
3367 |
#endif
|
|
3368 |
QRegExpCharClass anything;
|
|
3369 |
Box box(this); // create InitialState
|
|
3370 |
box.set(anything);
|
|
3371 |
Box rightBox(this); // create FinalState
|
|
3372 |
rightBox.set(anything);
|
|
3373 |
|
|
3374 |
Box middleBox(this);
|
|
3375 |
parseExpression(&middleBox);
|
|
3376 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3377 |
finishAtom(atom, false);
|
|
3378 |
#endif
|
|
3379 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3380 |
middleBox.setupHeuristics();
|
|
3381 |
#endif
|
|
3382 |
box.cat(middleBox);
|
|
3383 |
box.cat(rightBox);
|
|
3384 |
yyCharClass.reset(0);
|
|
3385 |
|
|
3386 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3387 |
for (int i = 0; i < nf; ++i) {
|
|
3388 |
switch (f[i].capture) {
|
|
3389 |
case QRegExpAtom::NoCapture:
|
|
3390 |
break;
|
|
3391 |
case QRegExpAtom::OfficialCapture:
|
|
3392 |
f[i].capture = ncap;
|
|
3393 |
captureForOfficialCapture.append(ncap);
|
|
3394 |
++ncap;
|
|
3395 |
++officialncap;
|
|
3396 |
break;
|
|
3397 |
case QRegExpAtom::UnofficialCapture:
|
|
3398 |
f[i].capture = greedyQuantifiers ? ncap++ : QRegExpAtom::NoCapture;
|
|
3399 |
}
|
|
3400 |
}
|
|
3401 |
|
|
3402 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
3403 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3404 |
if (officialncap == 0 && nbrefs == 0) {
|
|
3405 |
ncap = nf = 0;
|
|
3406 |
f.clear();
|
|
3407 |
}
|
|
3408 |
#endif
|
|
3409 |
// handle the case where there's a \5 with no corresponding capture
|
|
3410 |
// (captureForOfficialCapture.size() != officialncap)
|
|
3411 |
for (int i = 0; i < nbrefs - officialncap; ++i) {
|
|
3412 |
captureForOfficialCapture.append(ncap);
|
|
3413 |
++ncap;
|
|
3414 |
}
|
|
3415 |
#endif
|
|
3416 |
#endif
|
|
3417 |
|
|
3418 |
if (!yyError.isEmpty())
|
|
3419 |
return -1;
|
|
3420 |
|
|
3421 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3422 |
const QRegExpAutomatonState &sinit = s.at(InitialState);
|
|
3423 |
caretAnchored = !sinit.anchors.isEmpty();
|
|
3424 |
if (caretAnchored) {
|
|
3425 |
const QMap<int, int> &anchors = sinit.anchors;
|
|
3426 |
QMap<int, int>::const_iterator a;
|
|
3427 |
for (a = anchors.constBegin(); a != anchors.constEnd(); ++a) {
|
|
3428 |
if (
|
|
3429 |
#ifndef QT_NO_REGEXP_ANCHOR_ALT
|
|
3430 |
(*a & Anchor_Alternation) != 0 ||
|
|
3431 |
#endif
|
|
3432 |
(*a & Anchor_Caret) == 0)
|
|
3433 |
{
|
|
3434 |
caretAnchored = false;
|
|
3435 |
break;
|
|
3436 |
}
|
|
3437 |
}
|
|
3438 |
}
|
|
3439 |
#endif
|
|
3440 |
|
|
3441 |
// cleanup anchors
|
|
3442 |
int numStates = s.count();
|
|
3443 |
for (int i = 0; i < numStates; ++i) {
|
|
3444 |
QRegExpAutomatonState &state = s[i];
|
|
3445 |
if (!state.anchors.isEmpty()) {
|
|
3446 |
QMap<int, int>::iterator a = state.anchors.begin();
|
|
3447 |
while (a != state.anchors.end()) {
|
|
3448 |
if (a.value() == 0)
|
|
3449 |
a = state.anchors.erase(a);
|
|
3450 |
else
|
|
3451 |
++a;
|
|
3452 |
}
|
|
3453 |
}
|
|
3454 |
}
|
|
3455 |
|
|
3456 |
return yyPos0;
|
|
3457 |
}
|
|
3458 |
|
|
3459 |
void QRegExpEngine::parseAtom(Box *box)
|
|
3460 |
{
|
|
3461 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
3462 |
QRegExpEngine *eng = 0;
|
|
3463 |
bool neg;
|
|
3464 |
int len;
|
|
3465 |
#endif
|
|
3466 |
|
|
3467 |
if ((yyTok & Tok_Char) != 0) {
|
|
3468 |
box->set(QChar(yyTok ^ Tok_Char));
|
|
3469 |
} else {
|
|
3470 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3471 |
trivial = false;
|
|
3472 |
#endif
|
|
3473 |
switch (yyTok) {
|
|
3474 |
case Tok_Dollar:
|
|
3475 |
box->catAnchor(Anchor_Dollar);
|
|
3476 |
break;
|
|
3477 |
case Tok_Caret:
|
|
3478 |
box->catAnchor(Anchor_Caret);
|
|
3479 |
break;
|
|
3480 |
#ifndef QT_NO_REGEXP_LOOKAHEAD
|
|
3481 |
case Tok_PosLookahead:
|
|
3482 |
case Tok_NegLookahead:
|
|
3483 |
neg = (yyTok == Tok_NegLookahead);
|
|
3484 |
eng = new QRegExpEngine(cs, greedyQuantifiers);
|
|
3485 |
len = eng->parse(yyIn + yyPos - 1, yyLen - yyPos + 1);
|
|
3486 |
if (len >= 0)
|
|
3487 |
skipChars(len);
|
|
3488 |
else
|
|
3489 |
error(RXERR_LOOKAHEAD);
|
|
3490 |
box->catAnchor(addLookahead(eng, neg));
|
|
3491 |
yyTok = getToken();
|
|
3492 |
if (yyTok != Tok_RightParen)
|
|
3493 |
error(RXERR_LOOKAHEAD);
|
|
3494 |
break;
|
|
3495 |
#endif
|
|
3496 |
#ifndef QT_NO_REGEXP_ESCAPE
|
|
3497 |
case Tok_Word:
|
|
3498 |
box->catAnchor(Anchor_Word);
|
|
3499 |
break;
|
|
3500 |
case Tok_NonWord:
|
|
3501 |
box->catAnchor(Anchor_NonWord);
|
|
3502 |
break;
|
|
3503 |
#endif
|
|
3504 |
case Tok_LeftParen:
|
|
3505 |
case Tok_MagicLeftParen:
|
|
3506 |
yyTok = getToken();
|
|
3507 |
parseExpression(box);
|
|
3508 |
if (yyTok != Tok_RightParen)
|
|
3509 |
error(RXERR_END);
|
|
3510 |
break;
|
|
3511 |
case Tok_CharClass:
|
|
3512 |
box->set(*yyCharClass);
|
|
3513 |
break;
|
|
3514 |
case Tok_Quantifier:
|
|
3515 |
error(RXERR_REPETITION);
|
|
3516 |
break;
|
|
3517 |
default:
|
|
3518 |
#ifndef QT_NO_REGEXP_BACKREF
|
|
3519 |
if ((yyTok & Tok_BackRef) != 0)
|
|
3520 |
box->set(yyTok ^ Tok_BackRef);
|
|
3521 |
else
|
|
3522 |
#endif
|
|
3523 |
error(RXERR_DISABLED);
|
|
3524 |
}
|
|
3525 |
}
|
|
3526 |
yyTok = getToken();
|
|
3527 |
}
|
|
3528 |
|
|
3529 |
void QRegExpEngine::parseFactor(Box *box)
|
|
3530 |
{
|
|
3531 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3532 |
int outerAtom = greedyQuantifiers ? startAtom(false) : -1;
|
|
3533 |
int innerAtom = startAtom(yyMayCapture && yyTok == Tok_LeftParen);
|
|
3534 |
bool magicLeftParen = (yyTok == Tok_MagicLeftParen);
|
|
3535 |
#else
|
|
3536 |
const int innerAtom = -1;
|
|
3537 |
#endif
|
|
3538 |
|
|
3539 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
3540 |
#define YYREDO() \
|
|
3541 |
yyIn = in, yyPos0 = pos0, yyPos = pos, yyLen = len, yyCh = ch, \
|
|
3542 |
*yyCharClass = charClass, yyMinRep = 0, yyMaxRep = 0, yyTok = tok
|
|
3543 |
|
|
3544 |
const QChar *in = yyIn;
|
|
3545 |
int pos0 = yyPos0;
|
|
3546 |
int pos = yyPos;
|
|
3547 |
int len = yyLen;
|
|
3548 |
int ch = yyCh;
|
|
3549 |
QRegExpCharClass charClass;
|
|
3550 |
if (yyTok == Tok_CharClass)
|
|
3551 |
charClass = *yyCharClass;
|
|
3552 |
int tok = yyTok;
|
|
3553 |
bool mayCapture = yyMayCapture;
|
|
3554 |
#endif
|
|
3555 |
|
|
3556 |
parseAtom(box);
|
|
3557 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3558 |
finishAtom(innerAtom, magicLeftParen);
|
|
3559 |
#endif
|
|
3560 |
|
|
3561 |
bool hasQuantifier = (yyTok == Tok_Quantifier);
|
|
3562 |
if (hasQuantifier) {
|
|
3563 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3564 |
trivial = false;
|
|
3565 |
#endif
|
|
3566 |
if (yyMaxRep == InftyRep) {
|
|
3567 |
box->plus(innerAtom);
|
|
3568 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
3569 |
} else if (yyMaxRep == 0) {
|
|
3570 |
box->clear();
|
|
3571 |
#endif
|
|
3572 |
}
|
|
3573 |
if (yyMinRep == 0)
|
|
3574 |
box->opt();
|
|
3575 |
|
|
3576 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
3577 |
yyMayCapture = false;
|
|
3578 |
int alpha = (yyMinRep == 0) ? 0 : yyMinRep - 1;
|
|
3579 |
int beta = (yyMaxRep == InftyRep) ? 0 : yyMaxRep - (alpha + 1);
|
|
3580 |
|
|
3581 |
Box rightBox(this);
|
|
3582 |
int i;
|
|
3583 |
|
|
3584 |
for (i = 0; i < beta; i++) {
|
|
3585 |
YYREDO();
|
|
3586 |
Box leftBox(this);
|
|
3587 |
parseAtom(&leftBox);
|
|
3588 |
leftBox.cat(rightBox);
|
|
3589 |
leftBox.opt();
|
|
3590 |
rightBox = leftBox;
|
|
3591 |
}
|
|
3592 |
for (i = 0; i < alpha; i++) {
|
|
3593 |
YYREDO();
|
|
3594 |
Box leftBox(this);
|
|
3595 |
parseAtom(&leftBox);
|
|
3596 |
leftBox.cat(rightBox);
|
|
3597 |
rightBox = leftBox;
|
|
3598 |
}
|
|
3599 |
rightBox.cat(*box);
|
|
3600 |
*box = rightBox;
|
|
3601 |
#endif
|
|
3602 |
yyTok = getToken();
|
|
3603 |
#ifndef QT_NO_REGEXP_INTERVAL
|
|
3604 |
yyMayCapture = mayCapture;
|
|
3605 |
#endif
|
|
3606 |
}
|
|
3607 |
#undef YYREDO
|
|
3608 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3609 |
if (greedyQuantifiers)
|
|
3610 |
finishAtom(outerAtom, hasQuantifier);
|
|
3611 |
#endif
|
|
3612 |
}
|
|
3613 |
|
|
3614 |
void QRegExpEngine::parseTerm(Box *box)
|
|
3615 |
{
|
|
3616 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3617 |
if (yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar)
|
|
3618 |
parseFactor(box);
|
|
3619 |
#endif
|
|
3620 |
while (yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar) {
|
|
3621 |
Box rightBox(this);
|
|
3622 |
parseFactor(&rightBox);
|
|
3623 |
box->cat(rightBox);
|
|
3624 |
}
|
|
3625 |
}
|
|
3626 |
|
|
3627 |
void QRegExpEngine::parseExpression(Box *box)
|
|
3628 |
{
|
|
3629 |
parseTerm(box);
|
|
3630 |
while (yyTok == Tok_Bar) {
|
|
3631 |
#ifndef QT_NO_REGEXP_OPTIM
|
|
3632 |
trivial = false;
|
|
3633 |
#endif
|
|
3634 |
Box rightBox(this);
|
|
3635 |
yyTok = getToken();
|
|
3636 |
parseTerm(&rightBox);
|
|
3637 |
box->orx(rightBox);
|
|
3638 |
}
|
|
3639 |
}
|
|
3640 |
|
|
3641 |
/*
|
|
3642 |
The struct QRegExpPrivate contains the private data of a regular
|
|
3643 |
expression other than the automaton. It makes it possible for many
|
|
3644 |
QRegExp objects to use the same QRegExpEngine object with different
|
|
3645 |
QRegExpPrivate objects.
|
|
3646 |
*/
|
|
3647 |
struct QRegExpPrivate
|
|
3648 |
{
|
|
3649 |
QRegExpEngine *eng;
|
|
3650 |
QRegExpEngineKey engineKey;
|
|
3651 |
bool minimal;
|
|
3652 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3653 |
QString t; // last string passed to QRegExp::indexIn() or lastIndexIn()
|
|
3654 |
QStringList capturedCache; // what QRegExp::capturedTexts() returned last
|
|
3655 |
#endif
|
|
3656 |
QRegExpMatchState matchState;
|
|
3657 |
|
|
3658 |
inline QRegExpPrivate()
|
|
3659 |
: eng(0), engineKey(QString(), QRegExp::RegExp, Qt::CaseSensitive), minimal(false) { }
|
|
3660 |
inline QRegExpPrivate(const QRegExpEngineKey &key)
|
|
3661 |
: eng(0), engineKey(key), minimal(false) {}
|
|
3662 |
};
|
|
3663 |
|
|
3664 |
#if !defined(QT_NO_REGEXP_OPTIM)
|
|
3665 |
uint qHash(const QRegExpEngineKey &key)
|
|
3666 |
{
|
|
3667 |
return qHash(key.pattern);
|
|
3668 |
}
|
|
3669 |
|
|
3670 |
typedef QCache<QRegExpEngineKey, QRegExpEngine> EngineCache;
|
|
3671 |
Q_GLOBAL_STATIC(EngineCache, globalEngineCache)
|
|
3672 |
Q_GLOBAL_STATIC(QMutex, mutex)
|
|
3673 |
#endif // QT_NO_REGEXP_OPTIM
|
|
3674 |
|
|
3675 |
static void derefEngine(QRegExpEngine *eng, const QRegExpEngineKey &key)
|
|
3676 |
{
|
|
3677 |
if (!eng->ref.deref()) {
|
|
3678 |
#if !defined(QT_NO_REGEXP_OPTIM)
|
|
3679 |
if (globalEngineCache()) {
|
|
3680 |
QMutexLocker locker(mutex());
|
|
3681 |
QT_TRY {
|
|
3682 |
globalEngineCache()->insert(key, eng, 4 + key.pattern.length() / 4);
|
|
3683 |
} QT_CATCH(const std::bad_alloc &) {
|
|
3684 |
// in case of an exception (e.g. oom), just delete the engine
|
|
3685 |
delete eng;
|
|
3686 |
}
|
|
3687 |
} else {
|
|
3688 |
delete eng;
|
|
3689 |
}
|
|
3690 |
#else
|
|
3691 |
Q_UNUSED(key);
|
|
3692 |
delete eng;
|
|
3693 |
#endif
|
|
3694 |
}
|
|
3695 |
}
|
|
3696 |
|
|
3697 |
static void prepareEngine_helper(QRegExpPrivate *priv)
|
|
3698 |
{
|
|
3699 |
bool initMatchState = !priv->eng;
|
|
3700 |
#if !defined(QT_NO_REGEXP_OPTIM)
|
|
3701 |
if (!priv->eng && globalEngineCache()) {
|
|
3702 |
QMutexLocker locker(mutex());
|
|
3703 |
priv->eng = globalEngineCache()->take(priv->engineKey);
|
|
3704 |
if (priv->eng != 0)
|
|
3705 |
priv->eng->ref.ref();
|
|
3706 |
}
|
|
3707 |
#endif // QT_NO_REGEXP_OPTIM
|
|
3708 |
|
|
3709 |
if (!priv->eng)
|
|
3710 |
priv->eng = new QRegExpEngine(priv->engineKey);
|
|
3711 |
|
|
3712 |
if (initMatchState)
|
|
3713 |
priv->matchState.prepareForMatch(priv->eng);
|
|
3714 |
}
|
|
3715 |
|
|
3716 |
inline static void prepareEngine(QRegExpPrivate *priv)
|
|
3717 |
{
|
|
3718 |
if (priv->eng)
|
|
3719 |
return;
|
|
3720 |
prepareEngine_helper(priv);
|
|
3721 |
}
|
|
3722 |
|
|
3723 |
static void prepareEngineForMatch(QRegExpPrivate *priv, const QString &str)
|
|
3724 |
{
|
|
3725 |
prepareEngine(priv);
|
|
3726 |
priv->matchState.prepareForMatch(priv->eng);
|
|
3727 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3728 |
priv->t = str;
|
|
3729 |
priv->capturedCache.clear();
|
|
3730 |
#else
|
|
3731 |
Q_UNUSED(str);
|
|
3732 |
#endif
|
|
3733 |
}
|
|
3734 |
|
|
3735 |
static void invalidateEngine(QRegExpPrivate *priv)
|
|
3736 |
{
|
|
3737 |
if (priv->eng != 0) {
|
|
3738 |
derefEngine(priv->eng, priv->engineKey);
|
|
3739 |
priv->eng = 0;
|
|
3740 |
priv->matchState.drain();
|
|
3741 |
}
|
|
3742 |
}
|
|
3743 |
|
|
3744 |
/*!
|
|
3745 |
\enum QRegExp::CaretMode
|
|
3746 |
|
|
3747 |
The CaretMode enum defines the different meanings of the caret
|
|
3748 |
(\bold{^}) in a regular expression. The possible values are:
|
|
3749 |
|
|
3750 |
\value CaretAtZero
|
|
3751 |
The caret corresponds to index 0 in the searched string.
|
|
3752 |
|
|
3753 |
\value CaretAtOffset
|
|
3754 |
The caret corresponds to the start offset of the search.
|
|
3755 |
|
|
3756 |
\value CaretWontMatch
|
|
3757 |
The caret never matches.
|
|
3758 |
*/
|
|
3759 |
|
|
3760 |
/*!
|
|
3761 |
\enum QRegExp::PatternSyntax
|
|
3762 |
|
|
3763 |
The syntax used to interpret the meaning of the pattern.
|
|
3764 |
|
|
3765 |
\value RegExp A rich Perl-like pattern matching syntax. This is
|
|
3766 |
the default.
|
|
3767 |
|
|
3768 |
\value RegExp2 Like RegExp, but with \l{greedy quantifiers}. This
|
|
3769 |
will be the default in Qt 5. (Introduced in Qt 4.2.)
|
|
3770 |
|
|
3771 |
\value Wildcard This provides a simple pattern matching syntax
|
|
3772 |
similar to that used by shells (command interpreters) for "file
|
|
3773 |
globbing". See \l{Wildcard Matching}.
|
|
3774 |
|
|
3775 |
\value WildcardUnix This is similar to Wildcard but with the
|
|
3776 |
behavior of a Unix shell. The wildcard characters can be escaped
|
|
3777 |
with the character "\".
|
|
3778 |
|
|
3779 |
\value FixedString The pattern is a fixed string. This is
|
|
3780 |
equivalent to using the RegExp pattern on a string in
|
|
3781 |
which all metacharacters are escaped using escape().
|
|
3782 |
|
|
3783 |
\value W3CXmlSchema11 The pattern is a regular expression as
|
|
3784 |
defined by the W3C XML Schema 1.1 specification.
|
|
3785 |
|
|
3786 |
\sa setPatternSyntax()
|
|
3787 |
*/
|
|
3788 |
|
|
3789 |
/*!
|
|
3790 |
Constructs an empty regexp.
|
|
3791 |
|
|
3792 |
\sa isValid(), errorString()
|
|
3793 |
*/
|
|
3794 |
QRegExp::QRegExp()
|
|
3795 |
{
|
|
3796 |
priv = new QRegExpPrivate;
|
|
3797 |
}
|
|
3798 |
|
|
3799 |
/*!
|
|
3800 |
Constructs a regular expression object for the given \a pattern
|
|
3801 |
string. The pattern must be given using wildcard notation if \a
|
|
3802 |
syntax is \l Wildcard; the default is \l RegExp. The pattern is
|
|
3803 |
case sensitive, unless \a cs is Qt::CaseInsensitive. Matching is
|
|
3804 |
greedy (maximal), but can be changed by calling
|
|
3805 |
setMinimal().
|
|
3806 |
|
|
3807 |
\sa setPattern(), setCaseSensitivity(), setPatternSyntax()
|
|
3808 |
*/
|
|
3809 |
QRegExp::QRegExp(const QString &pattern, Qt::CaseSensitivity cs, PatternSyntax syntax)
|
|
3810 |
{
|
|
3811 |
priv = new QRegExpPrivate(QRegExpEngineKey(pattern, syntax, cs));
|
|
3812 |
}
|
|
3813 |
|
|
3814 |
/*!
|
|
3815 |
Constructs a regular expression as a copy of \a rx.
|
|
3816 |
|
|
3817 |
\sa operator=()
|
|
3818 |
*/
|
|
3819 |
QRegExp::QRegExp(const QRegExp &rx)
|
|
3820 |
{
|
|
3821 |
priv = new QRegExpPrivate;
|
|
3822 |
operator=(rx);
|
|
3823 |
}
|
|
3824 |
|
|
3825 |
/*!
|
|
3826 |
Destroys the regular expression and cleans up its internal data.
|
|
3827 |
*/
|
|
3828 |
QRegExp::~QRegExp()
|
|
3829 |
{
|
|
3830 |
invalidateEngine(priv);
|
|
3831 |
delete priv;
|
|
3832 |
}
|
|
3833 |
|
|
3834 |
/*!
|
|
3835 |
Copies the regular expression \a rx and returns a reference to the
|
|
3836 |
copy. The case sensitivity, wildcard, and minimal matching options
|
|
3837 |
are also copied.
|
|
3838 |
*/
|
|
3839 |
QRegExp &QRegExp::operator=(const QRegExp &rx)
|
|
3840 |
{
|
|
3841 |
prepareEngine(rx.priv); // to allow sharing
|
|
3842 |
QRegExpEngine *otherEng = rx.priv->eng;
|
|
3843 |
if (otherEng)
|
|
3844 |
otherEng->ref.ref();
|
|
3845 |
invalidateEngine(priv);
|
|
3846 |
priv->eng = otherEng;
|
|
3847 |
priv->engineKey = rx.priv->engineKey;
|
|
3848 |
priv->minimal = rx.priv->minimal;
|
|
3849 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
3850 |
priv->t = rx.priv->t;
|
|
3851 |
priv->capturedCache = rx.priv->capturedCache;
|
|
3852 |
#endif
|
|
3853 |
if (priv->eng)
|
|
3854 |
priv->matchState.prepareForMatch(priv->eng);
|
|
3855 |
priv->matchState.captured = rx.priv->matchState.captured;
|
|
3856 |
return *this;
|
|
3857 |
}
|
|
3858 |
|
|
3859 |
/*!
|
|
3860 |
Returns true if this regular expression is equal to \a rx;
|
|
3861 |
otherwise returns false.
|
|
3862 |
|
|
3863 |
Two QRegExp objects are equal if they have the same pattern
|
|
3864 |
strings and the same settings for case sensitivity, wildcard and
|
|
3865 |
minimal matching.
|
|
3866 |
*/
|
|
3867 |
bool QRegExp::operator==(const QRegExp &rx) const
|
|
3868 |
{
|
|
3869 |
return priv->engineKey == rx.priv->engineKey && priv->minimal == rx.priv->minimal;
|
|
3870 |
}
|
|
3871 |
|
|
3872 |
/*!
|
|
3873 |
\fn bool QRegExp::operator!=(const QRegExp &rx) const
|
|
3874 |
|
|
3875 |
Returns true if this regular expression is not equal to \a rx;
|
|
3876 |
otherwise returns false.
|
|
3877 |
|
|
3878 |
\sa operator==()
|
|
3879 |
*/
|
|
3880 |
|
|
3881 |
/*!
|
|
3882 |
Returns true if the pattern string is empty; otherwise returns
|
|
3883 |
false.
|
|
3884 |
|
|
3885 |
If you call exactMatch() with an empty pattern on an empty string
|
|
3886 |
it will return true; otherwise it returns false since it operates
|
|
3887 |
over the whole string. If you call indexIn() with an empty pattern
|
|
3888 |
on \e any string it will return the start offset (0 by default)
|
|
3889 |
because the empty pattern matches the 'emptiness' at the start of
|
|
3890 |
the string. In this case the length of the match returned by
|
|
3891 |
matchedLength() will be 0.
|
|
3892 |
|
|
3893 |
See QString::isEmpty().
|
|
3894 |
*/
|
|
3895 |
|
|
3896 |
bool QRegExp::isEmpty() const
|
|
3897 |
{
|
|
3898 |
return priv->engineKey.pattern.isEmpty();
|
|
3899 |
}
|
|
3900 |
|
|
3901 |
/*!
|
|
3902 |
Returns true if the regular expression is valid; otherwise returns
|
|
3903 |
false. An invalid regular expression never matches.
|
|
3904 |
|
|
3905 |
The pattern \bold{[a-z} is an example of an invalid pattern, since
|
|
3906 |
it lacks a closing square bracket.
|
|
3907 |
|
|
3908 |
Note that the validity of a regexp may also depend on the setting
|
|
3909 |
of the wildcard flag, for example \bold{*.html} is a valid
|
|
3910 |
wildcard regexp but an invalid full regexp.
|
|
3911 |
|
|
3912 |
\sa errorString()
|
|
3913 |
*/
|
|
3914 |
bool QRegExp::isValid() const
|
|
3915 |
{
|
|
3916 |
if (priv->engineKey.pattern.isEmpty()) {
|
|
3917 |
return true;
|
|
3918 |
} else {
|
|
3919 |
prepareEngine(priv);
|
|
3920 |
return priv->eng->isValid();
|
|
3921 |
}
|
|
3922 |
}
|
|
3923 |
|
|
3924 |
/*!
|
|
3925 |
Returns the pattern string of the regular expression. The pattern
|
|
3926 |
has either regular expression syntax or wildcard syntax, depending
|
|
3927 |
on patternSyntax().
|
|
3928 |
|
|
3929 |
\sa patternSyntax(), caseSensitivity()
|
|
3930 |
*/
|
|
3931 |
QString QRegExp::pattern() const
|
|
3932 |
{
|
|
3933 |
return priv->engineKey.pattern;
|
|
3934 |
}
|
|
3935 |
|
|
3936 |
/*!
|
|
3937 |
Sets the pattern string to \a pattern. The case sensitivity,
|
|
3938 |
wildcard, and minimal matching options are not changed.
|
|
3939 |
|
|
3940 |
\sa setPatternSyntax(), setCaseSensitivity()
|
|
3941 |
*/
|
|
3942 |
void QRegExp::setPattern(const QString &pattern)
|
|
3943 |
{
|
|
3944 |
if (priv->engineKey.pattern != pattern) {
|
|
3945 |
invalidateEngine(priv);
|
|
3946 |
priv->engineKey.pattern = pattern;
|
|
3947 |
}
|
|
3948 |
}
|
|
3949 |
|
|
3950 |
/*!
|
|
3951 |
Returns Qt::CaseSensitive if the regexp is matched case
|
|
3952 |
sensitively; otherwise returns Qt::CaseInsensitive.
|
|
3953 |
|
|
3954 |
\sa patternSyntax(), pattern(), isMinimal()
|
|
3955 |
*/
|
|
3956 |
Qt::CaseSensitivity QRegExp::caseSensitivity() const
|
|
3957 |
{
|
|
3958 |
return priv->engineKey.cs;
|
|
3959 |
}
|
|
3960 |
|
|
3961 |
/*!
|
|
3962 |
Sets case sensitive matching to \a cs.
|
|
3963 |
|
|
3964 |
If \a cs is Qt::CaseSensitive, \bold{\\.txt$} matches
|
|
3965 |
\c{readme.txt} but not \c{README.TXT}.
|
|
3966 |
|
|
3967 |
\sa setPatternSyntax(), setPattern(), setMinimal()
|
|
3968 |
*/
|
|
3969 |
void QRegExp::setCaseSensitivity(Qt::CaseSensitivity cs)
|
|
3970 |
{
|
|
3971 |
if ((bool)cs != (bool)priv->engineKey.cs) {
|
|
3972 |
invalidateEngine(priv);
|
|
3973 |
priv->engineKey.cs = cs;
|
|
3974 |
}
|
|
3975 |
}
|
|
3976 |
|
|
3977 |
/*!
|
|
3978 |
Returns the syntax used by the regular expression. The default is
|
|
3979 |
QRegExp::RegExp.
|
|
3980 |
|
|
3981 |
\sa pattern(), caseSensitivity()
|
|
3982 |
*/
|
|
3983 |
QRegExp::PatternSyntax QRegExp::patternSyntax() const
|
|
3984 |
{
|
|
3985 |
return priv->engineKey.patternSyntax;
|
|
3986 |
}
|
|
3987 |
|
|
3988 |
/*!
|
|
3989 |
Sets the syntax mode for the regular expression. The default is
|
|
3990 |
QRegExp::RegExp.
|
|
3991 |
|
|
3992 |
Setting \a syntax to QRegExp::Wildcard enables simple shell-like
|
|
3993 |
\l{wildcard matching}. For example, \bold{r*.txt} matches the
|
|
3994 |
string \c{readme.txt} in wildcard mode, but does not match
|
|
3995 |
\c{readme}.
|
|
3996 |
|
|
3997 |
Setting \a syntax to QRegExp::FixedString means that the pattern
|
|
3998 |
is interpreted as a plain string. Special characters (e.g.,
|
|
3999 |
backslash) don't need to be escaped then.
|
|
4000 |
|
|
4001 |
\sa setPattern(), setCaseSensitivity(), escape()
|
|
4002 |
*/
|
|
4003 |
void QRegExp::setPatternSyntax(PatternSyntax syntax)
|
|
4004 |
{
|
|
4005 |
if (syntax != priv->engineKey.patternSyntax) {
|
|
4006 |
invalidateEngine(priv);
|
|
4007 |
priv->engineKey.patternSyntax = syntax;
|
|
4008 |
}
|
|
4009 |
}
|
|
4010 |
|
|
4011 |
/*!
|
|
4012 |
Returns true if minimal (non-greedy) matching is enabled;
|
|
4013 |
otherwise returns false.
|
|
4014 |
|
|
4015 |
\sa caseSensitivity(), setMinimal()
|
|
4016 |
*/
|
|
4017 |
bool QRegExp::isMinimal() const
|
|
4018 |
{
|
|
4019 |
return priv->minimal;
|
|
4020 |
}
|
|
4021 |
|
|
4022 |
/*!
|
|
4023 |
Enables or disables minimal matching. If \a minimal is false,
|
|
4024 |
matching is greedy (maximal) which is the default.
|
|
4025 |
|
|
4026 |
For example, suppose we have the input string "We must be
|
|
4027 |
<b>bold</b>, very <b>bold</b>!" and the pattern
|
|
4028 |
\bold{<b>.*</b>}. With the default greedy (maximal) matching,
|
|
4029 |
the match is "We must be \underline{<b>bold</b>, very
|
|
4030 |
<b>bold</b>}!". But with minimal (non-greedy) matching, the
|
|
4031 |
first match is: "We must be \underline{<b>bold</b>}, very
|
|
4032 |
<b>bold</b>!" and the second match is "We must be <b>bold</b>,
|
|
4033 |
very \underline{<b>bold</b>}!". In practice we might use the pattern
|
|
4034 |
\bold{<b>[^<]*\</b>} instead, although this will still fail for
|
|
4035 |
nested tags.
|
|
4036 |
|
|
4037 |
\sa setCaseSensitivity()
|
|
4038 |
*/
|
|
4039 |
void QRegExp::setMinimal(bool minimal)
|
|
4040 |
{
|
|
4041 |
priv->minimal = minimal;
|
|
4042 |
}
|
|
4043 |
|
|
4044 |
// ### Qt 5: make non-const
|
|
4045 |
/*!
|
|
4046 |
Returns true if \a str is matched exactly by this regular
|
|
4047 |
expression; otherwise returns false. You can determine how much of
|
|
4048 |
the string was matched by calling matchedLength().
|
|
4049 |
|
|
4050 |
For a given regexp string R, exactMatch("R") is the equivalent of
|
|
4051 |
indexIn("^R$") since exactMatch() effectively encloses the regexp
|
|
4052 |
in the start of string and end of string anchors, except that it
|
|
4053 |
sets matchedLength() differently.
|
|
4054 |
|
|
4055 |
For example, if the regular expression is \bold{blue}, then
|
|
4056 |
exactMatch() returns true only for input \c blue. For inputs \c
|
|
4057 |
bluebell, \c blutak and \c lightblue, exactMatch() returns false
|
|
4058 |
and matchedLength() will return 4, 3 and 0 respectively.
|
|
4059 |
|
|
4060 |
Although const, this function sets matchedLength(),
|
|
4061 |
capturedTexts(), and pos().
|
|
4062 |
|
|
4063 |
\sa indexIn(), lastIndexIn()
|
|
4064 |
*/
|
|
4065 |
bool QRegExp::exactMatch(const QString &str) const
|
|
4066 |
{
|
|
4067 |
prepareEngineForMatch(priv, str);
|
|
4068 |
priv->matchState.match(str.unicode(), str.length(), 0, priv->minimal, true, 0);
|
|
4069 |
if (priv->matchState.captured[1] == str.length()) {
|
|
4070 |
return true;
|
|
4071 |
} else {
|
|
4072 |
priv->matchState.captured[0] = 0;
|
|
4073 |
priv->matchState.captured[1] = priv->matchState.oneTestMatchedLen;
|
|
4074 |
return false;
|
|
4075 |
}
|
|
4076 |
}
|
|
4077 |
|
|
4078 |
// ### Qt 5: make non-const
|
|
4079 |
/*!
|
|
4080 |
Attempts to find a match in \a str from position \a offset (0 by
|
|
4081 |
default). If \a offset is -1, the search starts at the last
|
|
4082 |
character; if -2, at the next to last character; etc.
|
|
4083 |
|
|
4084 |
Returns the position of the first match, or -1 if there was no
|
|
4085 |
match.
|
|
4086 |
|
|
4087 |
The \a caretMode parameter can be used to instruct whether \bold{^}
|
|
4088 |
should match at index 0 or at \a offset.
|
|
4089 |
|
|
4090 |
You might prefer to use QString::indexOf(), QString::contains(),
|
|
4091 |
or even QStringList::filter(). To replace matches use
|
|
4092 |
QString::replace().
|
|
4093 |
|
|
4094 |
Example:
|
|
4095 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 13
|
|
4096 |
|
|
4097 |
Although const, this function sets matchedLength(),
|
|
4098 |
capturedTexts() and pos().
|
|
4099 |
|
|
4100 |
If the QRegExp is a wildcard expression (see setPatternSyntax())
|
|
4101 |
and want to test a string against the whole wildcard expression,
|
|
4102 |
use exactMatch() instead of this function.
|
|
4103 |
|
|
4104 |
\sa lastIndexIn(), exactMatch()
|
|
4105 |
*/
|
|
4106 |
|
|
4107 |
int QRegExp::indexIn(const QString &str, int offset, CaretMode caretMode) const
|
|
4108 |
{
|
|
4109 |
prepareEngineForMatch(priv, str);
|
|
4110 |
if (offset < 0)
|
|
4111 |
offset += str.length();
|
|
4112 |
priv->matchState.match(str.unicode(), str.length(), offset,
|
|
4113 |
priv->minimal, false, caretIndex(offset, caretMode));
|
|
4114 |
return priv->matchState.captured[0];
|
|
4115 |
}
|
|
4116 |
|
|
4117 |
// ### Qt 5: make non-const
|
|
4118 |
/*!
|
|
4119 |
Attempts to find a match backwards in \a str from position \a
|
|
4120 |
offset. If \a offset is -1 (the default), the search starts at the
|
|
4121 |
last character; if -2, at the next to last character; etc.
|
|
4122 |
|
|
4123 |
Returns the position of the first match, or -1 if there was no
|
|
4124 |
match.
|
|
4125 |
|
|
4126 |
The \a caretMode parameter can be used to instruct whether \bold{^}
|
|
4127 |
should match at index 0 or at \a offset.
|
|
4128 |
|
|
4129 |
Although const, this function sets matchedLength(),
|
|
4130 |
capturedTexts() and pos().
|
|
4131 |
|
|
4132 |
\warning Searching backwards is much slower than searching
|
|
4133 |
forwards.
|
|
4134 |
|
|
4135 |
\sa indexIn(), exactMatch()
|
|
4136 |
*/
|
|
4137 |
|
|
4138 |
int QRegExp::lastIndexIn(const QString &str, int offset, CaretMode caretMode) const
|
|
4139 |
{
|
|
4140 |
prepareEngineForMatch(priv, str);
|
|
4141 |
if (offset < 0)
|
|
4142 |
offset += str.length();
|
|
4143 |
if (offset < 0 || offset > str.length()) {
|
|
4144 |
memset(priv->matchState.captured, -1, priv->matchState.capturedSize*sizeof(int));
|
|
4145 |
return -1;
|
|
4146 |
}
|
|
4147 |
|
|
4148 |
while (offset >= 0) {
|
|
4149 |
priv->matchState.match(str.unicode(), str.length(), offset,
|
|
4150 |
priv->minimal, true, caretIndex(offset, caretMode));
|
|
4151 |
if (priv->matchState.captured[0] == offset)
|
|
4152 |
return offset;
|
|
4153 |
--offset;
|
|
4154 |
}
|
|
4155 |
return -1;
|
|
4156 |
}
|
|
4157 |
|
|
4158 |
/*!
|
|
4159 |
Returns the length of the last matched string, or -1 if there was
|
|
4160 |
no match.
|
|
4161 |
|
|
4162 |
\sa exactMatch(), indexIn(), lastIndexIn()
|
|
4163 |
*/
|
|
4164 |
int QRegExp::matchedLength() const
|
|
4165 |
{
|
|
4166 |
return priv->matchState.captured[1];
|
|
4167 |
}
|
|
4168 |
|
|
4169 |
#ifndef QT_NO_REGEXP_CAPTURE
|
|
4170 |
/*!
|
|
4171 |
Returns the number of captures contained in the regular expression.
|
|
4172 |
*/
|
|
4173 |
int QRegExp::numCaptures() const
|
|
4174 |
{
|
|
4175 |
prepareEngine(priv);
|
|
4176 |
return priv->eng->numCaptures();
|
|
4177 |
}
|
|
4178 |
|
|
4179 |
/*!
|
|
4180 |
Returns a list of the captured text strings.
|
|
4181 |
|
|
4182 |
The first string in the list is the entire matched string. Each
|
|
4183 |
subsequent list element contains a string that matched a
|
|
4184 |
(capturing) subexpression of the regexp.
|
|
4185 |
|
|
4186 |
For example:
|
|
4187 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 14
|
|
4188 |
|
|
4189 |
The above example also captures elements that may be present but
|
|
4190 |
which we have no interest in. This problem can be solved by using
|
|
4191 |
non-capturing parentheses:
|
|
4192 |
|
|
4193 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 15
|
|
4194 |
|
|
4195 |
Note that if you want to iterate over the list, you should iterate
|
|
4196 |
over a copy, e.g.
|
|
4197 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 16
|
|
4198 |
|
|
4199 |
Some regexps can match an indeterminate number of times. For
|
|
4200 |
example if the input string is "Offsets: 12 14 99 231 7" and the
|
|
4201 |
regexp, \c{rx}, is \bold{(\\d+)+}, we would hope to get a list of
|
|
4202 |
all the numbers matched. However, after calling
|
|
4203 |
\c{rx.indexIn(str)}, capturedTexts() will return the list ("12",
|
|
4204 |
"12"), i.e. the entire match was "12" and the first subexpression
|
|
4205 |
matched was "12". The correct approach is to use cap() in a
|
|
4206 |
\l{QRegExp#cap_in_a_loop}{loop}.
|
|
4207 |
|
|
4208 |
The order of elements in the string list is as follows. The first
|
|
4209 |
element is the entire matching string. Each subsequent element
|
|
4210 |
corresponds to the next capturing open left parentheses. Thus
|
|
4211 |
capturedTexts()[1] is the text of the first capturing parentheses,
|
|
4212 |
capturedTexts()[2] is the text of the second and so on
|
|
4213 |
(corresponding to $1, $2, etc., in some other regexp languages).
|
|
4214 |
|
|
4215 |
\sa cap(), pos()
|
|
4216 |
*/
|
|
4217 |
QStringList QRegExp::capturedTexts() const
|
|
4218 |
{
|
|
4219 |
if (priv->capturedCache.isEmpty()) {
|
|
4220 |
prepareEngine(priv);
|
|
4221 |
const int *captured = priv->matchState.captured;
|
|
4222 |
int n = priv->matchState.capturedSize;
|
|
4223 |
|
|
4224 |
for (int i = 0; i < n; i += 2) {
|
|
4225 |
QString m;
|
|
4226 |
if (captured[i + 1] == 0)
|
|
4227 |
m = QLatin1String(""); // ### Qt 5: don't distinguish between null and empty
|
|
4228 |
else if (captured[i] >= 0)
|
|
4229 |
m = priv->t.mid(captured[i], captured[i + 1]);
|
|
4230 |
priv->capturedCache.append(m);
|
|
4231 |
}
|
|
4232 |
priv->t.clear();
|
|
4233 |
}
|
|
4234 |
return priv->capturedCache;
|
|
4235 |
}
|
|
4236 |
|
|
4237 |
/*!
|
|
4238 |
\internal
|
|
4239 |
*/
|
|
4240 |
QStringList QRegExp::capturedTexts()
|
|
4241 |
{
|
|
4242 |
return const_cast<const QRegExp *>(this)->capturedTexts();
|
|
4243 |
}
|
|
4244 |
|
|
4245 |
/*!
|
|
4246 |
Returns the text captured by the \a nth subexpression. The entire
|
|
4247 |
match has index 0 and the parenthesized subexpressions have
|
|
4248 |
indexes starting from 1 (excluding non-capturing parentheses).
|
|
4249 |
|
|
4250 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 17
|
|
4251 |
|
|
4252 |
The order of elements matched by cap() is as follows. The first
|
|
4253 |
element, cap(0), is the entire matching string. Each subsequent
|
|
4254 |
element corresponds to the next capturing open left parentheses.
|
|
4255 |
Thus cap(1) is the text of the first capturing parentheses, cap(2)
|
|
4256 |
is the text of the second, and so on.
|
|
4257 |
|
|
4258 |
\sa capturedTexts(), pos()
|
|
4259 |
*/
|
|
4260 |
QString QRegExp::cap(int nth) const
|
|
4261 |
{
|
|
4262 |
return capturedTexts().value(nth);
|
|
4263 |
}
|
|
4264 |
|
|
4265 |
/*!
|
|
4266 |
\internal
|
|
4267 |
*/
|
|
4268 |
QString QRegExp::cap(int nth)
|
|
4269 |
{
|
|
4270 |
return const_cast<const QRegExp *>(this)->cap(nth);
|
|
4271 |
}
|
|
4272 |
|
|
4273 |
/*!
|
|
4274 |
Returns the position of the \a nth captured text in the searched
|
|
4275 |
string. If \a nth is 0 (the default), pos() returns the position
|
|
4276 |
of the whole match.
|
|
4277 |
|
|
4278 |
Example:
|
|
4279 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 18
|
|
4280 |
|
|
4281 |
For zero-length matches, pos() always returns -1. (For example, if
|
|
4282 |
cap(4) would return an empty string, pos(4) returns -1.) This is
|
|
4283 |
a feature of the implementation.
|
|
4284 |
|
|
4285 |
\sa cap(), capturedTexts()
|
|
4286 |
*/
|
|
4287 |
int QRegExp::pos(int nth) const
|
|
4288 |
{
|
|
4289 |
if (nth < 0 || nth >= priv->matchState.capturedSize / 2)
|
|
4290 |
return -1;
|
|
4291 |
else
|
|
4292 |
return priv->matchState.captured[2 * nth];
|
|
4293 |
}
|
|
4294 |
|
|
4295 |
/*!
|
|
4296 |
\internal
|
|
4297 |
*/
|
|
4298 |
int QRegExp::pos(int nth)
|
|
4299 |
{
|
|
4300 |
return const_cast<const QRegExp *>(this)->pos(nth);
|
|
4301 |
}
|
|
4302 |
|
|
4303 |
/*!
|
|
4304 |
Returns a text string that explains why a regexp pattern is
|
|
4305 |
invalid the case being; otherwise returns "no error occurred".
|
|
4306 |
|
|
4307 |
\sa isValid()
|
|
4308 |
*/
|
|
4309 |
QString QRegExp::errorString() const
|
|
4310 |
{
|
|
4311 |
if (isValid()) {
|
|
4312 |
return QString::fromLatin1(RXERR_OK);
|
|
4313 |
} else {
|
|
4314 |
return priv->eng->errorString();
|
|
4315 |
}
|
|
4316 |
}
|
|
4317 |
|
|
4318 |
/*!
|
|
4319 |
\internal
|
|
4320 |
*/
|
|
4321 |
QString QRegExp::errorString()
|
|
4322 |
{
|
|
4323 |
return const_cast<const QRegExp *>(this)->errorString();
|
|
4324 |
}
|
|
4325 |
#endif
|
|
4326 |
|
|
4327 |
/*!
|
|
4328 |
Returns the string \a str with every regexp special character
|
|
4329 |
escaped with a backslash. The special characters are $, (,), *, +,
|
|
4330 |
., ?, [, \,], ^, {, | and }.
|
|
4331 |
|
|
4332 |
Example:
|
|
4333 |
|
|
4334 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 19
|
|
4335 |
|
|
4336 |
This function is useful to construct regexp patterns dynamically:
|
|
4337 |
|
|
4338 |
\snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 20
|
|
4339 |
|
|
4340 |
\sa setPatternSyntax()
|
|
4341 |
*/
|
|
4342 |
QString QRegExp::escape(const QString &str)
|
|
4343 |
{
|
|
4344 |
QString quoted;
|
|
4345 |
const int count = str.count();
|
|
4346 |
quoted.reserve(count * 2);
|
|
4347 |
const QLatin1Char backslash('\\');
|
|
4348 |
for (int i = 0; i < count; i++) {
|
|
4349 |
switch (str.at(i).toLatin1()) {
|
|
4350 |
case '$':
|
|
4351 |
case '(':
|
|
4352 |
case ')':
|
|
4353 |
case '*':
|
|
4354 |
case '+':
|
|
4355 |
case '.':
|
|
4356 |
case '?':
|
|
4357 |
case '[':
|
|
4358 |
case '\\':
|
|
4359 |
case ']':
|
|
4360 |
case '^':
|
|
4361 |
case '{':
|
|
4362 |
case '|':
|
|
4363 |
case '}':
|
|
4364 |
quoted.append(backslash);
|
|
4365 |
}
|
|
4366 |
quoted.append(str.at(i));
|
|
4367 |
}
|
|
4368 |
return quoted;
|
|
4369 |
}
|
|
4370 |
|
|
4371 |
/*!
|
|
4372 |
\fn bool QRegExp::caseSensitive() const
|
|
4373 |
|
|
4374 |
Use \l caseSensitivity() instead.
|
|
4375 |
*/
|
|
4376 |
|
|
4377 |
/*!
|
|
4378 |
\fn void QRegExp::setCaseSensitive(bool sensitive)
|
|
4379 |
|
|
4380 |
Use \l setCaseSensitivity() instead.
|
|
4381 |
*/
|
|
4382 |
|
|
4383 |
/*!
|
|
4384 |
\fn bool QRegExp::wildcard() const
|
|
4385 |
|
|
4386 |
Use \l patternSyntax() instead.
|
|
4387 |
|
|
4388 |
\oldcode
|
|
4389 |
bool wc = rx.wildcard();
|
|
4390 |
\newcode
|
|
4391 |
bool wc = (rx.patternSyntax() == QRegExp::Wildcard);
|
|
4392 |
\endcode
|
|
4393 |
*/
|
|
4394 |
|
|
4395 |
/*!
|
|
4396 |
\fn void QRegExp::setWildcard(bool wildcard)
|
|
4397 |
|
|
4398 |
Use \l setPatternSyntax() instead.
|
|
4399 |
|
|
4400 |
\oldcode
|
|
4401 |
rx.setWildcard(wc);
|
|
4402 |
\newcode
|
|
4403 |
rx.setPatternSyntax(wc ? QRegExp::Wildcard : QRegExp::RegExp);
|
|
4404 |
\endcode
|
|
4405 |
*/
|
|
4406 |
|
|
4407 |
/*!
|
|
4408 |
\fn bool QRegExp::minimal() const
|
|
4409 |
|
|
4410 |
Use \l isMinimal() instead.
|
|
4411 |
*/
|
|
4412 |
|
|
4413 |
/*!
|
|
4414 |
\fn int QRegExp::search(const QString &str, int from = 0,
|
|
4415 |
CaretMode caretMode = CaretAtZero) const
|
|
4416 |
|
|
4417 |
Use \l indexIn() instead.
|
|
4418 |
*/
|
|
4419 |
|
|
4420 |
/*!
|
|
4421 |
\fn int QRegExp::searchRev(const QString &str, int from = -1, \
|
|
4422 |
CaretMode caretMode = CaretAtZero) const
|
|
4423 |
|
|
4424 |
Use \l lastIndexIn() instead.
|
|
4425 |
*/
|
|
4426 |
|
|
4427 |
/*!
|
|
4428 |
\fn QRegExp::QRegExp(const QString &pattern, bool cs, bool wildcard = false)
|
|
4429 |
|
|
4430 |
Use another constructor instead.
|
|
4431 |
|
|
4432 |
\oldcode
|
|
4433 |
QRegExp rx("*.txt", false, true);
|
|
4434 |
\newcode
|
|
4435 |
QRegExp rx("*.txt", Qt::CaseInsensitive, QRegExp::Wildcard);
|
|
4436 |
\endcode
|
|
4437 |
*/
|
|
4438 |
|
|
4439 |
#ifndef QT_NO_DATASTREAM
|
|
4440 |
/*!
|
|
4441 |
\relates QRegExp
|
|
4442 |
|
|
4443 |
Writes the regular expression \a regExp to stream \a out.
|
|
4444 |
|
|
4445 |
\sa {Format of the QDataStream Operators}
|
|
4446 |
*/
|
|
4447 |
QDataStream &operator<<(QDataStream &out, const QRegExp ®Exp)
|
|
4448 |
{
|
|
4449 |
return out << regExp.pattern() << (quint8)regExp.caseSensitivity()
|
|
4450 |
<< (quint8)regExp.patternSyntax()
|
|
4451 |
<< (quint8)!!regExp.isMinimal();
|
|
4452 |
}
|
|
4453 |
|
|
4454 |
/*!
|
|
4455 |
\relates QRegExp
|
|
4456 |
|
|
4457 |
Reads a regular expression from stream \a in into \a regExp.
|
|
4458 |
|
|
4459 |
\sa {Format of the QDataStream Operators}
|
|
4460 |
*/
|
|
4461 |
QDataStream &operator>>(QDataStream &in, QRegExp ®Exp)
|
|
4462 |
{
|
|
4463 |
QString pattern;
|
|
4464 |
quint8 cs;
|
|
4465 |
quint8 patternSyntax;
|
|
4466 |
quint8 isMinimal;
|
|
4467 |
|
|
4468 |
in >> pattern >> cs >> patternSyntax >> isMinimal;
|
|
4469 |
|
|
4470 |
QRegExp newRegExp(pattern, Qt::CaseSensitivity(cs),
|
|
4471 |
QRegExp::PatternSyntax(patternSyntax));
|
|
4472 |
|
|
4473 |
newRegExp.setMinimal(isMinimal);
|
|
4474 |
regExp = newRegExp;
|
|
4475 |
return in;
|
|
4476 |
}
|
|
4477 |
#endif // QT_NO_DATASTREAM
|
|
4478 |
|
|
4479 |
QT_END_NAMESPACE
|