|
1 /* |
|
2 * Implementation of DES encryption for NTLM |
|
3 * |
|
4 * Copyright 1997-2005 Simon Tatham. |
|
5 * |
|
6 * This software is released under the MIT license. |
|
7 */ |
|
8 |
|
9 /* |
|
10 * Description of DES |
|
11 * ------------------ |
|
12 * |
|
13 * Unlike the description in FIPS 46, I'm going to use _sensible_ indices: |
|
14 * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB. |
|
15 * And S-boxes are indexed by six consecutive bits, not by the outer two |
|
16 * followed by the middle four. |
|
17 * |
|
18 * The DES encryption routine requires a 64-bit input, and a key schedule K |
|
19 * containing 16 48-bit elements. |
|
20 * |
|
21 * First the input is permuted by the initial permutation IP. |
|
22 * Then the input is split into 32-bit words L and R. (L is the MSW.) |
|
23 * Next, 16 rounds. In each round: |
|
24 * (L, R) <- (R, L xor f(R, K[i])) |
|
25 * Then the pre-output words L and R are swapped. |
|
26 * Then L and R are glued back together into a 64-bit word. (L is the MSW, |
|
27 * again, but since we just swapped them, the MSW is the R that came out |
|
28 * of the last round.) |
|
29 * The 64-bit output block is permuted by the inverse of IP and returned. |
|
30 * |
|
31 * Decryption is identical except that the elements of K are used in the |
|
32 * opposite order. (This wouldn't work if that word swap didn't happen.) |
|
33 * |
|
34 * The function f, used in each round, accepts a 32-bit word R and a |
|
35 * 48-bit key block K. It produces a 32-bit output. |
|
36 * |
|
37 * First R is expanded to 48 bits using the bit-selection function E. |
|
38 * The resulting 48-bit block is XORed with the key block K to produce |
|
39 * a 48-bit block X. |
|
40 * This block X is split into eight groups of 6 bits. Each group of 6 |
|
41 * bits is then looked up in one of the eight S-boxes to convert |
|
42 * it to 4 bits. These eight groups of 4 bits are glued back |
|
43 * together to produce a 32-bit preoutput block. |
|
44 * The preoutput block is permuted using the permutation P and returned. |
|
45 * |
|
46 * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although |
|
47 * the approved input format for the key is a 64-bit word, eight of the |
|
48 * bits are discarded, so the actual quantity of key used is 56 bits. |
|
49 * |
|
50 * First the input key is converted to two 28-bit words C and D using |
|
51 * the bit-selection function PC1. |
|
52 * Then 16 rounds of key setup occur. In each round, C and D are each |
|
53 * rotated left by either 1 or 2 bits (depending on which round), and |
|
54 * then converted into a key schedule element using the bit-selection |
|
55 * function PC2. |
|
56 * |
|
57 * That's the actual algorithm. Now for the tedious details: all those |
|
58 * painful permutations and lookup tables. |
|
59 * |
|
60 * IP is a 64-to-64 bit permutation. Its output contains the following |
|
61 * bits of its input (listed in order MSB to LSB of output). |
|
62 * |
|
63 * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60 |
|
64 * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56 |
|
65 * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61 |
|
66 * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57 |
|
67 * |
|
68 * E is a 32-to-48 bit selection function. Its output contains the following |
|
69 * bits of its input (listed in order MSB to LSB of output). |
|
70 * |
|
71 * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15 |
|
72 * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31 |
|
73 * |
|
74 * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a |
|
75 * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers. |
|
76 * The S-boxes are listed below. The first S-box listed is applied to the |
|
77 * most significant six bits of the block X; the last one is applied to the |
|
78 * least significant. |
|
79 * |
|
80 * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1 |
|
81 * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8 |
|
82 * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7 |
|
83 * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13 |
|
84 * |
|
85 * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14 |
|
86 * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5 |
|
87 * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2 |
|
88 * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9 |
|
89 * |
|
90 * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10 |
|
91 * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1 |
|
92 * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7 |
|
93 * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12 |
|
94 * |
|
95 * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3 |
|
96 * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9 |
|
97 * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8 |
|
98 * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14 |
|
99 * |
|
100 * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1 |
|
101 * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6 |
|
102 * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13 |
|
103 * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3 |
|
104 * |
|
105 * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5 |
|
106 * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8 |
|
107 * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10 |
|
108 * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13 |
|
109 * |
|
110 * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10 |
|
111 * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6 |
|
112 * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7 |
|
113 * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12 |
|
114 * |
|
115 * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4 |
|
116 * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2 |
|
117 * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13 |
|
118 * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11 |
|
119 * |
|
120 * P is a 32-to-32 bit permutation. Its output contains the following |
|
121 * bits of its input (listed in order MSB to LSB of output). |
|
122 * |
|
123 * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22 |
|
124 * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7 |
|
125 * |
|
126 * PC1 is a 64-to-56 bit selection function. Its output is in two words, |
|
127 * C and D. The word C contains the following bits of its input (listed |
|
128 * in order MSB to LSB of output). |
|
129 * |
|
130 * 7 15 23 31 39 47 55 63 6 14 22 30 38 46 |
|
131 * 54 62 5 13 21 29 37 45 53 61 4 12 20 28 |
|
132 * |
|
133 * And the word D contains these bits. |
|
134 * |
|
135 * 1 9 17 25 33 41 49 57 2 10 18 26 34 42 |
|
136 * 50 58 3 11 19 27 35 43 51 59 36 44 52 60 |
|
137 * |
|
138 * PC2 is a 56-to-48 bit selection function. Its input is in two words, |
|
139 * C and D. These are treated as one 56-bit word (with C more significant, |
|
140 * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to |
|
141 * 0 of the word are bits 27 to 0 of D). The output contains the following |
|
142 * bits of this 56-bit input word (listed in order MSB to LSB of output). |
|
143 * |
|
144 * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54 |
|
145 * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24 |
|
146 */ |
|
147 |
|
148 /* |
|
149 * Implementation details |
|
150 * ---------------------- |
|
151 * |
|
152 * If you look at the code in this module, you'll find it looks |
|
153 * nothing _like_ the above algorithm. Here I explain the |
|
154 * differences... |
|
155 * |
|
156 * Key setup has not been heavily optimised here. We are not |
|
157 * concerned with key agility: we aren't codebreakers. We don't |
|
158 * mind a little delay (and it really is a little one; it may be a |
|
159 * factor of five or so slower than it could be but it's still not |
|
160 * an appreciable length of time) while setting up. The only tweaks |
|
161 * in the key setup are ones which change the format of the key |
|
162 * schedule to speed up the actual encryption. I'll describe those |
|
163 * below. |
|
164 * |
|
165 * The first and most obvious optimisation is the S-boxes. Since |
|
166 * each S-box always targets the same four bits in the final 32-bit |
|
167 * word, so the output from (for example) S-box 0 must always be |
|
168 * shifted left 28 bits, we can store the already-shifted outputs |
|
169 * in the lookup tables. This reduces lookup-and-shift to lookup, |
|
170 * so the S-box step is now just a question of ORing together eight |
|
171 * table lookups. |
|
172 * |
|
173 * The permutation P is just a bit order change; it's invariant |
|
174 * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we |
|
175 * can apply P to every entry of the S-box tables and then we don't |
|
176 * have to do it in the code of f(). This yields a set of tables |
|
177 * which might be called SP-boxes. |
|
178 * |
|
179 * The bit-selection function E is our next target. Note that E is |
|
180 * immediately followed by the operation of splitting into 6-bit |
|
181 * chunks. Examining the 6-bit chunks coming out of E we notice |
|
182 * they're all contiguous within the word (speaking cyclically - |
|
183 * the end two wrap round); so we can extract those bit strings |
|
184 * individually rather than explicitly running E. This would yield |
|
185 * code such as |
|
186 * |
|
187 * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ]; |
|
188 * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ]; |
|
189 * |
|
190 * and so on; and the key schedule preparation would have to |
|
191 * provide each 6-bit chunk separately. |
|
192 * |
|
193 * Really we'd like to XOR in the key schedule element before |
|
194 * looking up bit strings in R. This we can't do, naively, because |
|
195 * the 6-bit strings we want overlap. But look at the strings: |
|
196 * |
|
197 * 3322222222221111111111 |
|
198 * bit 10987654321098765432109876543210 |
|
199 * |
|
200 * box0 XXXXX X |
|
201 * box1 XXXXXX |
|
202 * box2 XXXXXX |
|
203 * box3 XXXXXX |
|
204 * box4 XXXXXX |
|
205 * box5 XXXXXX |
|
206 * box6 XXXXXX |
|
207 * box7 X XXXXX |
|
208 * |
|
209 * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't |
|
210 * overlap with each other. Neither do the ones for boxes 1, 3, 5 |
|
211 * and 7. So we could provide the key schedule in the form of two |
|
212 * words that we can separately XOR into R, and then every S-box |
|
213 * index is available as a (cyclically) contiguous 6-bit substring |
|
214 * of one or the other of the results. |
|
215 * |
|
216 * The comments in Eric Young's libdes implementation point out |
|
217 * that two of these bit strings require a rotation (rather than a |
|
218 * simple shift) to extract. It's unavoidable that at least _one_ |
|
219 * must do; but we can actually run the whole inner algorithm (all |
|
220 * 16 rounds) rotated one bit to the left, so that what the `real' |
|
221 * DES description sees as L=0x80000001 we see as L=0x00000003. |
|
222 * This requires rotating all our SP-box entries one bit to the |
|
223 * left, and rotating each word of the key schedule elements one to |
|
224 * the left, and rotating L and R one bit left just after IP and |
|
225 * one bit right again just before FP. And in each round we convert |
|
226 * a rotate into a shift, so we've saved a few per cent. |
|
227 * |
|
228 * That's about it for the inner loop; the SP-box tables as listed |
|
229 * below are what I've described here (the original S value, |
|
230 * shifted to its final place in the input to P, run through P, and |
|
231 * then rotated one bit left). All that remains is to optimise the |
|
232 * initial permutation IP. |
|
233 * |
|
234 * IP is not an arbitrary permutation. It has the nice property |
|
235 * that if you take any bit number, write it in binary (6 bits), |
|
236 * permute those 6 bits and invert some of them, you get the final |
|
237 * position of that bit. Specifically, the bit whose initial |
|
238 * position is given (in binary) as fedcba ends up in position |
|
239 * AcbFED (where a capital letter denotes the inverse of a bit). |
|
240 * |
|
241 * We have the 64-bit data in two 32-bit words L and R, where bits |
|
242 * in L are those with f=1 and bits in R are those with f=0. We |
|
243 * note that we can do a simple transformation: suppose we exchange |
|
244 * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause |
|
245 * the bit fedcba to be in position cedfba - we've `swapped' bits c |
|
246 * and f in the position of each bit! |
|
247 * |
|
248 * Better still, this transformation is easy. In the example above, |
|
249 * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1 |
|
250 * are 0xF0F0F0F0. So we can do |
|
251 * |
|
252 * difference = ((R >> 4) ^ L) & 0x0F0F0F0F |
|
253 * R ^= (difference << 4) |
|
254 * L ^= difference |
|
255 * |
|
256 * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F). |
|
257 * Also, we can invert the bit at the top just by exchanging L and |
|
258 * R. So in a few swaps and a few of these bit operations we can |
|
259 * do: |
|
260 * |
|
261 * Initially the position of bit fedcba is fedcba |
|
262 * Swap L with R to make it Fedcba |
|
263 * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba |
|
264 * Perform bitswap(16,0x0000FFFF) to make it ecdFba |
|
265 * Swap L with R to make it EcdFba |
|
266 * Perform bitswap( 2,0x33333333) to make it bcdFEa |
|
267 * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa |
|
268 * Swap L with R to make it DcbFEa |
|
269 * Perform bitswap( 1,0x55555555) to make it acbFED |
|
270 * Swap L with R to make it AcbFED |
|
271 * |
|
272 * (In the actual code the four swaps are implicit: R and L are |
|
273 * simply used the other way round in the first, second and last |
|
274 * bitswap operations.) |
|
275 * |
|
276 * The final permutation is just the inverse of IP, so it can be |
|
277 * performed by a similar set of operations. |
|
278 */ |
|
279 |
|
280 struct des_context { |
|
281 quint32 k0246[16], k1357[16]; |
|
282 }; |
|
283 |
|
284 #define rotl(x, c) ( (x << c) | (x >> (32-c)) ) |
|
285 #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF) |
|
286 |
|
287 static quint32 bitsel(quint32 * input, const int *bitnums, int size) |
|
288 { |
|
289 quint32 ret = 0; |
|
290 while (size--) { |
|
291 int bitpos = *bitnums++; |
|
292 ret <<= 1; |
|
293 if (bitpos >= 0) |
|
294 ret |= 1 & (input[bitpos / 32] >> (bitpos % 32)); |
|
295 } |
|
296 return ret; |
|
297 } |
|
298 |
|
299 static inline void des_key_setup(quint32 key_msw, quint32 key_lsw, |
|
300 struct des_context *sched) |
|
301 { |
|
302 /* Tables are modified to work with 56-bit key */ |
|
303 static const int PC1_Cbits[] = { |
|
304 6, 13, 20, 27, 34, 41, 48, 55, 5, 12, 19, 26, 33, 40, |
|
305 47, 54, 4, 11, 18, 25, 32, 39, 46, 53, 3, 10, 17, 24 |
|
306 }; |
|
307 static const int PC1_Dbits[] = { |
|
308 0, 7, 14, 21, 28, 35, 42, 49, 1, 8, 15, 22, 29, 36, |
|
309 43, 50, 2, 9, 16, 23, 30, 37, 44, 51, 31, 38, 45, 52 |
|
310 }; |
|
311 /* |
|
312 * The bit numbers in the two lists below don't correspond to |
|
313 * the ones in the above description of PC2, because in the |
|
314 * above description C and D are concatenated so `bit 28' means |
|
315 * bit 0 of C. In this implementation we're using the standard |
|
316 * `bitsel' function above and C is in the second word, so bit |
|
317 * 0 of C is addressed by writing `32' here. |
|
318 */ |
|
319 static const int PC2_0246[] = { |
|
320 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4, |
|
321 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43 |
|
322 }; |
|
323 static const int PC2_1357[] = { |
|
324 -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58, |
|
325 -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24 |
|
326 }; |
|
327 static const int leftshifts[] = { |
|
328 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
|
329 }; |
|
330 |
|
331 quint32 C, D; |
|
332 quint32 buf[2]; |
|
333 int i; |
|
334 |
|
335 buf[0] = key_lsw; |
|
336 buf[1] = key_msw; |
|
337 |
|
338 C = bitsel(buf, PC1_Cbits, 28); |
|
339 D = bitsel(buf, PC1_Dbits, 28); |
|
340 |
|
341 for (i = 0; i < 16; i++) { |
|
342 C = rotl28(C, leftshifts[i]); |
|
343 D = rotl28(D, leftshifts[i]); |
|
344 buf[0] = D; |
|
345 buf[1] = C; |
|
346 sched->k0246[i] = bitsel(buf, PC2_0246, 32); |
|
347 sched->k1357[i] = bitsel(buf, PC2_1357, 32); |
|
348 } |
|
349 } |
|
350 |
|
351 static const quint32 SPboxes[8][64] = { |
|
352 {0x01010400, 0x00000000, 0x00010000, 0x01010404, |
|
353 0x01010004, 0x00010404, 0x00000004, 0x00010000, |
|
354 0x00000400, 0x01010400, 0x01010404, 0x00000400, |
|
355 0x01000404, 0x01010004, 0x01000000, 0x00000004, |
|
356 0x00000404, 0x01000400, 0x01000400, 0x00010400, |
|
357 0x00010400, 0x01010000, 0x01010000, 0x01000404, |
|
358 0x00010004, 0x01000004, 0x01000004, 0x00010004, |
|
359 0x00000000, 0x00000404, 0x00010404, 0x01000000, |
|
360 0x00010000, 0x01010404, 0x00000004, 0x01010000, |
|
361 0x01010400, 0x01000000, 0x01000000, 0x00000400, |
|
362 0x01010004, 0x00010000, 0x00010400, 0x01000004, |
|
363 0x00000400, 0x00000004, 0x01000404, 0x00010404, |
|
364 0x01010404, 0x00010004, 0x01010000, 0x01000404, |
|
365 0x01000004, 0x00000404, 0x00010404, 0x01010400, |
|
366 0x00000404, 0x01000400, 0x01000400, 0x00000000, |
|
367 0x00010004, 0x00010400, 0x00000000, 0x01010004}, |
|
368 |
|
369 {0x80108020, 0x80008000, 0x00008000, 0x00108020, |
|
370 0x00100000, 0x00000020, 0x80100020, 0x80008020, |
|
371 0x80000020, 0x80108020, 0x80108000, 0x80000000, |
|
372 0x80008000, 0x00100000, 0x00000020, 0x80100020, |
|
373 0x00108000, 0x00100020, 0x80008020, 0x00000000, |
|
374 0x80000000, 0x00008000, 0x00108020, 0x80100000, |
|
375 0x00100020, 0x80000020, 0x00000000, 0x00108000, |
|
376 0x00008020, 0x80108000, 0x80100000, 0x00008020, |
|
377 0x00000000, 0x00108020, 0x80100020, 0x00100000, |
|
378 0x80008020, 0x80100000, 0x80108000, 0x00008000, |
|
379 0x80100000, 0x80008000, 0x00000020, 0x80108020, |
|
380 0x00108020, 0x00000020, 0x00008000, 0x80000000, |
|
381 0x00008020, 0x80108000, 0x00100000, 0x80000020, |
|
382 0x00100020, 0x80008020, 0x80000020, 0x00100020, |
|
383 0x00108000, 0x00000000, 0x80008000, 0x00008020, |
|
384 0x80000000, 0x80100020, 0x80108020, 0x00108000}, |
|
385 |
|
386 {0x00000208, 0x08020200, 0x00000000, 0x08020008, |
|
387 0x08000200, 0x00000000, 0x00020208, 0x08000200, |
|
388 0x00020008, 0x08000008, 0x08000008, 0x00020000, |
|
389 0x08020208, 0x00020008, 0x08020000, 0x00000208, |
|
390 0x08000000, 0x00000008, 0x08020200, 0x00000200, |
|
391 0x00020200, 0x08020000, 0x08020008, 0x00020208, |
|
392 0x08000208, 0x00020200, 0x00020000, 0x08000208, |
|
393 0x00000008, 0x08020208, 0x00000200, 0x08000000, |
|
394 0x08020200, 0x08000000, 0x00020008, 0x00000208, |
|
395 0x00020000, 0x08020200, 0x08000200, 0x00000000, |
|
396 0x00000200, 0x00020008, 0x08020208, 0x08000200, |
|
397 0x08000008, 0x00000200, 0x00000000, 0x08020008, |
|
398 0x08000208, 0x00020000, 0x08000000, 0x08020208, |
|
399 0x00000008, 0x00020208, 0x00020200, 0x08000008, |
|
400 0x08020000, 0x08000208, 0x00000208, 0x08020000, |
|
401 0x00020208, 0x00000008, 0x08020008, 0x00020200}, |
|
402 |
|
403 {0x00802001, 0x00002081, 0x00002081, 0x00000080, |
|
404 0x00802080, 0x00800081, 0x00800001, 0x00002001, |
|
405 0x00000000, 0x00802000, 0x00802000, 0x00802081, |
|
406 0x00000081, 0x00000000, 0x00800080, 0x00800001, |
|
407 0x00000001, 0x00002000, 0x00800000, 0x00802001, |
|
408 0x00000080, 0x00800000, 0x00002001, 0x00002080, |
|
409 0x00800081, 0x00000001, 0x00002080, 0x00800080, |
|
410 0x00002000, 0x00802080, 0x00802081, 0x00000081, |
|
411 0x00800080, 0x00800001, 0x00802000, 0x00802081, |
|
412 0x00000081, 0x00000000, 0x00000000, 0x00802000, |
|
413 0x00002080, 0x00800080, 0x00800081, 0x00000001, |
|
414 0x00802001, 0x00002081, 0x00002081, 0x00000080, |
|
415 0x00802081, 0x00000081, 0x00000001, 0x00002000, |
|
416 0x00800001, 0x00002001, 0x00802080, 0x00800081, |
|
417 0x00002001, 0x00002080, 0x00800000, 0x00802001, |
|
418 0x00000080, 0x00800000, 0x00002000, 0x00802080}, |
|
419 |
|
420 {0x00000100, 0x02080100, 0x02080000, 0x42000100, |
|
421 0x00080000, 0x00000100, 0x40000000, 0x02080000, |
|
422 0x40080100, 0x00080000, 0x02000100, 0x40080100, |
|
423 0x42000100, 0x42080000, 0x00080100, 0x40000000, |
|
424 0x02000000, 0x40080000, 0x40080000, 0x00000000, |
|
425 0x40000100, 0x42080100, 0x42080100, 0x02000100, |
|
426 0x42080000, 0x40000100, 0x00000000, 0x42000000, |
|
427 0x02080100, 0x02000000, 0x42000000, 0x00080100, |
|
428 0x00080000, 0x42000100, 0x00000100, 0x02000000, |
|
429 0x40000000, 0x02080000, 0x42000100, 0x40080100, |
|
430 0x02000100, 0x40000000, 0x42080000, 0x02080100, |
|
431 0x40080100, 0x00000100, 0x02000000, 0x42080000, |
|
432 0x42080100, 0x00080100, 0x42000000, 0x42080100, |
|
433 0x02080000, 0x00000000, 0x40080000, 0x42000000, |
|
434 0x00080100, 0x02000100, 0x40000100, 0x00080000, |
|
435 0x00000000, 0x40080000, 0x02080100, 0x40000100}, |
|
436 |
|
437 {0x20000010, 0x20400000, 0x00004000, 0x20404010, |
|
438 0x20400000, 0x00000010, 0x20404010, 0x00400000, |
|
439 0x20004000, 0x00404010, 0x00400000, 0x20000010, |
|
440 0x00400010, 0x20004000, 0x20000000, 0x00004010, |
|
441 0x00000000, 0x00400010, 0x20004010, 0x00004000, |
|
442 0x00404000, 0x20004010, 0x00000010, 0x20400010, |
|
443 0x20400010, 0x00000000, 0x00404010, 0x20404000, |
|
444 0x00004010, 0x00404000, 0x20404000, 0x20000000, |
|
445 0x20004000, 0x00000010, 0x20400010, 0x00404000, |
|
446 0x20404010, 0x00400000, 0x00004010, 0x20000010, |
|
447 0x00400000, 0x20004000, 0x20000000, 0x00004010, |
|
448 0x20000010, 0x20404010, 0x00404000, 0x20400000, |
|
449 0x00404010, 0x20404000, 0x00000000, 0x20400010, |
|
450 0x00000010, 0x00004000, 0x20400000, 0x00404010, |
|
451 0x00004000, 0x00400010, 0x20004010, 0x00000000, |
|
452 0x20404000, 0x20000000, 0x00400010, 0x20004010}, |
|
453 |
|
454 {0x00200000, 0x04200002, 0x04000802, 0x00000000, |
|
455 0x00000800, 0x04000802, 0x00200802, 0x04200800, |
|
456 0x04200802, 0x00200000, 0x00000000, 0x04000002, |
|
457 0x00000002, 0x04000000, 0x04200002, 0x00000802, |
|
458 0x04000800, 0x00200802, 0x00200002, 0x04000800, |
|
459 0x04000002, 0x04200000, 0x04200800, 0x00200002, |
|
460 0x04200000, 0x00000800, 0x00000802, 0x04200802, |
|
461 0x00200800, 0x00000002, 0x04000000, 0x00200800, |
|
462 0x04000000, 0x00200800, 0x00200000, 0x04000802, |
|
463 0x04000802, 0x04200002, 0x04200002, 0x00000002, |
|
464 0x00200002, 0x04000000, 0x04000800, 0x00200000, |
|
465 0x04200800, 0x00000802, 0x00200802, 0x04200800, |
|
466 0x00000802, 0x04000002, 0x04200802, 0x04200000, |
|
467 0x00200800, 0x00000000, 0x00000002, 0x04200802, |
|
468 0x00000000, 0x00200802, 0x04200000, 0x00000800, |
|
469 0x04000002, 0x04000800, 0x00000800, 0x00200002}, |
|
470 |
|
471 {0x10001040, 0x00001000, 0x00040000, 0x10041040, |
|
472 0x10000000, 0x10001040, 0x00000040, 0x10000000, |
|
473 0x00040040, 0x10040000, 0x10041040, 0x00041000, |
|
474 0x10041000, 0x00041040, 0x00001000, 0x00000040, |
|
475 0x10040000, 0x10000040, 0x10001000, 0x00001040, |
|
476 0x00041000, 0x00040040, 0x10040040, 0x10041000, |
|
477 0x00001040, 0x00000000, 0x00000000, 0x10040040, |
|
478 0x10000040, 0x10001000, 0x00041040, 0x00040000, |
|
479 0x00041040, 0x00040000, 0x10041000, 0x00001000, |
|
480 0x00000040, 0x10040040, 0x00001000, 0x00041040, |
|
481 0x10001000, 0x00000040, 0x10000040, 0x10040000, |
|
482 0x10040040, 0x10000000, 0x00040000, 0x10001040, |
|
483 0x00000000, 0x10041040, 0x00040040, 0x10000040, |
|
484 0x10040000, 0x10001000, 0x10001040, 0x00000000, |
|
485 0x10041040, 0x00041000, 0x00041000, 0x00001040, |
|
486 0x00001040, 0x00040040, 0x10000000, 0x10041000} |
|
487 }; |
|
488 |
|
489 #define f(R, K0246, K1357) (\ |
|
490 s0246 = R ^ K0246, \ |
|
491 s1357 = R ^ K1357, \ |
|
492 s0246 = rotl(s0246, 28), \ |
|
493 SPboxes[0] [(s0246 >> 24) & 0x3F] | \ |
|
494 SPboxes[1] [(s1357 >> 24) & 0x3F] | \ |
|
495 SPboxes[2] [(s0246 >> 16) & 0x3F] | \ |
|
496 SPboxes[3] [(s1357 >> 16) & 0x3F] | \ |
|
497 SPboxes[4] [(s0246 >> 8) & 0x3F] | \ |
|
498 SPboxes[5] [(s1357 >> 8) & 0x3F] | \ |
|
499 SPboxes[6] [(s0246 ) & 0x3F] | \ |
|
500 SPboxes[7] [(s1357 ) & 0x3F]) |
|
501 |
|
502 #define bitswap(L, R, n, mask) (\ |
|
503 swap = mask & ( (R >> n) ^ L ), \ |
|
504 R ^= swap << n, \ |
|
505 L ^= swap) |
|
506 |
|
507 /* Initial permutation */ |
|
508 #define IP(L, R) (\ |
|
509 bitswap(R, L, 4, 0x0F0F0F0F), \ |
|
510 bitswap(R, L, 16, 0x0000FFFF), \ |
|
511 bitswap(L, R, 2, 0x33333333), \ |
|
512 bitswap(L, R, 8, 0x00FF00FF), \ |
|
513 bitswap(R, L, 1, 0x55555555)) |
|
514 |
|
515 /* Final permutation */ |
|
516 #define FP(L, R) (\ |
|
517 bitswap(R, L, 1, 0x55555555), \ |
|
518 bitswap(L, R, 8, 0x00FF00FF), \ |
|
519 bitswap(L, R, 2, 0x33333333), \ |
|
520 bitswap(R, L, 16, 0x0000FFFF), \ |
|
521 bitswap(R, L, 4, 0x0F0F0F0F)) |
|
522 |
|
523 static void |
|
524 des_encipher(quint32 *output, quint32 L, quint32 R, |
|
525 struct des_context *sched) |
|
526 { |
|
527 quint32 swap, s0246, s1357; |
|
528 |
|
529 IP(L, R); |
|
530 |
|
531 L = rotl(L, 1); |
|
532 R = rotl(R, 1); |
|
533 |
|
534 L ^= f(R, sched->k0246[0], sched->k1357[0]); |
|
535 R ^= f(L, sched->k0246[1], sched->k1357[1]); |
|
536 L ^= f(R, sched->k0246[2], sched->k1357[2]); |
|
537 R ^= f(L, sched->k0246[3], sched->k1357[3]); |
|
538 L ^= f(R, sched->k0246[4], sched->k1357[4]); |
|
539 R ^= f(L, sched->k0246[5], sched->k1357[5]); |
|
540 L ^= f(R, sched->k0246[6], sched->k1357[6]); |
|
541 R ^= f(L, sched->k0246[7], sched->k1357[7]); |
|
542 L ^= f(R, sched->k0246[8], sched->k1357[8]); |
|
543 R ^= f(L, sched->k0246[9], sched->k1357[9]); |
|
544 L ^= f(R, sched->k0246[10], sched->k1357[10]); |
|
545 R ^= f(L, sched->k0246[11], sched->k1357[11]); |
|
546 L ^= f(R, sched->k0246[12], sched->k1357[12]); |
|
547 R ^= f(L, sched->k0246[13], sched->k1357[13]); |
|
548 L ^= f(R, sched->k0246[14], sched->k1357[14]); |
|
549 R ^= f(L, sched->k0246[15], sched->k1357[15]); |
|
550 |
|
551 L = rotl(L, 31); |
|
552 R = rotl(R, 31); |
|
553 |
|
554 swap = L; |
|
555 L = R; |
|
556 R = swap; |
|
557 |
|
558 FP(L, R); |
|
559 |
|
560 output[0] = L; |
|
561 output[1] = R; |
|
562 } |
|
563 |
|
564 #define GET_32BIT_MSB_FIRST(cp) \ |
|
565 (((unsigned long)(unsigned char)(cp)[3]) | \ |
|
566 ((unsigned long)(unsigned char)(cp)[2] << 8) | \ |
|
567 ((unsigned long)(unsigned char)(cp)[1] << 16) | \ |
|
568 ((unsigned long)(unsigned char)(cp)[0] << 24)) |
|
569 |
|
570 #define PUT_32BIT_MSB_FIRST(cp, value) do { \ |
|
571 (cp)[3] = (value); \ |
|
572 (cp)[2] = (value) >> 8; \ |
|
573 (cp)[1] = (value) >> 16; \ |
|
574 (cp)[0] = (value) >> 24; } while (0) |
|
575 |
|
576 static inline void |
|
577 des_cbc_encrypt(unsigned char *dest, const unsigned char *src, |
|
578 struct des_context *sched) |
|
579 { |
|
580 quint32 out[2], L, R; |
|
581 |
|
582 L = GET_32BIT_MSB_FIRST(src); |
|
583 R = GET_32BIT_MSB_FIRST(src + 4); |
|
584 des_encipher(out, L, R, sched); |
|
585 PUT_32BIT_MSB_FIRST(dest, out[0]); |
|
586 PUT_32BIT_MSB_FIRST(dest + 4, out[1]); |
|
587 } |
|
588 |
|
589 |
|
590 static unsigned char * |
|
591 deshash(unsigned char *dst, const unsigned char *key, |
|
592 const unsigned char *src) |
|
593 { |
|
594 struct des_context ctx; |
|
595 |
|
596 des_key_setup(GET_32BIT_MSB_FIRST(key) >> 8, |
|
597 GET_32BIT_MSB_FIRST(key + 3), &ctx); |
|
598 |
|
599 des_cbc_encrypt(dst, src, &ctx); |
|
600 |
|
601 return dst; |
|
602 } |