src/3rdparty/libjpeg/jfdctint.c
changeset 0 1918ee327afb
child 30 5dc02b23752f
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jfdctint.c
       
     3  *
       
     4  * Copyright (C) 1991-1996, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains a slow-but-accurate integer implementation of the
       
     9  * forward DCT (Discrete Cosine Transform).
       
    10  *
       
    11  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
       
    12  * on each column.  Direct algorithms are also available, but they are
       
    13  * much more complex and seem not to be any faster when reduced to code.
       
    14  *
       
    15  * This implementation is based on an algorithm described in
       
    16  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
       
    17  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
       
    18  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
       
    19  * The primary algorithm described there uses 11 multiplies and 29 adds.
       
    20  * We use their alternate method with 12 multiplies and 32 adds.
       
    21  * The advantage of this method is that no data path contains more than one
       
    22  * multiplication; this allows a very simple and accurate implementation in
       
    23  * scaled fixed-point arithmetic, with a minimal number of shifts.
       
    24  */
       
    25 
       
    26 #define JPEG_INTERNALS
       
    27 #include "jinclude.h"
       
    28 #include "jpeglib.h"
       
    29 #include "jdct.h"		/* Private declarations for DCT subsystem */
       
    30 
       
    31 #ifdef DCT_ISLOW_SUPPORTED
       
    32 
       
    33 
       
    34 /*
       
    35  * This module is specialized to the case DCTSIZE = 8.
       
    36  */
       
    37 
       
    38 #if DCTSIZE != 8
       
    39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
       
    40 #endif
       
    41 
       
    42 
       
    43 /*
       
    44  * The poop on this scaling stuff is as follows:
       
    45  *
       
    46  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
       
    47  * larger than the true DCT outputs.  The final outputs are therefore
       
    48  * a factor of N larger than desired; since N=8 this can be cured by
       
    49  * a simple right shift at the end of the algorithm.  The advantage of
       
    50  * this arrangement is that we save two multiplications per 1-D DCT,
       
    51  * because the y0 and y4 outputs need not be divided by sqrt(N).
       
    52  * In the IJG code, this factor of 8 is removed by the quantization step
       
    53  * (in jcdctmgr.c), NOT in this module.
       
    54  *
       
    55  * We have to do addition and subtraction of the integer inputs, which
       
    56  * is no problem, and multiplication by fractional constants, which is
       
    57  * a problem to do in integer arithmetic.  We multiply all the constants
       
    58  * by CONST_SCALE and convert them to integer constants (thus retaining
       
    59  * CONST_BITS bits of precision in the constants).  After doing a
       
    60  * multiplication we have to divide the product by CONST_SCALE, with proper
       
    61  * rounding, to produce the correct output.  This division can be done
       
    62  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
       
    63  * as long as possible so that partial sums can be added together with
       
    64  * full fractional precision.
       
    65  *
       
    66  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
       
    67  * they are represented to better-than-integral precision.  These outputs
       
    68  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
       
    69  * with the recommended scaling.  (For 12-bit sample data, the intermediate
       
    70  * array is INT32 anyway.)
       
    71  *
       
    72  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
       
    73  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
       
    74  * shows that the values given below are the most effective.
       
    75  */
       
    76 
       
    77 #if BITS_IN_JSAMPLE == 8
       
    78 #define CONST_BITS  13
       
    79 #define PASS1_BITS  2
       
    80 #else
       
    81 #define CONST_BITS  13
       
    82 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
       
    83 #endif
       
    84 
       
    85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
       
    86  * causing a lot of useless floating-point operations at run time.
       
    87  * To get around this we use the following pre-calculated constants.
       
    88  * If you change CONST_BITS you may want to add appropriate values.
       
    89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
       
    90  */
       
    91 
       
    92 #if CONST_BITS == 13
       
    93 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
       
    94 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
       
    95 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
       
    96 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
       
    97 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
       
    98 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
       
    99 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
       
   100 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
       
   101 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
       
   102 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
       
   103 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
       
   104 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
       
   105 #else
       
   106 #define FIX_0_298631336  FIX(0.298631336)
       
   107 #define FIX_0_390180644  FIX(0.390180644)
       
   108 #define FIX_0_541196100  FIX(0.541196100)
       
   109 #define FIX_0_765366865  FIX(0.765366865)
       
   110 #define FIX_0_899976223  FIX(0.899976223)
       
   111 #define FIX_1_175875602  FIX(1.175875602)
       
   112 #define FIX_1_501321110  FIX(1.501321110)
       
   113 #define FIX_1_847759065  FIX(1.847759065)
       
   114 #define FIX_1_961570560  FIX(1.961570560)
       
   115 #define FIX_2_053119869  FIX(2.053119869)
       
   116 #define FIX_2_562915447  FIX(2.562915447)
       
   117 #define FIX_3_072711026  FIX(3.072711026)
       
   118 #endif
       
   119 
       
   120 
       
   121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
       
   122  * For 8-bit samples with the recommended scaling, all the variable
       
   123  * and constant values involved are no more than 16 bits wide, so a
       
   124  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
       
   125  * For 12-bit samples, a full 32-bit multiplication will be needed.
       
   126  */
       
   127 
       
   128 #if BITS_IN_JSAMPLE == 8
       
   129 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
       
   130 #else
       
   131 #define MULTIPLY(var,const)  ((var) * (const))
       
   132 #endif
       
   133 
       
   134 
       
   135 /*
       
   136  * Perform the forward DCT on one block of samples.
       
   137  */
       
   138 
       
   139 GLOBAL(void)
       
   140 jpeg_fdct_islow (DCTELEM * data)
       
   141 {
       
   142   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
       
   143   INT32 tmp10, tmp11, tmp12, tmp13;
       
   144   INT32 z1, z2, z3, z4, z5;
       
   145   DCTELEM *dataptr;
       
   146   int ctr;
       
   147   SHIFT_TEMPS
       
   148 
       
   149   /* Pass 1: process rows. */
       
   150   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
       
   151   /* furthermore, we scale the results by 2**PASS1_BITS. */
       
   152 
       
   153   dataptr = data;
       
   154   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
       
   155     tmp0 = dataptr[0] + dataptr[7];
       
   156     tmp7 = dataptr[0] - dataptr[7];
       
   157     tmp1 = dataptr[1] + dataptr[6];
       
   158     tmp6 = dataptr[1] - dataptr[6];
       
   159     tmp2 = dataptr[2] + dataptr[5];
       
   160     tmp5 = dataptr[2] - dataptr[5];
       
   161     tmp3 = dataptr[3] + dataptr[4];
       
   162     tmp4 = dataptr[3] - dataptr[4];
       
   163     
       
   164     /* Even part per LL&M figure 1 --- note that published figure is faulty;
       
   165      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
       
   166      */
       
   167     
       
   168     tmp10 = tmp0 + tmp3;
       
   169     tmp13 = tmp0 - tmp3;
       
   170     tmp11 = tmp1 + tmp2;
       
   171     tmp12 = tmp1 - tmp2;
       
   172     
       
   173     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
       
   174     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
       
   175     
       
   176     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
       
   177     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
       
   178 				   CONST_BITS-PASS1_BITS);
       
   179     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
       
   180 				   CONST_BITS-PASS1_BITS);
       
   181     
       
   182     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
       
   183      * cK represents cos(K*pi/16).
       
   184      * i0..i3 in the paper are tmp4..tmp7 here.
       
   185      */
       
   186     
       
   187     z1 = tmp4 + tmp7;
       
   188     z2 = tmp5 + tmp6;
       
   189     z3 = tmp4 + tmp6;
       
   190     z4 = tmp5 + tmp7;
       
   191     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
       
   192     
       
   193     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
       
   194     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
       
   195     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
       
   196     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
       
   197     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
       
   198     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
       
   199     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
       
   200     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
       
   201     
       
   202     z3 += z5;
       
   203     z4 += z5;
       
   204     
       
   205     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
       
   206     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
       
   207     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
       
   208     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
       
   209     
       
   210     dataptr += DCTSIZE;		/* advance pointer to next row */
       
   211   }
       
   212 
       
   213   /* Pass 2: process columns.
       
   214    * We remove the PASS1_BITS scaling, but leave the results scaled up
       
   215    * by an overall factor of 8.
       
   216    */
       
   217 
       
   218   dataptr = data;
       
   219   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
       
   220     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
       
   221     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
       
   222     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
       
   223     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
       
   224     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
       
   225     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
       
   226     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
       
   227     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
       
   228     
       
   229     /* Even part per LL&M figure 1 --- note that published figure is faulty;
       
   230      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
       
   231      */
       
   232     
       
   233     tmp10 = tmp0 + tmp3;
       
   234     tmp13 = tmp0 - tmp3;
       
   235     tmp11 = tmp1 + tmp2;
       
   236     tmp12 = tmp1 - tmp2;
       
   237     
       
   238     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
       
   239     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
       
   240     
       
   241     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
       
   242     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
       
   243 					   CONST_BITS+PASS1_BITS);
       
   244     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
       
   245 					   CONST_BITS+PASS1_BITS);
       
   246     
       
   247     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
       
   248      * cK represents cos(K*pi/16).
       
   249      * i0..i3 in the paper are tmp4..tmp7 here.
       
   250      */
       
   251     
       
   252     z1 = tmp4 + tmp7;
       
   253     z2 = tmp5 + tmp6;
       
   254     z3 = tmp4 + tmp6;
       
   255     z4 = tmp5 + tmp7;
       
   256     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
       
   257     
       
   258     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
       
   259     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
       
   260     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
       
   261     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
       
   262     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
       
   263     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
       
   264     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
       
   265     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
       
   266     
       
   267     z3 += z5;
       
   268     z4 += z5;
       
   269     
       
   270     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
       
   271 					   CONST_BITS+PASS1_BITS);
       
   272     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
       
   273 					   CONST_BITS+PASS1_BITS);
       
   274     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
       
   275 					   CONST_BITS+PASS1_BITS);
       
   276     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
       
   277 					   CONST_BITS+PASS1_BITS);
       
   278     
       
   279     dataptr++;			/* advance pointer to next column */
       
   280   }
       
   281 }
       
   282 
       
   283 #endif /* DCT_ISLOW_SUPPORTED */