|
1 /**************************************************************************** |
|
2 ** |
|
3 ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
4 ** All rights reserved. |
|
5 ** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 ** |
|
7 ** This file is part of the QtCore module of the Qt Toolkit. |
|
8 ** |
|
9 ** $QT_BEGIN_LICENSE:LGPL$ |
|
10 ** No Commercial Usage |
|
11 ** This file contains pre-release code and may not be distributed. |
|
12 ** You may use this file in accordance with the terms and conditions |
|
13 ** contained in the Technology Preview License Agreement accompanying |
|
14 ** this package. |
|
15 ** |
|
16 ** GNU Lesser General Public License Usage |
|
17 ** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 ** General Public License version 2.1 as published by the Free Software |
|
19 ** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 ** packaging of this file. Please review the following information to |
|
21 ** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 ** |
|
24 ** In addition, as a special exception, Nokia gives you certain additional |
|
25 ** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 ** |
|
28 ** If you have questions regarding the use of this file, please contact |
|
29 ** Nokia at qt-info@nokia.com. |
|
30 ** |
|
31 ** |
|
32 ** |
|
33 ** |
|
34 ** |
|
35 ** |
|
36 ** |
|
37 ** |
|
38 ** $QT_END_LICENSE$ |
|
39 ** |
|
40 ****************************************************************************/ |
|
41 |
|
42 #include "qbitarray.h" |
|
43 #include <qdatastream.h> |
|
44 #include <qdebug.h> |
|
45 #include <string.h> |
|
46 |
|
47 QT_BEGIN_NAMESPACE |
|
48 |
|
49 /*! |
|
50 \class QBitArray |
|
51 \brief The QBitArray class provides an array of bits. |
|
52 |
|
53 \ingroup tools |
|
54 \ingroup shared |
|
55 \reentrant |
|
56 |
|
57 A QBitArray is an array that gives access to individual bits and |
|
58 provides operators (\link operator&() AND\endlink, \link |
|
59 operator|() OR\endlink, \link operator^() XOR\endlink, and \link |
|
60 operator~() NOT\endlink) that work on entire arrays of bits. It |
|
61 uses \l{implicit sharing} (copy-on-write) to reduce memory usage |
|
62 and to avoid the needless copying of data. |
|
63 |
|
64 The following code constructs a QBitArray containing 200 bits |
|
65 initialized to false (0): |
|
66 |
|
67 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 0 |
|
68 |
|
69 To initialize the bits to true, either pass \c true as second |
|
70 argument to the constructor, or call fill() later on. |
|
71 |
|
72 QBitArray uses 0-based indexes, just like C++ arrays. To access |
|
73 the bit at a particular index position, you can use operator[](). |
|
74 On non-const bit arrays, operator[]() returns a reference to a |
|
75 bit that can be used on the left side of an assignment. For |
|
76 example: |
|
77 |
|
78 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 1 |
|
79 |
|
80 For technical reasons, it is more efficient to use testBit() and |
|
81 setBit() to access bits in the array than operator[](). For |
|
82 example: |
|
83 |
|
84 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 2 |
|
85 |
|
86 QBitArray supports \c{&} (\link operator&() AND\endlink), \c{|} |
|
87 (\link operator|() OR\endlink), \c{^} (\link operator^() |
|
88 XOR\endlink), \c{~} (\link operator~() NOT\endlink), as well as |
|
89 \c{&=}, \c{|=}, and \c{^=}. These operators work in the same way |
|
90 as the built-in C++ bitwise operators of the same name. For |
|
91 example: |
|
92 |
|
93 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 3 |
|
94 |
|
95 For historical reasons, QBitArray distinguishes between a null |
|
96 bit array and an empty bit array. A \e null bit array is a bit |
|
97 array that is initialized using QBitArray's default constructor. |
|
98 An \e empty bit array is any bit array with size 0. A null bit |
|
99 array is always empty, but an empty bit array isn't necessarily |
|
100 null: |
|
101 |
|
102 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 4 |
|
103 |
|
104 All functions except isNull() treat null bit arrays the same as |
|
105 empty bit arrays; for example, QBitArray() compares equal to |
|
106 QBitArray(0). We recommend that you always use isEmpty() and |
|
107 avoid isNull(). |
|
108 |
|
109 \sa QByteArray, QVector |
|
110 */ |
|
111 |
|
112 /*! \fn QBitArray::QBitArray() |
|
113 |
|
114 Constructs an empty bit array. |
|
115 |
|
116 \sa isEmpty() |
|
117 */ |
|
118 |
|
119 /*! |
|
120 Constructs a bit array containing \a size bits. The bits are |
|
121 initialized with \a value, which defaults to false (0). |
|
122 */ |
|
123 QBitArray::QBitArray(int size, bool value) |
|
124 { |
|
125 if (!size) { |
|
126 d.resize(0); |
|
127 return; |
|
128 } |
|
129 d.resize(1 + (size+7)/8); |
|
130 uchar* c = reinterpret_cast<uchar*>(d.data()); |
|
131 memset(c, value ? 0xff : 0, d.size()); |
|
132 *c = d.size()*8 - size; |
|
133 if (value && size && size % 8) |
|
134 *(c+1+size/8) &= (1 << (size%8)) - 1; |
|
135 } |
|
136 |
|
137 /*! \fn int QBitArray::size() const |
|
138 |
|
139 Returns the number of bits stored in the bit array. |
|
140 |
|
141 \sa resize() |
|
142 */ |
|
143 |
|
144 /*! \fn int QBitArray::count() const |
|
145 |
|
146 Same as size(). |
|
147 */ |
|
148 |
|
149 /*! |
|
150 If \a on is true, this function returns the number of |
|
151 1-bits stored in the bit array; otherwise the number |
|
152 of 0-bits is returned. |
|
153 */ |
|
154 int QBitArray::count(bool on) const |
|
155 { |
|
156 int numBits = 0; |
|
157 int len = size(); |
|
158 #if 0 |
|
159 for (int i = 0; i < len; ++i) |
|
160 numBits += testBit(i); |
|
161 #else |
|
162 // See http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
|
163 const quint8 *bits = reinterpret_cast<const quint8 *>(d.data()) + 1; |
|
164 while (len >= 32) { |
|
165 quint32 v = quint32(bits[0]) | (quint32(bits[1]) << 8) | (quint32(bits[2]) << 16) | (quint32(bits[3]) << 24); |
|
166 quint32 c = ((v & 0xfff) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f; |
|
167 c += (((v & 0xfff000) >> 12) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f; |
|
168 c += ((v >> 24) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f; |
|
169 len -= 32; |
|
170 bits += 4; |
|
171 numBits += int(c); |
|
172 } |
|
173 while (len >= 24) { |
|
174 quint32 v = quint32(bits[0]) | (quint32(bits[1]) << 8) | (quint32(bits[2]) << 16); |
|
175 quint32 c = ((v & 0xfff) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f; |
|
176 c += (((v & 0xfff000) >> 12) * Q_UINT64_C(0x1001001001001) & Q_UINT64_C(0x84210842108421)) % 0x1f; |
|
177 len -= 24; |
|
178 bits += 3; |
|
179 numBits += int(c); |
|
180 } |
|
181 while (len >= 0) { |
|
182 if (bits[len / 8] & (1 << ((len - 1) & 7))) |
|
183 ++numBits; |
|
184 --len; |
|
185 } |
|
186 #endif |
|
187 return on ? numBits : size() - numBits; |
|
188 } |
|
189 |
|
190 /*! |
|
191 Resizes the bit array to \a size bits. |
|
192 |
|
193 If \a size is greater than the current size, the bit array is |
|
194 extended to make it \a size bits with the extra bits added to the |
|
195 end. The new bits are initialized to false (0). |
|
196 |
|
197 If \a size is less than the current size, bits are removed from |
|
198 the end. |
|
199 |
|
200 \sa size() |
|
201 */ |
|
202 void QBitArray::resize(int size) |
|
203 { |
|
204 if (!size) { |
|
205 d.resize(0); |
|
206 } else { |
|
207 int s = d.size(); |
|
208 d.resize(1 + (size+7)/8); |
|
209 uchar* c = reinterpret_cast<uchar*>(d.data()); |
|
210 if (size > (s << 3)) |
|
211 memset(c + s, 0, d.size() - s); |
|
212 else if ( size % 8) |
|
213 *(c+1+size/8) &= (1 << (size%8)) - 1; |
|
214 *c = d.size()*8 - size; |
|
215 } |
|
216 } |
|
217 |
|
218 /*! \fn bool QBitArray::isEmpty() const |
|
219 |
|
220 Returns true if this bit array has size 0; otherwise returns |
|
221 false. |
|
222 |
|
223 \sa size() |
|
224 */ |
|
225 |
|
226 /*! \fn bool QBitArray::isNull() const |
|
227 |
|
228 Returns true if this bit array is null; otherwise returns false. |
|
229 |
|
230 Example: |
|
231 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 5 |
|
232 |
|
233 Qt makes a distinction between null bit arrays and empty bit |
|
234 arrays for historical reasons. For most applications, what |
|
235 matters is whether or not a bit array contains any data, |
|
236 and this can be determined using isEmpty(). |
|
237 |
|
238 \sa isEmpty() |
|
239 */ |
|
240 |
|
241 /*! \fn bool QBitArray::fill(bool value, int size = -1) |
|
242 |
|
243 Sets every bit in the bit array to \a value, returning true if successful; |
|
244 otherwise returns false. If \a size is different from -1 (the default), |
|
245 the bit array is resized to \a size beforehand. |
|
246 |
|
247 Example: |
|
248 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 6 |
|
249 |
|
250 \sa resize() |
|
251 */ |
|
252 |
|
253 /*! |
|
254 \overload |
|
255 |
|
256 Sets bits at index positions \a begin up to and excluding \a end |
|
257 to \a value. |
|
258 |
|
259 \a begin and \a end must be a valid index position in the bit |
|
260 array (i.e., 0 <= \a begin <= size() and 0 <= \a end <= size()). |
|
261 */ |
|
262 |
|
263 void QBitArray::fill(bool value, int begin, int end) |
|
264 { |
|
265 while (begin < end && begin & 0x7) |
|
266 setBit(begin++, value); |
|
267 int len = end - begin; |
|
268 if (len <= 0) |
|
269 return; |
|
270 int s = len & ~0x7; |
|
271 uchar *c = reinterpret_cast<uchar*>(d.data()); |
|
272 memset(c + (begin >> 3) + 1, value ? 0xff : 0, s >> 3); |
|
273 begin += s; |
|
274 while (begin < end) |
|
275 setBit(begin++, value); |
|
276 } |
|
277 |
|
278 /*! \fn bool QBitArray::isDetached() const |
|
279 |
|
280 \internal |
|
281 */ |
|
282 |
|
283 /*! \fn void QBitArray::detach() |
|
284 |
|
285 \internal |
|
286 */ |
|
287 |
|
288 /*! \fn void QBitArray::clear() |
|
289 |
|
290 Clears the contents of the bit array and makes it empty. |
|
291 |
|
292 \sa resize(), isEmpty() |
|
293 */ |
|
294 |
|
295 /*! \fn void QBitArray::truncate(int pos) |
|
296 |
|
297 Truncates the bit array at index position \a pos. |
|
298 |
|
299 If \a pos is beyond the end of the array, nothing happens. |
|
300 |
|
301 \sa resize() |
|
302 */ |
|
303 |
|
304 /*! \fn bool QBitArray::toggleBit(int i) |
|
305 |
|
306 Inverts the value of the bit at index position \a i, returning the |
|
307 previous value of that bit as either true (if it was set) or false (if |
|
308 it was unset). |
|
309 |
|
310 If the previous value was 0, the new value will be 1. If the |
|
311 previous value was 1, the new value will be 0. |
|
312 |
|
313 \a i must be a valid index position in the bit array (i.e., 0 <= |
|
314 \a i < size()). |
|
315 |
|
316 \sa setBit(), clearBit() |
|
317 */ |
|
318 |
|
319 /*! \fn bool QBitArray::testBit(int i) const |
|
320 |
|
321 Returns true if the bit at index position \a i is 1; otherwise |
|
322 returns false. |
|
323 |
|
324 \a i must be a valid index position in the bit array (i.e., 0 <= |
|
325 \a i < size()). |
|
326 |
|
327 \sa setBit(), clearBit() |
|
328 */ |
|
329 |
|
330 /*! \fn bool QBitArray::setBit(int i) |
|
331 |
|
332 Sets the bit at index position \a i to 1. |
|
333 |
|
334 \a i must be a valid index position in the bit array (i.e., 0 <= |
|
335 \a i < size()). |
|
336 |
|
337 \sa clearBit(), toggleBit() |
|
338 */ |
|
339 |
|
340 /*! \fn void QBitArray::setBit(int i, bool value) |
|
341 |
|
342 \overload |
|
343 |
|
344 Sets the bit at index position \a i to \a value. |
|
345 */ |
|
346 |
|
347 /*! \fn void QBitArray::clearBit(int i) |
|
348 |
|
349 Sets the bit at index position \a i to 0. |
|
350 |
|
351 \a i must be a valid index position in the bit array (i.e., 0 <= |
|
352 \a i < size()). |
|
353 |
|
354 \sa setBit(), toggleBit() |
|
355 */ |
|
356 |
|
357 /*! \fn bool QBitArray::at(int i) const |
|
358 |
|
359 Returns the value of the bit at index position \a i. |
|
360 |
|
361 \a i must be a valid index position in the bit array (i.e., 0 <= |
|
362 \a i < size()). |
|
363 |
|
364 \sa operator[]() |
|
365 */ |
|
366 |
|
367 /*! \fn QBitRef QBitArray::operator[](int i) |
|
368 |
|
369 Returns the bit at index position \a i as a modifiable reference. |
|
370 |
|
371 \a i must be a valid index position in the bit array (i.e., 0 <= |
|
372 \a i < size()). |
|
373 |
|
374 Example: |
|
375 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 7 |
|
376 |
|
377 The return value is of type QBitRef, a helper class for QBitArray. |
|
378 When you get an object of type QBitRef, you can assign to |
|
379 it, and the assignment will apply to the bit in the QBitArray |
|
380 from which you got the reference. |
|
381 |
|
382 The functions testBit(), setBit(), and clearBit() are slightly |
|
383 faster. |
|
384 |
|
385 \sa at(), testBit(), setBit(), clearBit() |
|
386 */ |
|
387 |
|
388 /*! \fn bool QBitArray::operator[](int i) const |
|
389 |
|
390 \overload |
|
391 */ |
|
392 |
|
393 /*! \fn bool QBitArray::operator[](uint i) |
|
394 |
|
395 \overload |
|
396 */ |
|
397 |
|
398 /*! \fn bool QBitArray::operator[](uint i) const |
|
399 |
|
400 \overload |
|
401 */ |
|
402 |
|
403 /*! \fn QBitArray::QBitArray(const QBitArray &other) |
|
404 |
|
405 Constructs a copy of \a other. |
|
406 |
|
407 This operation takes \l{constant time}, because QBitArray is |
|
408 \l{implicitly shared}. This makes returning a QBitArray from a |
|
409 function very fast. If a shared instance is modified, it will be |
|
410 copied (copy-on-write), and that takes \l{linear time}. |
|
411 |
|
412 \sa operator=() |
|
413 */ |
|
414 |
|
415 /*! \fn QBitArray &QBitArray::operator=(const QBitArray &other) |
|
416 |
|
417 Assigns \a other to this bit array and returns a reference to |
|
418 this bit array. |
|
419 */ |
|
420 |
|
421 /*! \fn bool QBitArray::operator==(const QBitArray &other) const |
|
422 |
|
423 Returns true if \a other is equal to this bit array; otherwise |
|
424 returns false. |
|
425 |
|
426 \sa operator!=() |
|
427 */ |
|
428 |
|
429 /*! \fn bool QBitArray::operator!=(const QBitArray &other) const |
|
430 |
|
431 Returns true if \a other is not equal to this bit array; |
|
432 otherwise returns false. |
|
433 |
|
434 \sa operator==() |
|
435 */ |
|
436 |
|
437 /*! |
|
438 Performs the AND operation between all bits in this bit array and |
|
439 \a other. Assigns the result to this bit array, and returns a |
|
440 reference to it. |
|
441 |
|
442 The result has the length of the longest of the two bit arrays, |
|
443 with any missing bits (if one array is shorter than the other) |
|
444 taken to be 0. |
|
445 |
|
446 Example: |
|
447 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 8 |
|
448 |
|
449 \sa operator&(), operator|=(), operator^=(), operator~() |
|
450 */ |
|
451 |
|
452 QBitArray &QBitArray::operator&=(const QBitArray &other) |
|
453 { |
|
454 resize(qMax(size(), other.size())); |
|
455 uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1; |
|
456 const uchar *a2 = reinterpret_cast<const uchar*>(other.d.constData()) + 1; |
|
457 int n = other.d.size() -1 ; |
|
458 int p = d.size() - 1 - n; |
|
459 while (n-- > 0) |
|
460 *a1++ &= *a2++; |
|
461 while (p-- > 0) |
|
462 *a1++ = 0; |
|
463 return *this; |
|
464 } |
|
465 |
|
466 /*! |
|
467 Performs the OR operation between all bits in this bit array and |
|
468 \a other. Assigns the result to this bit array, and returns a |
|
469 reference to it. |
|
470 |
|
471 The result has the length of the longest of the two bit arrays, |
|
472 with any missing bits (if one array is shorter than the other) |
|
473 taken to be 0. |
|
474 |
|
475 Example: |
|
476 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 9 |
|
477 |
|
478 \sa operator|(), operator&=(), operator^=(), operator~() |
|
479 */ |
|
480 |
|
481 QBitArray &QBitArray::operator|=(const QBitArray &other) |
|
482 { |
|
483 resize(qMax(size(), other.size())); |
|
484 uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1; |
|
485 const uchar *a2 = reinterpret_cast<const uchar *>(other.d.constData()) + 1; |
|
486 int n = other.d.size() - 1; |
|
487 while (n-- > 0) |
|
488 *a1++ |= *a2++; |
|
489 return *this; |
|
490 } |
|
491 |
|
492 /*! |
|
493 Performs the XOR operation between all bits in this bit array and |
|
494 \a other. Assigns the result to this bit array, and returns a |
|
495 reference to it. |
|
496 |
|
497 The result has the length of the longest of the two bit arrays, |
|
498 with any missing bits (if one array is shorter than the other) |
|
499 taken to be 0. |
|
500 |
|
501 Example: |
|
502 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 10 |
|
503 |
|
504 \sa operator^(), operator&=(), operator|=(), operator~() |
|
505 */ |
|
506 |
|
507 QBitArray &QBitArray::operator^=(const QBitArray &other) |
|
508 { |
|
509 resize(qMax(size(), other.size())); |
|
510 uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1; |
|
511 const uchar *a2 = reinterpret_cast<const uchar *>(other.d.constData()) + 1; |
|
512 int n = other.d.size() - 1; |
|
513 while (n-- > 0) |
|
514 *a1++ ^= *a2++; |
|
515 return *this; |
|
516 } |
|
517 |
|
518 /*! |
|
519 Returns a bit array that contains the inverted bits of this bit |
|
520 array. |
|
521 |
|
522 Example: |
|
523 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 11 |
|
524 |
|
525 \sa operator&(), operator|(), operator^() |
|
526 */ |
|
527 |
|
528 QBitArray QBitArray::operator~() const |
|
529 { |
|
530 int sz = size(); |
|
531 QBitArray a(sz); |
|
532 const uchar *a1 = reinterpret_cast<const uchar *>(d.constData()) + 1; |
|
533 uchar *a2 = reinterpret_cast<uchar*>(a.d.data()) + 1; |
|
534 int n = d.size() - 1; |
|
535 |
|
536 while (n-- > 0) |
|
537 *a2++ = ~*a1++; |
|
538 |
|
539 if (sz && sz%8) |
|
540 *(a2-1) &= (1 << (sz%8)) - 1; |
|
541 return a; |
|
542 } |
|
543 |
|
544 /*! |
|
545 \relates QBitArray |
|
546 |
|
547 Returns a bit array that is the AND of the bit arrays \a a1 and \a |
|
548 a2. |
|
549 |
|
550 The result has the length of the longest of the two bit arrays, |
|
551 with any missing bits (if one array is shorter than the other) |
|
552 taken to be 0. |
|
553 |
|
554 Example: |
|
555 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 12 |
|
556 |
|
557 \sa QBitArray::operator&=(), operator|(), operator^() |
|
558 */ |
|
559 |
|
560 QBitArray operator&(const QBitArray &a1, const QBitArray &a2) |
|
561 { |
|
562 QBitArray tmp = a1; |
|
563 tmp &= a2; |
|
564 return tmp; |
|
565 } |
|
566 |
|
567 /*! |
|
568 \relates QBitArray |
|
569 |
|
570 Returns a bit array that is the OR of the bit arrays \a a1 and \a |
|
571 a2. |
|
572 |
|
573 The result has the length of the longest of the two bit arrays, |
|
574 with any missing bits (if one array is shorter than the other) |
|
575 taken to be 0. |
|
576 |
|
577 Example: |
|
578 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 13 |
|
579 |
|
580 \sa QBitArray::operator|=(), operator&(), operator^() |
|
581 */ |
|
582 |
|
583 QBitArray operator|(const QBitArray &a1, const QBitArray &a2) |
|
584 { |
|
585 QBitArray tmp = a1; |
|
586 tmp |= a2; |
|
587 return tmp; |
|
588 } |
|
589 |
|
590 /*! |
|
591 \relates QBitArray |
|
592 |
|
593 Returns a bit array that is the XOR of the bit arrays \a a1 and \a |
|
594 a2. |
|
595 |
|
596 The result has the length of the longest of the two bit arrays, |
|
597 with any missing bits (if one array is shorter than the other) |
|
598 taken to be 0. |
|
599 |
|
600 Example: |
|
601 \snippet doc/src/snippets/code/src_corelib_tools_qbitarray.cpp 14 |
|
602 |
|
603 \sa QBitArray::operator^=(), operator&(), operator|() |
|
604 */ |
|
605 |
|
606 QBitArray operator^(const QBitArray &a1, const QBitArray &a2) |
|
607 { |
|
608 QBitArray tmp = a1; |
|
609 tmp ^= a2; |
|
610 return tmp; |
|
611 } |
|
612 |
|
613 /*! |
|
614 \class QBitRef |
|
615 \reentrant |
|
616 \brief The QBitRef class is an internal class, used with QBitArray. |
|
617 |
|
618 \internal |
|
619 |
|
620 The QBitRef is required by the indexing [] operator on bit arrays. |
|
621 It is not for use in any other context. |
|
622 */ |
|
623 |
|
624 /*! \fn QBitRef::QBitRef (QBitArray& a, int i) |
|
625 |
|
626 Constructs a reference to element \a i in the QBitArray \a a. |
|
627 This is what QBitArray::operator[] constructs its return value |
|
628 with. |
|
629 */ |
|
630 |
|
631 /*! \fn QBitRef::operator bool() const |
|
632 |
|
633 Returns the value referenced by the QBitRef. |
|
634 */ |
|
635 |
|
636 /*! \fn bool QBitRef::operator!() const |
|
637 |
|
638 \internal |
|
639 */ |
|
640 |
|
641 /*! \fn QBitRef& QBitRef::operator= (const QBitRef& v) |
|
642 |
|
643 Sets the value referenced by the QBitRef to that referenced by |
|
644 QBitRef \a v. |
|
645 */ |
|
646 |
|
647 /*! \fn QBitRef& QBitRef::operator= (bool v) |
|
648 \overload |
|
649 |
|
650 Sets the value referenced by the QBitRef to \a v. |
|
651 */ |
|
652 |
|
653 |
|
654 /***************************************************************************** |
|
655 QBitArray stream functions |
|
656 *****************************************************************************/ |
|
657 |
|
658 #ifndef QT_NO_DATASTREAM |
|
659 /*! |
|
660 \relates QBitArray |
|
661 |
|
662 Writes bit array \a ba to stream \a out. |
|
663 |
|
664 \sa \link datastreamformat.html Format of the QDataStream operators \endlink |
|
665 */ |
|
666 |
|
667 QDataStream &operator<<(QDataStream &out, const QBitArray &ba) |
|
668 { |
|
669 quint32 len = ba.size(); |
|
670 out << len; |
|
671 if (len > 0) |
|
672 out.writeRawData(ba.d.constData() + 1, ba.d.size() - 1); |
|
673 return out; |
|
674 } |
|
675 |
|
676 /*! |
|
677 \relates QBitArray |
|
678 |
|
679 Reads a bit array into \a ba from stream \a in. |
|
680 |
|
681 \sa \link datastreamformat.html Format of the QDataStream operators \endlink |
|
682 */ |
|
683 |
|
684 QDataStream &operator>>(QDataStream &in, QBitArray &ba) |
|
685 { |
|
686 ba.clear(); |
|
687 quint32 len; |
|
688 in >> len; |
|
689 if (len == 0) { |
|
690 ba.clear(); |
|
691 return in; |
|
692 } |
|
693 |
|
694 const quint32 Step = 8 * 1024 * 1024; |
|
695 quint32 totalBytes = (len + 7) / 8; |
|
696 quint32 allocated = 0; |
|
697 |
|
698 while (allocated < totalBytes) { |
|
699 int blockSize = qMin(Step, totalBytes - allocated); |
|
700 ba.d.resize(allocated + blockSize + 1); |
|
701 if (in.readRawData(ba.d.data() + 1 + allocated, blockSize) != blockSize) { |
|
702 ba.clear(); |
|
703 in.setStatus(QDataStream::ReadPastEnd); |
|
704 return in; |
|
705 } |
|
706 allocated += blockSize; |
|
707 } |
|
708 |
|
709 int paddingMask = ~((0x1 << (len & 0x7)) - 1); |
|
710 if (paddingMask != ~0x0 && (ba.d.constData()[ba.d.size() - 1] & paddingMask)) { |
|
711 ba.clear(); |
|
712 in.setStatus(QDataStream::ReadCorruptData); |
|
713 return in; |
|
714 } |
|
715 |
|
716 *ba.d.data() = ba.d.size() * 8 - len; |
|
717 return in; |
|
718 } |
|
719 #endif // QT_NO_DATASTREAM |
|
720 |
|
721 /*! |
|
722 \fn DataPtr &QBitArray::data_ptr() |
|
723 \internal |
|
724 */ |
|
725 |
|
726 /*! |
|
727 \typedef QBitArray::DataPtr |
|
728 \internal |
|
729 */ |
|
730 |
|
731 QT_END_NAMESPACE |