|
1 /**************************************************************************** |
|
2 ** |
|
3 ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
4 ** All rights reserved. |
|
5 ** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 ** |
|
7 ** This file is part of the QtCore module of the Qt Toolkit. |
|
8 ** |
|
9 ** $QT_BEGIN_LICENSE:LGPL$ |
|
10 ** No Commercial Usage |
|
11 ** This file contains pre-release code and may not be distributed. |
|
12 ** You may use this file in accordance with the terms and conditions |
|
13 ** contained in the Technology Preview License Agreement accompanying |
|
14 ** this package. |
|
15 ** |
|
16 ** GNU Lesser General Public License Usage |
|
17 ** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 ** General Public License version 2.1 as published by the Free Software |
|
19 ** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 ** packaging of this file. Please review the following information to |
|
21 ** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 ** |
|
24 ** In addition, as a special exception, Nokia gives you certain additional |
|
25 ** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 ** |
|
28 ** If you have questions regarding the use of this file, please contact |
|
29 ** Nokia at qt-info@nokia.com. |
|
30 ** |
|
31 ** |
|
32 ** |
|
33 ** |
|
34 ** |
|
35 ** |
|
36 ** |
|
37 ** |
|
38 ** $QT_END_LICENSE$ |
|
39 ** |
|
40 ****************************************************************************/ |
|
41 |
|
42 #include "qregexp.h" |
|
43 |
|
44 #include "qalgorithms.h" |
|
45 #include "qbitarray.h" |
|
46 #include "qcache.h" |
|
47 #include "qdatastream.h" |
|
48 #include "qlist.h" |
|
49 #include "qmap.h" |
|
50 #include "qmutex.h" |
|
51 #include "qstring.h" |
|
52 #include "qstringlist.h" |
|
53 #include "qstringmatcher.h" |
|
54 #include "qvector.h" |
|
55 #include "private/qfunctions_p.h" |
|
56 |
|
57 #include <limits.h> |
|
58 |
|
59 QT_BEGIN_NAMESPACE |
|
60 |
|
61 int qFindString(const QChar *haystack, int haystackLen, int from, |
|
62 const QChar *needle, int needleLen, Qt::CaseSensitivity cs); |
|
63 |
|
64 // error strings for the regexp parser |
|
65 #define RXERR_OK QT_TRANSLATE_NOOP("QRegExp", "no error occurred") |
|
66 #define RXERR_DISABLED QT_TRANSLATE_NOOP("QRegExp", "disabled feature used") |
|
67 #define RXERR_CHARCLASS QT_TRANSLATE_NOOP("QRegExp", "bad char class syntax") |
|
68 #define RXERR_LOOKAHEAD QT_TRANSLATE_NOOP("QRegExp", "bad lookahead syntax") |
|
69 #define RXERR_REPETITION QT_TRANSLATE_NOOP("QRegExp", "bad repetition syntax") |
|
70 #define RXERR_OCTAL QT_TRANSLATE_NOOP("QRegExp", "invalid octal value") |
|
71 #define RXERR_LEFTDELIM QT_TRANSLATE_NOOP("QRegExp", "missing left delim") |
|
72 #define RXERR_END QT_TRANSLATE_NOOP("QRegExp", "unexpected end") |
|
73 #define RXERR_LIMIT QT_TRANSLATE_NOOP("QRegExp", "met internal limit") |
|
74 #define RXERR_INTERVAL QT_TRANSLATE_NOOP("QRegExp", "invalid interval") |
|
75 #define RXERR_CATEGORY QT_TRANSLATE_NOOP("QRegExp", "invalid category") |
|
76 |
|
77 /* |
|
78 WARNING! Be sure to read qregexp.tex before modifying this file. |
|
79 */ |
|
80 |
|
81 /*! |
|
82 \class QRegExp |
|
83 \reentrant |
|
84 \brief The QRegExp class provides pattern matching using regular expressions. |
|
85 |
|
86 \ingroup tools |
|
87 \ingroup shared |
|
88 |
|
89 \keyword regular expression |
|
90 |
|
91 A regular expression, or "regexp", is a pattern for matching |
|
92 substrings in a text. This is useful in many contexts, e.g., |
|
93 |
|
94 \table |
|
95 \row \i Validation |
|
96 \i A regexp can test whether a substring meets some criteria, |
|
97 e.g. is an integer or contains no whitespace. |
|
98 \row \i Searching |
|
99 \i A regexp provides more powerful pattern matching than |
|
100 simple substring matching, e.g., match one of the words |
|
101 \e{mail}, \e{letter} or \e{correspondence}, but none of the |
|
102 words \e{email}, \e{mailman}, \e{mailer}, \e{letterbox}, etc. |
|
103 \row \i Search and Replace |
|
104 \i A regexp can replace all occurrences of a substring with a |
|
105 different substring, e.g., replace all occurrences of \e{&} |
|
106 with \e{\&} except where the \e{&} is already followed by |
|
107 an \e{amp;}. |
|
108 \row \i String Splitting |
|
109 \i A regexp can be used to identify where a string should be |
|
110 split apart, e.g. splitting tab-delimited strings. |
|
111 \endtable |
|
112 |
|
113 A brief introduction to regexps is presented, a description of |
|
114 Qt's regexp language, some examples, and the function |
|
115 documentation itself. QRegExp is modeled on Perl's regexp |
|
116 language. It fully supports Unicode. QRegExp can also be used in a |
|
117 simpler, \e{wildcard mode} that is similar to the functionality |
|
118 found in command shells. The syntax rules used by QRegExp can be |
|
119 changed with setPatternSyntax(). In particular, the pattern syntax |
|
120 can be set to QRegExp::FixedString, which means the pattern to be |
|
121 matched is interpreted as a plain string, i.e., special characters |
|
122 (e.g., backslash) are not escaped. |
|
123 |
|
124 A good text on regexps is \e {Mastering Regular Expressions} |
|
125 (Third Edition) by Jeffrey E. F. Friedl, ISBN 0-596-52812-4. |
|
126 |
|
127 \tableofcontents |
|
128 |
|
129 \section1 Introduction |
|
130 |
|
131 Regexps are built up from expressions, quantifiers, and |
|
132 assertions. The simplest expression is a character, e.g. \bold{x} |
|
133 or \bold{5}. An expression can also be a set of characters |
|
134 enclosed in square brackets. \bold{[ABCD]} will match an \bold{A} |
|
135 or a \bold{B} or a \bold{C} or a \bold{D}. We can write this same |
|
136 expression as \bold{[A-D]}, and an experession to match any |
|
137 captital letter in the English alphabet is written as |
|
138 \bold{[A-Z]}. |
|
139 |
|
140 A quantifier specifies the number of occurrences of an expression |
|
141 that must be matched. \bold{x{1,1}} means match one and only one |
|
142 \bold{x}. \bold{x{1,5}} means match a sequence of \bold{x} |
|
143 characters that contains at least one \bold{x} but no more than |
|
144 five. |
|
145 |
|
146 Note that in general regexps cannot be used to check for balanced |
|
147 brackets or tags. For example, a regexp can be written to match an |
|
148 opening html \c{<b>} and its closing \c{</b>}, if the \c{<b>} tags |
|
149 are not nested, but if the \c{<b>} tags are nested, that same |
|
150 regexp will match an opening \c{<b>} tag with the wrong closing |
|
151 \c{</b>}. For the fragment \c{<b>bold <b>bolder</b></b>}, the |
|
152 first \c{<b>} would be matched with the first \c{</b>}, which is |
|
153 not correct. However, it is possible to write a regexp that will |
|
154 match nested brackets or tags correctly, but only if the number of |
|
155 nesting levels is fixed and known. If the number of nesting levels |
|
156 is not fixed and known, it is impossible to write a regexp that |
|
157 will not fail. |
|
158 |
|
159 Suppose we want a regexp to match integers in the range 0 to 99. |
|
160 At least one digit is required, so we start with the expression |
|
161 \bold{[0-9]{1,1}}, which matches a single digit exactly once. This |
|
162 regexp matches integers in the range 0 to 9. To match integers up |
|
163 to 99, increase the maximum number of occurrences to 2, so the |
|
164 regexp becomes \bold{[0-9]{1,2}}. This regexp satisfies the |
|
165 original requirement to match integers from 0 to 99, but it will |
|
166 also match integers that occur in the middle of strings. If we |
|
167 want the matched integer to be the whole string, we must use the |
|
168 anchor assertions, \bold{^} (caret) and \bold{$} (dollar). When |
|
169 \bold{^} is the first character in a regexp, it means the regexp |
|
170 must match from the beginning of the string. When \bold{$} is the |
|
171 last character of the regexp, it means the regexp must match to |
|
172 the end of the string. The regexp becomes \bold{^[0-9]{1,2}$}. |
|
173 Note that assertions, e.g. \bold{^} and \bold{$}, do not match |
|
174 characters but locations in the string. |
|
175 |
|
176 If you have seen regexps described elsewhere, they may have looked |
|
177 different from the ones shown here. This is because some sets of |
|
178 characters and some quantifiers are so common that they have been |
|
179 given special symbols to represent them. \bold{[0-9]} can be |
|
180 replaced with the symbol \bold{\\d}. The quantifier to match |
|
181 exactly one occurrence, \bold{{1,1}}, can be replaced with the |
|
182 expression itself, i.e. \bold{x{1,1}} is the same as \bold{x}. So |
|
183 our 0 to 99 matcher could be written as \bold{^\\d{1,2}$}. It can |
|
184 also be written \bold{^\\d\\d{0,1}$}, i.e. \e{From the start of |
|
185 the string, match a digit, followed immediately by 0 or 1 digits}. |
|
186 In practice, it would be written as \bold{^\\d\\d?$}. The \bold{?} |
|
187 is shorthand for the quantifier \bold{{0,1}}, i.e. 0 or 1 |
|
188 occurrences. \bold{?} makes an expression optional. The regexp |
|
189 \bold{^\\d\\d?$} means \e{From the beginning of the string, match |
|
190 one digit, followed immediately by 0 or 1 more digit, followed |
|
191 immediately by end of string}. |
|
192 |
|
193 To write a regexp that matches one of the words 'mail' \e or |
|
194 'letter' \e or 'correspondence' but does not match words that |
|
195 contain these words, e.g., 'email', 'mailman', 'mailer', and |
|
196 'letterbox', start with a regexp that matches 'mail'. Expressed |
|
197 fully, the regexp is \bold{m{1,1}a{1,1}i{1,1}l{1,1}}, but because |
|
198 a character expression is automatically quantified by |
|
199 \bold{{1,1}}, we can simplify the regexp to \bold{mail}, i.e., an |
|
200 'm' followed by an 'a' followed by an 'i' followed by an 'l'. Now |
|
201 we can use the vertical bar \bold{|}, which means \bold{or}, to |
|
202 include the other two words, so our regexp for matching any of the |
|
203 three words becomes \bold{mail|letter|correspondence}. Match |
|
204 'mail' \bold{or} 'letter' \bold{or} 'correspondence'. While this |
|
205 regexp will match one of the three words we want to match, it will |
|
206 also match words we don't want to match, e.g., 'email'. To |
|
207 prevent the regexp from matching unwanted words, we must tell it |
|
208 to begin and end the match at word boundaries. First we enclose |
|
209 our regexp in parentheses, \bold{(mail|letter|correspondence)}. |
|
210 Parentheses group expressions together, and they identify a part |
|
211 of the regexp that we wish to \l{capturing text}{capture}. |
|
212 Enclosing the expression in parentheses allows us to use it as a |
|
213 component in more complex regexps. It also allows us to examine |
|
214 which of the three words was actually matched. To force the match |
|
215 to begin and end on word boundaries, we enclose the regexp in |
|
216 \bold{\\b} \e{word boundary} assertions: |
|
217 \bold{\\b(mail|letter|correspondence)\\b}. Now the regexp means: |
|
218 \e{Match a word boundary, followed by the regexp in parentheses, |
|
219 followed by a word boundary}. The \bold{\\b} assertion matches a |
|
220 \e position in the regexp, not a \e character. A word boundary is |
|
221 any non-word character, e.g., a space, newline, or the beginning |
|
222 or ending of a string. |
|
223 |
|
224 If we want to replace ampersand characters with the HTML entity |
|
225 \bold{\&}, the regexp to match is simply \bold{\&}. But this |
|
226 regexp will also match ampersands that have already been converted |
|
227 to HTML entities. We want to replace only ampersands that are not |
|
228 already followed by \bold{amp;}. For this, we need the negative |
|
229 lookahead assertion, \bold{(?!}__\bold{)}. The regexp can then be |
|
230 written as \bold{\&(?!amp;)}, i.e. \e{Match an ampersand that is} |
|
231 \bold{not} \e{followed by} \bold{amp;}. |
|
232 |
|
233 If we want to count all the occurrences of 'Eric' and 'Eirik' in a |
|
234 string, two valid solutions are \bold{\\b(Eric|Eirik)\\b} and |
|
235 \bold{\\bEi?ri[ck]\\b}. The word boundary assertion '\\b' is |
|
236 required to avoid matching words that contain either name, |
|
237 e.g. 'Ericsson'. Note that the second regexp matches more |
|
238 spellings than we want: 'Eric', 'Erik', 'Eiric' and 'Eirik'. |
|
239 |
|
240 Some of the examples discussed above are implemented in the |
|
241 \link #code-examples code examples \endlink section. |
|
242 |
|
243 \target characters-and-abbreviations-for-sets-of-characters |
|
244 \section1 Characters and Abbreviations for Sets of Characters |
|
245 |
|
246 \table |
|
247 \header \i Element \i Meaning |
|
248 \row \i \bold{c} |
|
249 \i A character represents itself unless it has a special |
|
250 regexp meaning. e.g. \bold{c} matches the character \e c. |
|
251 \row \i \bold{\\c} |
|
252 \i A character that follows a backslash matches the character |
|
253 itself, except as specified below. e.g., To match a literal |
|
254 caret at the beginning of a string, write \bold{\\^}. |
|
255 \row \i \bold{\\a} |
|
256 \i Matches the ASCII bell (BEL, 0x07). |
|
257 \row \i \bold{\\f} |
|
258 \i Matches the ASCII form feed (FF, 0x0C). |
|
259 \row \i \bold{\\n} |
|
260 \i Matches the ASCII line feed (LF, 0x0A, Unix newline). |
|
261 \row \i \bold{\\r} |
|
262 \i Matches the ASCII carriage return (CR, 0x0D). |
|
263 \row \i \bold{\\t} |
|
264 \i Matches the ASCII horizontal tab (HT, 0x09). |
|
265 \row \i \bold{\\v} |
|
266 \i Matches the ASCII vertical tab (VT, 0x0B). |
|
267 \row \i \bold{\\x\e{hhhh}} |
|
268 \i Matches the Unicode character corresponding to the |
|
269 hexadecimal number \e{hhhh} (between 0x0000 and 0xFFFF). |
|
270 \row \i \bold{\\0\e{ooo}} (i.e., \\zero \e{ooo}) |
|
271 \i matches the ASCII/Latin1 character for the octal number |
|
272 \e{ooo} (between 0 and 0377). |
|
273 \row \i \bold{. (dot)} |
|
274 \i Matches any character (including newline). |
|
275 \row \i \bold{\\d} |
|
276 \i Matches a digit (QChar::isDigit()). |
|
277 \row \i \bold{\\D} |
|
278 \i Matches a non-digit. |
|
279 \row \i \bold{\\s} |
|
280 \i Matches a whitespace character (QChar::isSpace()). |
|
281 \row \i \bold{\\S} |
|
282 \i Matches a non-whitespace character. |
|
283 \row \i \bold{\\w} |
|
284 \i Matches a word character (QChar::isLetterOrNumber(), QChar::isMark(), or '_'). |
|
285 \row \i \bold{\\W} |
|
286 \i Matches a non-word character. |
|
287 \row \i \bold{\\\e{n}} |
|
288 \i The \e{n}-th \l backreference, e.g. \\1, \\2, etc. |
|
289 \endtable |
|
290 |
|
291 \bold{Note:} The C++ compiler transforms backslashes in strings. |
|
292 To include a \bold{\\} in a regexp, enter it twice, i.e. \c{\\}. |
|
293 To match the backslash character itself, enter it four times, i.e. |
|
294 \c{\\\\}. |
|
295 |
|
296 \target sets-of-characters |
|
297 \section1 Sets of Characters |
|
298 |
|
299 Square brackets mean match any character contained in the square |
|
300 brackets. The character set abbreviations described above can |
|
301 appear in a character set in square brackets. Except for the |
|
302 character set abbreviations and the following two exceptions, |
|
303 characters do not have special meanings in square brackets. |
|
304 |
|
305 \table |
|
306 \row \i \bold{^} |
|
307 |
|
308 \i The caret negates the character set if it occurs as the |
|
309 first character (i.e. immediately after the opening square |
|
310 bracket). \bold{[abc]} matches 'a' or 'b' or 'c', but |
|
311 \bold{[^abc]} matches anything \e but 'a' or 'b' or 'c'. |
|
312 |
|
313 \row \i \bold{-} |
|
314 |
|
315 \i The dash indicates a range of characters. \bold{[W-Z]} |
|
316 matches 'W' or 'X' or 'Y' or 'Z'. |
|
317 |
|
318 \endtable |
|
319 |
|
320 Using the predefined character set abbreviations is more portable |
|
321 than using character ranges across platforms and languages. For |
|
322 example, \bold{[0-9]} matches a digit in Western alphabets but |
|
323 \bold{\\d} matches a digit in \e any alphabet. |
|
324 |
|
325 Note: In other regexp documentation, sets of characters are often |
|
326 called "character classes". |
|
327 |
|
328 \target quantifiers |
|
329 \section1 Quantifiers |
|
330 |
|
331 By default, an expression is automatically quantified by |
|
332 \bold{{1,1}}, i.e. it should occur exactly once. In the following |
|
333 list, \bold{\e {E}} stands for expression. An expression is a |
|
334 character, or an abbreviation for a set of characters, or a set of |
|
335 characters in square brackets, or an expression in parentheses. |
|
336 |
|
337 \table |
|
338 \row \i \bold{\e {E}?} |
|
339 |
|
340 \i Matches zero or one occurrences of \e E. This quantifier |
|
341 means \e{The previous expression is optional}, because it |
|
342 will match whether or not the expression is found. \bold{\e |
|
343 {E}?} is the same as \bold{\e {E}{0,1}}. e.g., \bold{dents?} |
|
344 matches 'dent' or 'dents'. |
|
345 |
|
346 \row \i \bold{\e {E}+} |
|
347 |
|
348 \i Matches one or more occurrences of \e E. \bold{\e {E}+} is |
|
349 the same as \bold{\e {E}{1,}}. e.g., \bold{0+} matches '0', |
|
350 '00', '000', etc. |
|
351 |
|
352 \row \i \bold{\e {E}*} |
|
353 |
|
354 \i Matches zero or more occurrences of \e E. It is the same |
|
355 as \bold{\e {E}{0,}}. The \bold{*} quantifier is often used |
|
356 in error where \bold{+} should be used. For example, if |
|
357 \bold{\\s*$} is used in an expression to match strings that |
|
358 end in whitespace, it will match every string because |
|
359 \bold{\\s*$} means \e{Match zero or more whitespaces followed |
|
360 by end of string}. The correct regexp to match strings that |
|
361 have at least one trailing whitespace character is |
|
362 \bold{\\s+$}. |
|
363 |
|
364 \row \i \bold{\e {E}{n}} |
|
365 |
|
366 \i Matches exactly \e n occurrences of \e E. \bold{\e {E}{n}} |
|
367 is the same as repeating \e E \e n times. For example, |
|
368 \bold{x{5}} is the same as \bold{xxxxx}. It is also the same |
|
369 as \bold{\e {E}{n,n}}, e.g. \bold{x{5,5}}. |
|
370 |
|
371 \row \i \bold{\e {E}{n,}} |
|
372 \i Matches at least \e n occurrences of \e E. |
|
373 |
|
374 \row \i \bold{\e {E}{,m}} |
|
375 \i Matches at most \e m occurrences of \e E. \bold{\e {E}{,m}} |
|
376 is the same as \bold{\e {E}{0,m}}. |
|
377 |
|
378 \row \i \bold{\e {E}{n,m}} |
|
379 \i Matches at least \e n and at most \e m occurrences of \e E. |
|
380 \endtable |
|
381 |
|
382 To apply a quantifier to more than just the preceding character, |
|
383 use parentheses to group characters together in an expression. For |
|
384 example, \bold{tag+} matches a 't' followed by an 'a' followed by |
|
385 at least one 'g', whereas \bold{(tag)+} matches at least one |
|
386 occurrence of 'tag'. |
|
387 |
|
388 Note: Quantifiers are normally "greedy". They always match as much |
|
389 text as they can. For example, \bold{0+} matches the first zero it |
|
390 finds and all the consecutive zeros after the first zero. Applied |
|
391 to '20005', it matches'2\underline{000}5'. Quantifiers can be made |
|
392 non-greedy, see setMinimal(). |
|
393 |
|
394 \target capturing parentheses |
|
395 \target backreferences |
|
396 \section1 Capturing Text |
|
397 |
|
398 Parentheses allow us to group elements together so that we can |
|
399 quantify and capture them. For example if we have the expression |
|
400 \bold{mail|letter|correspondence} that matches a string we know |
|
401 that \e one of the words matched but not which one. Using |
|
402 parentheses allows us to "capture" whatever is matched within |
|
403 their bounds, so if we used \bold{(mail|letter|correspondence)} |
|
404 and matched this regexp against the string "I sent you some email" |
|
405 we can use the cap() or capturedTexts() functions to extract the |
|
406 matched characters, in this case 'mail'. |
|
407 |
|
408 We can use captured text within the regexp itself. To refer to the |
|
409 captured text we use \e backreferences which are indexed from 1, |
|
410 the same as for cap(). For example we could search for duplicate |
|
411 words in a string using \bold{\\b(\\w+)\\W+\\1\\b} which means match a |
|
412 word boundary followed by one or more word characters followed by |
|
413 one or more non-word characters followed by the same text as the |
|
414 first parenthesized expression followed by a word boundary. |
|
415 |
|
416 If we want to use parentheses purely for grouping and not for |
|
417 capturing we can use the non-capturing syntax, e.g. |
|
418 \bold{(?:green|blue)}. Non-capturing parentheses begin '(?:' and |
|
419 end ')'. In this example we match either 'green' or 'blue' but we |
|
420 do not capture the match so we only know whether or not we matched |
|
421 but not which color we actually found. Using non-capturing |
|
422 parentheses is more efficient than using capturing parentheses |
|
423 since the regexp engine has to do less book-keeping. |
|
424 |
|
425 Both capturing and non-capturing parentheses may be nested. |
|
426 |
|
427 \target greedy quantifiers |
|
428 |
|
429 For historical reasons, quantifiers (e.g. \bold{*}) that apply to |
|
430 capturing parentheses are more "greedy" than other quantifiers. |
|
431 For example, \bold{a*(a)*} will match "aaa" with cap(1) == "aaa". |
|
432 This behavior is different from what other regexp engines do |
|
433 (notably, Perl). To obtain a more intuitive capturing behavior, |
|
434 specify QRegExp::RegExp2 to the QRegExp constructor or call |
|
435 setPatternSyntax(QRegExp::RegExp2). |
|
436 |
|
437 \target cap_in_a_loop |
|
438 |
|
439 When the number of matches cannot be determined in advance, a |
|
440 common idiom is to use cap() in a loop. For example: |
|
441 |
|
442 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 0 |
|
443 |
|
444 \target assertions |
|
445 \section1 Assertions |
|
446 |
|
447 Assertions make some statement about the text at the point where |
|
448 they occur in the regexp but they do not match any characters. In |
|
449 the following list \bold{\e {E}} stands for any expression. |
|
450 |
|
451 \table |
|
452 \row \i \bold{^} |
|
453 \i The caret signifies the beginning of the string. If you |
|
454 wish to match a literal \c{^} you must escape it by |
|
455 writing \c{\\^}. For example, \bold{^#include} will only |
|
456 match strings which \e begin with the characters '#include'. |
|
457 (When the caret is the first character of a character set it |
|
458 has a special meaning, see \link #sets-of-characters Sets of |
|
459 Characters \endlink.) |
|
460 |
|
461 \row \i \bold{$} |
|
462 \i The dollar signifies the end of the string. For example |
|
463 \bold{\\d\\s*$} will match strings which end with a digit |
|
464 optionally followed by whitespace. If you wish to match a |
|
465 literal \c{$} you must escape it by writing |
|
466 \c{\\$}. |
|
467 |
|
468 \row \i \bold{\\b} |
|
469 \i A word boundary. For example the regexp |
|
470 \bold{\\bOK\\b} means match immediately after a word |
|
471 boundary (e.g. start of string or whitespace) the letter 'O' |
|
472 then the letter 'K' immediately before another word boundary |
|
473 (e.g. end of string or whitespace). But note that the |
|
474 assertion does not actually match any whitespace so if we |
|
475 write \bold{(\\bOK\\b)} and we have a match it will only |
|
476 contain 'OK' even if the string is "It's \underline{OK} now". |
|
477 |
|
478 \row \i \bold{\\B} |
|
479 \i A non-word boundary. This assertion is true wherever |
|
480 \bold{\\b} is false. For example if we searched for |
|
481 \bold{\\Bon\\B} in "Left on" the match would fail (space |
|
482 and end of string aren't non-word boundaries), but it would |
|
483 match in "t\underline{on}ne". |
|
484 |
|
485 \row \i \bold{(?=\e E)} |
|
486 \i Positive lookahead. This assertion is true if the |
|
487 expression matches at this point in the regexp. For example, |
|
488 \bold{const(?=\\s+char)} matches 'const' whenever it is |
|
489 followed by 'char', as in 'static \underline{const} char *'. |
|
490 (Compare with \bold{const\\s+char}, which matches 'static |
|
491 \underline{const char} *'.) |
|
492 |
|
493 \row \i \bold{(?!\e E)} |
|
494 \i Negative lookahead. This assertion is true if the |
|
495 expression does not match at this point in the regexp. For |
|
496 example, \bold{const(?!\\s+char)} matches 'const' \e except |
|
497 when it is followed by 'char'. |
|
498 \endtable |
|
499 |
|
500 \keyword QRegExp wildcard matching |
|
501 \section1 Wildcard Matching |
|
502 |
|
503 Most command shells such as \e bash or \e cmd.exe support "file |
|
504 globbing", the ability to identify a group of files by using |
|
505 wildcards. The setPatternSyntax() function is used to switch |
|
506 between regexp and wildcard mode. Wildcard matching is much |
|
507 simpler than full regexps and has only four features: |
|
508 |
|
509 \table |
|
510 \row \i \bold{c} |
|
511 \i Any character represents itself apart from those mentioned |
|
512 below. Thus \bold{c} matches the character \e c. |
|
513 \row \i \bold{?} |
|
514 \i Matches any single character. It is the same as |
|
515 \bold{.} in full regexps. |
|
516 \row \i \bold{*} |
|
517 \i Matches zero or more of any characters. It is the |
|
518 same as \bold{.*} in full regexps. |
|
519 \row \i \bold{[...]} |
|
520 \i Sets of characters can be represented in square brackets, |
|
521 similar to full regexps. Within the character class, like |
|
522 outside, backslash has no special meaning. |
|
523 \endtable |
|
524 |
|
525 In the mode Wildcard, the wildcard characters cannot be |
|
526 escaped. In the mode WildcardUnix, the character '\' escapes the |
|
527 wildcard. |
|
528 |
|
529 For example if we are in wildcard mode and have strings which |
|
530 contain filenames we could identify HTML files with \bold{*.html}. |
|
531 This will match zero or more characters followed by a dot followed |
|
532 by 'h', 't', 'm' and 'l'. |
|
533 |
|
534 To test a string against a wildcard expression, use exactMatch(). |
|
535 For example: |
|
536 |
|
537 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 1 |
|
538 |
|
539 \target perl-users |
|
540 \section1 Notes for Perl Users |
|
541 |
|
542 Most of the character class abbreviations supported by Perl are |
|
543 supported by QRegExp, see \link |
|
544 #characters-and-abbreviations-for-sets-of-characters characters |
|
545 and abbreviations for sets of characters \endlink. |
|
546 |
|
547 In QRegExp, apart from within character classes, \c{^} always |
|
548 signifies the start of the string, so carets must always be |
|
549 escaped unless used for that purpose. In Perl the meaning of caret |
|
550 varies automagically depending on where it occurs so escaping it |
|
551 is rarely necessary. The same applies to \c{$} which in |
|
552 QRegExp always signifies the end of the string. |
|
553 |
|
554 QRegExp's quantifiers are the same as Perl's greedy quantifiers |
|
555 (but see the \l{greedy quantifiers}{note above}). Non-greedy |
|
556 matching cannot be applied to individual quantifiers, but can be |
|
557 applied to all the quantifiers in the pattern. For example, to |
|
558 match the Perl regexp \bold{ro+?m} requires: |
|
559 |
|
560 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 2 |
|
561 |
|
562 The equivalent of Perl's \c{/i} option is |
|
563 setCaseSensitivity(Qt::CaseInsensitive). |
|
564 |
|
565 Perl's \c{/g} option can be emulated using a \l{#cap_in_a_loop}{loop}. |
|
566 |
|
567 In QRegExp \bold{.} matches any character, therefore all QRegExp |
|
568 regexps have the equivalent of Perl's \c{/s} option. QRegExp |
|
569 does not have an equivalent to Perl's \c{/m} option, but this |
|
570 can be emulated in various ways for example by splitting the input |
|
571 into lines or by looping with a regexp that searches for newlines. |
|
572 |
|
573 Because QRegExp is string oriented, there are no \\A, \\Z, or \\z |
|
574 assertions. The \\G assertion is not supported but can be emulated |
|
575 in a loop. |
|
576 |
|
577 Perl's $& is cap(0) or capturedTexts()[0]. There are no QRegExp |
|
578 equivalents for $`, $' or $+. Perl's capturing variables, $1, $2, |
|
579 ... correspond to cap(1) or capturedTexts()[1], cap(2) or |
|
580 capturedTexts()[2], etc. |
|
581 |
|
582 To substitute a pattern use QString::replace(). |
|
583 |
|
584 Perl's extended \c{/x} syntax is not supported, nor are |
|
585 directives, e.g. (?i), or regexp comments, e.g. (?#comment). On |
|
586 the other hand, C++'s rules for literal strings can be used to |
|
587 achieve the same: |
|
588 |
|
589 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 3 |
|
590 |
|
591 Both zero-width positive and zero-width negative lookahead |
|
592 assertions (?=pattern) and (?!pattern) are supported with the same |
|
593 syntax as Perl. Perl's lookbehind assertions, "independent" |
|
594 subexpressions and conditional expressions are not supported. |
|
595 |
|
596 Non-capturing parentheses are also supported, with the same |
|
597 (?:pattern) syntax. |
|
598 |
|
599 See QString::split() and QStringList::join() for equivalents |
|
600 to Perl's split and join functions. |
|
601 |
|
602 Note: because C++ transforms \\'s they must be written \e twice in |
|
603 code, e.g. \bold{\\b} must be written \bold{\\\\b}. |
|
604 |
|
605 \target code-examples |
|
606 \section1 Code Examples |
|
607 |
|
608 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 4 |
|
609 |
|
610 The third string matches '\underline{6}'. This is a simple validation |
|
611 regexp for integers in the range 0 to 99. |
|
612 |
|
613 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 5 |
|
614 |
|
615 The second string matches '\underline{This_is-OK}'. We've used the |
|
616 character set abbreviation '\\S' (non-whitespace) and the anchors |
|
617 to match strings which contain no whitespace. |
|
618 |
|
619 In the following example we match strings containing 'mail' or |
|
620 'letter' or 'correspondence' but only match whole words i.e. not |
|
621 'email' |
|
622 |
|
623 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 6 |
|
624 |
|
625 The second string matches "Please write the \underline{letter}". The |
|
626 word 'letter' is also captured (because of the parentheses). We |
|
627 can see what text we've captured like this: |
|
628 |
|
629 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 7 |
|
630 |
|
631 This will capture the text from the first set of capturing |
|
632 parentheses (counting capturing left parentheses from left to |
|
633 right). The parentheses are counted from 1 since cap(0) is the |
|
634 whole matched regexp (equivalent to '&' in most regexp engines). |
|
635 |
|
636 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 8 |
|
637 |
|
638 Here we've passed the QRegExp to QString's replace() function to |
|
639 replace the matched text with new text. |
|
640 |
|
641 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 9 |
|
642 |
|
643 We've used the indexIn() function to repeatedly match the regexp in |
|
644 the string. Note that instead of moving forward by one character |
|
645 at a time \c pos++ we could have written \c {pos += |
|
646 rx.matchedLength()} to skip over the already matched string. The |
|
647 count will equal 3, matching 'One \underline{Eric} another |
|
648 \underline{Eirik}, and an Ericsson. How many Eiriks, \underline{Eric}?'; it |
|
649 doesn't match 'Ericsson' or 'Eiriks' because they are not bounded |
|
650 by non-word boundaries. |
|
651 |
|
652 One common use of regexps is to split lines of delimited data into |
|
653 their component fields. |
|
654 |
|
655 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 10 |
|
656 |
|
657 In this example our input lines have the format company name, web |
|
658 address and country. Unfortunately the regexp is rather long and |
|
659 not very versatile -- the code will break if we add any more |
|
660 fields. A simpler and better solution is to look for the |
|
661 separator, '\\t' in this case, and take the surrounding text. The |
|
662 QString::split() function can take a separator string or regexp |
|
663 as an argument and split a string accordingly. |
|
664 |
|
665 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 11 |
|
666 |
|
667 Here field[0] is the company, field[1] the web address and so on. |
|
668 |
|
669 To imitate the matching of a shell we can use wildcard mode. |
|
670 |
|
671 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 12 |
|
672 |
|
673 Wildcard matching can be convenient because of its simplicity, but |
|
674 any wildcard regexp can be defined using full regexps, e.g. |
|
675 \bold{.*\.html$}. Notice that we can't match both \c .html and \c |
|
676 .htm files with a wildcard unless we use \bold{*.htm*} which will |
|
677 also match 'test.html.bak'. A full regexp gives us the precision |
|
678 we need, \bold{.*\\.html?$}. |
|
679 |
|
680 QRegExp can match case insensitively using setCaseSensitivity(), |
|
681 and can use non-greedy matching, see setMinimal(). By |
|
682 default QRegExp uses full regexps but this can be changed with |
|
683 setWildcard(). Searching can be forward with indexIn() or backward |
|
684 with lastIndexIn(). Captured text can be accessed using |
|
685 capturedTexts() which returns a string list of all captured |
|
686 strings, or using cap() which returns the captured string for the |
|
687 given index. The pos() function takes a match index and returns |
|
688 the position in the string where the match was made (or -1 if |
|
689 there was no match). |
|
690 |
|
691 \sa QString, QStringList, QRegExpValidator, QSortFilterProxyModel, |
|
692 {tools/regexp}{Regular Expression Example} |
|
693 */ |
|
694 |
|
695 #if defined(Q_OS_VXWORKS) && defined(EOS) |
|
696 # undef EOS |
|
697 #endif |
|
698 |
|
699 const int NumBadChars = 64; |
|
700 #define BadChar(ch) ((ch).unicode() % NumBadChars) |
|
701 |
|
702 const int NoOccurrence = INT_MAX; |
|
703 const int EmptyCapture = INT_MAX; |
|
704 const int InftyLen = INT_MAX; |
|
705 const int InftyRep = 1025; |
|
706 const int EOS = -1; |
|
707 |
|
708 static bool isWord(QChar ch) |
|
709 { |
|
710 return ch.isLetterOrNumber() || ch.isMark() || ch == QLatin1Char('_'); |
|
711 } |
|
712 |
|
713 /* |
|
714 Merges two vectors of ints and puts the result into the first |
|
715 one. |
|
716 */ |
|
717 static void mergeInto(QVector<int> *a, const QVector<int> &b) |
|
718 { |
|
719 int asize = a->size(); |
|
720 int bsize = b.size(); |
|
721 if (asize == 0) { |
|
722 *a = b; |
|
723 #ifndef QT_NO_REGEXP_OPTIM |
|
724 } else if (bsize == 1 && a->at(asize - 1) < b.at(0)) { |
|
725 a->resize(asize + 1); |
|
726 (*a)[asize] = b.at(0); |
|
727 #endif |
|
728 } else if (bsize >= 1) { |
|
729 int csize = asize + bsize; |
|
730 QVector<int> c(csize); |
|
731 int i = 0, j = 0, k = 0; |
|
732 while (i < asize) { |
|
733 if (j < bsize) { |
|
734 if (a->at(i) == b.at(j)) { |
|
735 ++i; |
|
736 --csize; |
|
737 } else if (a->at(i) < b.at(j)) { |
|
738 c[k++] = a->at(i++); |
|
739 } else { |
|
740 c[k++] = b.at(j++); |
|
741 } |
|
742 } else { |
|
743 memcpy(c.data() + k, a->constData() + i, (asize - i) * sizeof(int)); |
|
744 break; |
|
745 } |
|
746 } |
|
747 c.resize(csize); |
|
748 if (j < bsize) |
|
749 memcpy(c.data() + k, b.constData() + j, (bsize - j) * sizeof(int)); |
|
750 *a = c; |
|
751 } |
|
752 } |
|
753 |
|
754 #ifndef QT_NO_REGEXP_WILDCARD |
|
755 /* |
|
756 Translates a wildcard pattern to an equivalent regular expression |
|
757 pattern (e.g., *.cpp to .*\.cpp). |
|
758 |
|
759 If enableEscaping is true, it is possible to escape the wildcard |
|
760 characters with \ |
|
761 */ |
|
762 static QString wc2rx(const QString &wc_str, const bool enableEscaping) |
|
763 { |
|
764 const int wclen = wc_str.length(); |
|
765 QString rx; |
|
766 int i = 0; |
|
767 bool isEscaping = false; // the previous character is '\' |
|
768 const QChar *wc = wc_str.unicode(); |
|
769 |
|
770 while (i < wclen) { |
|
771 const QChar c = wc[i++]; |
|
772 switch (c.unicode()) { |
|
773 case '\\': |
|
774 if (enableEscaping) { |
|
775 if (isEscaping) { |
|
776 rx += QLatin1String("\\\\"); |
|
777 } // we insert the \\ later if necessary |
|
778 if (i+1 == wclen) { // the end |
|
779 rx += QLatin1String("\\\\"); |
|
780 } |
|
781 } else { |
|
782 rx += QLatin1String("\\\\"); |
|
783 } |
|
784 isEscaping = true; |
|
785 break; |
|
786 case '*': |
|
787 if (isEscaping) { |
|
788 rx += QLatin1String("\\*"); |
|
789 isEscaping = false; |
|
790 } else { |
|
791 rx += QLatin1String(".*"); |
|
792 } |
|
793 break; |
|
794 case '?': |
|
795 if (isEscaping) { |
|
796 rx += QLatin1String("\\?"); |
|
797 isEscaping = false; |
|
798 } else { |
|
799 rx += QLatin1Char('.'); |
|
800 } |
|
801 |
|
802 break; |
|
803 case '$': |
|
804 case '(': |
|
805 case ')': |
|
806 case '+': |
|
807 case '.': |
|
808 case '^': |
|
809 case '{': |
|
810 case '|': |
|
811 case '}': |
|
812 if (isEscaping) { |
|
813 isEscaping = false; |
|
814 rx += QLatin1String("\\\\"); |
|
815 } |
|
816 rx += QLatin1Char('\\'); |
|
817 rx += c; |
|
818 break; |
|
819 case '[': |
|
820 if (isEscaping) { |
|
821 isEscaping = false; |
|
822 rx += QLatin1String("\\["); |
|
823 } else { |
|
824 rx += c; |
|
825 if (wc[i] == QLatin1Char('^')) |
|
826 rx += wc[i++]; |
|
827 if (i < wclen) { |
|
828 if (rx[i] == QLatin1Char(']')) |
|
829 rx += wc[i++]; |
|
830 while (i < wclen && wc[i] != QLatin1Char(']')) { |
|
831 if (wc[i] == QLatin1Char('\\')) |
|
832 rx += QLatin1Char('\\'); |
|
833 rx += wc[i++]; |
|
834 } |
|
835 } |
|
836 } |
|
837 break; |
|
838 |
|
839 case ']': |
|
840 if(isEscaping){ |
|
841 isEscaping = false; |
|
842 rx += QLatin1String("\\"); |
|
843 } |
|
844 rx += c; |
|
845 break; |
|
846 |
|
847 default: |
|
848 if(isEscaping){ |
|
849 isEscaping = false; |
|
850 rx += QLatin1String("\\\\"); |
|
851 } |
|
852 rx += c; |
|
853 } |
|
854 } |
|
855 return rx; |
|
856 } |
|
857 #endif |
|
858 |
|
859 static int caretIndex(int offset, QRegExp::CaretMode caretMode) |
|
860 { |
|
861 if (caretMode == QRegExp::CaretAtZero) { |
|
862 return 0; |
|
863 } else if (caretMode == QRegExp::CaretAtOffset) { |
|
864 return offset; |
|
865 } else { // QRegExp::CaretWontMatch |
|
866 return -1; |
|
867 } |
|
868 } |
|
869 |
|
870 /* |
|
871 The QRegExpEngineKey struct uniquely identifies an engine. |
|
872 */ |
|
873 struct QRegExpEngineKey |
|
874 { |
|
875 QString pattern; |
|
876 QRegExp::PatternSyntax patternSyntax; |
|
877 Qt::CaseSensitivity cs; |
|
878 |
|
879 inline QRegExpEngineKey(const QString &pattern, QRegExp::PatternSyntax patternSyntax, |
|
880 Qt::CaseSensitivity cs) |
|
881 : pattern(pattern), patternSyntax(patternSyntax), cs(cs) {} |
|
882 |
|
883 inline void clear() { |
|
884 pattern.clear(); |
|
885 patternSyntax = QRegExp::RegExp; |
|
886 cs = Qt::CaseSensitive; |
|
887 } |
|
888 }; |
|
889 |
|
890 Q_STATIC_GLOBAL_OPERATOR bool operator==(const QRegExpEngineKey &key1, const QRegExpEngineKey &key2) |
|
891 { |
|
892 return key1.pattern == key2.pattern && key1.patternSyntax == key2.patternSyntax |
|
893 && key1.cs == key2.cs; |
|
894 } |
|
895 |
|
896 class QRegExpEngine; |
|
897 |
|
898 //Q_DECLARE_TYPEINFO(QVector<int>, Q_MOVABLE_TYPE); |
|
899 |
|
900 /* |
|
901 This is the engine state during matching. |
|
902 */ |
|
903 struct QRegExpMatchState |
|
904 { |
|
905 const QChar *in; // a pointer to the input string data |
|
906 int pos; // the current position in the string |
|
907 int caretPos; |
|
908 int len; // the length of the input string |
|
909 bool minimal; // minimal matching? |
|
910 int *bigArray; // big array holding the data for the next pointers |
|
911 int *inNextStack; // is state is nextStack? |
|
912 int *curStack; // stack of current states |
|
913 int *nextStack; // stack of next states |
|
914 int *curCapBegin; // start of current states' captures |
|
915 int *nextCapBegin; // start of next states' captures |
|
916 int *curCapEnd; // end of current states' captures |
|
917 int *nextCapEnd; // end of next states' captures |
|
918 int *tempCapBegin; // start of temporary captures |
|
919 int *tempCapEnd; // end of temporary captures |
|
920 int *capBegin; // start of captures for a next state |
|
921 int *capEnd; // end of captures for a next state |
|
922 int *slideTab; // bump-along slide table for bad-character heuristic |
|
923 int *captured; // what match() returned last |
|
924 int slideTabSize; // size of slide table |
|
925 int capturedSize; |
|
926 #ifndef QT_NO_REGEXP_BACKREF |
|
927 QList<QVector<int> > sleeping; // list of back-reference sleepers |
|
928 #endif |
|
929 int matchLen; // length of match |
|
930 int oneTestMatchedLen; // length of partial match |
|
931 |
|
932 const QRegExpEngine *eng; |
|
933 |
|
934 inline QRegExpMatchState() : bigArray(0), captured(0) {} |
|
935 inline ~QRegExpMatchState() { free(bigArray); } |
|
936 |
|
937 void drain() { free(bigArray); bigArray = 0; captured = 0; } // to save memory |
|
938 void prepareForMatch(QRegExpEngine *eng); |
|
939 void match(const QChar *str, int len, int pos, bool minimal, |
|
940 bool oneTest, int caretIndex); |
|
941 bool matchHere(); |
|
942 bool testAnchor(int i, int a, const int *capBegin); |
|
943 }; |
|
944 |
|
945 /* |
|
946 The struct QRegExpAutomatonState represents one state in a modified NFA. The |
|
947 input characters matched are stored in the state instead of on |
|
948 the transitions, something possible for an automaton |
|
949 constructed from a regular expression. |
|
950 */ |
|
951 struct QRegExpAutomatonState |
|
952 { |
|
953 #ifndef QT_NO_REGEXP_CAPTURE |
|
954 int atom; // which atom does this state belong to? |
|
955 #endif |
|
956 int match; // what does it match? (see CharClassBit and BackRefBit) |
|
957 QVector<int> outs; // out-transitions |
|
958 QMap<int, int> reenter; // atoms reentered when transiting out |
|
959 QMap<int, int> anchors; // anchors met when transiting out |
|
960 |
|
961 inline QRegExpAutomatonState() { } |
|
962 #ifndef QT_NO_REGEXP_CAPTURE |
|
963 inline QRegExpAutomatonState(int a, int m) |
|
964 : atom(a), match(m) { } |
|
965 #else |
|
966 inline QRegExpAutomatonState(int m) |
|
967 : match(m) { } |
|
968 #endif |
|
969 }; |
|
970 |
|
971 Q_DECLARE_TYPEINFO(QRegExpAutomatonState, Q_MOVABLE_TYPE); |
|
972 |
|
973 /* |
|
974 The struct QRegExpCharClassRange represents a range of characters (e.g., |
|
975 [0-9] denotes range 48 to 57). |
|
976 */ |
|
977 struct QRegExpCharClassRange |
|
978 { |
|
979 ushort from; // 48 |
|
980 ushort len; // 10 |
|
981 }; |
|
982 |
|
983 Q_DECLARE_TYPEINFO(QRegExpCharClassRange, Q_PRIMITIVE_TYPE); |
|
984 |
|
985 #ifndef QT_NO_REGEXP_CAPTURE |
|
986 /* |
|
987 The struct QRegExpAtom represents one node in the hierarchy of regular |
|
988 expression atoms. |
|
989 */ |
|
990 struct QRegExpAtom |
|
991 { |
|
992 enum { NoCapture = -1, OfficialCapture = -2, UnofficialCapture = -3 }; |
|
993 |
|
994 int parent; // index of parent in array of atoms |
|
995 int capture; // index of capture, from 1 to ncap - 1 |
|
996 }; |
|
997 |
|
998 Q_DECLARE_TYPEINFO(QRegExpAtom, Q_PRIMITIVE_TYPE); |
|
999 #endif |
|
1000 |
|
1001 struct QRegExpLookahead; |
|
1002 |
|
1003 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
1004 /* |
|
1005 The struct QRegExpAnchorAlternation represents a pair of anchors with |
|
1006 OR semantics. |
|
1007 */ |
|
1008 struct QRegExpAnchorAlternation |
|
1009 { |
|
1010 int a; // this anchor... |
|
1011 int b; // ...or this one |
|
1012 }; |
|
1013 |
|
1014 Q_DECLARE_TYPEINFO(QRegExpAnchorAlternation, Q_PRIMITIVE_TYPE); |
|
1015 #endif |
|
1016 |
|
1017 #ifndef QT_NO_REGEXP_CCLASS |
|
1018 /* |
|
1019 The class QRegExpCharClass represents a set of characters, such as can |
|
1020 be found in regular expressions (e.g., [a-z] denotes the set |
|
1021 {a, b, ..., z}). |
|
1022 */ |
|
1023 class QRegExpCharClass |
|
1024 { |
|
1025 public: |
|
1026 QRegExpCharClass(); |
|
1027 inline QRegExpCharClass(const QRegExpCharClass &cc) { operator=(cc); } |
|
1028 |
|
1029 QRegExpCharClass &operator=(const QRegExpCharClass &cc); |
|
1030 |
|
1031 void clear(); |
|
1032 bool negative() const { return n; } |
|
1033 void setNegative(bool negative); |
|
1034 void addCategories(int cats); |
|
1035 void addRange(ushort from, ushort to); |
|
1036 void addSingleton(ushort ch) { addRange(ch, ch); } |
|
1037 |
|
1038 bool in(QChar ch) const; |
|
1039 #ifndef QT_NO_REGEXP_OPTIM |
|
1040 const QVector<int> &firstOccurrence() const { return occ1; } |
|
1041 #endif |
|
1042 |
|
1043 #if defined(QT_DEBUG) |
|
1044 void dump() const; |
|
1045 #endif |
|
1046 |
|
1047 private: |
|
1048 int c; // character classes |
|
1049 QVector<QRegExpCharClassRange> r; // character ranges |
|
1050 bool n; // negative? |
|
1051 #ifndef QT_NO_REGEXP_OPTIM |
|
1052 QVector<int> occ1; // first-occurrence array |
|
1053 #endif |
|
1054 }; |
|
1055 #else |
|
1056 struct QRegExpCharClass |
|
1057 { |
|
1058 int dummy; |
|
1059 |
|
1060 #ifndef QT_NO_REGEXP_OPTIM |
|
1061 QRegExpCharClass() { occ1.fill(0, NumBadChars); } |
|
1062 |
|
1063 const QVector<int> &firstOccurrence() const { return occ1; } |
|
1064 QVector<int> occ1; |
|
1065 #endif |
|
1066 }; |
|
1067 #endif |
|
1068 |
|
1069 Q_DECLARE_TYPEINFO(QRegExpCharClass, Q_MOVABLE_TYPE); |
|
1070 |
|
1071 /* |
|
1072 The QRegExpEngine class encapsulates a modified nondeterministic |
|
1073 finite automaton (NFA). |
|
1074 */ |
|
1075 class QRegExpEngine |
|
1076 { |
|
1077 public: |
|
1078 QRegExpEngine(Qt::CaseSensitivity cs, bool greedyQuantifiers) |
|
1079 : cs(cs), greedyQuantifiers(greedyQuantifiers) { setup(); } |
|
1080 |
|
1081 QRegExpEngine(const QRegExpEngineKey &key); |
|
1082 ~QRegExpEngine(); |
|
1083 |
|
1084 bool isValid() const { return valid; } |
|
1085 const QString &errorString() const { return yyError; } |
|
1086 int numCaptures() const { return officialncap; } |
|
1087 |
|
1088 int createState(QChar ch); |
|
1089 int createState(const QRegExpCharClass &cc); |
|
1090 #ifndef QT_NO_REGEXP_BACKREF |
|
1091 int createState(int bref); |
|
1092 #endif |
|
1093 |
|
1094 void addCatTransitions(const QVector<int> &from, const QVector<int> &to); |
|
1095 #ifndef QT_NO_REGEXP_CAPTURE |
|
1096 void addPlusTransitions(const QVector<int> &from, const QVector<int> &to, int atom); |
|
1097 #endif |
|
1098 |
|
1099 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
1100 int anchorAlternation(int a, int b); |
|
1101 int anchorConcatenation(int a, int b); |
|
1102 #else |
|
1103 int anchorAlternation(int a, int b) { return a & b; } |
|
1104 int anchorConcatenation(int a, int b) { return a | b; } |
|
1105 #endif |
|
1106 void addAnchors(int from, int to, int a); |
|
1107 |
|
1108 #ifndef QT_NO_REGEXP_OPTIM |
|
1109 void heuristicallyChooseHeuristic(); |
|
1110 #endif |
|
1111 |
|
1112 #if defined(QT_DEBUG) |
|
1113 void dump() const; |
|
1114 #endif |
|
1115 |
|
1116 QAtomicInt ref; |
|
1117 |
|
1118 private: |
|
1119 enum { CharClassBit = 0x10000, BackRefBit = 0x20000 }; |
|
1120 enum { InitialState = 0, FinalState = 1 }; |
|
1121 |
|
1122 void setup(); |
|
1123 int setupState(int match); |
|
1124 |
|
1125 /* |
|
1126 Let's hope that 13 lookaheads and 14 back-references are |
|
1127 enough. |
|
1128 */ |
|
1129 enum { MaxLookaheads = 13, MaxBackRefs = 14 }; |
|
1130 enum { Anchor_Dollar = 0x00000001, Anchor_Caret = 0x00000002, Anchor_Word = 0x00000004, |
|
1131 Anchor_NonWord = 0x00000008, Anchor_FirstLookahead = 0x00000010, |
|
1132 Anchor_BackRef1Empty = Anchor_FirstLookahead << MaxLookaheads, |
|
1133 Anchor_BackRef0Empty = Anchor_BackRef1Empty >> 1, |
|
1134 Anchor_Alternation = unsigned(Anchor_BackRef1Empty) << MaxBackRefs, |
|
1135 |
|
1136 Anchor_LookaheadMask = (Anchor_FirstLookahead - 1) ^ |
|
1137 ((Anchor_FirstLookahead << MaxLookaheads) - 1) }; |
|
1138 #ifndef QT_NO_REGEXP_CAPTURE |
|
1139 int startAtom(bool officialCapture); |
|
1140 void finishAtom(int atom, bool needCapture); |
|
1141 #endif |
|
1142 |
|
1143 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1144 int addLookahead(QRegExpEngine *eng, bool negative); |
|
1145 #endif |
|
1146 |
|
1147 #ifndef QT_NO_REGEXP_OPTIM |
|
1148 bool goodStringMatch(QRegExpMatchState &matchState) const; |
|
1149 bool badCharMatch(QRegExpMatchState &matchState) const; |
|
1150 #else |
|
1151 bool bruteMatch(QRegExpMatchState &matchState) const; |
|
1152 #endif |
|
1153 |
|
1154 QVector<QRegExpAutomatonState> s; // array of states |
|
1155 #ifndef QT_NO_REGEXP_CAPTURE |
|
1156 QVector<QRegExpAtom> f; // atom hierarchy |
|
1157 int nf; // number of atoms |
|
1158 int cf; // current atom |
|
1159 QVector<int> captureForOfficialCapture; |
|
1160 #endif |
|
1161 int officialncap; // number of captures, seen from the outside |
|
1162 int ncap; // number of captures, seen from the inside |
|
1163 #ifndef QT_NO_REGEXP_CCLASS |
|
1164 QVector<QRegExpCharClass> cl; // array of character classes |
|
1165 #endif |
|
1166 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1167 QVector<QRegExpLookahead *> ahead; // array of lookaheads |
|
1168 #endif |
|
1169 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
1170 QVector<QRegExpAnchorAlternation> aa; // array of (a, b) pairs of anchors |
|
1171 #endif |
|
1172 #ifndef QT_NO_REGEXP_OPTIM |
|
1173 bool caretAnchored; // does the regexp start with ^? |
|
1174 bool trivial; // is the good-string all that needs to match? |
|
1175 #endif |
|
1176 bool valid; // is the regular expression valid? |
|
1177 Qt::CaseSensitivity cs; // case sensitive? |
|
1178 bool greedyQuantifiers; // RegExp2? |
|
1179 bool xmlSchemaExtensions; |
|
1180 #ifndef QT_NO_REGEXP_BACKREF |
|
1181 int nbrefs; // number of back-references |
|
1182 #endif |
|
1183 |
|
1184 #ifndef QT_NO_REGEXP_OPTIM |
|
1185 bool useGoodStringHeuristic; // use goodStringMatch? otherwise badCharMatch |
|
1186 |
|
1187 int goodEarlyStart; // the index where goodStr can first occur in a match |
|
1188 int goodLateStart; // the index where goodStr can last occur in a match |
|
1189 QString goodStr; // the string that any match has to contain |
|
1190 |
|
1191 int minl; // the minimum length of a match |
|
1192 QVector<int> occ1; // first-occurrence array |
|
1193 #endif |
|
1194 |
|
1195 /* |
|
1196 The class Box is an abstraction for a regular expression |
|
1197 fragment. It can also be seen as one node in the syntax tree of |
|
1198 a regular expression with synthetized attributes. |
|
1199 |
|
1200 Its interface is ugly for performance reasons. |
|
1201 */ |
|
1202 class Box |
|
1203 { |
|
1204 public: |
|
1205 Box(QRegExpEngine *engine); |
|
1206 Box(const Box &b) { operator=(b); } |
|
1207 |
|
1208 Box &operator=(const Box &b); |
|
1209 |
|
1210 void clear() { operator=(Box(eng)); } |
|
1211 void set(QChar ch); |
|
1212 void set(const QRegExpCharClass &cc); |
|
1213 #ifndef QT_NO_REGEXP_BACKREF |
|
1214 void set(int bref); |
|
1215 #endif |
|
1216 |
|
1217 void cat(const Box &b); |
|
1218 void orx(const Box &b); |
|
1219 void plus(int atom); |
|
1220 void opt(); |
|
1221 void catAnchor(int a); |
|
1222 #ifndef QT_NO_REGEXP_OPTIM |
|
1223 void setupHeuristics(); |
|
1224 #endif |
|
1225 |
|
1226 #if defined(QT_DEBUG) |
|
1227 void dump() const; |
|
1228 #endif |
|
1229 |
|
1230 private: |
|
1231 void addAnchorsToEngine(const Box &to) const; |
|
1232 |
|
1233 QRegExpEngine *eng; // the automaton under construction |
|
1234 QVector<int> ls; // the left states (firstpos) |
|
1235 QVector<int> rs; // the right states (lastpos) |
|
1236 QMap<int, int> lanchors; // the left anchors |
|
1237 QMap<int, int> ranchors; // the right anchors |
|
1238 int skipanchors; // the anchors to match if the box is skipped |
|
1239 |
|
1240 #ifndef QT_NO_REGEXP_OPTIM |
|
1241 int earlyStart; // the index where str can first occur |
|
1242 int lateStart; // the index where str can last occur |
|
1243 QString str; // a string that has to occur in any match |
|
1244 QString leftStr; // a string occurring at the left of this box |
|
1245 QString rightStr; // a string occurring at the right of this box |
|
1246 int maxl; // the maximum length of this box (possibly InftyLen) |
|
1247 #endif |
|
1248 |
|
1249 int minl; // the minimum length of this box |
|
1250 #ifndef QT_NO_REGEXP_OPTIM |
|
1251 QVector<int> occ1; // first-occurrence array |
|
1252 #endif |
|
1253 }; |
|
1254 |
|
1255 friend class Box; |
|
1256 |
|
1257 void setupCategoriesRangeMap(); |
|
1258 |
|
1259 /* |
|
1260 This is the lexical analyzer for regular expressions. |
|
1261 */ |
|
1262 enum { Tok_Eos, Tok_Dollar, Tok_LeftParen, Tok_MagicLeftParen, Tok_PosLookahead, |
|
1263 Tok_NegLookahead, Tok_RightParen, Tok_CharClass, Tok_Caret, Tok_Quantifier, Tok_Bar, |
|
1264 Tok_Word, Tok_NonWord, Tok_Char = 0x10000, Tok_BackRef = 0x20000 }; |
|
1265 int getChar(); |
|
1266 int getEscape(); |
|
1267 #ifndef QT_NO_REGEXP_INTERVAL |
|
1268 int getRep(int def); |
|
1269 #endif |
|
1270 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1271 void skipChars(int n); |
|
1272 #endif |
|
1273 void error(const char *msg); |
|
1274 void startTokenizer(const QChar *rx, int len); |
|
1275 int getToken(); |
|
1276 |
|
1277 const QChar *yyIn; // a pointer to the input regular expression pattern |
|
1278 int yyPos0; // the position of yyTok in the input pattern |
|
1279 int yyPos; // the position of the next character to read |
|
1280 int yyLen; // the length of yyIn |
|
1281 int yyCh; // the last character read |
|
1282 QScopedPointer<QRegExpCharClass> yyCharClass; // attribute for Tok_CharClass tokens |
|
1283 int yyMinRep; // attribute for Tok_Quantifier |
|
1284 int yyMaxRep; // ditto |
|
1285 QString yyError; // syntax error or overflow during parsing? |
|
1286 |
|
1287 /* |
|
1288 This is the syntactic analyzer for regular expressions. |
|
1289 */ |
|
1290 int parse(const QChar *rx, int len); |
|
1291 void parseAtom(Box *box); |
|
1292 void parseFactor(Box *box); |
|
1293 void parseTerm(Box *box); |
|
1294 void parseExpression(Box *box); |
|
1295 |
|
1296 int yyTok; // the last token read |
|
1297 bool yyMayCapture; // set this to false to disable capturing |
|
1298 QHash<QByteArray, QPair<int, int> > categoriesRangeMap; // fast lookup hash for xml schema extensions |
|
1299 |
|
1300 friend struct QRegExpMatchState; |
|
1301 }; |
|
1302 |
|
1303 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1304 /* |
|
1305 The struct QRegExpLookahead represents a lookahead a la Perl (e.g., |
|
1306 (?=foo) and (?!bar)). |
|
1307 */ |
|
1308 struct QRegExpLookahead |
|
1309 { |
|
1310 QRegExpEngine *eng; // NFA representing the embedded regular expression |
|
1311 bool neg; // negative lookahead? |
|
1312 |
|
1313 inline QRegExpLookahead(QRegExpEngine *eng0, bool neg0) |
|
1314 : eng(eng0), neg(neg0) { } |
|
1315 inline ~QRegExpLookahead() { delete eng; } |
|
1316 }; |
|
1317 #endif |
|
1318 |
|
1319 /*! \internal |
|
1320 convert the pattern string to the RegExp syntax. |
|
1321 |
|
1322 This is also used by QScriptEngine::newRegExp to convert to a pattern that JavaScriptCore can understan |
|
1323 */ |
|
1324 Q_CORE_EXPORT QString qt_regexp_toCanonical(const QString &pattern, QRegExp::PatternSyntax patternSyntax) |
|
1325 { |
|
1326 switch (patternSyntax) { |
|
1327 #ifndef QT_NO_REGEXP_WILDCARD |
|
1328 case QRegExp::Wildcard: |
|
1329 return wc2rx(pattern, false); |
|
1330 break; |
|
1331 case QRegExp::WildcardUnix: |
|
1332 return wc2rx(pattern, true); |
|
1333 break; |
|
1334 #endif |
|
1335 case QRegExp::FixedString: |
|
1336 return QRegExp::escape(pattern); |
|
1337 break; |
|
1338 case QRegExp::W3CXmlSchema11: |
|
1339 default: |
|
1340 return pattern; |
|
1341 } |
|
1342 } |
|
1343 |
|
1344 QRegExpEngine::QRegExpEngine(const QRegExpEngineKey &key) |
|
1345 : cs(key.cs), greedyQuantifiers(key.patternSyntax == QRegExp::RegExp2), |
|
1346 xmlSchemaExtensions(key.patternSyntax == QRegExp::W3CXmlSchema11) |
|
1347 { |
|
1348 setup(); |
|
1349 |
|
1350 QString rx = qt_regexp_toCanonical(key.pattern, key.patternSyntax); |
|
1351 |
|
1352 valid = (parse(rx.unicode(), rx.length()) == rx.length()); |
|
1353 if (!valid) { |
|
1354 #ifndef QT_NO_REGEXP_OPTIM |
|
1355 trivial = false; |
|
1356 #endif |
|
1357 error(RXERR_LEFTDELIM); |
|
1358 } |
|
1359 } |
|
1360 |
|
1361 QRegExpEngine::~QRegExpEngine() |
|
1362 { |
|
1363 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1364 qDeleteAll(ahead); |
|
1365 #endif |
|
1366 } |
|
1367 |
|
1368 void QRegExpMatchState::prepareForMatch(QRegExpEngine *eng) |
|
1369 { |
|
1370 /* |
|
1371 We use one QVector<int> for all the big data used a lot in |
|
1372 matchHere() and friends. |
|
1373 */ |
|
1374 int ns = eng->s.size(); // number of states |
|
1375 int ncap = eng->ncap; |
|
1376 #ifndef QT_NO_REGEXP_OPTIM |
|
1377 int newSlideTabSize = qMax(eng->minl + 1, 16); |
|
1378 #else |
|
1379 int newSlideTabSize = 0; |
|
1380 #endif |
|
1381 int numCaptures = eng->numCaptures(); |
|
1382 int newCapturedSize = 2 + 2 * numCaptures; |
|
1383 bigArray = q_check_ptr((int *)realloc(bigArray, ((3 + 4 * ncap) * ns + 4 * ncap + newSlideTabSize + newCapturedSize)*sizeof(int))); |
|
1384 |
|
1385 // set all internal variables only _after_ bigArray is realloc'ed |
|
1386 // to prevent a broken regexp in oom case |
|
1387 |
|
1388 slideTabSize = newSlideTabSize; |
|
1389 capturedSize = newCapturedSize; |
|
1390 inNextStack = bigArray; |
|
1391 memset(inNextStack, -1, ns * sizeof(int)); |
|
1392 curStack = inNextStack + ns; |
|
1393 nextStack = inNextStack + 2 * ns; |
|
1394 |
|
1395 curCapBegin = inNextStack + 3 * ns; |
|
1396 nextCapBegin = curCapBegin + ncap * ns; |
|
1397 curCapEnd = curCapBegin + 2 * ncap * ns; |
|
1398 nextCapEnd = curCapBegin + 3 * ncap * ns; |
|
1399 |
|
1400 tempCapBegin = curCapBegin + 4 * ncap * ns; |
|
1401 tempCapEnd = tempCapBegin + ncap; |
|
1402 capBegin = tempCapBegin + 2 * ncap; |
|
1403 capEnd = tempCapBegin + 3 * ncap; |
|
1404 |
|
1405 slideTab = tempCapBegin + 4 * ncap; |
|
1406 captured = slideTab + slideTabSize; |
|
1407 memset(captured, -1, capturedSize*sizeof(int)); |
|
1408 this->eng = eng; |
|
1409 } |
|
1410 |
|
1411 /* |
|
1412 Tries to match in str and returns an array of (begin, length) pairs |
|
1413 for captured text. If there is no match, all pairs are (-1, -1). |
|
1414 */ |
|
1415 void QRegExpMatchState::match(const QChar *str0, int len0, int pos0, |
|
1416 bool minimal0, bool oneTest, int caretIndex) |
|
1417 { |
|
1418 bool matched = false; |
|
1419 QChar char_null; |
|
1420 |
|
1421 #ifndef QT_NO_REGEXP_OPTIM |
|
1422 if (eng->trivial && !oneTest) { |
|
1423 pos = qFindString(str0, len0, pos0, eng->goodStr.unicode(), eng->goodStr.length(), eng->cs); |
|
1424 matchLen = eng->goodStr.length(); |
|
1425 matched = (pos != -1); |
|
1426 } else |
|
1427 #endif |
|
1428 { |
|
1429 in = str0; |
|
1430 if (in == 0) |
|
1431 in = &char_null; |
|
1432 pos = pos0; |
|
1433 caretPos = caretIndex; |
|
1434 len = len0; |
|
1435 minimal = minimal0; |
|
1436 matchLen = 0; |
|
1437 oneTestMatchedLen = 0; |
|
1438 |
|
1439 if (eng->valid && pos >= 0 && pos <= len) { |
|
1440 #ifndef QT_NO_REGEXP_OPTIM |
|
1441 if (oneTest) { |
|
1442 matched = matchHere(); |
|
1443 } else { |
|
1444 if (pos <= len - eng->minl) { |
|
1445 if (eng->caretAnchored) { |
|
1446 matched = matchHere(); |
|
1447 } else if (eng->useGoodStringHeuristic) { |
|
1448 matched = eng->goodStringMatch(*this); |
|
1449 } else { |
|
1450 matched = eng->badCharMatch(*this); |
|
1451 } |
|
1452 } |
|
1453 } |
|
1454 #else |
|
1455 matched = oneTest ? matchHere() : eng->bruteMatch(*this); |
|
1456 #endif |
|
1457 } |
|
1458 } |
|
1459 |
|
1460 if (matched) { |
|
1461 int *c = captured; |
|
1462 *c++ = pos; |
|
1463 *c++ = matchLen; |
|
1464 |
|
1465 int numCaptures = (capturedSize - 2) >> 1; |
|
1466 #ifndef QT_NO_REGEXP_CAPTURE |
|
1467 for (int i = 0; i < numCaptures; ++i) { |
|
1468 int j = eng->captureForOfficialCapture.at(i); |
|
1469 int len = capEnd[j] - capBegin[j]; |
|
1470 *c++ = (len > 0) ? pos + capBegin[j] : 0; |
|
1471 *c++ = len; |
|
1472 } |
|
1473 #endif |
|
1474 } else { |
|
1475 // we rely on 2's complement here |
|
1476 memset(captured, -1, capturedSize * sizeof(int)); |
|
1477 } |
|
1478 } |
|
1479 |
|
1480 /* |
|
1481 The three following functions add one state to the automaton and |
|
1482 return the number of the state. |
|
1483 */ |
|
1484 |
|
1485 int QRegExpEngine::createState(QChar ch) |
|
1486 { |
|
1487 return setupState(ch.unicode()); |
|
1488 } |
|
1489 |
|
1490 int QRegExpEngine::createState(const QRegExpCharClass &cc) |
|
1491 { |
|
1492 #ifndef QT_NO_REGEXP_CCLASS |
|
1493 int n = cl.size(); |
|
1494 cl += QRegExpCharClass(cc); |
|
1495 return setupState(CharClassBit | n); |
|
1496 #else |
|
1497 Q_UNUSED(cc); |
|
1498 return setupState(CharClassBit); |
|
1499 #endif |
|
1500 } |
|
1501 |
|
1502 #ifndef QT_NO_REGEXP_BACKREF |
|
1503 int QRegExpEngine::createState(int bref) |
|
1504 { |
|
1505 if (bref > nbrefs) { |
|
1506 nbrefs = bref; |
|
1507 if (nbrefs > MaxBackRefs) { |
|
1508 error(RXERR_LIMIT); |
|
1509 return 0; |
|
1510 } |
|
1511 } |
|
1512 return setupState(BackRefBit | bref); |
|
1513 } |
|
1514 #endif |
|
1515 |
|
1516 /* |
|
1517 The two following functions add a transition between all pairs of |
|
1518 states (i, j) where i is found in from, and j is found in to. |
|
1519 |
|
1520 Cat-transitions are distinguished from plus-transitions for |
|
1521 capturing. |
|
1522 */ |
|
1523 |
|
1524 void QRegExpEngine::addCatTransitions(const QVector<int> &from, const QVector<int> &to) |
|
1525 { |
|
1526 for (int i = 0; i < from.size(); i++) |
|
1527 mergeInto(&s[from.at(i)].outs, to); |
|
1528 } |
|
1529 |
|
1530 #ifndef QT_NO_REGEXP_CAPTURE |
|
1531 void QRegExpEngine::addPlusTransitions(const QVector<int> &from, const QVector<int> &to, int atom) |
|
1532 { |
|
1533 for (int i = 0; i < from.size(); i++) { |
|
1534 QRegExpAutomatonState &st = s[from.at(i)]; |
|
1535 const QVector<int> oldOuts = st.outs; |
|
1536 mergeInto(&st.outs, to); |
|
1537 if (f.at(atom).capture != QRegExpAtom::NoCapture) { |
|
1538 for (int j = 0; j < to.size(); j++) { |
|
1539 // ### st.reenter.contains(to.at(j)) check looks suspicious |
|
1540 if (!st.reenter.contains(to.at(j)) && |
|
1541 qBinaryFind(oldOuts.constBegin(), oldOuts.constEnd(), to.at(j)) == oldOuts.end()) |
|
1542 st.reenter.insert(to.at(j), atom); |
|
1543 } |
|
1544 } |
|
1545 } |
|
1546 } |
|
1547 #endif |
|
1548 |
|
1549 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
1550 /* |
|
1551 Returns an anchor that means a OR b. |
|
1552 */ |
|
1553 int QRegExpEngine::anchorAlternation(int a, int b) |
|
1554 { |
|
1555 if (((a & b) == a || (a & b) == b) && ((a | b) & Anchor_Alternation) == 0) |
|
1556 return a & b; |
|
1557 |
|
1558 int n = aa.size(); |
|
1559 #ifndef QT_NO_REGEXP_OPTIM |
|
1560 if (n > 0 && aa.at(n - 1).a == a && aa.at(n - 1).b == b) |
|
1561 return Anchor_Alternation | (n - 1); |
|
1562 #endif |
|
1563 |
|
1564 QRegExpAnchorAlternation element = {a, b}; |
|
1565 aa.append(element); |
|
1566 return Anchor_Alternation | n; |
|
1567 } |
|
1568 |
|
1569 /* |
|
1570 Returns an anchor that means a AND b. |
|
1571 */ |
|
1572 int QRegExpEngine::anchorConcatenation(int a, int b) |
|
1573 { |
|
1574 if (((a | b) & Anchor_Alternation) == 0) |
|
1575 return a | b; |
|
1576 if ((b & Anchor_Alternation) != 0) |
|
1577 qSwap(a, b); |
|
1578 |
|
1579 int aprime = anchorConcatenation(aa.at(a ^ Anchor_Alternation).a, b); |
|
1580 int bprime = anchorConcatenation(aa.at(a ^ Anchor_Alternation).b, b); |
|
1581 return anchorAlternation(aprime, bprime); |
|
1582 } |
|
1583 #endif |
|
1584 |
|
1585 /* |
|
1586 Adds anchor a on a transition caracterised by its from state and |
|
1587 its to state. |
|
1588 */ |
|
1589 void QRegExpEngine::addAnchors(int from, int to, int a) |
|
1590 { |
|
1591 QRegExpAutomatonState &st = s[from]; |
|
1592 if (st.anchors.contains(to)) |
|
1593 a = anchorAlternation(st.anchors.value(to), a); |
|
1594 st.anchors.insert(to, a); |
|
1595 } |
|
1596 |
|
1597 #ifndef QT_NO_REGEXP_OPTIM |
|
1598 /* |
|
1599 This function chooses between the good-string and the bad-character |
|
1600 heuristics. It computes two scores and chooses the heuristic with |
|
1601 the highest score. |
|
1602 |
|
1603 Here are some common-sense constraints on the scores that should be |
|
1604 respected if the formulas are ever modified: (1) If goodStr is |
|
1605 empty, the good-string heuristic scores 0. (2) If the regular |
|
1606 expression is trivial, the good-string heuristic should be used. |
|
1607 (3) If the search is case insensitive, the good-string heuristic |
|
1608 should be used, unless it scores 0. (Case insensitivity turns all |
|
1609 entries of occ1 to 0.) (4) If (goodLateStart - goodEarlyStart) is |
|
1610 big, the good-string heuristic should score less. |
|
1611 */ |
|
1612 void QRegExpEngine::heuristicallyChooseHeuristic() |
|
1613 { |
|
1614 if (minl == 0) { |
|
1615 useGoodStringHeuristic = false; |
|
1616 } else if (trivial) { |
|
1617 useGoodStringHeuristic = true; |
|
1618 } else { |
|
1619 /* |
|
1620 Magic formula: The good string has to constitute a good |
|
1621 proportion of the minimum-length string, and appear at a |
|
1622 more-or-less known index. |
|
1623 */ |
|
1624 int goodStringScore = (64 * goodStr.length() / minl) - |
|
1625 (goodLateStart - goodEarlyStart); |
|
1626 /* |
|
1627 Less magic formula: We pick some characters at random, and |
|
1628 check whether they are good or bad. |
|
1629 */ |
|
1630 int badCharScore = 0; |
|
1631 int step = qMax(1, NumBadChars / 32); |
|
1632 for (int i = 1; i < NumBadChars; i += step) { |
|
1633 if (occ1.at(i) == NoOccurrence) |
|
1634 badCharScore += minl; |
|
1635 else |
|
1636 badCharScore += occ1.at(i); |
|
1637 } |
|
1638 badCharScore /= minl; |
|
1639 useGoodStringHeuristic = (goodStringScore > badCharScore); |
|
1640 } |
|
1641 } |
|
1642 #endif |
|
1643 |
|
1644 #if defined(QT_DEBUG) |
|
1645 void QRegExpEngine::dump() const |
|
1646 { |
|
1647 int i, j; |
|
1648 qDebug("Case %ssensitive engine", cs ? "" : "in"); |
|
1649 qDebug(" States"); |
|
1650 for (i = 0; i < s.size(); i++) { |
|
1651 qDebug(" %d%s", i, i == InitialState ? " (initial)" : i == FinalState ? " (final)" : ""); |
|
1652 #ifndef QT_NO_REGEXP_CAPTURE |
|
1653 if (nf > 0) |
|
1654 qDebug(" in atom %d", s[i].atom); |
|
1655 #endif |
|
1656 int m = s[i].match; |
|
1657 if ((m & CharClassBit) != 0) { |
|
1658 qDebug(" match character class %d", m ^ CharClassBit); |
|
1659 #ifndef QT_NO_REGEXP_CCLASS |
|
1660 cl[m ^ CharClassBit].dump(); |
|
1661 #else |
|
1662 qDebug(" negative character class"); |
|
1663 #endif |
|
1664 } else if ((m & BackRefBit) != 0) { |
|
1665 qDebug(" match back-reference %d", m ^ BackRefBit); |
|
1666 } else if (m >= 0x20 && m <= 0x7e) { |
|
1667 qDebug(" match 0x%.4x (%c)", m, m); |
|
1668 } else { |
|
1669 qDebug(" match 0x%.4x", m); |
|
1670 } |
|
1671 for (j = 0; j < s[i].outs.size(); j++) { |
|
1672 int next = s[i].outs[j]; |
|
1673 qDebug(" -> %d", next); |
|
1674 if (s[i].reenter.contains(next)) |
|
1675 qDebug(" [reenter %d]", s[i].reenter[next]); |
|
1676 if (s[i].anchors.value(next) != 0) |
|
1677 qDebug(" [anchors 0x%.8x]", s[i].anchors[next]); |
|
1678 } |
|
1679 } |
|
1680 #ifndef QT_NO_REGEXP_CAPTURE |
|
1681 if (nf > 0) { |
|
1682 qDebug(" Atom Parent Capture"); |
|
1683 for (i = 0; i < nf; i++) { |
|
1684 if (f[i].capture == QRegExpAtom::NoCapture) { |
|
1685 qDebug(" %6d %6d nil", i, f[i].parent); |
|
1686 } else { |
|
1687 int cap = f[i].capture; |
|
1688 bool official = captureForOfficialCapture.contains(cap); |
|
1689 qDebug(" %6d %6d %6d %s", i, f[i].parent, f[i].capture, |
|
1690 official ? "official" : ""); |
|
1691 } |
|
1692 } |
|
1693 } |
|
1694 #endif |
|
1695 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
1696 for (i = 0; i < aa.size(); i++) |
|
1697 qDebug(" Anchor alternation 0x%.8x: 0x%.8x 0x%.9x", i, aa[i].a, aa[i].b); |
|
1698 #endif |
|
1699 } |
|
1700 #endif |
|
1701 |
|
1702 void QRegExpEngine::setup() |
|
1703 { |
|
1704 ref = 1; |
|
1705 #ifndef QT_NO_REGEXP_CAPTURE |
|
1706 f.resize(32); |
|
1707 nf = 0; |
|
1708 cf = -1; |
|
1709 #endif |
|
1710 officialncap = 0; |
|
1711 ncap = 0; |
|
1712 #ifndef QT_NO_REGEXP_OPTIM |
|
1713 caretAnchored = true; |
|
1714 trivial = true; |
|
1715 #endif |
|
1716 valid = false; |
|
1717 #ifndef QT_NO_REGEXP_BACKREF |
|
1718 nbrefs = 0; |
|
1719 #endif |
|
1720 #ifndef QT_NO_REGEXP_OPTIM |
|
1721 useGoodStringHeuristic = true; |
|
1722 minl = 0; |
|
1723 occ1.fill(0, NumBadChars); |
|
1724 #endif |
|
1725 } |
|
1726 |
|
1727 int QRegExpEngine::setupState(int match) |
|
1728 { |
|
1729 #ifndef QT_NO_REGEXP_CAPTURE |
|
1730 s += QRegExpAutomatonState(cf, match); |
|
1731 #else |
|
1732 s += QRegExpAutomatonState(match); |
|
1733 #endif |
|
1734 return s.size() - 1; |
|
1735 } |
|
1736 |
|
1737 #ifndef QT_NO_REGEXP_CAPTURE |
|
1738 /* |
|
1739 Functions startAtom() and finishAtom() should be called to delimit |
|
1740 atoms. When a state is created, it is assigned to the current atom. |
|
1741 The information is later used for capturing. |
|
1742 */ |
|
1743 int QRegExpEngine::startAtom(bool officialCapture) |
|
1744 { |
|
1745 if ((nf & (nf + 1)) == 0 && nf + 1 >= f.size()) |
|
1746 f.resize((nf + 1) << 1); |
|
1747 f[nf].parent = cf; |
|
1748 cf = nf++; |
|
1749 f[cf].capture = officialCapture ? QRegExpAtom::OfficialCapture : QRegExpAtom::NoCapture; |
|
1750 return cf; |
|
1751 } |
|
1752 |
|
1753 void QRegExpEngine::finishAtom(int atom, bool needCapture) |
|
1754 { |
|
1755 if (greedyQuantifiers && needCapture && f[atom].capture == QRegExpAtom::NoCapture) |
|
1756 f[atom].capture = QRegExpAtom::UnofficialCapture; |
|
1757 cf = f.at(atom).parent; |
|
1758 } |
|
1759 #endif |
|
1760 |
|
1761 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1762 /* |
|
1763 Creates a lookahead anchor. |
|
1764 */ |
|
1765 int QRegExpEngine::addLookahead(QRegExpEngine *eng, bool negative) |
|
1766 { |
|
1767 int n = ahead.size(); |
|
1768 if (n == MaxLookaheads) { |
|
1769 error(RXERR_LIMIT); |
|
1770 return 0; |
|
1771 } |
|
1772 ahead += new QRegExpLookahead(eng, negative); |
|
1773 return Anchor_FirstLookahead << n; |
|
1774 } |
|
1775 #endif |
|
1776 |
|
1777 #ifndef QT_NO_REGEXP_CAPTURE |
|
1778 /* |
|
1779 We want the longest leftmost captures. |
|
1780 */ |
|
1781 static bool isBetterCapture(int ncap, const int *begin1, const int *end1, const int *begin2, |
|
1782 const int *end2) |
|
1783 { |
|
1784 for (int i = 0; i < ncap; i++) { |
|
1785 int delta = begin2[i] - begin1[i]; // it has to start early... |
|
1786 if (delta == 0) |
|
1787 delta = end1[i] - end2[i]; // ...and end late |
|
1788 |
|
1789 if (delta != 0) |
|
1790 return delta > 0; |
|
1791 } |
|
1792 return false; |
|
1793 } |
|
1794 #endif |
|
1795 |
|
1796 /* |
|
1797 Returns true if anchor a matches at position pos + i in the input |
|
1798 string, otherwise false. |
|
1799 */ |
|
1800 bool QRegExpMatchState::testAnchor(int i, int a, const int *capBegin) |
|
1801 { |
|
1802 int j; |
|
1803 |
|
1804 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
1805 if ((a & QRegExpEngine::Anchor_Alternation) != 0) |
|
1806 return testAnchor(i, eng->aa.at(a ^ QRegExpEngine::Anchor_Alternation).a, capBegin) |
|
1807 || testAnchor(i, eng->aa.at(a ^ QRegExpEngine::Anchor_Alternation).b, capBegin); |
|
1808 #endif |
|
1809 |
|
1810 if ((a & QRegExpEngine::Anchor_Caret) != 0) { |
|
1811 if (pos + i != caretPos) |
|
1812 return false; |
|
1813 } |
|
1814 if ((a & QRegExpEngine::Anchor_Dollar) != 0) { |
|
1815 if (pos + i != len) |
|
1816 return false; |
|
1817 } |
|
1818 #ifndef QT_NO_REGEXP_ESCAPE |
|
1819 if ((a & (QRegExpEngine::Anchor_Word | QRegExpEngine::Anchor_NonWord)) != 0) { |
|
1820 bool before = false; |
|
1821 bool after = false; |
|
1822 if (pos + i != 0) |
|
1823 before = isWord(in[pos + i - 1]); |
|
1824 if (pos + i != len) |
|
1825 after = isWord(in[pos + i]); |
|
1826 if ((a & QRegExpEngine::Anchor_Word) != 0 && (before == after)) |
|
1827 return false; |
|
1828 if ((a & QRegExpEngine::Anchor_NonWord) != 0 && (before != after)) |
|
1829 return false; |
|
1830 } |
|
1831 #endif |
|
1832 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
1833 if ((a & QRegExpEngine::Anchor_LookaheadMask) != 0) { |
|
1834 const QVector<QRegExpLookahead *> &ahead = eng->ahead; |
|
1835 for (j = 0; j < ahead.size(); j++) { |
|
1836 if ((a & (QRegExpEngine::Anchor_FirstLookahead << j)) != 0) { |
|
1837 QRegExpMatchState matchState; |
|
1838 matchState.prepareForMatch(ahead[j]->eng); |
|
1839 matchState.match(in + pos + i, len - pos - i, 0, |
|
1840 true, true, matchState.caretPos - matchState.pos - i); |
|
1841 if ((matchState.captured[0] == 0) == ahead[j]->neg) |
|
1842 return false; |
|
1843 } |
|
1844 } |
|
1845 } |
|
1846 #endif |
|
1847 #ifndef QT_NO_REGEXP_CAPTURE |
|
1848 #ifndef QT_NO_REGEXP_BACKREF |
|
1849 for (j = 0; j < eng->nbrefs; j++) { |
|
1850 if ((a & (QRegExpEngine::Anchor_BackRef1Empty << j)) != 0) { |
|
1851 int i = eng->captureForOfficialCapture.at(j); |
|
1852 if (capBegin[i] != EmptyCapture) |
|
1853 return false; |
|
1854 } |
|
1855 } |
|
1856 #endif |
|
1857 #endif |
|
1858 return true; |
|
1859 } |
|
1860 |
|
1861 #ifndef QT_NO_REGEXP_OPTIM |
|
1862 /* |
|
1863 The three following functions are what Jeffrey Friedl would call |
|
1864 transmissions (or bump-alongs). Using one or the other should make |
|
1865 no difference except in performance. |
|
1866 */ |
|
1867 |
|
1868 bool QRegExpEngine::goodStringMatch(QRegExpMatchState &matchState) const |
|
1869 { |
|
1870 int k = matchState.pos + goodEarlyStart; |
|
1871 QStringMatcher matcher(goodStr.unicode(), goodStr.length(), cs); |
|
1872 while ((k = matcher.indexIn(matchState.in, matchState.len, k)) != -1) { |
|
1873 int from = k - goodLateStart; |
|
1874 int to = k - goodEarlyStart; |
|
1875 if (from > matchState.pos) |
|
1876 matchState.pos = from; |
|
1877 |
|
1878 while (matchState.pos <= to) { |
|
1879 if (matchState.matchHere()) |
|
1880 return true; |
|
1881 ++matchState.pos; |
|
1882 } |
|
1883 ++k; |
|
1884 } |
|
1885 return false; |
|
1886 } |
|
1887 |
|
1888 bool QRegExpEngine::badCharMatch(QRegExpMatchState &matchState) const |
|
1889 { |
|
1890 int slideHead = 0; |
|
1891 int slideNext = 0; |
|
1892 int i; |
|
1893 int lastPos = matchState.len - minl; |
|
1894 memset(matchState.slideTab, 0, matchState.slideTabSize * sizeof(int)); |
|
1895 |
|
1896 /* |
|
1897 Set up the slide table, used for the bad-character heuristic, |
|
1898 using the table of first occurrence of each character. |
|
1899 */ |
|
1900 for (i = 0; i < minl; i++) { |
|
1901 int sk = occ1[BadChar(matchState.in[matchState.pos + i])]; |
|
1902 if (sk == NoOccurrence) |
|
1903 sk = i + 1; |
|
1904 if (sk > 0) { |
|
1905 int k = i + 1 - sk; |
|
1906 if (k < 0) { |
|
1907 sk = i + 1; |
|
1908 k = 0; |
|
1909 } |
|
1910 if (sk > matchState.slideTab[k]) |
|
1911 matchState.slideTab[k] = sk; |
|
1912 } |
|
1913 } |
|
1914 |
|
1915 if (matchState.pos > lastPos) |
|
1916 return false; |
|
1917 |
|
1918 for (;;) { |
|
1919 if (++slideNext >= matchState.slideTabSize) |
|
1920 slideNext = 0; |
|
1921 if (matchState.slideTab[slideHead] > 0) { |
|
1922 if (matchState.slideTab[slideHead] - 1 > matchState.slideTab[slideNext]) |
|
1923 matchState.slideTab[slideNext] = matchState.slideTab[slideHead] - 1; |
|
1924 matchState.slideTab[slideHead] = 0; |
|
1925 } else { |
|
1926 if (matchState.matchHere()) |
|
1927 return true; |
|
1928 } |
|
1929 |
|
1930 if (matchState.pos == lastPos) |
|
1931 break; |
|
1932 |
|
1933 /* |
|
1934 Update the slide table. This code has much in common with |
|
1935 the initialization code. |
|
1936 */ |
|
1937 int sk = occ1[BadChar(matchState.in[matchState.pos + minl])]; |
|
1938 if (sk == NoOccurrence) { |
|
1939 matchState.slideTab[slideNext] = minl; |
|
1940 } else if (sk > 0) { |
|
1941 int k = slideNext + minl - sk; |
|
1942 if (k >= matchState.slideTabSize) |
|
1943 k -= matchState.slideTabSize; |
|
1944 if (sk > matchState.slideTab[k]) |
|
1945 matchState.slideTab[k] = sk; |
|
1946 } |
|
1947 slideHead = slideNext; |
|
1948 ++matchState.pos; |
|
1949 } |
|
1950 return false; |
|
1951 } |
|
1952 #else |
|
1953 bool QRegExpEngine::bruteMatch(QRegExpMatchState &matchState) const |
|
1954 { |
|
1955 while (matchState.pos <= matchState.len) { |
|
1956 if (matchState.matchHere()) |
|
1957 return true; |
|
1958 ++matchState.pos; |
|
1959 } |
|
1960 return false; |
|
1961 } |
|
1962 #endif |
|
1963 |
|
1964 /* |
|
1965 Here's the core of the engine. It tries to do a match here and now. |
|
1966 */ |
|
1967 bool QRegExpMatchState::matchHere() |
|
1968 { |
|
1969 int ncur = 1, nnext = 0; |
|
1970 int i = 0, j, k, m; |
|
1971 bool stop = false; |
|
1972 |
|
1973 matchLen = -1; |
|
1974 oneTestMatchedLen = -1; |
|
1975 curStack[0] = QRegExpEngine::InitialState; |
|
1976 |
|
1977 int ncap = eng->ncap; |
|
1978 #ifndef QT_NO_REGEXP_CAPTURE |
|
1979 if (ncap > 0) { |
|
1980 for (j = 0; j < ncap; j++) { |
|
1981 curCapBegin[j] = EmptyCapture; |
|
1982 curCapEnd[j] = EmptyCapture; |
|
1983 } |
|
1984 } |
|
1985 #endif |
|
1986 |
|
1987 #ifndef QT_NO_REGEXP_BACKREF |
|
1988 while ((ncur > 0 || !sleeping.isEmpty()) && i <= len - pos && !stop) |
|
1989 #else |
|
1990 while (ncur > 0 && i <= len - pos && !stop) |
|
1991 #endif |
|
1992 { |
|
1993 int ch = (i < len - pos) ? in[pos + i].unicode() : 0; |
|
1994 for (j = 0; j < ncur; j++) { |
|
1995 int cur = curStack[j]; |
|
1996 const QRegExpAutomatonState &scur = eng->s.at(cur); |
|
1997 const QVector<int> &outs = scur.outs; |
|
1998 for (k = 0; k < outs.size(); k++) { |
|
1999 int next = outs.at(k); |
|
2000 const QRegExpAutomatonState &snext = eng->s.at(next); |
|
2001 bool inside = true; |
|
2002 #if !defined(QT_NO_REGEXP_BACKREF) && !defined(QT_NO_REGEXP_CAPTURE) |
|
2003 int needSomeSleep = 0; |
|
2004 #endif |
|
2005 |
|
2006 /* |
|
2007 First, check if the anchors are anchored properly. |
|
2008 */ |
|
2009 int a = scur.anchors.value(next); |
|
2010 if (a != 0 && !testAnchor(i, a, curCapBegin + j * ncap)) |
|
2011 inside = false; |
|
2012 |
|
2013 /* |
|
2014 If indeed they are, check if the input character is |
|
2015 correct for this transition. |
|
2016 */ |
|
2017 if (inside) { |
|
2018 m = snext.match; |
|
2019 if ((m & (QRegExpEngine::CharClassBit | QRegExpEngine::BackRefBit)) == 0) { |
|
2020 if (eng->cs) |
|
2021 inside = (m == ch); |
|
2022 else |
|
2023 inside = (QChar(m).toLower() == QChar(ch).toLower()); |
|
2024 } else if (next == QRegExpEngine::FinalState) { |
|
2025 matchLen = i; |
|
2026 stop = minimal; |
|
2027 inside = true; |
|
2028 } else if ((m & QRegExpEngine::CharClassBit) != 0) { |
|
2029 #ifndef QT_NO_REGEXP_CCLASS |
|
2030 const QRegExpCharClass &cc = eng->cl.at(m ^ QRegExpEngine::CharClassBit); |
|
2031 if (eng->cs) |
|
2032 inside = cc.in(ch); |
|
2033 else if (cc.negative()) |
|
2034 inside = cc.in(QChar(ch).toLower()) && |
|
2035 cc.in(QChar(ch).toUpper()); |
|
2036 else |
|
2037 inside = cc.in(QChar(ch).toLower()) || |
|
2038 cc.in(QChar(ch).toUpper()); |
|
2039 #endif |
|
2040 #if !defined(QT_NO_REGEXP_BACKREF) && !defined(QT_NO_REGEXP_CAPTURE) |
|
2041 } else { /* ((m & QRegExpEngine::BackRefBit) != 0) */ |
|
2042 int bref = m ^ QRegExpEngine::BackRefBit; |
|
2043 int ell = j * ncap + eng->captureForOfficialCapture.at(bref - 1); |
|
2044 |
|
2045 inside = bref <= ncap && curCapBegin[ell] != EmptyCapture; |
|
2046 if (inside) { |
|
2047 if (eng->cs) |
|
2048 inside = (in[pos + curCapBegin[ell]] == QChar(ch)); |
|
2049 else |
|
2050 inside = (in[pos + curCapBegin[ell]].toLower() |
|
2051 == QChar(ch).toLower()); |
|
2052 } |
|
2053 |
|
2054 if (inside) { |
|
2055 int delta; |
|
2056 if (curCapEnd[ell] == EmptyCapture) |
|
2057 delta = i - curCapBegin[ell]; |
|
2058 else |
|
2059 delta = curCapEnd[ell] - curCapBegin[ell]; |
|
2060 |
|
2061 inside = (delta <= len - (pos + i)); |
|
2062 if (inside && delta > 1) { |
|
2063 int n = 1; |
|
2064 if (eng->cs) { |
|
2065 while (n < delta) { |
|
2066 if (in[pos + curCapBegin[ell] + n] |
|
2067 != in[pos + i + n]) |
|
2068 break; |
|
2069 ++n; |
|
2070 } |
|
2071 } else { |
|
2072 while (n < delta) { |
|
2073 QChar a = in[pos + curCapBegin[ell] + n]; |
|
2074 QChar b = in[pos + i + n]; |
|
2075 if (a.toLower() != b.toLower()) |
|
2076 break; |
|
2077 ++n; |
|
2078 } |
|
2079 } |
|
2080 inside = (n == delta); |
|
2081 if (inside) |
|
2082 needSomeSleep = delta - 1; |
|
2083 } |
|
2084 } |
|
2085 #endif |
|
2086 } |
|
2087 } |
|
2088 |
|
2089 /* |
|
2090 We must now update our data structures. |
|
2091 */ |
|
2092 if (inside) { |
|
2093 #ifndef QT_NO_REGEXP_CAPTURE |
|
2094 int *capBegin, *capEnd; |
|
2095 #endif |
|
2096 /* |
|
2097 If the next state was not encountered yet, all |
|
2098 is fine. |
|
2099 */ |
|
2100 if ((m = inNextStack[next]) == -1) { |
|
2101 m = nnext++; |
|
2102 nextStack[m] = next; |
|
2103 inNextStack[next] = m; |
|
2104 #ifndef QT_NO_REGEXP_CAPTURE |
|
2105 capBegin = nextCapBegin + m * ncap; |
|
2106 capEnd = nextCapEnd + m * ncap; |
|
2107 |
|
2108 /* |
|
2109 Otherwise, we'll first maintain captures in |
|
2110 temporary arrays, and decide at the end whether |
|
2111 it's best to keep the previous capture zones or |
|
2112 the new ones. |
|
2113 */ |
|
2114 } else { |
|
2115 capBegin = tempCapBegin; |
|
2116 capEnd = tempCapEnd; |
|
2117 #endif |
|
2118 } |
|
2119 |
|
2120 #ifndef QT_NO_REGEXP_CAPTURE |
|
2121 /* |
|
2122 Updating the capture zones is much of a task. |
|
2123 */ |
|
2124 if (ncap > 0) { |
|
2125 memcpy(capBegin, curCapBegin + j * ncap, ncap * sizeof(int)); |
|
2126 memcpy(capEnd, curCapEnd + j * ncap, ncap * sizeof(int)); |
|
2127 int c = scur.atom, n = snext.atom; |
|
2128 int p = -1, q = -1; |
|
2129 int cap; |
|
2130 |
|
2131 /* |
|
2132 Lemma 1. For any x in the range [0..nf), we |
|
2133 have f[x].parent < x. |
|
2134 |
|
2135 Proof. By looking at startAtom(), it is |
|
2136 clear that cf < nf holds all the time, and |
|
2137 thus that f[nf].parent < nf. |
|
2138 */ |
|
2139 |
|
2140 /* |
|
2141 If we are reentering an atom, we empty all |
|
2142 capture zones inside it. |
|
2143 */ |
|
2144 if ((q = scur.reenter.value(next)) != 0) { |
|
2145 QBitArray b(eng->nf, false); |
|
2146 b.setBit(q, true); |
|
2147 for (int ell = q + 1; ell < eng->nf; ell++) { |
|
2148 if (b.testBit(eng->f.at(ell).parent)) { |
|
2149 b.setBit(ell, true); |
|
2150 cap = eng->f.at(ell).capture; |
|
2151 if (cap >= 0) { |
|
2152 capBegin[cap] = EmptyCapture; |
|
2153 capEnd[cap] = EmptyCapture; |
|
2154 } |
|
2155 } |
|
2156 } |
|
2157 p = eng->f.at(q).parent; |
|
2158 |
|
2159 /* |
|
2160 Otherwise, close the capture zones we are |
|
2161 leaving. We are leaving f[c].capture, |
|
2162 f[f[c].parent].capture, |
|
2163 f[f[f[c].parent].parent].capture, ..., |
|
2164 until f[x].capture, with x such that |
|
2165 f[x].parent is the youngest common ancestor |
|
2166 for c and n. |
|
2167 |
|
2168 We go up along c's and n's ancestry until |
|
2169 we find x. |
|
2170 */ |
|
2171 } else { |
|
2172 p = c; |
|
2173 q = n; |
|
2174 while (p != q) { |
|
2175 if (p > q) { |
|
2176 cap = eng->f.at(p).capture; |
|
2177 if (cap >= 0) { |
|
2178 if (capBegin[cap] == i) { |
|
2179 capBegin[cap] = EmptyCapture; |
|
2180 capEnd[cap] = EmptyCapture; |
|
2181 } else { |
|
2182 capEnd[cap] = i; |
|
2183 } |
|
2184 } |
|
2185 p = eng->f.at(p).parent; |
|
2186 } else { |
|
2187 q = eng->f.at(q).parent; |
|
2188 } |
|
2189 } |
|
2190 } |
|
2191 |
|
2192 /* |
|
2193 In any case, we now open the capture zones |
|
2194 we are entering. We work upwards from n |
|
2195 until we reach p (the parent of the atom we |
|
2196 reenter or the youngest common ancestor). |
|
2197 */ |
|
2198 while (n > p) { |
|
2199 cap = eng->f.at(n).capture; |
|
2200 if (cap >= 0) { |
|
2201 capBegin[cap] = i; |
|
2202 capEnd[cap] = EmptyCapture; |
|
2203 } |
|
2204 n = eng->f.at(n).parent; |
|
2205 } |
|
2206 /* |
|
2207 If the next state was already in |
|
2208 nextStack, we must choose carefully which |
|
2209 capture zones we want to keep. |
|
2210 */ |
|
2211 if (capBegin == tempCapBegin && |
|
2212 isBetterCapture(ncap, capBegin, capEnd, nextCapBegin + m * ncap, |
|
2213 nextCapEnd + m * ncap)) { |
|
2214 memcpy(nextCapBegin + m * ncap, capBegin, ncap * sizeof(int)); |
|
2215 memcpy(nextCapEnd + m * ncap, capEnd, ncap * sizeof(int)); |
|
2216 } |
|
2217 } |
|
2218 #ifndef QT_NO_REGEXP_BACKREF |
|
2219 /* |
|
2220 We are done with updating the capture zones. |
|
2221 It's now time to put the next state to sleep, |
|
2222 if it needs to, and to remove it from |
|
2223 nextStack. |
|
2224 */ |
|
2225 if (needSomeSleep > 0) { |
|
2226 QVector<int> zzZ(2 + 2 * ncap); |
|
2227 zzZ[0] = i + needSomeSleep; |
|
2228 zzZ[1] = next; |
|
2229 if (ncap > 0) { |
|
2230 memcpy(zzZ.data() + 2, capBegin, ncap * sizeof(int)); |
|
2231 memcpy(zzZ.data() + 2 + ncap, capEnd, ncap * sizeof(int)); |
|
2232 } |
|
2233 inNextStack[nextStack[--nnext]] = -1; |
|
2234 sleeping.append(zzZ); |
|
2235 } |
|
2236 #endif |
|
2237 #endif |
|
2238 } |
|
2239 } |
|
2240 } |
|
2241 #ifndef QT_NO_REGEXP_CAPTURE |
|
2242 /* |
|
2243 If we reached the final state, hurray! Copy the captured |
|
2244 zone. |
|
2245 */ |
|
2246 if (ncap > 0 && (m = inNextStack[QRegExpEngine::FinalState]) != -1) { |
|
2247 memcpy(capBegin, nextCapBegin + m * ncap, ncap * sizeof(int)); |
|
2248 memcpy(capEnd, nextCapEnd + m * ncap, ncap * sizeof(int)); |
|
2249 } |
|
2250 #ifndef QT_NO_REGEXP_BACKREF |
|
2251 /* |
|
2252 It's time to wake up the sleepers. |
|
2253 */ |
|
2254 j = 0; |
|
2255 while (j < sleeping.count()) { |
|
2256 if (sleeping.at(j)[0] == i) { |
|
2257 const QVector<int> &zzZ = sleeping.at(j); |
|
2258 int next = zzZ[1]; |
|
2259 const int *capBegin = zzZ.data() + 2; |
|
2260 const int *capEnd = zzZ.data() + 2 + ncap; |
|
2261 bool copyOver = true; |
|
2262 |
|
2263 if ((m = inNextStack[next]) == -1) { |
|
2264 m = nnext++; |
|
2265 nextStack[m] = next; |
|
2266 inNextStack[next] = m; |
|
2267 } else { |
|
2268 copyOver = isBetterCapture(ncap, nextCapBegin + m * ncap, nextCapEnd + m * ncap, |
|
2269 capBegin, capEnd); |
|
2270 } |
|
2271 if (copyOver) { |
|
2272 memcpy(nextCapBegin + m * ncap, capBegin, ncap * sizeof(int)); |
|
2273 memcpy(nextCapEnd + m * ncap, capEnd, ncap * sizeof(int)); |
|
2274 } |
|
2275 |
|
2276 sleeping.removeAt(j); |
|
2277 } else { |
|
2278 ++j; |
|
2279 } |
|
2280 } |
|
2281 #endif |
|
2282 #endif |
|
2283 for (j = 0; j < nnext; j++) |
|
2284 inNextStack[nextStack[j]] = -1; |
|
2285 |
|
2286 // avoid needless iteration that confuses oneTestMatchedLen |
|
2287 if (nnext == 1 && nextStack[0] == QRegExpEngine::FinalState |
|
2288 #ifndef QT_NO_REGEXP_BACKREF |
|
2289 && sleeping.isEmpty() |
|
2290 #endif |
|
2291 ) |
|
2292 stop = true; |
|
2293 |
|
2294 qSwap(curStack, nextStack); |
|
2295 #ifndef QT_NO_REGEXP_CAPTURE |
|
2296 qSwap(curCapBegin, nextCapBegin); |
|
2297 qSwap(curCapEnd, nextCapEnd); |
|
2298 #endif |
|
2299 ncur = nnext; |
|
2300 nnext = 0; |
|
2301 ++i; |
|
2302 } |
|
2303 |
|
2304 #ifndef QT_NO_REGEXP_BACKREF |
|
2305 /* |
|
2306 If minimal matching is enabled, we might have some sleepers |
|
2307 left. |
|
2308 */ |
|
2309 if (!sleeping.isEmpty()) |
|
2310 sleeping.clear(); |
|
2311 #endif |
|
2312 |
|
2313 oneTestMatchedLen = i - 1; |
|
2314 return (matchLen >= 0); |
|
2315 } |
|
2316 |
|
2317 #ifndef QT_NO_REGEXP_CCLASS |
|
2318 |
|
2319 QRegExpCharClass::QRegExpCharClass() |
|
2320 : c(0), n(false) |
|
2321 { |
|
2322 #ifndef QT_NO_REGEXP_OPTIM |
|
2323 occ1.fill(NoOccurrence, NumBadChars); |
|
2324 #endif |
|
2325 } |
|
2326 |
|
2327 QRegExpCharClass &QRegExpCharClass::operator=(const QRegExpCharClass &cc) |
|
2328 { |
|
2329 c = cc.c; |
|
2330 r = cc.r; |
|
2331 n = cc.n; |
|
2332 #ifndef QT_NO_REGEXP_OPTIM |
|
2333 occ1 = cc.occ1; |
|
2334 #endif |
|
2335 return *this; |
|
2336 } |
|
2337 |
|
2338 void QRegExpCharClass::clear() |
|
2339 { |
|
2340 c = 0; |
|
2341 r.resize(0); |
|
2342 n = false; |
|
2343 } |
|
2344 |
|
2345 void QRegExpCharClass::setNegative(bool negative) |
|
2346 { |
|
2347 n = negative; |
|
2348 #ifndef QT_NO_REGEXP_OPTIM |
|
2349 occ1.fill(0, NumBadChars); |
|
2350 #endif |
|
2351 } |
|
2352 |
|
2353 void QRegExpCharClass::addCategories(int cats) |
|
2354 { |
|
2355 c |= cats; |
|
2356 #ifndef QT_NO_REGEXP_OPTIM |
|
2357 occ1.fill(0, NumBadChars); |
|
2358 #endif |
|
2359 } |
|
2360 |
|
2361 void QRegExpCharClass::addRange(ushort from, ushort to) |
|
2362 { |
|
2363 if (from > to) |
|
2364 qSwap(from, to); |
|
2365 int m = r.size(); |
|
2366 r.resize(m + 1); |
|
2367 r[m].from = from; |
|
2368 r[m].len = to - from + 1; |
|
2369 |
|
2370 #ifndef QT_NO_REGEXP_OPTIM |
|
2371 int i; |
|
2372 |
|
2373 if (to - from < NumBadChars) { |
|
2374 if (from % NumBadChars <= to % NumBadChars) { |
|
2375 for (i = from % NumBadChars; i <= to % NumBadChars; i++) |
|
2376 occ1[i] = 0; |
|
2377 } else { |
|
2378 for (i = 0; i <= to % NumBadChars; i++) |
|
2379 occ1[i] = 0; |
|
2380 for (i = from % NumBadChars; i < NumBadChars; i++) |
|
2381 occ1[i] = 0; |
|
2382 } |
|
2383 } else { |
|
2384 occ1.fill(0, NumBadChars); |
|
2385 } |
|
2386 #endif |
|
2387 } |
|
2388 |
|
2389 bool QRegExpCharClass::in(QChar ch) const |
|
2390 { |
|
2391 #ifndef QT_NO_REGEXP_OPTIM |
|
2392 if (occ1.at(BadChar(ch)) == NoOccurrence) |
|
2393 return n; |
|
2394 #endif |
|
2395 |
|
2396 if (c != 0 && (c & (1 << (int)ch.category())) != 0) |
|
2397 return !n; |
|
2398 |
|
2399 const int uc = ch.unicode(); |
|
2400 int size = r.size(); |
|
2401 |
|
2402 for (int i = 0; i < size; ++i) { |
|
2403 const QRegExpCharClassRange &range = r.at(i); |
|
2404 if (uint(uc - range.from) < uint(r.at(i).len)) |
|
2405 return !n; |
|
2406 } |
|
2407 return n; |
|
2408 } |
|
2409 |
|
2410 #if defined(QT_DEBUG) |
|
2411 void QRegExpCharClass::dump() const |
|
2412 { |
|
2413 int i; |
|
2414 qDebug(" %stive character class", n ? "nega" : "posi"); |
|
2415 #ifndef QT_NO_REGEXP_CCLASS |
|
2416 if (c != 0) |
|
2417 qDebug(" categories 0x%.8x", c); |
|
2418 #endif |
|
2419 for (i = 0; i < r.size(); i++) |
|
2420 qDebug(" 0x%.4x through 0x%.4x", r[i].from, r[i].from + r[i].len - 1); |
|
2421 } |
|
2422 #endif |
|
2423 #endif |
|
2424 |
|
2425 QRegExpEngine::Box::Box(QRegExpEngine *engine) |
|
2426 : eng(engine), skipanchors(0) |
|
2427 #ifndef QT_NO_REGEXP_OPTIM |
|
2428 , earlyStart(0), lateStart(0), maxl(0) |
|
2429 #endif |
|
2430 { |
|
2431 #ifndef QT_NO_REGEXP_OPTIM |
|
2432 occ1.fill(NoOccurrence, NumBadChars); |
|
2433 #endif |
|
2434 minl = 0; |
|
2435 } |
|
2436 |
|
2437 QRegExpEngine::Box &QRegExpEngine::Box::operator=(const Box &b) |
|
2438 { |
|
2439 eng = b.eng; |
|
2440 ls = b.ls; |
|
2441 rs = b.rs; |
|
2442 lanchors = b.lanchors; |
|
2443 ranchors = b.ranchors; |
|
2444 skipanchors = b.skipanchors; |
|
2445 #ifndef QT_NO_REGEXP_OPTIM |
|
2446 earlyStart = b.earlyStart; |
|
2447 lateStart = b.lateStart; |
|
2448 str = b.str; |
|
2449 leftStr = b.leftStr; |
|
2450 rightStr = b.rightStr; |
|
2451 maxl = b.maxl; |
|
2452 occ1 = b.occ1; |
|
2453 #endif |
|
2454 minl = b.minl; |
|
2455 return *this; |
|
2456 } |
|
2457 |
|
2458 void QRegExpEngine::Box::set(QChar ch) |
|
2459 { |
|
2460 ls.resize(1); |
|
2461 ls[0] = eng->createState(ch); |
|
2462 rs = ls; |
|
2463 #ifndef QT_NO_REGEXP_OPTIM |
|
2464 str = ch; |
|
2465 leftStr = ch; |
|
2466 rightStr = ch; |
|
2467 maxl = 1; |
|
2468 occ1[BadChar(ch)] = 0; |
|
2469 #endif |
|
2470 minl = 1; |
|
2471 } |
|
2472 |
|
2473 void QRegExpEngine::Box::set(const QRegExpCharClass &cc) |
|
2474 { |
|
2475 ls.resize(1); |
|
2476 ls[0] = eng->createState(cc); |
|
2477 rs = ls; |
|
2478 #ifndef QT_NO_REGEXP_OPTIM |
|
2479 maxl = 1; |
|
2480 occ1 = cc.firstOccurrence(); |
|
2481 #endif |
|
2482 minl = 1; |
|
2483 } |
|
2484 |
|
2485 #ifndef QT_NO_REGEXP_BACKREF |
|
2486 void QRegExpEngine::Box::set(int bref) |
|
2487 { |
|
2488 ls.resize(1); |
|
2489 ls[0] = eng->createState(bref); |
|
2490 rs = ls; |
|
2491 if (bref >= 1 && bref <= MaxBackRefs) |
|
2492 skipanchors = Anchor_BackRef0Empty << bref; |
|
2493 #ifndef QT_NO_REGEXP_OPTIM |
|
2494 maxl = InftyLen; |
|
2495 #endif |
|
2496 minl = 0; |
|
2497 } |
|
2498 #endif |
|
2499 |
|
2500 void QRegExpEngine::Box::cat(const Box &b) |
|
2501 { |
|
2502 eng->addCatTransitions(rs, b.ls); |
|
2503 addAnchorsToEngine(b); |
|
2504 if (minl == 0) { |
|
2505 lanchors.unite(b.lanchors); |
|
2506 if (skipanchors != 0) { |
|
2507 for (int i = 0; i < b.ls.size(); i++) { |
|
2508 int a = eng->anchorConcatenation(lanchors.value(b.ls.at(i), 0), skipanchors); |
|
2509 lanchors.insert(b.ls.at(i), a); |
|
2510 } |
|
2511 } |
|
2512 mergeInto(&ls, b.ls); |
|
2513 } |
|
2514 if (b.minl == 0) { |
|
2515 ranchors.unite(b.ranchors); |
|
2516 if (b.skipanchors != 0) { |
|
2517 for (int i = 0; i < rs.size(); i++) { |
|
2518 int a = eng->anchorConcatenation(ranchors.value(rs.at(i), 0), b.skipanchors); |
|
2519 ranchors.insert(rs.at(i), a); |
|
2520 } |
|
2521 } |
|
2522 mergeInto(&rs, b.rs); |
|
2523 } else { |
|
2524 ranchors = b.ranchors; |
|
2525 rs = b.rs; |
|
2526 } |
|
2527 |
|
2528 #ifndef QT_NO_REGEXP_OPTIM |
|
2529 if (maxl != InftyLen) { |
|
2530 if (rightStr.length() + b.leftStr.length() > |
|
2531 qMax(str.length(), b.str.length())) { |
|
2532 earlyStart = minl - rightStr.length(); |
|
2533 lateStart = maxl - rightStr.length(); |
|
2534 str = rightStr + b.leftStr; |
|
2535 } else if (b.str.length() > str.length()) { |
|
2536 earlyStart = minl + b.earlyStart; |
|
2537 lateStart = maxl + b.lateStart; |
|
2538 str = b.str; |
|
2539 } |
|
2540 } |
|
2541 |
|
2542 if (leftStr.length() == maxl) |
|
2543 leftStr += b.leftStr; |
|
2544 |
|
2545 if (b.rightStr.length() == b.maxl) { |
|
2546 rightStr += b.rightStr; |
|
2547 } else { |
|
2548 rightStr = b.rightStr; |
|
2549 } |
|
2550 |
|
2551 if (maxl == InftyLen || b.maxl == InftyLen) { |
|
2552 maxl = InftyLen; |
|
2553 } else { |
|
2554 maxl += b.maxl; |
|
2555 } |
|
2556 |
|
2557 for (int i = 0; i < NumBadChars; i++) { |
|
2558 if (b.occ1.at(i) != NoOccurrence && minl + b.occ1.at(i) < occ1.at(i)) |
|
2559 occ1[i] = minl + b.occ1.at(i); |
|
2560 } |
|
2561 #endif |
|
2562 |
|
2563 minl += b.minl; |
|
2564 if (minl == 0) |
|
2565 skipanchors = eng->anchorConcatenation(skipanchors, b.skipanchors); |
|
2566 else |
|
2567 skipanchors = 0; |
|
2568 } |
|
2569 |
|
2570 void QRegExpEngine::Box::orx(const Box &b) |
|
2571 { |
|
2572 mergeInto(&ls, b.ls); |
|
2573 lanchors.unite(b.lanchors); |
|
2574 mergeInto(&rs, b.rs); |
|
2575 ranchors.unite(b.ranchors); |
|
2576 |
|
2577 if (b.minl == 0) { |
|
2578 if (minl == 0) |
|
2579 skipanchors = eng->anchorAlternation(skipanchors, b.skipanchors); |
|
2580 else |
|
2581 skipanchors = b.skipanchors; |
|
2582 } |
|
2583 |
|
2584 #ifndef QT_NO_REGEXP_OPTIM |
|
2585 for (int i = 0; i < NumBadChars; i++) { |
|
2586 if (occ1.at(i) > b.occ1.at(i)) |
|
2587 occ1[i] = b.occ1.at(i); |
|
2588 } |
|
2589 earlyStart = 0; |
|
2590 lateStart = 0; |
|
2591 str = QString(); |
|
2592 leftStr = QString(); |
|
2593 rightStr = QString(); |
|
2594 if (b.maxl > maxl) |
|
2595 maxl = b.maxl; |
|
2596 #endif |
|
2597 if (b.minl < minl) |
|
2598 minl = b.minl; |
|
2599 } |
|
2600 |
|
2601 void QRegExpEngine::Box::plus(int atom) |
|
2602 { |
|
2603 #ifndef QT_NO_REGEXP_CAPTURE |
|
2604 eng->addPlusTransitions(rs, ls, atom); |
|
2605 #else |
|
2606 Q_UNUSED(atom); |
|
2607 eng->addCatTransitions(rs, ls); |
|
2608 #endif |
|
2609 addAnchorsToEngine(*this); |
|
2610 #ifndef QT_NO_REGEXP_OPTIM |
|
2611 maxl = InftyLen; |
|
2612 #endif |
|
2613 } |
|
2614 |
|
2615 void QRegExpEngine::Box::opt() |
|
2616 { |
|
2617 #ifndef QT_NO_REGEXP_OPTIM |
|
2618 earlyStart = 0; |
|
2619 lateStart = 0; |
|
2620 str = QString(); |
|
2621 leftStr = QString(); |
|
2622 rightStr = QString(); |
|
2623 #endif |
|
2624 skipanchors = 0; |
|
2625 minl = 0; |
|
2626 } |
|
2627 |
|
2628 void QRegExpEngine::Box::catAnchor(int a) |
|
2629 { |
|
2630 if (a != 0) { |
|
2631 for (int i = 0; i < rs.size(); i++) { |
|
2632 a = eng->anchorConcatenation(ranchors.value(rs.at(i), 0), a); |
|
2633 ranchors.insert(rs.at(i), a); |
|
2634 } |
|
2635 if (minl == 0) |
|
2636 skipanchors = eng->anchorConcatenation(skipanchors, a); |
|
2637 } |
|
2638 } |
|
2639 |
|
2640 #ifndef QT_NO_REGEXP_OPTIM |
|
2641 void QRegExpEngine::Box::setupHeuristics() |
|
2642 { |
|
2643 eng->goodEarlyStart = earlyStart; |
|
2644 eng->goodLateStart = lateStart; |
|
2645 eng->goodStr = eng->cs ? str : str.toLower(); |
|
2646 |
|
2647 eng->minl = minl; |
|
2648 if (eng->cs) { |
|
2649 /* |
|
2650 A regular expression such as 112|1 has occ1['2'] = 2 and minl = |
|
2651 1 at this point. An entry of occ1 has to be at most minl or |
|
2652 infinity for the rest of the algorithm to go well. |
|
2653 |
|
2654 We waited until here before normalizing these cases (instead of |
|
2655 doing it in Box::orx()) because sometimes things improve by |
|
2656 themselves. Consider for example (112|1)34. |
|
2657 */ |
|
2658 for (int i = 0; i < NumBadChars; i++) { |
|
2659 if (occ1.at(i) != NoOccurrence && occ1.at(i) >= minl) |
|
2660 occ1[i] = minl; |
|
2661 } |
|
2662 eng->occ1 = occ1; |
|
2663 } else { |
|
2664 eng->occ1.fill(0, NumBadChars); |
|
2665 } |
|
2666 |
|
2667 eng->heuristicallyChooseHeuristic(); |
|
2668 } |
|
2669 #endif |
|
2670 |
|
2671 #if defined(QT_DEBUG) |
|
2672 void QRegExpEngine::Box::dump() const |
|
2673 { |
|
2674 int i; |
|
2675 qDebug("Box of at least %d character%s", minl, minl == 1 ? "" : "s"); |
|
2676 qDebug(" Left states:"); |
|
2677 for (i = 0; i < ls.size(); i++) { |
|
2678 if (lanchors.value(ls[i], 0) == 0) |
|
2679 qDebug(" %d", ls[i]); |
|
2680 else |
|
2681 qDebug(" %d [anchors 0x%.8x]", ls[i], lanchors[ls[i]]); |
|
2682 } |
|
2683 qDebug(" Right states:"); |
|
2684 for (i = 0; i < rs.size(); i++) { |
|
2685 if (ranchors.value(rs[i], 0) == 0) |
|
2686 qDebug(" %d", rs[i]); |
|
2687 else |
|
2688 qDebug(" %d [anchors 0x%.8x]", rs[i], ranchors[rs[i]]); |
|
2689 } |
|
2690 qDebug(" Skip anchors: 0x%.8x", skipanchors); |
|
2691 } |
|
2692 #endif |
|
2693 |
|
2694 void QRegExpEngine::Box::addAnchorsToEngine(const Box &to) const |
|
2695 { |
|
2696 for (int i = 0; i < to.ls.size(); i++) { |
|
2697 for (int j = 0; j < rs.size(); j++) { |
|
2698 int a = eng->anchorConcatenation(ranchors.value(rs.at(j), 0), |
|
2699 to.lanchors.value(to.ls.at(i), 0)); |
|
2700 eng->addAnchors(rs[j], to.ls[i], a); |
|
2701 } |
|
2702 } |
|
2703 } |
|
2704 |
|
2705 void QRegExpEngine::setupCategoriesRangeMap() |
|
2706 { |
|
2707 categoriesRangeMap.insert("IsBasicLatin", qMakePair(0x0000, 0x007F)); |
|
2708 categoriesRangeMap.insert("IsLatin-1Supplement", qMakePair(0x0080, 0x00FF)); |
|
2709 categoriesRangeMap.insert("IsLatinExtended-A", qMakePair(0x0100, 0x017F)); |
|
2710 categoriesRangeMap.insert("IsLatinExtended-B", qMakePair(0x0180, 0x024F)); |
|
2711 categoriesRangeMap.insert("IsIPAExtensions", qMakePair(0x0250, 0x02AF)); |
|
2712 categoriesRangeMap.insert("IsSpacingModifierLetters", qMakePair(0x02B0, 0x02FF)); |
|
2713 categoriesRangeMap.insert("IsCombiningDiacriticalMarks", qMakePair(0x0300, 0x036F)); |
|
2714 categoriesRangeMap.insert("IsGreek", qMakePair(0x0370, 0x03FF)); |
|
2715 categoriesRangeMap.insert("IsCyrillic", qMakePair(0x0400, 0x04FF)); |
|
2716 categoriesRangeMap.insert("IsCyrillicSupplement", qMakePair(0x0500, 0x052F)); |
|
2717 categoriesRangeMap.insert("IsArmenian", qMakePair(0x0530, 0x058F)); |
|
2718 categoriesRangeMap.insert("IsHebrew", qMakePair(0x0590, 0x05FF)); |
|
2719 categoriesRangeMap.insert("IsArabic", qMakePair(0x0600, 0x06FF)); |
|
2720 categoriesRangeMap.insert("IsSyriac", qMakePair(0x0700, 0x074F)); |
|
2721 categoriesRangeMap.insert("IsArabicSupplement", qMakePair(0x0750, 0x077F)); |
|
2722 categoriesRangeMap.insert("IsThaana", qMakePair(0x0780, 0x07BF)); |
|
2723 categoriesRangeMap.insert("IsDevanagari", qMakePair(0x0900, 0x097F)); |
|
2724 categoriesRangeMap.insert("IsBengali", qMakePair(0x0980, 0x09FF)); |
|
2725 categoriesRangeMap.insert("IsGurmukhi", qMakePair(0x0A00, 0x0A7F)); |
|
2726 categoriesRangeMap.insert("IsGujarati", qMakePair(0x0A80, 0x0AFF)); |
|
2727 categoriesRangeMap.insert("IsOriya", qMakePair(0x0B00, 0x0B7F)); |
|
2728 categoriesRangeMap.insert("IsTamil", qMakePair(0x0B80, 0x0BFF)); |
|
2729 categoriesRangeMap.insert("IsTelugu", qMakePair(0x0C00, 0x0C7F)); |
|
2730 categoriesRangeMap.insert("IsKannada", qMakePair(0x0C80, 0x0CFF)); |
|
2731 categoriesRangeMap.insert("IsMalayalam", qMakePair(0x0D00, 0x0D7F)); |
|
2732 categoriesRangeMap.insert("IsSinhala", qMakePair(0x0D80, 0x0DFF)); |
|
2733 categoriesRangeMap.insert("IsThai", qMakePair(0x0E00, 0x0E7F)); |
|
2734 categoriesRangeMap.insert("IsLao", qMakePair(0x0E80, 0x0EFF)); |
|
2735 categoriesRangeMap.insert("IsTibetan", qMakePair(0x0F00, 0x0FFF)); |
|
2736 categoriesRangeMap.insert("IsMyanmar", qMakePair(0x1000, 0x109F)); |
|
2737 categoriesRangeMap.insert("IsGeorgian", qMakePair(0x10A0, 0x10FF)); |
|
2738 categoriesRangeMap.insert("IsHangulJamo", qMakePair(0x1100, 0x11FF)); |
|
2739 categoriesRangeMap.insert("IsEthiopic", qMakePair(0x1200, 0x137F)); |
|
2740 categoriesRangeMap.insert("IsEthiopicSupplement", qMakePair(0x1380, 0x139F)); |
|
2741 categoriesRangeMap.insert("IsCherokee", qMakePair(0x13A0, 0x13FF)); |
|
2742 categoriesRangeMap.insert("IsUnifiedCanadianAboriginalSyllabics", qMakePair(0x1400, 0x167F)); |
|
2743 categoriesRangeMap.insert("IsOgham", qMakePair(0x1680, 0x169F)); |
|
2744 categoriesRangeMap.insert("IsRunic", qMakePair(0x16A0, 0x16FF)); |
|
2745 categoriesRangeMap.insert("IsTagalog", qMakePair(0x1700, 0x171F)); |
|
2746 categoriesRangeMap.insert("IsHanunoo", qMakePair(0x1720, 0x173F)); |
|
2747 categoriesRangeMap.insert("IsBuhid", qMakePair(0x1740, 0x175F)); |
|
2748 categoriesRangeMap.insert("IsTagbanwa", qMakePair(0x1760, 0x177F)); |
|
2749 categoriesRangeMap.insert("IsKhmer", qMakePair(0x1780, 0x17FF)); |
|
2750 categoriesRangeMap.insert("IsMongolian", qMakePair(0x1800, 0x18AF)); |
|
2751 categoriesRangeMap.insert("IsLimbu", qMakePair(0x1900, 0x194F)); |
|
2752 categoriesRangeMap.insert("IsTaiLe", qMakePair(0x1950, 0x197F)); |
|
2753 categoriesRangeMap.insert("IsNewTaiLue", qMakePair(0x1980, 0x19DF)); |
|
2754 categoriesRangeMap.insert("IsKhmerSymbols", qMakePair(0x19E0, 0x19FF)); |
|
2755 categoriesRangeMap.insert("IsBuginese", qMakePair(0x1A00, 0x1A1F)); |
|
2756 categoriesRangeMap.insert("IsPhoneticExtensions", qMakePair(0x1D00, 0x1D7F)); |
|
2757 categoriesRangeMap.insert("IsPhoneticExtensionsSupplement", qMakePair(0x1D80, 0x1DBF)); |
|
2758 categoriesRangeMap.insert("IsCombiningDiacriticalMarksSupplement", qMakePair(0x1DC0, 0x1DFF)); |
|
2759 categoriesRangeMap.insert("IsLatinExtendedAdditional", qMakePair(0x1E00, 0x1EFF)); |
|
2760 categoriesRangeMap.insert("IsGreekExtended", qMakePair(0x1F00, 0x1FFF)); |
|
2761 categoriesRangeMap.insert("IsGeneralPunctuation", qMakePair(0x2000, 0x206F)); |
|
2762 categoriesRangeMap.insert("IsSuperscriptsandSubscripts", qMakePair(0x2070, 0x209F)); |
|
2763 categoriesRangeMap.insert("IsCurrencySymbols", qMakePair(0x20A0, 0x20CF)); |
|
2764 categoriesRangeMap.insert("IsCombiningMarksforSymbols", qMakePair(0x20D0, 0x20FF)); |
|
2765 categoriesRangeMap.insert("IsLetterlikeSymbols", qMakePair(0x2100, 0x214F)); |
|
2766 categoriesRangeMap.insert("IsNumberForms", qMakePair(0x2150, 0x218F)); |
|
2767 categoriesRangeMap.insert("IsArrows", qMakePair(0x2190, 0x21FF)); |
|
2768 categoriesRangeMap.insert("IsMathematicalOperators", qMakePair(0x2200, 0x22FF)); |
|
2769 categoriesRangeMap.insert("IsMiscellaneousTechnical", qMakePair(0x2300, 0x23FF)); |
|
2770 categoriesRangeMap.insert("IsControlPictures", qMakePair(0x2400, 0x243F)); |
|
2771 categoriesRangeMap.insert("IsOpticalCharacterRecognition", qMakePair(0x2440, 0x245F)); |
|
2772 categoriesRangeMap.insert("IsEnclosedAlphanumerics", qMakePair(0x2460, 0x24FF)); |
|
2773 categoriesRangeMap.insert("IsBoxDrawing", qMakePair(0x2500, 0x257F)); |
|
2774 categoriesRangeMap.insert("IsBlockElements", qMakePair(0x2580, 0x259F)); |
|
2775 categoriesRangeMap.insert("IsGeometricShapes", qMakePair(0x25A0, 0x25FF)); |
|
2776 categoriesRangeMap.insert("IsMiscellaneousSymbols", qMakePair(0x2600, 0x26FF)); |
|
2777 categoriesRangeMap.insert("IsDingbats", qMakePair(0x2700, 0x27BF)); |
|
2778 categoriesRangeMap.insert("IsMiscellaneousMathematicalSymbols-A", qMakePair(0x27C0, 0x27EF)); |
|
2779 categoriesRangeMap.insert("IsSupplementalArrows-A", qMakePair(0x27F0, 0x27FF)); |
|
2780 categoriesRangeMap.insert("IsBraillePatterns", qMakePair(0x2800, 0x28FF)); |
|
2781 categoriesRangeMap.insert("IsSupplementalArrows-B", qMakePair(0x2900, 0x297F)); |
|
2782 categoriesRangeMap.insert("IsMiscellaneousMathematicalSymbols-B", qMakePair(0x2980, 0x29FF)); |
|
2783 categoriesRangeMap.insert("IsSupplementalMathematicalOperators", qMakePair(0x2A00, 0x2AFF)); |
|
2784 categoriesRangeMap.insert("IsMiscellaneousSymbolsandArrows", qMakePair(0x2B00, 0x2BFF)); |
|
2785 categoriesRangeMap.insert("IsGlagolitic", qMakePair(0x2C00, 0x2C5F)); |
|
2786 categoriesRangeMap.insert("IsCoptic", qMakePair(0x2C80, 0x2CFF)); |
|
2787 categoriesRangeMap.insert("IsGeorgianSupplement", qMakePair(0x2D00, 0x2D2F)); |
|
2788 categoriesRangeMap.insert("IsTifinagh", qMakePair(0x2D30, 0x2D7F)); |
|
2789 categoriesRangeMap.insert("IsEthiopicExtended", qMakePair(0x2D80, 0x2DDF)); |
|
2790 categoriesRangeMap.insert("IsSupplementalPunctuation", qMakePair(0x2E00, 0x2E7F)); |
|
2791 categoriesRangeMap.insert("IsCJKRadicalsSupplement", qMakePair(0x2E80, 0x2EFF)); |
|
2792 categoriesRangeMap.insert("IsKangxiRadicals", qMakePair(0x2F00, 0x2FDF)); |
|
2793 categoriesRangeMap.insert("IsIdeographicDescriptionCharacters", qMakePair(0x2FF0, 0x2FFF)); |
|
2794 categoriesRangeMap.insert("IsCJKSymbolsandPunctuation", qMakePair(0x3000, 0x303F)); |
|
2795 categoriesRangeMap.insert("IsHiragana", qMakePair(0x3040, 0x309F)); |
|
2796 categoriesRangeMap.insert("IsKatakana", qMakePair(0x30A0, 0x30FF)); |
|
2797 categoriesRangeMap.insert("IsBopomofo", qMakePair(0x3100, 0x312F)); |
|
2798 categoriesRangeMap.insert("IsHangulCompatibilityJamo", qMakePair(0x3130, 0x318F)); |
|
2799 categoriesRangeMap.insert("IsKanbun", qMakePair(0x3190, 0x319F)); |
|
2800 categoriesRangeMap.insert("IsBopomofoExtended", qMakePair(0x31A0, 0x31BF)); |
|
2801 categoriesRangeMap.insert("IsCJKStrokes", qMakePair(0x31C0, 0x31EF)); |
|
2802 categoriesRangeMap.insert("IsKatakanaPhoneticExtensions", qMakePair(0x31F0, 0x31FF)); |
|
2803 categoriesRangeMap.insert("IsEnclosedCJKLettersandMonths", qMakePair(0x3200, 0x32FF)); |
|
2804 categoriesRangeMap.insert("IsCJKCompatibility", qMakePair(0x3300, 0x33FF)); |
|
2805 categoriesRangeMap.insert("IsCJKUnifiedIdeographsExtensionA", qMakePair(0x3400, 0x4DB5)); |
|
2806 categoriesRangeMap.insert("IsYijingHexagramSymbols", qMakePair(0x4DC0, 0x4DFF)); |
|
2807 categoriesRangeMap.insert("IsCJKUnifiedIdeographs", qMakePair(0x4E00, 0x9FFF)); |
|
2808 categoriesRangeMap.insert("IsYiSyllables", qMakePair(0xA000, 0xA48F)); |
|
2809 categoriesRangeMap.insert("IsYiRadicals", qMakePair(0xA490, 0xA4CF)); |
|
2810 categoriesRangeMap.insert("IsModifierToneLetters", qMakePair(0xA700, 0xA71F)); |
|
2811 categoriesRangeMap.insert("IsSylotiNagri", qMakePair(0xA800, 0xA82F)); |
|
2812 categoriesRangeMap.insert("IsHangulSyllables", qMakePair(0xAC00, 0xD7A3)); |
|
2813 categoriesRangeMap.insert("IsPrivateUse", qMakePair(0xE000, 0xF8FF)); |
|
2814 categoriesRangeMap.insert("IsCJKCompatibilityIdeographs", qMakePair(0xF900, 0xFAFF)); |
|
2815 categoriesRangeMap.insert("IsAlphabeticPresentationForms", qMakePair(0xFB00, 0xFB4F)); |
|
2816 categoriesRangeMap.insert("IsArabicPresentationForms-A", qMakePair(0xFB50, 0xFDFF)); |
|
2817 categoriesRangeMap.insert("IsVariationSelectors", qMakePair(0xFE00, 0xFE0F)); |
|
2818 categoriesRangeMap.insert("IsVerticalForms", qMakePair(0xFE10, 0xFE1F)); |
|
2819 categoriesRangeMap.insert("IsCombiningHalfMarks", qMakePair(0xFE20, 0xFE2F)); |
|
2820 categoriesRangeMap.insert("IsCJKCompatibilityForms", qMakePair(0xFE30, 0xFE4F)); |
|
2821 categoriesRangeMap.insert("IsSmallFormVariants", qMakePair(0xFE50, 0xFE6F)); |
|
2822 categoriesRangeMap.insert("IsArabicPresentationForms-B", qMakePair(0xFE70, 0xFEFF)); |
|
2823 categoriesRangeMap.insert("IsHalfwidthandFullwidthForms", qMakePair(0xFF00, 0xFFEF)); |
|
2824 categoriesRangeMap.insert("IsSpecials", qMakePair(0xFFF0, 0xFFFF)); |
|
2825 categoriesRangeMap.insert("IsLinearBSyllabary", qMakePair(0x10000, 0x1007F)); |
|
2826 categoriesRangeMap.insert("IsLinearBIdeograms", qMakePair(0x10080, 0x100FF)); |
|
2827 categoriesRangeMap.insert("IsAegeanNumbers", qMakePair(0x10100, 0x1013F)); |
|
2828 categoriesRangeMap.insert("IsAncientGreekNumbers", qMakePair(0x10140, 0x1018F)); |
|
2829 categoriesRangeMap.insert("IsOldItalic", qMakePair(0x10300, 0x1032F)); |
|
2830 categoriesRangeMap.insert("IsGothic", qMakePair(0x10330, 0x1034F)); |
|
2831 categoriesRangeMap.insert("IsUgaritic", qMakePair(0x10380, 0x1039F)); |
|
2832 categoriesRangeMap.insert("IsOldPersian", qMakePair(0x103A0, 0x103DF)); |
|
2833 categoriesRangeMap.insert("IsDeseret", qMakePair(0x10400, 0x1044F)); |
|
2834 categoriesRangeMap.insert("IsShavian", qMakePair(0x10450, 0x1047F)); |
|
2835 categoriesRangeMap.insert("IsOsmanya", qMakePair(0x10480, 0x104AF)); |
|
2836 categoriesRangeMap.insert("IsCypriotSyllabary", qMakePair(0x10800, 0x1083F)); |
|
2837 categoriesRangeMap.insert("IsKharoshthi", qMakePair(0x10A00, 0x10A5F)); |
|
2838 categoriesRangeMap.insert("IsByzantineMusicalSymbols", qMakePair(0x1D000, 0x1D0FF)); |
|
2839 categoriesRangeMap.insert("IsMusicalSymbols", qMakePair(0x1D100, 0x1D1FF)); |
|
2840 categoriesRangeMap.insert("IsAncientGreekMusicalNotation", qMakePair(0x1D200, 0x1D24F)); |
|
2841 categoriesRangeMap.insert("IsTaiXuanJingSymbols", qMakePair(0x1D300, 0x1D35F)); |
|
2842 categoriesRangeMap.insert("IsMathematicalAlphanumericSymbols", qMakePair(0x1D400, 0x1D7FF)); |
|
2843 categoriesRangeMap.insert("IsCJKUnifiedIdeographsExtensionB", qMakePair(0x20000, 0x2A6DF)); |
|
2844 categoriesRangeMap.insert("IsCJKCompatibilityIdeographsSupplement", qMakePair(0x2F800, 0x2FA1F)); |
|
2845 categoriesRangeMap.insert("IsTags", qMakePair(0xE0000, 0xE007F)); |
|
2846 categoriesRangeMap.insert("IsVariationSelectorsSupplement", qMakePair(0xE0100, 0xE01EF)); |
|
2847 categoriesRangeMap.insert("IsSupplementaryPrivateUseArea-A", qMakePair(0xF0000, 0xFFFFF)); |
|
2848 categoriesRangeMap.insert("IsSupplementaryPrivateUseArea-B", qMakePair(0x100000, 0x10FFFF)); |
|
2849 } |
|
2850 |
|
2851 int QRegExpEngine::getChar() |
|
2852 { |
|
2853 return (yyPos == yyLen) ? EOS : yyIn[yyPos++].unicode(); |
|
2854 } |
|
2855 |
|
2856 int QRegExpEngine::getEscape() |
|
2857 { |
|
2858 #ifndef QT_NO_REGEXP_ESCAPE |
|
2859 const char tab[] = "afnrtv"; // no b, as \b means word boundary |
|
2860 const char backTab[] = "\a\f\n\r\t\v"; |
|
2861 ushort low; |
|
2862 int i; |
|
2863 #endif |
|
2864 ushort val; |
|
2865 int prevCh = yyCh; |
|
2866 |
|
2867 if (prevCh == EOS) { |
|
2868 error(RXERR_END); |
|
2869 return Tok_Char | '\\'; |
|
2870 } |
|
2871 yyCh = getChar(); |
|
2872 #ifndef QT_NO_REGEXP_ESCAPE |
|
2873 if ((prevCh & ~0xff) == 0) { |
|
2874 const char *p = strchr(tab, prevCh); |
|
2875 if (p != 0) |
|
2876 return Tok_Char | backTab[p - tab]; |
|
2877 } |
|
2878 #endif |
|
2879 |
|
2880 switch (prevCh) { |
|
2881 #ifndef QT_NO_REGEXP_ESCAPE |
|
2882 case '0': |
|
2883 val = 0; |
|
2884 for (i = 0; i < 3; i++) { |
|
2885 if (yyCh >= '0' && yyCh <= '7') |
|
2886 val = (val << 3) | (yyCh - '0'); |
|
2887 else |
|
2888 break; |
|
2889 yyCh = getChar(); |
|
2890 } |
|
2891 if ((val & ~0377) != 0) |
|
2892 error(RXERR_OCTAL); |
|
2893 return Tok_Char | val; |
|
2894 #endif |
|
2895 #ifndef QT_NO_REGEXP_ESCAPE |
|
2896 case 'B': |
|
2897 return Tok_NonWord; |
|
2898 #endif |
|
2899 #ifndef QT_NO_REGEXP_CCLASS |
|
2900 case 'D': |
|
2901 // see QChar::isDigit() |
|
2902 yyCharClass->addCategories(0x7fffffef); |
|
2903 return Tok_CharClass; |
|
2904 case 'S': |
|
2905 // see QChar::isSpace() |
|
2906 yyCharClass->addCategories(0x7ffff87f); |
|
2907 yyCharClass->addRange(0x0000, 0x0008); |
|
2908 yyCharClass->addRange(0x000e, 0x001f); |
|
2909 yyCharClass->addRange(0x007f, 0x009f); |
|
2910 return Tok_CharClass; |
|
2911 case 'W': |
|
2912 // see QChar::isLetterOrNumber() and QChar::isMark() |
|
2913 yyCharClass->addCategories(0x7fe07f81); |
|
2914 yyCharClass->addRange(0x203f, 0x2040); |
|
2915 yyCharClass->addSingleton(0x2040); |
|
2916 yyCharClass->addSingleton(0x2054); |
|
2917 yyCharClass->addSingleton(0x30fb); |
|
2918 yyCharClass->addRange(0xfe33, 0xfe34); |
|
2919 yyCharClass->addRange(0xfe4d, 0xfe4f); |
|
2920 yyCharClass->addSingleton(0xff3f); |
|
2921 yyCharClass->addSingleton(0xff65); |
|
2922 return Tok_CharClass; |
|
2923 #endif |
|
2924 #ifndef QT_NO_REGEXP_ESCAPE |
|
2925 case 'b': |
|
2926 return Tok_Word; |
|
2927 #endif |
|
2928 #ifndef QT_NO_REGEXP_CCLASS |
|
2929 case 'd': |
|
2930 // see QChar::isDigit() |
|
2931 yyCharClass->addCategories(0x00000010); |
|
2932 return Tok_CharClass; |
|
2933 case 's': |
|
2934 // see QChar::isSpace() |
|
2935 yyCharClass->addCategories(0x00000380); |
|
2936 yyCharClass->addRange(0x0009, 0x000d); |
|
2937 return Tok_CharClass; |
|
2938 case 'w': |
|
2939 // see QChar::isLetterOrNumber() and QChar::isMark() |
|
2940 yyCharClass->addCategories(0x000f807e); |
|
2941 yyCharClass->addSingleton(0x005f); // '_' |
|
2942 return Tok_CharClass; |
|
2943 case 'I': |
|
2944 if (xmlSchemaExtensions) { |
|
2945 yyCharClass->setNegative(!yyCharClass->negative()); |
|
2946 // fall through |
|
2947 } |
|
2948 case 'i': |
|
2949 if (xmlSchemaExtensions) { |
|
2950 yyCharClass->addCategories(0x000f807e); |
|
2951 yyCharClass->addSingleton(0x003a); // ':' |
|
2952 yyCharClass->addSingleton(0x005f); // '_' |
|
2953 yyCharClass->addRange(0x0041, 0x005a); // [A-Z] |
|
2954 yyCharClass->addRange(0x0061, 0x007a); // [a-z] |
|
2955 yyCharClass->addRange(0xc0, 0xd6); |
|
2956 yyCharClass->addRange(0xd8, 0xf6); |
|
2957 yyCharClass->addRange(0xf8, 0x2ff); |
|
2958 yyCharClass->addRange(0x370, 0x37d); |
|
2959 yyCharClass->addRange(0x37f, 0x1fff); |
|
2960 yyCharClass->addRange(0x200c, 0x200d); |
|
2961 yyCharClass->addRange(0x2070, 0x218f); |
|
2962 yyCharClass->addRange(0x2c00, 0x2fef); |
|
2963 yyCharClass->addRange(0x3001, 0xd7ff); |
|
2964 yyCharClass->addRange(0xf900, 0xfdcf); |
|
2965 yyCharClass->addRange(0xfdf0, 0xfffd); |
|
2966 yyCharClass->addRange((ushort)0x10000, (ushort)0xeffff); |
|
2967 } |
|
2968 return Tok_CharClass; |
|
2969 case 'C': |
|
2970 if (xmlSchemaExtensions) { |
|
2971 yyCharClass->setNegative(!yyCharClass->negative()); |
|
2972 // fall through |
|
2973 } |
|
2974 case 'c': |
|
2975 if (xmlSchemaExtensions) { |
|
2976 yyCharClass->addCategories(0x000f807e); |
|
2977 yyCharClass->addSingleton(0x002d); // '-' |
|
2978 yyCharClass->addSingleton(0x002e); // '.' |
|
2979 yyCharClass->addSingleton(0x003a); // ':' |
|
2980 yyCharClass->addSingleton(0x005f); // '_' |
|
2981 yyCharClass->addSingleton(0xb7); |
|
2982 yyCharClass->addRange(0x0030, 0x0039); // [0-9] |
|
2983 yyCharClass->addRange(0x0041, 0x005a); // [A-Z] |
|
2984 yyCharClass->addRange(0x0061, 0x007a); // [a-z] |
|
2985 yyCharClass->addRange(0xc0, 0xd6); |
|
2986 yyCharClass->addRange(0xd8, 0xf6); |
|
2987 yyCharClass->addRange(0xf8, 0x2ff); |
|
2988 yyCharClass->addRange(0x370, 0x37d); |
|
2989 yyCharClass->addRange(0x37f, 0x1fff); |
|
2990 yyCharClass->addRange(0x200c, 0x200d); |
|
2991 yyCharClass->addRange(0x2070, 0x218f); |
|
2992 yyCharClass->addRange(0x2c00, 0x2fef); |
|
2993 yyCharClass->addRange(0x3001, 0xd7ff); |
|
2994 yyCharClass->addRange(0xf900, 0xfdcf); |
|
2995 yyCharClass->addRange(0xfdf0, 0xfffd); |
|
2996 yyCharClass->addRange((ushort)0x10000, (ushort)0xeffff); |
|
2997 yyCharClass->addRange(0x0300, 0x036f); |
|
2998 yyCharClass->addRange(0x203f, 0x2040); |
|
2999 } |
|
3000 return Tok_CharClass; |
|
3001 case 'P': |
|
3002 if (xmlSchemaExtensions) { |
|
3003 yyCharClass->setNegative(!yyCharClass->negative()); |
|
3004 // fall through |
|
3005 } |
|
3006 case 'p': |
|
3007 if (xmlSchemaExtensions) { |
|
3008 if (yyCh != '{') { |
|
3009 error(RXERR_CHARCLASS); |
|
3010 return Tok_CharClass; |
|
3011 } |
|
3012 |
|
3013 QByteArray category; |
|
3014 yyCh = getChar(); |
|
3015 while (yyCh != '}') { |
|
3016 if (yyCh == EOS) { |
|
3017 error(RXERR_END); |
|
3018 return Tok_CharClass; |
|
3019 } |
|
3020 category.append(yyCh); |
|
3021 yyCh = getChar(); |
|
3022 } |
|
3023 yyCh = getChar(); // skip closing '}' |
|
3024 |
|
3025 if (category == "M") { |
|
3026 yyCharClass->addCategories(0x0000000e); |
|
3027 } else if (category == "Mn") { |
|
3028 yyCharClass->addCategories(0x00000002); |
|
3029 } else if (category == "Mc") { |
|
3030 yyCharClass->addCategories(0x00000004); |
|
3031 } else if (category == "Me") { |
|
3032 yyCharClass->addCategories(0x00000008); |
|
3033 } else if (category == "N") { |
|
3034 yyCharClass->addCategories(0x00000070); |
|
3035 } else if (category == "Nd") { |
|
3036 yyCharClass->addCategories(0x00000010); |
|
3037 } else if (category == "Nl") { |
|
3038 yyCharClass->addCategories(0x00000020); |
|
3039 } else if (category == "No") { |
|
3040 yyCharClass->addCategories(0x00000040); |
|
3041 } else if (category == "Z") { |
|
3042 yyCharClass->addCategories(0x00000380); |
|
3043 } else if (category == "Zs") { |
|
3044 yyCharClass->addCategories(0x00000080); |
|
3045 } else if (category == "Zl") { |
|
3046 yyCharClass->addCategories(0x00000100); |
|
3047 } else if (category == "Zp") { |
|
3048 yyCharClass->addCategories(0x00000200); |
|
3049 } else if (category == "C") { |
|
3050 yyCharClass->addCategories(0x00006c00); |
|
3051 } else if (category == "Cc") { |
|
3052 yyCharClass->addCategories(0x00000400); |
|
3053 } else if (category == "Cf") { |
|
3054 yyCharClass->addCategories(0x00000800); |
|
3055 } else if (category == "Cs") { |
|
3056 yyCharClass->addCategories(0x00001000); |
|
3057 } else if (category == "Co") { |
|
3058 yyCharClass->addCategories(0x00002000); |
|
3059 } else if (category == "Cn") { |
|
3060 yyCharClass->addCategories(0x00004000); |
|
3061 } else if (category == "L") { |
|
3062 yyCharClass->addCategories(0x000f8000); |
|
3063 } else if (category == "Lu") { |
|
3064 yyCharClass->addCategories(0x00008000); |
|
3065 } else if (category == "Ll") { |
|
3066 yyCharClass->addCategories(0x00010000); |
|
3067 } else if (category == "Lt") { |
|
3068 yyCharClass->addCategories(0x00020000); |
|
3069 } else if (category == "Lm") { |
|
3070 yyCharClass->addCategories(0x00040000); |
|
3071 } else if (category == "Lo") { |
|
3072 yyCharClass->addCategories(0x00080000); |
|
3073 } else if (category == "P") { |
|
3074 yyCharClass->addCategories(0x4f580780); |
|
3075 } else if (category == "Pc") { |
|
3076 yyCharClass->addCategories(0x00100000); |
|
3077 } else if (category == "Pd") { |
|
3078 yyCharClass->addCategories(0x00200000); |
|
3079 } else if (category == "Ps") { |
|
3080 yyCharClass->addCategories(0x00400000); |
|
3081 } else if (category == "Pe") { |
|
3082 yyCharClass->addCategories(0x00800000); |
|
3083 } else if (category == "Pi") { |
|
3084 yyCharClass->addCategories(0x01000000); |
|
3085 } else if (category == "Pf") { |
|
3086 yyCharClass->addCategories(0x02000000); |
|
3087 } else if (category == "Po") { |
|
3088 yyCharClass->addCategories(0x04000000); |
|
3089 } else if (category == "S") { |
|
3090 yyCharClass->addCategories(0x78000000); |
|
3091 } else if (category == "Sm") { |
|
3092 yyCharClass->addCategories(0x08000000); |
|
3093 } else if (category == "Sc") { |
|
3094 yyCharClass->addCategories(0x10000000); |
|
3095 } else if (category == "Sk") { |
|
3096 yyCharClass->addCategories(0x20000000); |
|
3097 } else if (category == "So") { |
|
3098 yyCharClass->addCategories(0x40000000); |
|
3099 } else if (category.startsWith("Is")) { |
|
3100 if (categoriesRangeMap.isEmpty()) |
|
3101 setupCategoriesRangeMap(); |
|
3102 |
|
3103 if (categoriesRangeMap.contains(category)) { |
|
3104 const QPair<int, int> range = categoriesRangeMap.value(category); |
|
3105 yyCharClass->addRange(range.first, range.second); |
|
3106 } else { |
|
3107 error(RXERR_CATEGORY); |
|
3108 } |
|
3109 } else { |
|
3110 error(RXERR_CATEGORY); |
|
3111 } |
|
3112 } |
|
3113 return Tok_CharClass; |
|
3114 #endif |
|
3115 #ifndef QT_NO_REGEXP_ESCAPE |
|
3116 case 'x': |
|
3117 val = 0; |
|
3118 for (i = 0; i < 4; i++) { |
|
3119 low = QChar(yyCh).toLower().unicode(); |
|
3120 if (low >= '0' && low <= '9') |
|
3121 val = (val << 4) | (low - '0'); |
|
3122 else if (low >= 'a' && low <= 'f') |
|
3123 val = (val << 4) | (low - 'a' + 10); |
|
3124 else |
|
3125 break; |
|
3126 yyCh = getChar(); |
|
3127 } |
|
3128 return Tok_Char | val; |
|
3129 #endif |
|
3130 default: |
|
3131 if (prevCh >= '1' && prevCh <= '9') { |
|
3132 #ifndef QT_NO_REGEXP_BACKREF |
|
3133 val = prevCh - '0'; |
|
3134 while (yyCh >= '0' && yyCh <= '9') { |
|
3135 val = (val * 10) + (yyCh - '0'); |
|
3136 yyCh = getChar(); |
|
3137 } |
|
3138 return Tok_BackRef | val; |
|
3139 #else |
|
3140 error(RXERR_DISABLED); |
|
3141 #endif |
|
3142 } |
|
3143 return Tok_Char | prevCh; |
|
3144 } |
|
3145 } |
|
3146 |
|
3147 #ifndef QT_NO_REGEXP_INTERVAL |
|
3148 int QRegExpEngine::getRep(int def) |
|
3149 { |
|
3150 if (yyCh >= '0' && yyCh <= '9') { |
|
3151 int rep = 0; |
|
3152 do { |
|
3153 rep = 10 * rep + yyCh - '0'; |
|
3154 if (rep >= InftyRep) { |
|
3155 error(RXERR_REPETITION); |
|
3156 rep = def; |
|
3157 } |
|
3158 yyCh = getChar(); |
|
3159 } while (yyCh >= '0' && yyCh <= '9'); |
|
3160 return rep; |
|
3161 } else { |
|
3162 return def; |
|
3163 } |
|
3164 } |
|
3165 #endif |
|
3166 |
|
3167 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
3168 void QRegExpEngine::skipChars(int n) |
|
3169 { |
|
3170 if (n > 0) { |
|
3171 yyPos += n - 1; |
|
3172 yyCh = getChar(); |
|
3173 } |
|
3174 } |
|
3175 #endif |
|
3176 |
|
3177 void QRegExpEngine::error(const char *msg) |
|
3178 { |
|
3179 if (yyError.isEmpty()) |
|
3180 yyError = QLatin1String(msg); |
|
3181 } |
|
3182 |
|
3183 void QRegExpEngine::startTokenizer(const QChar *rx, int len) |
|
3184 { |
|
3185 yyIn = rx; |
|
3186 yyPos0 = 0; |
|
3187 yyPos = 0; |
|
3188 yyLen = len; |
|
3189 yyCh = getChar(); |
|
3190 yyCharClass.reset(new QRegExpCharClass); |
|
3191 yyMinRep = 0; |
|
3192 yyMaxRep = 0; |
|
3193 yyError = QString(); |
|
3194 } |
|
3195 |
|
3196 int QRegExpEngine::getToken() |
|
3197 { |
|
3198 #ifndef QT_NO_REGEXP_CCLASS |
|
3199 ushort pendingCh = 0; |
|
3200 bool charPending; |
|
3201 bool rangePending; |
|
3202 int tok; |
|
3203 #endif |
|
3204 int prevCh = yyCh; |
|
3205 |
|
3206 yyPos0 = yyPos - 1; |
|
3207 #ifndef QT_NO_REGEXP_CCLASS |
|
3208 yyCharClass->clear(); |
|
3209 #endif |
|
3210 yyMinRep = 0; |
|
3211 yyMaxRep = 0; |
|
3212 yyCh = getChar(); |
|
3213 |
|
3214 switch (prevCh) { |
|
3215 case EOS: |
|
3216 yyPos0 = yyPos; |
|
3217 return Tok_Eos; |
|
3218 case '$': |
|
3219 return Tok_Dollar; |
|
3220 case '(': |
|
3221 if (yyCh == '?') { |
|
3222 prevCh = getChar(); |
|
3223 yyCh = getChar(); |
|
3224 switch (prevCh) { |
|
3225 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
3226 case '!': |
|
3227 return Tok_NegLookahead; |
|
3228 case '=': |
|
3229 return Tok_PosLookahead; |
|
3230 #endif |
|
3231 case ':': |
|
3232 return Tok_MagicLeftParen; |
|
3233 default: |
|
3234 error(RXERR_LOOKAHEAD); |
|
3235 return Tok_MagicLeftParen; |
|
3236 } |
|
3237 } else { |
|
3238 return Tok_LeftParen; |
|
3239 } |
|
3240 case ')': |
|
3241 return Tok_RightParen; |
|
3242 case '*': |
|
3243 yyMinRep = 0; |
|
3244 yyMaxRep = InftyRep; |
|
3245 return Tok_Quantifier; |
|
3246 case '+': |
|
3247 yyMinRep = 1; |
|
3248 yyMaxRep = InftyRep; |
|
3249 return Tok_Quantifier; |
|
3250 case '.': |
|
3251 #ifndef QT_NO_REGEXP_CCLASS |
|
3252 yyCharClass->setNegative(true); |
|
3253 #endif |
|
3254 return Tok_CharClass; |
|
3255 case '?': |
|
3256 yyMinRep = 0; |
|
3257 yyMaxRep = 1; |
|
3258 return Tok_Quantifier; |
|
3259 case '[': |
|
3260 #ifndef QT_NO_REGEXP_CCLASS |
|
3261 if (yyCh == '^') { |
|
3262 yyCharClass->setNegative(true); |
|
3263 yyCh = getChar(); |
|
3264 } |
|
3265 charPending = false; |
|
3266 rangePending = false; |
|
3267 do { |
|
3268 if (yyCh == '-' && charPending && !rangePending) { |
|
3269 rangePending = true; |
|
3270 yyCh = getChar(); |
|
3271 } else { |
|
3272 if (charPending && !rangePending) { |
|
3273 yyCharClass->addSingleton(pendingCh); |
|
3274 charPending = false; |
|
3275 } |
|
3276 if (yyCh == '\\') { |
|
3277 yyCh = getChar(); |
|
3278 tok = getEscape(); |
|
3279 if (tok == Tok_Word) |
|
3280 tok = '\b'; |
|
3281 } else { |
|
3282 tok = Tok_Char | yyCh; |
|
3283 yyCh = getChar(); |
|
3284 } |
|
3285 if (tok == Tok_CharClass) { |
|
3286 if (rangePending) { |
|
3287 yyCharClass->addSingleton('-'); |
|
3288 yyCharClass->addSingleton(pendingCh); |
|
3289 charPending = false; |
|
3290 rangePending = false; |
|
3291 } |
|
3292 } else if ((tok & Tok_Char) != 0) { |
|
3293 if (rangePending) { |
|
3294 yyCharClass->addRange(pendingCh, tok ^ Tok_Char); |
|
3295 charPending = false; |
|
3296 rangePending = false; |
|
3297 } else { |
|
3298 pendingCh = tok ^ Tok_Char; |
|
3299 charPending = true; |
|
3300 } |
|
3301 } else { |
|
3302 error(RXERR_CHARCLASS); |
|
3303 } |
|
3304 } |
|
3305 } while (yyCh != ']' && yyCh != EOS); |
|
3306 if (rangePending) |
|
3307 yyCharClass->addSingleton('-'); |
|
3308 if (charPending) |
|
3309 yyCharClass->addSingleton(pendingCh); |
|
3310 if (yyCh == EOS) |
|
3311 error(RXERR_END); |
|
3312 else |
|
3313 yyCh = getChar(); |
|
3314 return Tok_CharClass; |
|
3315 #else |
|
3316 error(RXERR_END); |
|
3317 return Tok_Char | '['; |
|
3318 #endif |
|
3319 case '\\': |
|
3320 return getEscape(); |
|
3321 case ']': |
|
3322 error(RXERR_LEFTDELIM); |
|
3323 return Tok_Char | ']'; |
|
3324 case '^': |
|
3325 return Tok_Caret; |
|
3326 case '{': |
|
3327 #ifndef QT_NO_REGEXP_INTERVAL |
|
3328 yyMinRep = getRep(0); |
|
3329 yyMaxRep = yyMinRep; |
|
3330 if (yyCh == ',') { |
|
3331 yyCh = getChar(); |
|
3332 yyMaxRep = getRep(InftyRep); |
|
3333 } |
|
3334 if (yyMaxRep < yyMinRep) |
|
3335 error(RXERR_INTERVAL); |
|
3336 if (yyCh != '}') |
|
3337 error(RXERR_REPETITION); |
|
3338 yyCh = getChar(); |
|
3339 return Tok_Quantifier; |
|
3340 #else |
|
3341 error(RXERR_DISABLED); |
|
3342 return Tok_Char | '{'; |
|
3343 #endif |
|
3344 case '|': |
|
3345 return Tok_Bar; |
|
3346 case '}': |
|
3347 error(RXERR_LEFTDELIM); |
|
3348 return Tok_Char | '}'; |
|
3349 default: |
|
3350 return Tok_Char | prevCh; |
|
3351 } |
|
3352 } |
|
3353 |
|
3354 int QRegExpEngine::parse(const QChar *pattern, int len) |
|
3355 { |
|
3356 valid = true; |
|
3357 startTokenizer(pattern, len); |
|
3358 yyTok = getToken(); |
|
3359 #ifndef QT_NO_REGEXP_CAPTURE |
|
3360 yyMayCapture = true; |
|
3361 #else |
|
3362 yyMayCapture = false; |
|
3363 #endif |
|
3364 |
|
3365 #ifndef QT_NO_REGEXP_CAPTURE |
|
3366 int atom = startAtom(false); |
|
3367 #endif |
|
3368 QRegExpCharClass anything; |
|
3369 Box box(this); // create InitialState |
|
3370 box.set(anything); |
|
3371 Box rightBox(this); // create FinalState |
|
3372 rightBox.set(anything); |
|
3373 |
|
3374 Box middleBox(this); |
|
3375 parseExpression(&middleBox); |
|
3376 #ifndef QT_NO_REGEXP_CAPTURE |
|
3377 finishAtom(atom, false); |
|
3378 #endif |
|
3379 #ifndef QT_NO_REGEXP_OPTIM |
|
3380 middleBox.setupHeuristics(); |
|
3381 #endif |
|
3382 box.cat(middleBox); |
|
3383 box.cat(rightBox); |
|
3384 yyCharClass.reset(0); |
|
3385 |
|
3386 #ifndef QT_NO_REGEXP_CAPTURE |
|
3387 for (int i = 0; i < nf; ++i) { |
|
3388 switch (f[i].capture) { |
|
3389 case QRegExpAtom::NoCapture: |
|
3390 break; |
|
3391 case QRegExpAtom::OfficialCapture: |
|
3392 f[i].capture = ncap; |
|
3393 captureForOfficialCapture.append(ncap); |
|
3394 ++ncap; |
|
3395 ++officialncap; |
|
3396 break; |
|
3397 case QRegExpAtom::UnofficialCapture: |
|
3398 f[i].capture = greedyQuantifiers ? ncap++ : QRegExpAtom::NoCapture; |
|
3399 } |
|
3400 } |
|
3401 |
|
3402 #ifndef QT_NO_REGEXP_BACKREF |
|
3403 #ifndef QT_NO_REGEXP_OPTIM |
|
3404 if (officialncap == 0 && nbrefs == 0) { |
|
3405 ncap = nf = 0; |
|
3406 f.clear(); |
|
3407 } |
|
3408 #endif |
|
3409 // handle the case where there's a \5 with no corresponding capture |
|
3410 // (captureForOfficialCapture.size() != officialncap) |
|
3411 for (int i = 0; i < nbrefs - officialncap; ++i) { |
|
3412 captureForOfficialCapture.append(ncap); |
|
3413 ++ncap; |
|
3414 } |
|
3415 #endif |
|
3416 #endif |
|
3417 |
|
3418 if (!yyError.isEmpty()) |
|
3419 return -1; |
|
3420 |
|
3421 #ifndef QT_NO_REGEXP_OPTIM |
|
3422 const QRegExpAutomatonState &sinit = s.at(InitialState); |
|
3423 caretAnchored = !sinit.anchors.isEmpty(); |
|
3424 if (caretAnchored) { |
|
3425 const QMap<int, int> &anchors = sinit.anchors; |
|
3426 QMap<int, int>::const_iterator a; |
|
3427 for (a = anchors.constBegin(); a != anchors.constEnd(); ++a) { |
|
3428 if ( |
|
3429 #ifndef QT_NO_REGEXP_ANCHOR_ALT |
|
3430 (*a & Anchor_Alternation) != 0 || |
|
3431 #endif |
|
3432 (*a & Anchor_Caret) == 0) |
|
3433 { |
|
3434 caretAnchored = false; |
|
3435 break; |
|
3436 } |
|
3437 } |
|
3438 } |
|
3439 #endif |
|
3440 |
|
3441 // cleanup anchors |
|
3442 int numStates = s.count(); |
|
3443 for (int i = 0; i < numStates; ++i) { |
|
3444 QRegExpAutomatonState &state = s[i]; |
|
3445 if (!state.anchors.isEmpty()) { |
|
3446 QMap<int, int>::iterator a = state.anchors.begin(); |
|
3447 while (a != state.anchors.end()) { |
|
3448 if (a.value() == 0) |
|
3449 a = state.anchors.erase(a); |
|
3450 else |
|
3451 ++a; |
|
3452 } |
|
3453 } |
|
3454 } |
|
3455 |
|
3456 return yyPos0; |
|
3457 } |
|
3458 |
|
3459 void QRegExpEngine::parseAtom(Box *box) |
|
3460 { |
|
3461 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
3462 QRegExpEngine *eng = 0; |
|
3463 bool neg; |
|
3464 int len; |
|
3465 #endif |
|
3466 |
|
3467 if ((yyTok & Tok_Char) != 0) { |
|
3468 box->set(QChar(yyTok ^ Tok_Char)); |
|
3469 } else { |
|
3470 #ifndef QT_NO_REGEXP_OPTIM |
|
3471 trivial = false; |
|
3472 #endif |
|
3473 switch (yyTok) { |
|
3474 case Tok_Dollar: |
|
3475 box->catAnchor(Anchor_Dollar); |
|
3476 break; |
|
3477 case Tok_Caret: |
|
3478 box->catAnchor(Anchor_Caret); |
|
3479 break; |
|
3480 #ifndef QT_NO_REGEXP_LOOKAHEAD |
|
3481 case Tok_PosLookahead: |
|
3482 case Tok_NegLookahead: |
|
3483 neg = (yyTok == Tok_NegLookahead); |
|
3484 eng = new QRegExpEngine(cs, greedyQuantifiers); |
|
3485 len = eng->parse(yyIn + yyPos - 1, yyLen - yyPos + 1); |
|
3486 if (len >= 0) |
|
3487 skipChars(len); |
|
3488 else |
|
3489 error(RXERR_LOOKAHEAD); |
|
3490 box->catAnchor(addLookahead(eng, neg)); |
|
3491 yyTok = getToken(); |
|
3492 if (yyTok != Tok_RightParen) |
|
3493 error(RXERR_LOOKAHEAD); |
|
3494 break; |
|
3495 #endif |
|
3496 #ifndef QT_NO_REGEXP_ESCAPE |
|
3497 case Tok_Word: |
|
3498 box->catAnchor(Anchor_Word); |
|
3499 break; |
|
3500 case Tok_NonWord: |
|
3501 box->catAnchor(Anchor_NonWord); |
|
3502 break; |
|
3503 #endif |
|
3504 case Tok_LeftParen: |
|
3505 case Tok_MagicLeftParen: |
|
3506 yyTok = getToken(); |
|
3507 parseExpression(box); |
|
3508 if (yyTok != Tok_RightParen) |
|
3509 error(RXERR_END); |
|
3510 break; |
|
3511 case Tok_CharClass: |
|
3512 box->set(*yyCharClass); |
|
3513 break; |
|
3514 case Tok_Quantifier: |
|
3515 error(RXERR_REPETITION); |
|
3516 break; |
|
3517 default: |
|
3518 #ifndef QT_NO_REGEXP_BACKREF |
|
3519 if ((yyTok & Tok_BackRef) != 0) |
|
3520 box->set(yyTok ^ Tok_BackRef); |
|
3521 else |
|
3522 #endif |
|
3523 error(RXERR_DISABLED); |
|
3524 } |
|
3525 } |
|
3526 yyTok = getToken(); |
|
3527 } |
|
3528 |
|
3529 void QRegExpEngine::parseFactor(Box *box) |
|
3530 { |
|
3531 #ifndef QT_NO_REGEXP_CAPTURE |
|
3532 int outerAtom = greedyQuantifiers ? startAtom(false) : -1; |
|
3533 int innerAtom = startAtom(yyMayCapture && yyTok == Tok_LeftParen); |
|
3534 bool magicLeftParen = (yyTok == Tok_MagicLeftParen); |
|
3535 #else |
|
3536 const int innerAtom = -1; |
|
3537 #endif |
|
3538 |
|
3539 #ifndef QT_NO_REGEXP_INTERVAL |
|
3540 #define YYREDO() \ |
|
3541 yyIn = in, yyPos0 = pos0, yyPos = pos, yyLen = len, yyCh = ch, \ |
|
3542 *yyCharClass = charClass, yyMinRep = 0, yyMaxRep = 0, yyTok = tok |
|
3543 |
|
3544 const QChar *in = yyIn; |
|
3545 int pos0 = yyPos0; |
|
3546 int pos = yyPos; |
|
3547 int len = yyLen; |
|
3548 int ch = yyCh; |
|
3549 QRegExpCharClass charClass; |
|
3550 if (yyTok == Tok_CharClass) |
|
3551 charClass = *yyCharClass; |
|
3552 int tok = yyTok; |
|
3553 bool mayCapture = yyMayCapture; |
|
3554 #endif |
|
3555 |
|
3556 parseAtom(box); |
|
3557 #ifndef QT_NO_REGEXP_CAPTURE |
|
3558 finishAtom(innerAtom, magicLeftParen); |
|
3559 #endif |
|
3560 |
|
3561 bool hasQuantifier = (yyTok == Tok_Quantifier); |
|
3562 if (hasQuantifier) { |
|
3563 #ifndef QT_NO_REGEXP_OPTIM |
|
3564 trivial = false; |
|
3565 #endif |
|
3566 if (yyMaxRep == InftyRep) { |
|
3567 box->plus(innerAtom); |
|
3568 #ifndef QT_NO_REGEXP_INTERVAL |
|
3569 } else if (yyMaxRep == 0) { |
|
3570 box->clear(); |
|
3571 #endif |
|
3572 } |
|
3573 if (yyMinRep == 0) |
|
3574 box->opt(); |
|
3575 |
|
3576 #ifndef QT_NO_REGEXP_INTERVAL |
|
3577 yyMayCapture = false; |
|
3578 int alpha = (yyMinRep == 0) ? 0 : yyMinRep - 1; |
|
3579 int beta = (yyMaxRep == InftyRep) ? 0 : yyMaxRep - (alpha + 1); |
|
3580 |
|
3581 Box rightBox(this); |
|
3582 int i; |
|
3583 |
|
3584 for (i = 0; i < beta; i++) { |
|
3585 YYREDO(); |
|
3586 Box leftBox(this); |
|
3587 parseAtom(&leftBox); |
|
3588 leftBox.cat(rightBox); |
|
3589 leftBox.opt(); |
|
3590 rightBox = leftBox; |
|
3591 } |
|
3592 for (i = 0; i < alpha; i++) { |
|
3593 YYREDO(); |
|
3594 Box leftBox(this); |
|
3595 parseAtom(&leftBox); |
|
3596 leftBox.cat(rightBox); |
|
3597 rightBox = leftBox; |
|
3598 } |
|
3599 rightBox.cat(*box); |
|
3600 *box = rightBox; |
|
3601 #endif |
|
3602 yyTok = getToken(); |
|
3603 #ifndef QT_NO_REGEXP_INTERVAL |
|
3604 yyMayCapture = mayCapture; |
|
3605 #endif |
|
3606 } |
|
3607 #undef YYREDO |
|
3608 #ifndef QT_NO_REGEXP_CAPTURE |
|
3609 if (greedyQuantifiers) |
|
3610 finishAtom(outerAtom, hasQuantifier); |
|
3611 #endif |
|
3612 } |
|
3613 |
|
3614 void QRegExpEngine::parseTerm(Box *box) |
|
3615 { |
|
3616 #ifndef QT_NO_REGEXP_OPTIM |
|
3617 if (yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar) |
|
3618 parseFactor(box); |
|
3619 #endif |
|
3620 while (yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar) { |
|
3621 Box rightBox(this); |
|
3622 parseFactor(&rightBox); |
|
3623 box->cat(rightBox); |
|
3624 } |
|
3625 } |
|
3626 |
|
3627 void QRegExpEngine::parseExpression(Box *box) |
|
3628 { |
|
3629 parseTerm(box); |
|
3630 while (yyTok == Tok_Bar) { |
|
3631 #ifndef QT_NO_REGEXP_OPTIM |
|
3632 trivial = false; |
|
3633 #endif |
|
3634 Box rightBox(this); |
|
3635 yyTok = getToken(); |
|
3636 parseTerm(&rightBox); |
|
3637 box->orx(rightBox); |
|
3638 } |
|
3639 } |
|
3640 |
|
3641 /* |
|
3642 The struct QRegExpPrivate contains the private data of a regular |
|
3643 expression other than the automaton. It makes it possible for many |
|
3644 QRegExp objects to use the same QRegExpEngine object with different |
|
3645 QRegExpPrivate objects. |
|
3646 */ |
|
3647 struct QRegExpPrivate |
|
3648 { |
|
3649 QRegExpEngine *eng; |
|
3650 QRegExpEngineKey engineKey; |
|
3651 bool minimal; |
|
3652 #ifndef QT_NO_REGEXP_CAPTURE |
|
3653 QString t; // last string passed to QRegExp::indexIn() or lastIndexIn() |
|
3654 QStringList capturedCache; // what QRegExp::capturedTexts() returned last |
|
3655 #endif |
|
3656 QRegExpMatchState matchState; |
|
3657 |
|
3658 inline QRegExpPrivate() |
|
3659 : eng(0), engineKey(QString(), QRegExp::RegExp, Qt::CaseSensitive), minimal(false) { } |
|
3660 inline QRegExpPrivate(const QRegExpEngineKey &key) |
|
3661 : eng(0), engineKey(key), minimal(false) {} |
|
3662 }; |
|
3663 |
|
3664 #if !defined(QT_NO_REGEXP_OPTIM) |
|
3665 uint qHash(const QRegExpEngineKey &key) |
|
3666 { |
|
3667 return qHash(key.pattern); |
|
3668 } |
|
3669 |
|
3670 typedef QCache<QRegExpEngineKey, QRegExpEngine> EngineCache; |
|
3671 Q_GLOBAL_STATIC(EngineCache, globalEngineCache) |
|
3672 Q_GLOBAL_STATIC(QMutex, mutex) |
|
3673 #endif // QT_NO_REGEXP_OPTIM |
|
3674 |
|
3675 static void derefEngine(QRegExpEngine *eng, const QRegExpEngineKey &key) |
|
3676 { |
|
3677 if (!eng->ref.deref()) { |
|
3678 #if !defined(QT_NO_REGEXP_OPTIM) |
|
3679 if (globalEngineCache()) { |
|
3680 QMutexLocker locker(mutex()); |
|
3681 QT_TRY { |
|
3682 globalEngineCache()->insert(key, eng, 4 + key.pattern.length() / 4); |
|
3683 } QT_CATCH(const std::bad_alloc &) { |
|
3684 // in case of an exception (e.g. oom), just delete the engine |
|
3685 delete eng; |
|
3686 } |
|
3687 } else { |
|
3688 delete eng; |
|
3689 } |
|
3690 #else |
|
3691 Q_UNUSED(key); |
|
3692 delete eng; |
|
3693 #endif |
|
3694 } |
|
3695 } |
|
3696 |
|
3697 static void prepareEngine_helper(QRegExpPrivate *priv) |
|
3698 { |
|
3699 bool initMatchState = !priv->eng; |
|
3700 #if !defined(QT_NO_REGEXP_OPTIM) |
|
3701 if (!priv->eng && globalEngineCache()) { |
|
3702 QMutexLocker locker(mutex()); |
|
3703 priv->eng = globalEngineCache()->take(priv->engineKey); |
|
3704 if (priv->eng != 0) |
|
3705 priv->eng->ref.ref(); |
|
3706 } |
|
3707 #endif // QT_NO_REGEXP_OPTIM |
|
3708 |
|
3709 if (!priv->eng) |
|
3710 priv->eng = new QRegExpEngine(priv->engineKey); |
|
3711 |
|
3712 if (initMatchState) |
|
3713 priv->matchState.prepareForMatch(priv->eng); |
|
3714 } |
|
3715 |
|
3716 inline static void prepareEngine(QRegExpPrivate *priv) |
|
3717 { |
|
3718 if (priv->eng) |
|
3719 return; |
|
3720 prepareEngine_helper(priv); |
|
3721 } |
|
3722 |
|
3723 static void prepareEngineForMatch(QRegExpPrivate *priv, const QString &str) |
|
3724 { |
|
3725 prepareEngine(priv); |
|
3726 priv->matchState.prepareForMatch(priv->eng); |
|
3727 #ifndef QT_NO_REGEXP_CAPTURE |
|
3728 priv->t = str; |
|
3729 priv->capturedCache.clear(); |
|
3730 #else |
|
3731 Q_UNUSED(str); |
|
3732 #endif |
|
3733 } |
|
3734 |
|
3735 static void invalidateEngine(QRegExpPrivate *priv) |
|
3736 { |
|
3737 if (priv->eng != 0) { |
|
3738 derefEngine(priv->eng, priv->engineKey); |
|
3739 priv->eng = 0; |
|
3740 priv->matchState.drain(); |
|
3741 } |
|
3742 } |
|
3743 |
|
3744 /*! |
|
3745 \enum QRegExp::CaretMode |
|
3746 |
|
3747 The CaretMode enum defines the different meanings of the caret |
|
3748 (\bold{^}) in a regular expression. The possible values are: |
|
3749 |
|
3750 \value CaretAtZero |
|
3751 The caret corresponds to index 0 in the searched string. |
|
3752 |
|
3753 \value CaretAtOffset |
|
3754 The caret corresponds to the start offset of the search. |
|
3755 |
|
3756 \value CaretWontMatch |
|
3757 The caret never matches. |
|
3758 */ |
|
3759 |
|
3760 /*! |
|
3761 \enum QRegExp::PatternSyntax |
|
3762 |
|
3763 The syntax used to interpret the meaning of the pattern. |
|
3764 |
|
3765 \value RegExp A rich Perl-like pattern matching syntax. This is |
|
3766 the default. |
|
3767 |
|
3768 \value RegExp2 Like RegExp, but with \l{greedy quantifiers}. This |
|
3769 will be the default in Qt 5. (Introduced in Qt 4.2.) |
|
3770 |
|
3771 \value Wildcard This provides a simple pattern matching syntax |
|
3772 similar to that used by shells (command interpreters) for "file |
|
3773 globbing". See \l{Wildcard Matching}. |
|
3774 |
|
3775 \value WildcardUnix This is similar to Wildcard but with the |
|
3776 behavior of a Unix shell. The wildcard characters can be escaped |
|
3777 with the character "\". |
|
3778 |
|
3779 \value FixedString The pattern is a fixed string. This is |
|
3780 equivalent to using the RegExp pattern on a string in |
|
3781 which all metacharacters are escaped using escape(). |
|
3782 |
|
3783 \value W3CXmlSchema11 The pattern is a regular expression as |
|
3784 defined by the W3C XML Schema 1.1 specification. |
|
3785 |
|
3786 \sa setPatternSyntax() |
|
3787 */ |
|
3788 |
|
3789 /*! |
|
3790 Constructs an empty regexp. |
|
3791 |
|
3792 \sa isValid(), errorString() |
|
3793 */ |
|
3794 QRegExp::QRegExp() |
|
3795 { |
|
3796 priv = new QRegExpPrivate; |
|
3797 } |
|
3798 |
|
3799 /*! |
|
3800 Constructs a regular expression object for the given \a pattern |
|
3801 string. The pattern must be given using wildcard notation if \a |
|
3802 syntax is \l Wildcard; the default is \l RegExp. The pattern is |
|
3803 case sensitive, unless \a cs is Qt::CaseInsensitive. Matching is |
|
3804 greedy (maximal), but can be changed by calling |
|
3805 setMinimal(). |
|
3806 |
|
3807 \sa setPattern(), setCaseSensitivity(), setPatternSyntax() |
|
3808 */ |
|
3809 QRegExp::QRegExp(const QString &pattern, Qt::CaseSensitivity cs, PatternSyntax syntax) |
|
3810 { |
|
3811 priv = new QRegExpPrivate(QRegExpEngineKey(pattern, syntax, cs)); |
|
3812 } |
|
3813 |
|
3814 /*! |
|
3815 Constructs a regular expression as a copy of \a rx. |
|
3816 |
|
3817 \sa operator=() |
|
3818 */ |
|
3819 QRegExp::QRegExp(const QRegExp &rx) |
|
3820 { |
|
3821 priv = new QRegExpPrivate; |
|
3822 operator=(rx); |
|
3823 } |
|
3824 |
|
3825 /*! |
|
3826 Destroys the regular expression and cleans up its internal data. |
|
3827 */ |
|
3828 QRegExp::~QRegExp() |
|
3829 { |
|
3830 invalidateEngine(priv); |
|
3831 delete priv; |
|
3832 } |
|
3833 |
|
3834 /*! |
|
3835 Copies the regular expression \a rx and returns a reference to the |
|
3836 copy. The case sensitivity, wildcard, and minimal matching options |
|
3837 are also copied. |
|
3838 */ |
|
3839 QRegExp &QRegExp::operator=(const QRegExp &rx) |
|
3840 { |
|
3841 prepareEngine(rx.priv); // to allow sharing |
|
3842 QRegExpEngine *otherEng = rx.priv->eng; |
|
3843 if (otherEng) |
|
3844 otherEng->ref.ref(); |
|
3845 invalidateEngine(priv); |
|
3846 priv->eng = otherEng; |
|
3847 priv->engineKey = rx.priv->engineKey; |
|
3848 priv->minimal = rx.priv->minimal; |
|
3849 #ifndef QT_NO_REGEXP_CAPTURE |
|
3850 priv->t = rx.priv->t; |
|
3851 priv->capturedCache = rx.priv->capturedCache; |
|
3852 #endif |
|
3853 if (priv->eng) |
|
3854 priv->matchState.prepareForMatch(priv->eng); |
|
3855 priv->matchState.captured = rx.priv->matchState.captured; |
|
3856 return *this; |
|
3857 } |
|
3858 |
|
3859 /*! |
|
3860 Returns true if this regular expression is equal to \a rx; |
|
3861 otherwise returns false. |
|
3862 |
|
3863 Two QRegExp objects are equal if they have the same pattern |
|
3864 strings and the same settings for case sensitivity, wildcard and |
|
3865 minimal matching. |
|
3866 */ |
|
3867 bool QRegExp::operator==(const QRegExp &rx) const |
|
3868 { |
|
3869 return priv->engineKey == rx.priv->engineKey && priv->minimal == rx.priv->minimal; |
|
3870 } |
|
3871 |
|
3872 /*! |
|
3873 \fn bool QRegExp::operator!=(const QRegExp &rx) const |
|
3874 |
|
3875 Returns true if this regular expression is not equal to \a rx; |
|
3876 otherwise returns false. |
|
3877 |
|
3878 \sa operator==() |
|
3879 */ |
|
3880 |
|
3881 /*! |
|
3882 Returns true if the pattern string is empty; otherwise returns |
|
3883 false. |
|
3884 |
|
3885 If you call exactMatch() with an empty pattern on an empty string |
|
3886 it will return true; otherwise it returns false since it operates |
|
3887 over the whole string. If you call indexIn() with an empty pattern |
|
3888 on \e any string it will return the start offset (0 by default) |
|
3889 because the empty pattern matches the 'emptiness' at the start of |
|
3890 the string. In this case the length of the match returned by |
|
3891 matchedLength() will be 0. |
|
3892 |
|
3893 See QString::isEmpty(). |
|
3894 */ |
|
3895 |
|
3896 bool QRegExp::isEmpty() const |
|
3897 { |
|
3898 return priv->engineKey.pattern.isEmpty(); |
|
3899 } |
|
3900 |
|
3901 /*! |
|
3902 Returns true if the regular expression is valid; otherwise returns |
|
3903 false. An invalid regular expression never matches. |
|
3904 |
|
3905 The pattern \bold{[a-z} is an example of an invalid pattern, since |
|
3906 it lacks a closing square bracket. |
|
3907 |
|
3908 Note that the validity of a regexp may also depend on the setting |
|
3909 of the wildcard flag, for example \bold{*.html} is a valid |
|
3910 wildcard regexp but an invalid full regexp. |
|
3911 |
|
3912 \sa errorString() |
|
3913 */ |
|
3914 bool QRegExp::isValid() const |
|
3915 { |
|
3916 if (priv->engineKey.pattern.isEmpty()) { |
|
3917 return true; |
|
3918 } else { |
|
3919 prepareEngine(priv); |
|
3920 return priv->eng->isValid(); |
|
3921 } |
|
3922 } |
|
3923 |
|
3924 /*! |
|
3925 Returns the pattern string of the regular expression. The pattern |
|
3926 has either regular expression syntax or wildcard syntax, depending |
|
3927 on patternSyntax(). |
|
3928 |
|
3929 \sa patternSyntax(), caseSensitivity() |
|
3930 */ |
|
3931 QString QRegExp::pattern() const |
|
3932 { |
|
3933 return priv->engineKey.pattern; |
|
3934 } |
|
3935 |
|
3936 /*! |
|
3937 Sets the pattern string to \a pattern. The case sensitivity, |
|
3938 wildcard, and minimal matching options are not changed. |
|
3939 |
|
3940 \sa setPatternSyntax(), setCaseSensitivity() |
|
3941 */ |
|
3942 void QRegExp::setPattern(const QString &pattern) |
|
3943 { |
|
3944 if (priv->engineKey.pattern != pattern) { |
|
3945 invalidateEngine(priv); |
|
3946 priv->engineKey.pattern = pattern; |
|
3947 } |
|
3948 } |
|
3949 |
|
3950 /*! |
|
3951 Returns Qt::CaseSensitive if the regexp is matched case |
|
3952 sensitively; otherwise returns Qt::CaseInsensitive. |
|
3953 |
|
3954 \sa patternSyntax(), pattern(), isMinimal() |
|
3955 */ |
|
3956 Qt::CaseSensitivity QRegExp::caseSensitivity() const |
|
3957 { |
|
3958 return priv->engineKey.cs; |
|
3959 } |
|
3960 |
|
3961 /*! |
|
3962 Sets case sensitive matching to \a cs. |
|
3963 |
|
3964 If \a cs is Qt::CaseSensitive, \bold{\\.txt$} matches |
|
3965 \c{readme.txt} but not \c{README.TXT}. |
|
3966 |
|
3967 \sa setPatternSyntax(), setPattern(), setMinimal() |
|
3968 */ |
|
3969 void QRegExp::setCaseSensitivity(Qt::CaseSensitivity cs) |
|
3970 { |
|
3971 if ((bool)cs != (bool)priv->engineKey.cs) { |
|
3972 invalidateEngine(priv); |
|
3973 priv->engineKey.cs = cs; |
|
3974 } |
|
3975 } |
|
3976 |
|
3977 /*! |
|
3978 Returns the syntax used by the regular expression. The default is |
|
3979 QRegExp::RegExp. |
|
3980 |
|
3981 \sa pattern(), caseSensitivity() |
|
3982 */ |
|
3983 QRegExp::PatternSyntax QRegExp::patternSyntax() const |
|
3984 { |
|
3985 return priv->engineKey.patternSyntax; |
|
3986 } |
|
3987 |
|
3988 /*! |
|
3989 Sets the syntax mode for the regular expression. The default is |
|
3990 QRegExp::RegExp. |
|
3991 |
|
3992 Setting \a syntax to QRegExp::Wildcard enables simple shell-like |
|
3993 \l{wildcard matching}. For example, \bold{r*.txt} matches the |
|
3994 string \c{readme.txt} in wildcard mode, but does not match |
|
3995 \c{readme}. |
|
3996 |
|
3997 Setting \a syntax to QRegExp::FixedString means that the pattern |
|
3998 is interpreted as a plain string. Special characters (e.g., |
|
3999 backslash) don't need to be escaped then. |
|
4000 |
|
4001 \sa setPattern(), setCaseSensitivity(), escape() |
|
4002 */ |
|
4003 void QRegExp::setPatternSyntax(PatternSyntax syntax) |
|
4004 { |
|
4005 if (syntax != priv->engineKey.patternSyntax) { |
|
4006 invalidateEngine(priv); |
|
4007 priv->engineKey.patternSyntax = syntax; |
|
4008 } |
|
4009 } |
|
4010 |
|
4011 /*! |
|
4012 Returns true if minimal (non-greedy) matching is enabled; |
|
4013 otherwise returns false. |
|
4014 |
|
4015 \sa caseSensitivity(), setMinimal() |
|
4016 */ |
|
4017 bool QRegExp::isMinimal() const |
|
4018 { |
|
4019 return priv->minimal; |
|
4020 } |
|
4021 |
|
4022 /*! |
|
4023 Enables or disables minimal matching. If \a minimal is false, |
|
4024 matching is greedy (maximal) which is the default. |
|
4025 |
|
4026 For example, suppose we have the input string "We must be |
|
4027 <b>bold</b>, very <b>bold</b>!" and the pattern |
|
4028 \bold{<b>.*</b>}. With the default greedy (maximal) matching, |
|
4029 the match is "We must be \underline{<b>bold</b>, very |
|
4030 <b>bold</b>}!". But with minimal (non-greedy) matching, the |
|
4031 first match is: "We must be \underline{<b>bold</b>}, very |
|
4032 <b>bold</b>!" and the second match is "We must be <b>bold</b>, |
|
4033 very \underline{<b>bold</b>}!". In practice we might use the pattern |
|
4034 \bold{<b>[^<]*\</b>} instead, although this will still fail for |
|
4035 nested tags. |
|
4036 |
|
4037 \sa setCaseSensitivity() |
|
4038 */ |
|
4039 void QRegExp::setMinimal(bool minimal) |
|
4040 { |
|
4041 priv->minimal = minimal; |
|
4042 } |
|
4043 |
|
4044 // ### Qt 5: make non-const |
|
4045 /*! |
|
4046 Returns true if \a str is matched exactly by this regular |
|
4047 expression; otherwise returns false. You can determine how much of |
|
4048 the string was matched by calling matchedLength(). |
|
4049 |
|
4050 For a given regexp string R, exactMatch("R") is the equivalent of |
|
4051 indexIn("^R$") since exactMatch() effectively encloses the regexp |
|
4052 in the start of string and end of string anchors, except that it |
|
4053 sets matchedLength() differently. |
|
4054 |
|
4055 For example, if the regular expression is \bold{blue}, then |
|
4056 exactMatch() returns true only for input \c blue. For inputs \c |
|
4057 bluebell, \c blutak and \c lightblue, exactMatch() returns false |
|
4058 and matchedLength() will return 4, 3 and 0 respectively. |
|
4059 |
|
4060 Although const, this function sets matchedLength(), |
|
4061 capturedTexts(), and pos(). |
|
4062 |
|
4063 \sa indexIn(), lastIndexIn() |
|
4064 */ |
|
4065 bool QRegExp::exactMatch(const QString &str) const |
|
4066 { |
|
4067 prepareEngineForMatch(priv, str); |
|
4068 priv->matchState.match(str.unicode(), str.length(), 0, priv->minimal, true, 0); |
|
4069 if (priv->matchState.captured[1] == str.length()) { |
|
4070 return true; |
|
4071 } else { |
|
4072 priv->matchState.captured[0] = 0; |
|
4073 priv->matchState.captured[1] = priv->matchState.oneTestMatchedLen; |
|
4074 return false; |
|
4075 } |
|
4076 } |
|
4077 |
|
4078 // ### Qt 5: make non-const |
|
4079 /*! |
|
4080 Attempts to find a match in \a str from position \a offset (0 by |
|
4081 default). If \a offset is -1, the search starts at the last |
|
4082 character; if -2, at the next to last character; etc. |
|
4083 |
|
4084 Returns the position of the first match, or -1 if there was no |
|
4085 match. |
|
4086 |
|
4087 The \a caretMode parameter can be used to instruct whether \bold{^} |
|
4088 should match at index 0 or at \a offset. |
|
4089 |
|
4090 You might prefer to use QString::indexOf(), QString::contains(), |
|
4091 or even QStringList::filter(). To replace matches use |
|
4092 QString::replace(). |
|
4093 |
|
4094 Example: |
|
4095 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 13 |
|
4096 |
|
4097 Although const, this function sets matchedLength(), |
|
4098 capturedTexts() and pos(). |
|
4099 |
|
4100 If the QRegExp is a wildcard expression (see setPatternSyntax()) |
|
4101 and want to test a string against the whole wildcard expression, |
|
4102 use exactMatch() instead of this function. |
|
4103 |
|
4104 \sa lastIndexIn(), exactMatch() |
|
4105 */ |
|
4106 |
|
4107 int QRegExp::indexIn(const QString &str, int offset, CaretMode caretMode) const |
|
4108 { |
|
4109 prepareEngineForMatch(priv, str); |
|
4110 if (offset < 0) |
|
4111 offset += str.length(); |
|
4112 priv->matchState.match(str.unicode(), str.length(), offset, |
|
4113 priv->minimal, false, caretIndex(offset, caretMode)); |
|
4114 return priv->matchState.captured[0]; |
|
4115 } |
|
4116 |
|
4117 // ### Qt 5: make non-const |
|
4118 /*! |
|
4119 Attempts to find a match backwards in \a str from position \a |
|
4120 offset. If \a offset is -1 (the default), the search starts at the |
|
4121 last character; if -2, at the next to last character; etc. |
|
4122 |
|
4123 Returns the position of the first match, or -1 if there was no |
|
4124 match. |
|
4125 |
|
4126 The \a caretMode parameter can be used to instruct whether \bold{^} |
|
4127 should match at index 0 or at \a offset. |
|
4128 |
|
4129 Although const, this function sets matchedLength(), |
|
4130 capturedTexts() and pos(). |
|
4131 |
|
4132 \warning Searching backwards is much slower than searching |
|
4133 forwards. |
|
4134 |
|
4135 \sa indexIn(), exactMatch() |
|
4136 */ |
|
4137 |
|
4138 int QRegExp::lastIndexIn(const QString &str, int offset, CaretMode caretMode) const |
|
4139 { |
|
4140 prepareEngineForMatch(priv, str); |
|
4141 if (offset < 0) |
|
4142 offset += str.length(); |
|
4143 if (offset < 0 || offset > str.length()) { |
|
4144 memset(priv->matchState.captured, -1, priv->matchState.capturedSize*sizeof(int)); |
|
4145 return -1; |
|
4146 } |
|
4147 |
|
4148 while (offset >= 0) { |
|
4149 priv->matchState.match(str.unicode(), str.length(), offset, |
|
4150 priv->minimal, true, caretIndex(offset, caretMode)); |
|
4151 if (priv->matchState.captured[0] == offset) |
|
4152 return offset; |
|
4153 --offset; |
|
4154 } |
|
4155 return -1; |
|
4156 } |
|
4157 |
|
4158 /*! |
|
4159 Returns the length of the last matched string, or -1 if there was |
|
4160 no match. |
|
4161 |
|
4162 \sa exactMatch(), indexIn(), lastIndexIn() |
|
4163 */ |
|
4164 int QRegExp::matchedLength() const |
|
4165 { |
|
4166 return priv->matchState.captured[1]; |
|
4167 } |
|
4168 |
|
4169 #ifndef QT_NO_REGEXP_CAPTURE |
|
4170 /*! |
|
4171 Returns the number of captures contained in the regular expression. |
|
4172 */ |
|
4173 int QRegExp::numCaptures() const |
|
4174 { |
|
4175 prepareEngine(priv); |
|
4176 return priv->eng->numCaptures(); |
|
4177 } |
|
4178 |
|
4179 /*! |
|
4180 Returns a list of the captured text strings. |
|
4181 |
|
4182 The first string in the list is the entire matched string. Each |
|
4183 subsequent list element contains a string that matched a |
|
4184 (capturing) subexpression of the regexp. |
|
4185 |
|
4186 For example: |
|
4187 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 14 |
|
4188 |
|
4189 The above example also captures elements that may be present but |
|
4190 which we have no interest in. This problem can be solved by using |
|
4191 non-capturing parentheses: |
|
4192 |
|
4193 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 15 |
|
4194 |
|
4195 Note that if you want to iterate over the list, you should iterate |
|
4196 over a copy, e.g. |
|
4197 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 16 |
|
4198 |
|
4199 Some regexps can match an indeterminate number of times. For |
|
4200 example if the input string is "Offsets: 12 14 99 231 7" and the |
|
4201 regexp, \c{rx}, is \bold{(\\d+)+}, we would hope to get a list of |
|
4202 all the numbers matched. However, after calling |
|
4203 \c{rx.indexIn(str)}, capturedTexts() will return the list ("12", |
|
4204 "12"), i.e. the entire match was "12" and the first subexpression |
|
4205 matched was "12". The correct approach is to use cap() in a |
|
4206 \l{QRegExp#cap_in_a_loop}{loop}. |
|
4207 |
|
4208 The order of elements in the string list is as follows. The first |
|
4209 element is the entire matching string. Each subsequent element |
|
4210 corresponds to the next capturing open left parentheses. Thus |
|
4211 capturedTexts()[1] is the text of the first capturing parentheses, |
|
4212 capturedTexts()[2] is the text of the second and so on |
|
4213 (corresponding to $1, $2, etc., in some other regexp languages). |
|
4214 |
|
4215 \sa cap(), pos() |
|
4216 */ |
|
4217 QStringList QRegExp::capturedTexts() const |
|
4218 { |
|
4219 if (priv->capturedCache.isEmpty()) { |
|
4220 prepareEngine(priv); |
|
4221 const int *captured = priv->matchState.captured; |
|
4222 int n = priv->matchState.capturedSize; |
|
4223 |
|
4224 for (int i = 0; i < n; i += 2) { |
|
4225 QString m; |
|
4226 if (captured[i + 1] == 0) |
|
4227 m = QLatin1String(""); // ### Qt 5: don't distinguish between null and empty |
|
4228 else if (captured[i] >= 0) |
|
4229 m = priv->t.mid(captured[i], captured[i + 1]); |
|
4230 priv->capturedCache.append(m); |
|
4231 } |
|
4232 priv->t.clear(); |
|
4233 } |
|
4234 return priv->capturedCache; |
|
4235 } |
|
4236 |
|
4237 /*! |
|
4238 \internal |
|
4239 */ |
|
4240 QStringList QRegExp::capturedTexts() |
|
4241 { |
|
4242 return const_cast<const QRegExp *>(this)->capturedTexts(); |
|
4243 } |
|
4244 |
|
4245 /*! |
|
4246 Returns the text captured by the \a nth subexpression. The entire |
|
4247 match has index 0 and the parenthesized subexpressions have |
|
4248 indexes starting from 1 (excluding non-capturing parentheses). |
|
4249 |
|
4250 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 17 |
|
4251 |
|
4252 The order of elements matched by cap() is as follows. The first |
|
4253 element, cap(0), is the entire matching string. Each subsequent |
|
4254 element corresponds to the next capturing open left parentheses. |
|
4255 Thus cap(1) is the text of the first capturing parentheses, cap(2) |
|
4256 is the text of the second, and so on. |
|
4257 |
|
4258 \sa capturedTexts(), pos() |
|
4259 */ |
|
4260 QString QRegExp::cap(int nth) const |
|
4261 { |
|
4262 return capturedTexts().value(nth); |
|
4263 } |
|
4264 |
|
4265 /*! |
|
4266 \internal |
|
4267 */ |
|
4268 QString QRegExp::cap(int nth) |
|
4269 { |
|
4270 return const_cast<const QRegExp *>(this)->cap(nth); |
|
4271 } |
|
4272 |
|
4273 /*! |
|
4274 Returns the position of the \a nth captured text in the searched |
|
4275 string. If \a nth is 0 (the default), pos() returns the position |
|
4276 of the whole match. |
|
4277 |
|
4278 Example: |
|
4279 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 18 |
|
4280 |
|
4281 For zero-length matches, pos() always returns -1. (For example, if |
|
4282 cap(4) would return an empty string, pos(4) returns -1.) This is |
|
4283 a feature of the implementation. |
|
4284 |
|
4285 \sa cap(), capturedTexts() |
|
4286 */ |
|
4287 int QRegExp::pos(int nth) const |
|
4288 { |
|
4289 if (nth < 0 || nth >= priv->matchState.capturedSize / 2) |
|
4290 return -1; |
|
4291 else |
|
4292 return priv->matchState.captured[2 * nth]; |
|
4293 } |
|
4294 |
|
4295 /*! |
|
4296 \internal |
|
4297 */ |
|
4298 int QRegExp::pos(int nth) |
|
4299 { |
|
4300 return const_cast<const QRegExp *>(this)->pos(nth); |
|
4301 } |
|
4302 |
|
4303 /*! |
|
4304 Returns a text string that explains why a regexp pattern is |
|
4305 invalid the case being; otherwise returns "no error occurred". |
|
4306 |
|
4307 \sa isValid() |
|
4308 */ |
|
4309 QString QRegExp::errorString() const |
|
4310 { |
|
4311 if (isValid()) { |
|
4312 return QString::fromLatin1(RXERR_OK); |
|
4313 } else { |
|
4314 return priv->eng->errorString(); |
|
4315 } |
|
4316 } |
|
4317 |
|
4318 /*! |
|
4319 \internal |
|
4320 */ |
|
4321 QString QRegExp::errorString() |
|
4322 { |
|
4323 return const_cast<const QRegExp *>(this)->errorString(); |
|
4324 } |
|
4325 #endif |
|
4326 |
|
4327 /*! |
|
4328 Returns the string \a str with every regexp special character |
|
4329 escaped with a backslash. The special characters are $, (,), *, +, |
|
4330 ., ?, [, \,], ^, {, | and }. |
|
4331 |
|
4332 Example: |
|
4333 |
|
4334 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 19 |
|
4335 |
|
4336 This function is useful to construct regexp patterns dynamically: |
|
4337 |
|
4338 \snippet doc/src/snippets/code/src_corelib_tools_qregexp.cpp 20 |
|
4339 |
|
4340 \sa setPatternSyntax() |
|
4341 */ |
|
4342 QString QRegExp::escape(const QString &str) |
|
4343 { |
|
4344 QString quoted; |
|
4345 const int count = str.count(); |
|
4346 quoted.reserve(count * 2); |
|
4347 const QLatin1Char backslash('\\'); |
|
4348 for (int i = 0; i < count; i++) { |
|
4349 switch (str.at(i).toLatin1()) { |
|
4350 case '$': |
|
4351 case '(': |
|
4352 case ')': |
|
4353 case '*': |
|
4354 case '+': |
|
4355 case '.': |
|
4356 case '?': |
|
4357 case '[': |
|
4358 case '\\': |
|
4359 case ']': |
|
4360 case '^': |
|
4361 case '{': |
|
4362 case '|': |
|
4363 case '}': |
|
4364 quoted.append(backslash); |
|
4365 } |
|
4366 quoted.append(str.at(i)); |
|
4367 } |
|
4368 return quoted; |
|
4369 } |
|
4370 |
|
4371 /*! |
|
4372 \fn bool QRegExp::caseSensitive() const |
|
4373 |
|
4374 Use \l caseSensitivity() instead. |
|
4375 */ |
|
4376 |
|
4377 /*! |
|
4378 \fn void QRegExp::setCaseSensitive(bool sensitive) |
|
4379 |
|
4380 Use \l setCaseSensitivity() instead. |
|
4381 */ |
|
4382 |
|
4383 /*! |
|
4384 \fn bool QRegExp::wildcard() const |
|
4385 |
|
4386 Use \l patternSyntax() instead. |
|
4387 |
|
4388 \oldcode |
|
4389 bool wc = rx.wildcard(); |
|
4390 \newcode |
|
4391 bool wc = (rx.patternSyntax() == QRegExp::Wildcard); |
|
4392 \endcode |
|
4393 */ |
|
4394 |
|
4395 /*! |
|
4396 \fn void QRegExp::setWildcard(bool wildcard) |
|
4397 |
|
4398 Use \l setPatternSyntax() instead. |
|
4399 |
|
4400 \oldcode |
|
4401 rx.setWildcard(wc); |
|
4402 \newcode |
|
4403 rx.setPatternSyntax(wc ? QRegExp::Wildcard : QRegExp::RegExp); |
|
4404 \endcode |
|
4405 */ |
|
4406 |
|
4407 /*! |
|
4408 \fn bool QRegExp::minimal() const |
|
4409 |
|
4410 Use \l isMinimal() instead. |
|
4411 */ |
|
4412 |
|
4413 /*! |
|
4414 \fn int QRegExp::search(const QString &str, int from = 0, |
|
4415 CaretMode caretMode = CaretAtZero) const |
|
4416 |
|
4417 Use \l indexIn() instead. |
|
4418 */ |
|
4419 |
|
4420 /*! |
|
4421 \fn int QRegExp::searchRev(const QString &str, int from = -1, \ |
|
4422 CaretMode caretMode = CaretAtZero) const |
|
4423 |
|
4424 Use \l lastIndexIn() instead. |
|
4425 */ |
|
4426 |
|
4427 /*! |
|
4428 \fn QRegExp::QRegExp(const QString &pattern, bool cs, bool wildcard = false) |
|
4429 |
|
4430 Use another constructor instead. |
|
4431 |
|
4432 \oldcode |
|
4433 QRegExp rx("*.txt", false, true); |
|
4434 \newcode |
|
4435 QRegExp rx("*.txt", Qt::CaseInsensitive, QRegExp::Wildcard); |
|
4436 \endcode |
|
4437 */ |
|
4438 |
|
4439 #ifndef QT_NO_DATASTREAM |
|
4440 /*! |
|
4441 \relates QRegExp |
|
4442 |
|
4443 Writes the regular expression \a regExp to stream \a out. |
|
4444 |
|
4445 \sa {Format of the QDataStream Operators} |
|
4446 */ |
|
4447 QDataStream &operator<<(QDataStream &out, const QRegExp ®Exp) |
|
4448 { |
|
4449 return out << regExp.pattern() << (quint8)regExp.caseSensitivity() |
|
4450 << (quint8)regExp.patternSyntax() |
|
4451 << (quint8)!!regExp.isMinimal(); |
|
4452 } |
|
4453 |
|
4454 /*! |
|
4455 \relates QRegExp |
|
4456 |
|
4457 Reads a regular expression from stream \a in into \a regExp. |
|
4458 |
|
4459 \sa {Format of the QDataStream Operators} |
|
4460 */ |
|
4461 QDataStream &operator>>(QDataStream &in, QRegExp ®Exp) |
|
4462 { |
|
4463 QString pattern; |
|
4464 quint8 cs; |
|
4465 quint8 patternSyntax; |
|
4466 quint8 isMinimal; |
|
4467 |
|
4468 in >> pattern >> cs >> patternSyntax >> isMinimal; |
|
4469 |
|
4470 QRegExp newRegExp(pattern, Qt::CaseSensitivity(cs), |
|
4471 QRegExp::PatternSyntax(patternSyntax)); |
|
4472 |
|
4473 newRegExp.setMinimal(isMinimal); |
|
4474 regExp = newRegExp; |
|
4475 return in; |
|
4476 } |
|
4477 #endif // QT_NO_DATASTREAM |
|
4478 |
|
4479 QT_END_NAMESPACE |