src/gui/painting/qbezier.cpp
changeset 0 1918ee327afb
child 3 41300fa6a67c
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /****************************************************************************
       
     2 **
       
     3 ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
       
     4 ** All rights reserved.
       
     5 ** Contact: Nokia Corporation (qt-info@nokia.com)
       
     6 **
       
     7 ** This file is part of the QtGui module of the Qt Toolkit.
       
     8 **
       
     9 ** $QT_BEGIN_LICENSE:LGPL$
       
    10 ** No Commercial Usage
       
    11 ** This file contains pre-release code and may not be distributed.
       
    12 ** You may use this file in accordance with the terms and conditions
       
    13 ** contained in the Technology Preview License Agreement accompanying
       
    14 ** this package.
       
    15 **
       
    16 ** GNU Lesser General Public License Usage
       
    17 ** Alternatively, this file may be used under the terms of the GNU Lesser
       
    18 ** General Public License version 2.1 as published by the Free Software
       
    19 ** Foundation and appearing in the file LICENSE.LGPL included in the
       
    20 ** packaging of this file.  Please review the following information to
       
    21 ** ensure the GNU Lesser General Public License version 2.1 requirements
       
    22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
       
    23 **
       
    24 ** In addition, as a special exception, Nokia gives you certain additional
       
    25 ** rights.  These rights are described in the Nokia Qt LGPL Exception
       
    26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
       
    27 **
       
    28 ** If you have questions regarding the use of this file, please contact
       
    29 ** Nokia at qt-info@nokia.com.
       
    30 **
       
    31 **
       
    32 **
       
    33 **
       
    34 **
       
    35 **
       
    36 **
       
    37 **
       
    38 ** $QT_END_LICENSE$
       
    39 **
       
    40 ****************************************************************************/
       
    41 
       
    42 #include "qbezier_p.h"
       
    43 #include <qdebug.h>
       
    44 #include <qline.h>
       
    45 #include <qpolygon.h>
       
    46 #include <qvector.h>
       
    47 #include <qlist.h>
       
    48 #include <qmath.h>
       
    49 
       
    50 #include <private/qnumeric_p.h>
       
    51 #include <private/qmath_p.h>
       
    52 
       
    53 QT_BEGIN_NAMESPACE
       
    54 
       
    55 //#define QDEBUG_BEZIER
       
    56 
       
    57 #ifdef FLOAT_ACCURACY
       
    58 #define INV_EPS (1L<<23)
       
    59 #else
       
    60 /* The value of 1.0 / (1L<<14) is enough for most applications */
       
    61 #define INV_EPS (1L<<14)
       
    62 #endif
       
    63 
       
    64 #ifndef M_SQRT2
       
    65 #define M_SQRT2	1.41421356237309504880
       
    66 #endif
       
    67 
       
    68 #define log2(x) (qLn(x)/qLn(2.))
       
    69 
       
    70 static inline qreal log4(qreal x)
       
    71 {
       
    72     return qreal(0.5) * log2(x);
       
    73 }
       
    74 
       
    75 /*!
       
    76   \internal
       
    77 */
       
    78 QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
       
    79                             const QPointF &p3, const QPointF &p4)
       
    80 {
       
    81     QBezier b;
       
    82     b.x1 = p1.x();
       
    83     b.y1 = p1.y();
       
    84     b.x2 = p2.x();
       
    85     b.y2 = p2.y();
       
    86     b.x3 = p3.x();
       
    87     b.y3 = p3.y();
       
    88     b.x4 = p4.x();
       
    89     b.y4 = p4.y();
       
    90     return b;
       
    91 }
       
    92 
       
    93 /*!
       
    94   \internal
       
    95 */
       
    96 QPolygonF QBezier::toPolygon() const
       
    97 {
       
    98     // flattening is done by splitting the bezier until we can replace the segment by a straight
       
    99     // line. We split further until the control points are close enough to the line connecting the
       
   100     // boundary points.
       
   101     //
       
   102     // the Distance of a point p from a line given by the points (a,b) is given by:
       
   103     //
       
   104     // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
       
   105     //
       
   106     // We can stop splitting if both control points are close enough to the line.
       
   107     // To make the algorithm faster we use the manhattan length of the line.
       
   108 
       
   109     QPolygonF polygon;
       
   110     polygon.append(QPointF(x1, y1));
       
   111     addToPolygon(&polygon);
       
   112     return polygon;
       
   113 }
       
   114 
       
   115 //0.5 is really low
       
   116 static const qreal flatness = 0.5;
       
   117 
       
   118 //based on "Fast, precise flattening of cubic Bezier path and offset curves"
       
   119 //      by T. F. Hain, A. L. Ahmad, S. V. R. Racherla and D. D. Langan
       
   120 static inline void flattenBezierWithoutInflections(QBezier &bez,
       
   121                                                    QPolygonF *&p)
       
   122 {
       
   123     QBezier left;
       
   124 
       
   125     while (1) {
       
   126         qreal dx = bez.x2 - bez.x1;
       
   127         qreal dy = bez.y2 - bez.y1;
       
   128 
       
   129         qreal normalized = qSqrt(dx * dx + dy * dy);
       
   130         if (qFuzzyIsNull(normalized))
       
   131            break;
       
   132 
       
   133         qreal d = qAbs(dx * (bez.y3 - bez.y2) - dy * (bez.x3 - bez.x2));
       
   134 
       
   135         qreal t = qSqrt(4. / 3. * normalized * flatness / d);
       
   136         if (t > 1 || qFuzzyIsNull(t - (qreal)1.))
       
   137             break;
       
   138         bez.parameterSplitLeft(t, &left);
       
   139         p->append(bez.pt1());
       
   140     }
       
   141 }
       
   142 
       
   143 
       
   144 static inline int quadraticRoots(qreal a, qreal b, qreal c,
       
   145                                  qreal *x1, qreal *x2)
       
   146 {
       
   147     if (qFuzzyIsNull(a)) {
       
   148         if (qFuzzyIsNull(b))
       
   149             return 0;
       
   150         *x1 = *x2 = (-c / b);
       
   151         return 1;
       
   152     } else {
       
   153         const qreal det = b * b - 4 * a * c;
       
   154         if (qFuzzyIsNull(det)) {
       
   155             *x1 = *x2 = -b / (2 * a);
       
   156             return 1;
       
   157         }
       
   158         if (det > 0) {
       
   159             if (qFuzzyIsNull(b)) {
       
   160                 *x2 = qSqrt(-c / a);
       
   161                 *x1 = -(*x2);
       
   162                 return 2;
       
   163             }
       
   164             const qreal stableA = b / (2 * a);
       
   165             const qreal stableB = c / (a * stableA * stableA);
       
   166             const qreal stableC = -1 - qSqrt(1 - stableB);
       
   167             *x2 = stableA * stableC;
       
   168             *x1 = (stableA * stableB) / stableC;
       
   169             return 2;
       
   170         } else
       
   171             return 0;
       
   172     }
       
   173 }
       
   174 
       
   175 static inline bool findInflections(qreal a, qreal b, qreal c,
       
   176                                    qreal *t1 , qreal *t2, qreal *tCups)
       
   177 {
       
   178     qreal r1 = 0, r2 = 0;
       
   179 
       
   180     short rootsCount = quadraticRoots(a, b, c, &r1, &r2);
       
   181 
       
   182     if (rootsCount >= 1) {
       
   183         if (r1 < r2) {
       
   184             *t1 = r1;
       
   185             *t2 = r2;
       
   186         } else {
       
   187             *t1 = r2;
       
   188             *t2 = r1;
       
   189         }
       
   190         if (!qFuzzyIsNull(a))
       
   191             *tCups = 0.5 * (-b / a);
       
   192         else
       
   193             *tCups = 2;
       
   194 
       
   195         return true;
       
   196     }
       
   197 
       
   198     return false;
       
   199 }
       
   200 
       
   201 
       
   202 void QBezier::addToPolygon(QPolygonF *polygon) const
       
   203 {
       
   204     QBezier beziers[32];
       
   205     beziers[0] = *this;
       
   206     QBezier *b = beziers;
       
   207 
       
   208     while (b >= beziers) {
       
   209         // check if we can pop the top bezier curve from the stack
       
   210         qreal y4y1 = b->y4 - b->y1;
       
   211         qreal x4x1 = b->x4 - b->x1;
       
   212         qreal l = qAbs(x4x1) + qAbs(y4y1);
       
   213         qreal d;
       
   214         if (l > 1.) {
       
   215             d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
       
   216                 + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
       
   217         } else {
       
   218             d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
       
   219                 qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
       
   220             l = 1.;
       
   221         }
       
   222         if (d < flatness*l || b == beziers + 31) {
       
   223             // good enough, we pop it off and add the endpoint
       
   224             polygon->append(QPointF(b->x4, b->y4));
       
   225             --b;
       
   226         } else {
       
   227             // split, second half of the polygon goes lower into the stack
       
   228             b->split(b+1, b);
       
   229             ++b;
       
   230         }
       
   231     }
       
   232 }
       
   233 
       
   234 void QBezier::addToPolygonMixed(QPolygonF *polygon) const
       
   235 {
       
   236     qreal ax = -x1 + 3*x2 - 3*x3 + x4;
       
   237     qreal ay = -y1 + 3*y2 - 3*y3 + y4;
       
   238     qreal bx = 3*x1 - 6*x2 + 3*x3;
       
   239     qreal by = 3*y1 - 6*y2 + 3*y3;
       
   240     qreal cx = -3*x1 + 3*x2;
       
   241     qreal cy = -3*y1 + 2*y2;
       
   242     qreal a = 6 * (ay * bx - ax * by);
       
   243     qreal b = 6 * (ay * cx - ax * cy);
       
   244     qreal c = 2 * (by * cx - bx * cy);
       
   245 
       
   246     if ((qFuzzyIsNull(a) && qFuzzyIsNull(b)) ||
       
   247         (b * b - 4 * a *c) < 0) {
       
   248         QBezier bez(*this);
       
   249         flattenBezierWithoutInflections(bez, polygon);
       
   250         polygon->append(QPointF(x4, y4));
       
   251     } else {
       
   252         QBezier beziers[32];
       
   253         beziers[0] = *this;
       
   254         QBezier *b = beziers;
       
   255 
       
   256         while (b >= beziers) {
       
   257             // check if we can pop the top bezier curve from the stack
       
   258             qreal y4y1 = b->y4 - b->y1;
       
   259             qreal x4x1 = b->x4 - b->x1;
       
   260             qreal l = qAbs(x4x1) + qAbs(y4y1);
       
   261             qreal d;
       
   262             if (l > 1.) {
       
   263                 d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
       
   264                     + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
       
   265             } else {
       
   266                 d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
       
   267                     qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
       
   268                 l = 1.;
       
   269             }
       
   270             if (d < .5*l || b == beziers + 31) {
       
   271                 // good enough, we pop it off and add the endpoint
       
   272                 polygon->append(QPointF(b->x4, b->y4));
       
   273                 --b;
       
   274             } else {
       
   275                 // split, second half of the polygon goes lower into the stack
       
   276                 b->split(b+1, b);
       
   277                 ++b;
       
   278             }
       
   279         }
       
   280     }
       
   281 }
       
   282 
       
   283 QRectF QBezier::bounds() const
       
   284 {
       
   285     qreal xmin = x1;
       
   286     qreal xmax = x1;
       
   287     if (x2 < xmin)
       
   288         xmin = x2;
       
   289     else if (x2 > xmax)
       
   290         xmax = x2;
       
   291     if (x3 < xmin)
       
   292         xmin = x3;
       
   293     else if (x3 > xmax)
       
   294         xmax = x3;
       
   295     if (x4 < xmin)
       
   296         xmin = x4;
       
   297     else if (x4 > xmax)
       
   298         xmax = x4;
       
   299 
       
   300     qreal ymin = y1;
       
   301     qreal ymax = y1;
       
   302     if (y2 < ymin)
       
   303         ymin = y2;
       
   304     else if (y2 > ymax)
       
   305         ymax = y2;
       
   306     if (y3 < ymin)
       
   307         ymin = y3;
       
   308     else if (y3 > ymax)
       
   309         ymax = y3;
       
   310     if (y4 < ymin)
       
   311         ymin = y4;
       
   312     else if (y4 > ymax)
       
   313         ymax = y4;
       
   314     return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
       
   315 }
       
   316 
       
   317 
       
   318 enum ShiftResult {
       
   319     Ok,
       
   320     Discard,
       
   321     Split,
       
   322     Circle
       
   323 };
       
   324 
       
   325 static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
       
   326 {
       
   327     const qreal o2 = offset*offset;
       
   328     const qreal max_dist_line = threshold*offset*offset;
       
   329     const qreal max_dist_normal = threshold*offset;
       
   330     const qreal spacing = 0.25;
       
   331     for (qreal i = spacing; i < 0.99; i += spacing) {
       
   332         QPointF p1 = b1->pointAt(i);
       
   333         QPointF p2 = b2->pointAt(i);
       
   334         qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
       
   335         if (qAbs(d - o2) > max_dist_line)
       
   336             return Split;
       
   337 
       
   338         QPointF normalPoint = b1->normalVector(i);
       
   339         qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
       
   340         if (l != 0.) {
       
   341             d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
       
   342             if (d > max_dist_normal)
       
   343                 return Split;
       
   344         }
       
   345     }
       
   346     return Ok;
       
   347 }
       
   348 
       
   349 static inline QLineF qline_shifted(const QPointF &p1, const QPointF &p2, qreal offset)
       
   350 {
       
   351     QLineF l(p1, p2);
       
   352     QLineF ln = l.normalVector().unitVector();
       
   353     l.translate(ln.dx() * offset, ln.dy() * offset);
       
   354     return l;
       
   355 }
       
   356 
       
   357 static bool qbezier_is_line(QPointF *points, int pointCount)
       
   358 {
       
   359     Q_ASSERT(pointCount > 2);
       
   360 
       
   361     qreal dx13 = points[2].x() - points[0].x();
       
   362     qreal dy13 = points[2].y() - points[0].y();
       
   363 
       
   364     qreal dx12 = points[1].x() - points[0].x();
       
   365     qreal dy12 = points[1].y() - points[0].y();
       
   366 
       
   367     if (pointCount == 3) {
       
   368         return qFuzzyCompare(dx12 * dy13, dx13 * dy12);
       
   369     } else if (pointCount == 4) {
       
   370         qreal dx14 = points[3].x() - points[0].x();
       
   371         qreal dy14 = points[3].y() - points[0].y();
       
   372 
       
   373         return (qFuzzyCompare(dx12 * dy13, dx13 * dy12) && qFuzzyCompare(dx12 * dy14, dx14 * dy12));
       
   374     }
       
   375 
       
   376     return false;
       
   377 }
       
   378 
       
   379 static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
       
   380 {
       
   381     int map[4];
       
   382     bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
       
   383     bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
       
   384     bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
       
   385 
       
   386     QPointF points[4];
       
   387     int np = 0;
       
   388     points[np] = QPointF(orig->x1, orig->y1);
       
   389     map[0] = 0;
       
   390     ++np;
       
   391     if (!p1_p2_equal) {
       
   392         points[np] = QPointF(orig->x2, orig->y2);
       
   393         ++np;
       
   394     }
       
   395     map[1] = np - 1;
       
   396     if (!p2_p3_equal) {
       
   397         points[np] = QPointF(orig->x3, orig->y3);
       
   398         ++np;
       
   399     }
       
   400     map[2] = np - 1;
       
   401     if (!p3_p4_equal) {
       
   402         points[np] = QPointF(orig->x4, orig->y4);
       
   403         ++np;
       
   404     }
       
   405     map[3] = np - 1;
       
   406     if (np == 1)
       
   407         return Discard;
       
   408 
       
   409     // We need to specialcase lines of 3 or 4 points due to numerical
       
   410     // instability in intersections below
       
   411     if (np > 2 && qbezier_is_line(points, np)) {
       
   412         if (points[0] == points[np-1])
       
   413             return Discard;
       
   414 
       
   415         QLineF l = qline_shifted(points[0], points[np-1], offset);
       
   416         *shifted = QBezier::fromPoints(l.p1(), l.pointAt(qreal(0.33)), l.pointAt(qreal(0.66)), l.p2());
       
   417         return Ok;
       
   418     }
       
   419 
       
   420     QRectF b = orig->bounds();
       
   421     if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
       
   422         qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
       
   423                   (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
       
   424                   (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
       
   425                   (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
       
   426         qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
       
   427                     (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
       
   428         if (dot < 0 && dot*dot < 0.8*l)
       
   429             // the points are close and reverse dirction. Approximate the whole
       
   430             // thing by a semi circle
       
   431             return Circle;
       
   432     }
       
   433 
       
   434     QPointF points_shifted[4];
       
   435 
       
   436     QLineF prev = QLineF(QPointF(), points[1] - points[0]);
       
   437     QPointF prev_normal = prev.normalVector().unitVector().p2();
       
   438 
       
   439     points_shifted[0] = points[0] + offset * prev_normal;
       
   440 
       
   441     for (int i = 1; i < np - 1; ++i) {
       
   442         QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
       
   443         QPointF next_normal = next.normalVector().unitVector().p2();
       
   444 
       
   445         QPointF normal_sum = prev_normal + next_normal;
       
   446 
       
   447         qreal r = 1.0 + prev_normal.x() * next_normal.x()
       
   448                   + prev_normal.y() * next_normal.y();
       
   449 
       
   450         if (qFuzzyIsNull(r)) {
       
   451             points_shifted[i] = points[i] + offset * prev_normal;
       
   452         } else {
       
   453             qreal k = offset / r;
       
   454             points_shifted[i] = points[i] + k * normal_sum;
       
   455         }
       
   456 
       
   457         prev_normal = next_normal;
       
   458     }
       
   459 
       
   460     points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
       
   461 
       
   462     *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
       
   463                                    points_shifted[map[2]], points_shifted[map[3]]);
       
   464 
       
   465     return good_offset(orig, shifted, offset, threshold);
       
   466 }
       
   467 
       
   468 // This value is used to determine the length of control point vectors
       
   469 // when approximating arc segments as curves. The factor is multiplied
       
   470 // with the radius of the circle.
       
   471 #define KAPPA 0.5522847498
       
   472 
       
   473 
       
   474 static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
       
   475 {
       
   476     QPointF normals[3];
       
   477 
       
   478     normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
       
   479     qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
       
   480     if (qFuzzyIsNull(dist))
       
   481         return false;
       
   482     normals[0] /= dist;
       
   483     normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
       
   484     dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
       
   485     if (qFuzzyIsNull(dist))
       
   486         return false;
       
   487     normals[2] /= dist;
       
   488 
       
   489     normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
       
   490     normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
       
   491 
       
   492     qreal angles[2];
       
   493     qreal sign = 1.;
       
   494     for (int i = 0; i < 2; ++i) {
       
   495         qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
       
   496         if (cos_a > 1.)
       
   497             cos_a = 1.;
       
   498         if (cos_a < -1.)
       
   499             cos_a = -1;
       
   500         angles[i] = acos(cos_a)/Q_PI;
       
   501     }
       
   502 
       
   503     if (angles[0] + angles[1] > 1.) {
       
   504         // more than 180 degrees
       
   505         normals[1] = -normals[1];
       
   506         angles[0] = 1. - angles[0];
       
   507         angles[1] = 1. - angles[1];
       
   508         sign = -1.;
       
   509 
       
   510     }
       
   511 
       
   512     QPointF circle[3];
       
   513     circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
       
   514     circle[1] = QPointF(0.5*(b->x1 + b->x4), 0.5*(b->y1 + b->y4)) + normals[1]*offset;
       
   515     circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
       
   516 
       
   517     for (int i = 0; i < 2; ++i) {
       
   518         qreal kappa = 2.*KAPPA * sign * offset * angles[i];
       
   519 
       
   520         o->x1 = circle[i].x();
       
   521         o->y1 = circle[i].y();
       
   522         o->x2 = circle[i].x() - normals[i].y()*kappa;
       
   523         o->y2 = circle[i].y() + normals[i].x()*kappa;
       
   524         o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
       
   525         o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
       
   526         o->x4 = circle[i+1].x();
       
   527         o->y4 = circle[i+1].y();
       
   528 
       
   529         ++o;
       
   530     }
       
   531     return true;
       
   532 }
       
   533 
       
   534 int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
       
   535 {
       
   536     Q_ASSERT(curveSegments);
       
   537     Q_ASSERT(maxSegments > 0);
       
   538 
       
   539     if (x1 == x2 && x1 == x3 && x1 == x4 &&
       
   540         y1 == y2 && y1 == y3 && y1 == y4)
       
   541         return 0;
       
   542 
       
   543     --maxSegments;
       
   544     QBezier beziers[10];
       
   545 redo:
       
   546     beziers[0] = *this;
       
   547     QBezier *b = beziers;
       
   548     QBezier *o = curveSegments;
       
   549 
       
   550     while (b >= beziers) {
       
   551         int stack_segments = b - beziers + 1;
       
   552         if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
       
   553             threshold *= 1.5;
       
   554             if (threshold > 2.)
       
   555                 goto give_up;
       
   556             goto redo;
       
   557         }
       
   558         ShiftResult res = shift(b, o, offset, threshold);
       
   559         if (res == Discard) {
       
   560             --b;
       
   561         } else if (res == Ok) {
       
   562             ++o;
       
   563             --b;
       
   564             continue;
       
   565         } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
       
   566             // add semi circle
       
   567             if (addCircle(b, offset, o))
       
   568                 o += 2;
       
   569             --b;
       
   570         } else {
       
   571             b->split(b+1, b);
       
   572             ++b;
       
   573         }
       
   574     }
       
   575 
       
   576 give_up:
       
   577     while (b >= beziers) {
       
   578         ShiftResult res = shift(b, o, offset, threshold);
       
   579 
       
   580         // if res isn't Ok or Split then *o is undefined
       
   581         if (res == Ok || res == Split)
       
   582             ++o;
       
   583 
       
   584         --b;
       
   585     }
       
   586 
       
   587     Q_ASSERT(o - curveSegments <= maxSegments);
       
   588     return o - curveSegments;
       
   589 }
       
   590 
       
   591 #if 0
       
   592 static inline bool IntersectBB(const QBezier &a, const QBezier &b)
       
   593 {
       
   594     return a.bounds().intersects(b.bounds());
       
   595 }
       
   596 #else
       
   597 static int IntersectBB(const QBezier &a, const QBezier &b)
       
   598 {
       
   599     // Compute bounding box for a
       
   600     qreal minax, maxax, minay, maxay;
       
   601     if (a.x1 > a.x4)	 // These are the most likely to be extremal
       
   602 	minax = a.x4, maxax = a.x1;
       
   603     else
       
   604 	minax = a.x1, maxax = a.x4;
       
   605 
       
   606     if (a.x3 < minax)
       
   607 	minax = a.x3;
       
   608     else if (a.x3 > maxax)
       
   609 	maxax = a.x3;
       
   610 
       
   611     if (a.x2 < minax)
       
   612 	minax = a.x2;
       
   613     else if (a.x2 > maxax)
       
   614 	maxax = a.x2;
       
   615 
       
   616     if (a.y1 > a.y4)
       
   617 	minay = a.y4, maxay = a.y1;
       
   618     else
       
   619 	minay = a.y1, maxay = a.y4;
       
   620 
       
   621     if (a.y3 < minay)
       
   622 	minay = a.y3;
       
   623     else if (a.y3 > maxay)
       
   624 	maxay = a.y3;
       
   625 
       
   626     if (a.y2 < minay)
       
   627 	minay = a.y2;
       
   628     else if (a.y2 > maxay)
       
   629 	maxay = a.y2;
       
   630 
       
   631     // Compute bounding box for b
       
   632     qreal minbx, maxbx, minby, maxby;
       
   633     if (b.x1 > b.x4)
       
   634 	minbx = b.x4, maxbx = b.x1;
       
   635     else
       
   636 	minbx = b.x1, maxbx = b.x4;
       
   637 
       
   638     if (b.x3 < minbx)
       
   639 	minbx = b.x3;
       
   640     else if (b.x3 > maxbx)
       
   641 	maxbx = b.x3;
       
   642 
       
   643     if (b.x2 < minbx)
       
   644 	minbx = b.x2;
       
   645     else if (b.x2 > maxbx)
       
   646 	maxbx = b.x2;
       
   647 
       
   648     if (b.y1 > b.y4)
       
   649 	minby = b.y4, maxby = b.y1;
       
   650     else
       
   651 	minby = b.y1, maxby = b.y4;
       
   652 
       
   653     if (b.y3 < minby)
       
   654 	minby = b.y3;
       
   655     else if (b.y3 > maxby)
       
   656 	maxby = b.y3;
       
   657 
       
   658     if (b.y2 < minby)
       
   659 	minby = b.y2;
       
   660     else if (b.y2 > maxby)
       
   661 	maxby = b.y2;
       
   662 
       
   663     // Test bounding box of b against bounding box of a
       
   664     if ((minax > maxbx) || (minay > maxby)  // Not >= : need boundary case
       
   665 	|| (minbx > maxax) || (minby > maxay))
       
   666 	return 0; // they don't intersect
       
   667     else
       
   668 	return 1; // they intersect
       
   669 }
       
   670 #endif
       
   671 
       
   672 
       
   673 #ifdef QDEBUG_BEZIER
       
   674 static QDebug operator<<(QDebug dbg, const QBezier &bz)
       
   675 {
       
   676     dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
       
   677         << '[' << bz.x2 <<", " << bz.y2 << "], "
       
   678         << '[' << bz.x3 <<", " << bz.y3 << "], "
       
   679         << '[' << bz.x4 <<", " << bz.y4 << ']';
       
   680     return dbg;
       
   681 }
       
   682 #endif
       
   683 
       
   684 static bool RecursivelyIntersect(const QBezier &a, qreal t0, qreal t1, int deptha,
       
   685                                  const QBezier &b, qreal u0, qreal u1, int depthb,
       
   686                                  QVector<QPair<qreal, qreal> > *t)
       
   687 {
       
   688 #ifdef QDEBUG_BEZIER
       
   689     static int I = 0;
       
   690     int currentD = I;
       
   691     fprintf(stderr, "%d) t0 = %lf, t1 = %lf, deptha = %d\n"
       
   692             "u0 = %lf, u1 = %lf, depthb = %d\n", I++, t0, t1, deptha,
       
   693             u0, u1, depthb);
       
   694 #endif
       
   695     if (deptha > 0) {
       
   696 	QBezier A[2];
       
   697         a.split(&A[0], &A[1]);
       
   698 	qreal tmid = (t0+t1)*0.5;
       
   699         //qDebug()<<"\t1)"<<A[0];
       
   700         //qDebug()<<"\t2)"<<A[1];
       
   701 	deptha--;
       
   702 	if (depthb > 0) {
       
   703 	    QBezier B[2];
       
   704             b.split(&B[0], &B[1]);
       
   705             //qDebug()<<"\t3)"<<B[0];
       
   706             //qDebug()<<"\t4)"<<B[1];
       
   707 	    qreal umid = (u0+u1)*0.5;
       
   708 	    depthb--;
       
   709 	    if (IntersectBB(A[0], B[0])) {
       
   710                 //fprintf(stderr, "\t 1 from %d\n", currentD);
       
   711 		if (RecursivelyIntersect(A[0], t0, tmid, deptha,
       
   712 				     B[0], u0, umid, depthb,
       
   713 				     t) && !t)
       
   714                     return true;
       
   715             }
       
   716 	    if (IntersectBB(A[1], B[0])) {
       
   717                 //fprintf(stderr, "\t 2 from %d\n", currentD);
       
   718 		if (RecursivelyIntersect(A[1], tmid, t1, deptha,
       
   719                                      B[0], u0, umid, depthb,
       
   720                                      t) && !t)
       
   721                     return true;
       
   722             }
       
   723 	    if (IntersectBB(A[0], B[1])) {
       
   724                 //fprintf(stderr, "\t 3 from %d\n", currentD);
       
   725 		if (RecursivelyIntersect(A[0], t0, tmid, deptha,
       
   726                                      B[1], umid, u1, depthb,
       
   727                                      t) && !t)
       
   728                     return true;
       
   729             }
       
   730 	    if (IntersectBB(A[1], B[1])) {
       
   731                 //fprintf(stderr, "\t 4 from %d\n", currentD);
       
   732 		if (RecursivelyIntersect(A[1], tmid, t1, deptha,
       
   733 				     B[1], umid, u1, depthb,
       
   734 				     t) && !t)
       
   735                     return true;
       
   736             }
       
   737             return t ? !t->isEmpty() : false;
       
   738         } else {
       
   739 	    if (IntersectBB(A[0], b)) {
       
   740                 //fprintf(stderr, "\t 5 from %d\n", currentD);
       
   741 		if (RecursivelyIntersect(A[0], t0, tmid, deptha,
       
   742 				     b, u0, u1, depthb,
       
   743 				     t) && !t)
       
   744                     return true;
       
   745             }
       
   746 	    if (IntersectBB(A[1], b)) {
       
   747                 //fprintf(stderr, "\t 6 from %d\n", currentD);
       
   748 		if (RecursivelyIntersect(A[1], tmid, t1, deptha,
       
   749                                      b, u0, u1, depthb,
       
   750                                      t) && !t)
       
   751                     return true;
       
   752             }
       
   753             return t ? !t->isEmpty() : false;
       
   754         }
       
   755     } else {
       
   756 	if (depthb > 0) {
       
   757 	    QBezier B[2];
       
   758             b.split(&B[0], &B[1]);
       
   759 	    qreal umid = (u0 + u1)*0.5;
       
   760 	    depthb--;
       
   761 	    if (IntersectBB(a, B[0])) {
       
   762                 //fprintf(stderr, "\t 7 from %d\n", currentD);
       
   763 		if (RecursivelyIntersect(a, t0, t1, deptha,
       
   764                                      B[0], u0, umid, depthb,
       
   765                                      t) && !t)
       
   766                     return true;
       
   767             }
       
   768 	    if (IntersectBB(a, B[1])) {
       
   769                 //fprintf(stderr, "\t 8 from %d\n", currentD);
       
   770 		if (RecursivelyIntersect(a, t0, t1, deptha,
       
   771                                      B[1], umid, u1, depthb,
       
   772                                      t) && !t)
       
   773                     return true;
       
   774             }
       
   775             return t ? !t->isEmpty() : false;
       
   776         }
       
   777 	else {
       
   778             // Both segments are fully subdivided; now do line segments
       
   779 	    qreal xlk = a.x4 - a.x1;
       
   780 	    qreal ylk = a.y4 - a.y1;
       
   781 	    qreal xnm = b.x4 - b.x1;
       
   782 	    qreal ynm = b.y4 - b.y1;
       
   783 	    qreal xmk = b.x1 - a.x1;
       
   784 	    qreal ymk = b.y1 - a.y1;
       
   785 	    qreal det = xnm * ylk - ynm * xlk;
       
   786 	    if (1.0 + det == 1.0) {
       
   787 		return false;
       
   788             } else {
       
   789                 qreal detinv = 1.0 / det;
       
   790                 qreal rs = (xnm * ymk - ynm *xmk) * detinv;
       
   791                 qreal rt = (xlk * ymk - ylk * xmk) * detinv;
       
   792                 if ((rs < 0.0) || (rs > 1.0) || (rt < 0.0) || (rt > 1.0))
       
   793                     return false;
       
   794 
       
   795                 if (t) {
       
   796                     const qreal alpha_a = t0 + rs * (t1 - t0);
       
   797                     const qreal alpha_b = u0 + rt * (u1 - u0);
       
   798 
       
   799                     *t << qMakePair(alpha_a, alpha_b);
       
   800                 }
       
   801 
       
   802                 return true;
       
   803             }
       
   804         }
       
   805     }
       
   806 }
       
   807 
       
   808 QVector< QPair<qreal, qreal> > QBezier::findIntersections(const QBezier &a, const QBezier &b)
       
   809 {
       
   810     QVector< QPair<qreal, qreal> > v(2);
       
   811     findIntersections(a, b, &v);
       
   812     return v;
       
   813 }
       
   814 
       
   815 bool QBezier::findIntersections(const QBezier &a, const QBezier &b,
       
   816                                 QVector<QPair<qreal, qreal> > *t)
       
   817 {
       
   818     if (IntersectBB(a, b)) {
       
   819         QPointF la1(fabs((a.x3 - a.x2) - (a.x2 - a.x1)),
       
   820                     fabs((a.y3 - a.y2) - (a.y2 - a.y1)));
       
   821 	QPointF la2(fabs((a.x4 - a.x3) - (a.x3 - a.x2)),
       
   822                     fabs((a.y4 - a.y3) - (a.y3 - a.y2)));
       
   823 	QPointF la;
       
   824 	if (la1.x() > la2.x()) la.setX(la1.x()); else la.setX(la2.x());
       
   825 	if (la1.y() > la2.y()) la.setY(la1.y()); else la.setY(la2.y());
       
   826 	QPointF lb1(fabs((b.x3 - b.x2) - (b.x2 - b.x1)),
       
   827                     fabs((b.y3 - b.y2) - (b.y2 - b.y1)));
       
   828 	QPointF lb2(fabs((b.x4 - b.x3) - (b.x3 - b.x2)),
       
   829                     fabs((b.y4 - b.y3) - (b.y3 - b.y2)));
       
   830 	QPointF lb;
       
   831 	if (lb1.x() > lb2.x()) lb.setX(lb1.x()); else lb.setX(lb2.x());
       
   832 	if (lb1.y() > lb2.y()) lb.setY(lb1.y()); else lb.setY(lb2.y());
       
   833 	qreal l0;
       
   834 	if (la.x() > la.y())
       
   835 	    l0 = la.x();
       
   836 	else
       
   837 	    l0 = la.y();
       
   838 	int ra;
       
   839 	if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
       
   840 	    ra = 0;
       
   841 	else
       
   842 	    ra = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
       
   843 	if (lb.x() > lb.y())
       
   844 	    l0 = lb.x();
       
   845 	else
       
   846 	    l0 = lb.y();
       
   847 	int rb;
       
   848 	if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
       
   849 	    rb = 0;
       
   850 	else
       
   851 	    rb = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
       
   852 
       
   853         // if qreal is float then halve the number of subdivisions
       
   854         if (sizeof(qreal) == 4) {
       
   855             ra /= 2;
       
   856             rb /= 2;
       
   857         }
       
   858 
       
   859 	return RecursivelyIntersect(a, 0., 1., ra, b, 0., 1., rb, t);
       
   860     }
       
   861 
       
   862     //Don't sort here because it breaks the orders of corresponding
       
   863     //  intersections points. this way t's at the same locations correspond
       
   864     //  to the same intersection point.
       
   865     //qSort(parameters[0].begin(), parameters[0].end(), qLess<qreal>());
       
   866     //qSort(parameters[1].begin(), parameters[1].end(), qLess<qreal>());
       
   867 
       
   868     return false;
       
   869 }
       
   870 
       
   871 static inline void splitBezierAt(const QBezier &bez, qreal t,
       
   872                                  QBezier *left, QBezier *right)
       
   873 {
       
   874     left->x1 = bez.x1;
       
   875     left->y1 = bez.y1;
       
   876 
       
   877     left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
       
   878     left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );
       
   879 
       
   880     left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
       
   881     left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot
       
   882 
       
   883     right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
       
   884     right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );
       
   885 
       
   886     right->x2 = left->x3 + t * ( right->x3 - left->x3);
       
   887     right->y2 = left->y3 + t * ( right->y3 - left->y3);
       
   888 
       
   889     left->x3 = left->x2 + t * ( left->x3 - left->x2 );
       
   890     left->y3 = left->y2 + t * ( left->y3 - left->y2 );
       
   891 
       
   892     left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
       
   893     left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);
       
   894 
       
   895     right->x4 = bez.x4;
       
   896     right->y4 = bez.y4;
       
   897 }
       
   898 
       
   899 QVector< QList<QBezier> > QBezier::splitAtIntersections(QBezier &b)
       
   900 {
       
   901     QVector< QList<QBezier> > curves(2);
       
   902 
       
   903     QVector< QPair<qreal, qreal> > allInters = findIntersections(*this, b);
       
   904 
       
   905     QList<qreal> inters1;
       
   906     QList<qreal> inters2;
       
   907 
       
   908     for (int i = 0; i < allInters.size(); ++i) {
       
   909         inters1 << allInters[i].first;
       
   910         inters2 << allInters[i].second;
       
   911     }
       
   912 
       
   913     qSort(inters1.begin(), inters1.end(), qLess<qreal>());
       
   914     qSort(inters2.begin(), inters2.end(), qLess<qreal>());
       
   915 
       
   916     Q_ASSERT(inters1.count() == inters2.count());
       
   917 
       
   918     int i;
       
   919     for (i = 0; i < inters1.count(); ++i) {
       
   920         qreal t1 = inters1.at(i);
       
   921         qreal t2 = inters2.at(i);
       
   922 
       
   923         QBezier curve1, curve2;
       
   924         parameterSplitLeft(t1, &curve1);
       
   925 	b.parameterSplitLeft(t2, &curve2);
       
   926         curves[0].append(curve1);
       
   927         curves[0].append(curve2);
       
   928     }
       
   929     curves[0].append(*this);
       
   930     curves[1].append(b);
       
   931 
       
   932     return curves;
       
   933 }
       
   934 
       
   935 qreal QBezier::length(qreal error) const
       
   936 {
       
   937     qreal length = 0.0;
       
   938 
       
   939     addIfClose(&length, error);
       
   940 
       
   941     return length;
       
   942 }
       
   943 
       
   944 void QBezier::addIfClose(qreal *length, qreal error) const
       
   945 {
       
   946     QBezier left, right;     /* bez poly splits */
       
   947 
       
   948     qreal len = 0.0;        /* arc length */
       
   949     qreal chord;            /* chord length */
       
   950 
       
   951     len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
       
   952     len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
       
   953     len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
       
   954 
       
   955     chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
       
   956 
       
   957     if((len-chord) > error) {
       
   958         split(&left, &right);                 /* split in two */
       
   959         left.addIfClose(length, error);       /* try left side */
       
   960         right.addIfClose(length, error);      /* try right side */
       
   961         return;
       
   962     }
       
   963 
       
   964     *length = *length + len;
       
   965 
       
   966     return;
       
   967 }
       
   968 
       
   969 qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
       
   970 {
       
   971     qreal py0 = pointAt(t0).y();
       
   972     qreal py1 = pointAt(t1).y();
       
   973 
       
   974     if (py0 > py1) {
       
   975         qSwap(py0, py1);
       
   976         qSwap(t0, t1);
       
   977     }
       
   978 
       
   979     Q_ASSERT(py0 <= py1);
       
   980 
       
   981     if (py0 >= y)
       
   982         return t0;
       
   983     else if (py1 <= y)
       
   984         return t1;
       
   985 
       
   986     Q_ASSERT(py0 < y && y < py1);
       
   987 
       
   988     qreal lt = t0;
       
   989     qreal dt;
       
   990     do {
       
   991         qreal t = 0.5 * (t0 + t1);
       
   992 
       
   993         qreal a, b, c, d;
       
   994         QBezier::coefficients(t, a, b, c, d);
       
   995         qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
       
   996 
       
   997         if (yt < y) {
       
   998             t0 = t;
       
   999             py0 = yt;
       
  1000         } else {
       
  1001             t1 = t;
       
  1002             py1 = yt;
       
  1003         }
       
  1004         dt = lt - t;
       
  1005         lt = t;
       
  1006     } while (qAbs(dt) > 1e-7);
       
  1007 
       
  1008     return t0;
       
  1009 }
       
  1010 
       
  1011 int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
       
  1012 {
       
  1013     // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
       
  1014     // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
       
  1015     // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
       
  1016 
       
  1017     const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
       
  1018     const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
       
  1019     const qreal c = -y1 + y2;
       
  1020 
       
  1021     qreal reciprocal = b * b - 4 * a * c;
       
  1022 
       
  1023     QList<qreal> result;
       
  1024 
       
  1025     if (qFuzzyIsNull(reciprocal)) {
       
  1026         t0 = -b / (2 * a);
       
  1027         return 1;
       
  1028     } else if (reciprocal > 0) {
       
  1029         qreal temp = qSqrt(reciprocal);
       
  1030 
       
  1031         t0 = (-b - temp)/(2*a);
       
  1032         t1 = (-b + temp)/(2*a);
       
  1033 
       
  1034         if (t1 < t0)
       
  1035             qSwap(t0, t1);
       
  1036 
       
  1037         int count = 0;
       
  1038         qreal t[2] = { 0, 1 };
       
  1039 
       
  1040         if (t0 > 0 && t0 < 1)
       
  1041             t[count++] = t0;
       
  1042         if (t1 > 0 && t1 < 1)
       
  1043             t[count++] = t1;
       
  1044 
       
  1045         t0 = t[0];
       
  1046         t1 = t[1];
       
  1047 
       
  1048         return count;
       
  1049     }
       
  1050 
       
  1051     return 0;
       
  1052 }
       
  1053 
       
  1054 qreal QBezier::tAtLength(qreal l) const
       
  1055 {
       
  1056     qreal len = length();
       
  1057     qreal t   = 1.0;
       
  1058     const qreal error = (qreal)0.01;
       
  1059     if (l > len || qFuzzyCompare(l, len))
       
  1060         return t;
       
  1061 
       
  1062     t *= 0.5;
       
  1063     //int iters = 0;
       
  1064     //qDebug()<<"LEN is "<<l<<len;
       
  1065     qreal lastBigger = 1.;
       
  1066     while (1) {
       
  1067         //qDebug()<<"\tt is "<<t;
       
  1068         QBezier right = *this;
       
  1069         QBezier left;
       
  1070         right.parameterSplitLeft(t, &left);
       
  1071         qreal lLen = left.length();
       
  1072         if (qAbs(lLen - l) < error)
       
  1073             break;
       
  1074 
       
  1075         if (lLen < l) {
       
  1076             t += (lastBigger - t)*.5;
       
  1077         } else {
       
  1078             lastBigger = t;
       
  1079             t -= t*.5;
       
  1080         }
       
  1081         //++iters;
       
  1082     }
       
  1083     //qDebug()<<"number of iters is "<<iters;
       
  1084     return t;
       
  1085 }
       
  1086 
       
  1087 QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
       
  1088 {
       
  1089     if (t0 == 0 && t1 == 1)
       
  1090         return *this;
       
  1091 
       
  1092     QBezier bezier = *this;
       
  1093 
       
  1094     QBezier result;
       
  1095     bezier.parameterSplitLeft(t0, &result);
       
  1096     qreal trueT = (t1-t0)/(1-t0);
       
  1097     bezier.parameterSplitLeft(trueT, &result);
       
  1098 
       
  1099     return result;
       
  1100 }
       
  1101 
       
  1102 
       
  1103 static inline void bindInflectionPoint(const QBezier &bez, const qreal t,
       
  1104                                        qreal *tMinus , qreal *tPlus)
       
  1105 {
       
  1106     if (t <= 0) {
       
  1107         *tMinus = *tPlus = -1;
       
  1108         return;
       
  1109     } else if (t >= 1) {
       
  1110         *tMinus = *tPlus = 2;
       
  1111         return;
       
  1112     }
       
  1113 
       
  1114     QBezier left, right;
       
  1115     splitBezierAt(bez, t, &left, &right);
       
  1116 
       
  1117     qreal ax = -right.x1 + 3*right.x2 - 3*right.x3 + right.x4;
       
  1118     qreal ay = -right.y1 + 3*right.y2 - 3*right.y3 + right.y4;
       
  1119     qreal ex = 3 * (right.x2 - right.x3);
       
  1120     qreal ey = 3 * (right.y2 - right.y3);
       
  1121 
       
  1122     qreal s4 = qAbs(6 * (ey * ax - ex * ay) / qSqrt(ex * ex + ey * ey)) + 0.00001f;
       
  1123     qreal tf = pow(qreal(9 * flatness / s4), qreal(1./3.));
       
  1124     *tMinus = t - (1 - t) * tf;
       
  1125     *tPlus  = t + (1 - t) * tf;
       
  1126 }
       
  1127 
       
  1128 void QBezier::addToPolygonIterative(QPolygonF *p) const
       
  1129 {
       
  1130     qreal t1, t2, tcusp;
       
  1131     qreal t1min, t1plus, t2min, t2plus;
       
  1132 
       
  1133     qreal ax = -x1 + 3*x2 - 3*x3 + x4;
       
  1134     qreal ay = -y1 + 3*y2 - 3*y3 + y4;
       
  1135     qreal bx = 3*x1 - 6*x2 + 3*x3;
       
  1136     qreal by = 3*y1 - 6*y2 + 3*y3;
       
  1137     qreal cx = -3*x1 + 3*x2;
       
  1138     qreal cy = -3*y1 + 2*y2;
       
  1139 
       
  1140     if (findInflections(6 * (ay * bx - ax * by),
       
  1141                         6 * (ay * cx - ax * cy),
       
  1142                         2 * (by * cx - bx * cy),
       
  1143                         &t1, &t2, &tcusp)) {
       
  1144         bindInflectionPoint(*this, t1, &t1min, &t1plus);
       
  1145         bindInflectionPoint(*this, t2, &t2min, &t2plus);
       
  1146 
       
  1147         QBezier tmpBez = *this;
       
  1148         QBezier left, right, bez1, bez2, bez3;
       
  1149 	if (t1min > 0) {
       
  1150             if (t1min >= 1) {
       
  1151                 flattenBezierWithoutInflections(tmpBez, p);
       
  1152             } else {
       
  1153                 splitBezierAt(tmpBez, t1min, &left, &right);
       
  1154                 flattenBezierWithoutInflections(left, p);
       
  1155                 p->append(tmpBez.pointAt(t1min));
       
  1156 
       
  1157                 if (t2min < t1plus) {
       
  1158                     if (tcusp < 1) {
       
  1159                         p->append(tmpBez.pointAt(tcusp));
       
  1160                     }
       
  1161                     if (t2plus < 1) {
       
  1162                         splitBezierAt(tmpBez, t2plus, &left, &right);
       
  1163                         flattenBezierWithoutInflections(right, p);
       
  1164                     }
       
  1165                 } else if (t1plus < 1) {
       
  1166                     if (t2min < 1) {
       
  1167                         splitBezierAt(tmpBez, t2min, &bez3, &right);
       
  1168                         splitBezierAt(bez3, t1plus, &left, &bez2);
       
  1169 
       
  1170                         flattenBezierWithoutInflections(bez2, p);
       
  1171                         p->append(tmpBez.pointAt(t2min));
       
  1172 
       
  1173                         if (t2plus < 1) {
       
  1174                             splitBezierAt(tmpBez, t2plus, &left, &bez2);
       
  1175                             flattenBezierWithoutInflections(bez2, p);
       
  1176                         }
       
  1177                     } else {
       
  1178                         splitBezierAt(tmpBez, t1plus, &left, &bez2);
       
  1179                         flattenBezierWithoutInflections(bez2, p);
       
  1180                     }
       
  1181                 }
       
  1182             }
       
  1183 	} else if (t1plus > 0) {
       
  1184             p->append(QPointF(x1, y1));
       
  1185             if (t2min < t1plus)	{
       
  1186                 if (tcusp < 1) {
       
  1187                     p->append(tmpBez.pointAt(tcusp));
       
  1188                 }
       
  1189                 if (t2plus < 1) {
       
  1190                     splitBezierAt(tmpBez, t2plus, &left, &bez2);
       
  1191                     flattenBezierWithoutInflections(bez2, p);
       
  1192                 }
       
  1193             } else if (t1plus < 1) {
       
  1194                 if (t2min < 1) {
       
  1195                     splitBezierAt(tmpBez, t2min, &bez3, &right);
       
  1196                     splitBezierAt(bez3, t1plus, &left, &bez2);
       
  1197 
       
  1198                     flattenBezierWithoutInflections(bez2, p);
       
  1199 
       
  1200                     p->append(tmpBez.pointAt(t2min));
       
  1201                     if (t2plus < 1) {
       
  1202                         splitBezierAt(tmpBez, t2plus, &left, &bez2);
       
  1203                         flattenBezierWithoutInflections(bez2, p);
       
  1204                     }
       
  1205                 } else {
       
  1206                     splitBezierAt(tmpBez, t1plus, &left, &bez2);
       
  1207                     flattenBezierWithoutInflections(bez2, p);
       
  1208                 }
       
  1209             }
       
  1210         } else if (t2min > 0) {
       
  1211             if (t2min < 1) {
       
  1212                 splitBezierAt(tmpBez, t2min, &bez1, &right);
       
  1213                 flattenBezierWithoutInflections(bez1, p);
       
  1214                 p->append(tmpBez.pointAt(t2min));
       
  1215 
       
  1216                 if (t2plus < 1) {
       
  1217                     splitBezierAt(tmpBez, t2plus, &left, &bez2);
       
  1218                     flattenBezierWithoutInflections(bez2, p);
       
  1219                 }
       
  1220             } else {
       
  1221                 //### in here we should check whether the area of the
       
  1222                 //    triangle formed between pt1/pt2/pt3 is smaller
       
  1223                 //    or equal to 0 and then do iterative flattening
       
  1224                 //    if not we should fallback and do the recursive
       
  1225                 //    flattening.
       
  1226                 flattenBezierWithoutInflections(tmpBez, p);
       
  1227             }
       
  1228         } else if (t2plus > 0) {
       
  1229             p->append(QPointF(x1, y1));
       
  1230             if (t2plus < 1) {
       
  1231                 splitBezierAt(tmpBez, t2plus, &left, &bez2);
       
  1232                 flattenBezierWithoutInflections(bez2, p);
       
  1233             }
       
  1234         } else {
       
  1235             flattenBezierWithoutInflections(tmpBez, p);
       
  1236         }
       
  1237     } else {
       
  1238         QBezier bez = *this;
       
  1239         flattenBezierWithoutInflections(bez, p);
       
  1240     }
       
  1241 
       
  1242     p->append(QPointF(x4, y4));
       
  1243 }
       
  1244 
       
  1245 QT_END_NAMESPACE