src/3rdparty/libjpeg/jcarith.c
changeset 30 5dc02b23752f
equal deleted inserted replaced
29:b72c6db6890b 30:5dc02b23752f
       
     1 /*
       
     2  * jcarith.c
       
     3  *
       
     4  * Developed 1997-2009 by Guido Vollbeding.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains portable arithmetic entropy encoding routines for JPEG
       
     9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
       
    10  *
       
    11  * Both sequential and progressive modes are supported in this single module.
       
    12  *
       
    13  * Suspension is not currently supported in this module.
       
    14  */
       
    15 
       
    16 #define JPEG_INTERNALS
       
    17 #include "jinclude.h"
       
    18 #include "jpeglib.h"
       
    19 
       
    20 
       
    21 /* Expanded entropy encoder object for arithmetic encoding. */
       
    22 
       
    23 typedef struct {
       
    24   struct jpeg_entropy_encoder pub; /* public fields */
       
    25 
       
    26   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
       
    27   INT32 a;               /* A register, normalized size of coding interval */
       
    28   INT32 sc;        /* counter for stacked 0xFF values which might overflow */
       
    29   INT32 zc;          /* counter for pending 0x00 output values which might *
       
    30                           * be discarded at the end ("Pacman" termination) */
       
    31   int ct;  /* bit shift counter, determines when next byte will be written */
       
    32   int buffer;                /* buffer for most recent output byte != 0xFF */
       
    33 
       
    34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
       
    35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
       
    36 
       
    37   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
       
    38   int next_restart_num;		/* next restart number to write (0-7) */
       
    39 
       
    40   /* Pointers to statistics areas (these workspaces have image lifespan) */
       
    41   unsigned char * dc_stats[NUM_ARITH_TBLS];
       
    42   unsigned char * ac_stats[NUM_ARITH_TBLS];
       
    43 
       
    44   /* Statistics bin for coding with fixed probability 0.5 */
       
    45   unsigned char fixed_bin[4];
       
    46 } arith_entropy_encoder;
       
    47 
       
    48 typedef arith_entropy_encoder * arith_entropy_ptr;
       
    49 
       
    50 /* The following two definitions specify the allocation chunk size
       
    51  * for the statistics area.
       
    52  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
       
    53  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
       
    54  *
       
    55  * We use a compact representation with 1 byte per statistics bin,
       
    56  * thus the numbers directly represent byte sizes.
       
    57  * This 1 byte per statistics bin contains the meaning of the MPS
       
    58  * (more probable symbol) in the highest bit (mask 0x80), and the
       
    59  * index into the probability estimation state machine table
       
    60  * in the lower bits (mask 0x7F).
       
    61  */
       
    62 
       
    63 #define DC_STAT_BINS 64
       
    64 #define AC_STAT_BINS 256
       
    65 
       
    66 /* NOTE: Uncomment the following #define if you want to use the
       
    67  * given formula for calculating the AC conditioning parameter Kx
       
    68  * for spectral selection progressive coding in section G.1.3.2
       
    69  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
       
    70  * Although the spec and P&M authors claim that this "has proven
       
    71  * to give good results for 8 bit precision samples", I'm not
       
    72  * convinced yet that this is really beneficial.
       
    73  * Early tests gave only very marginal compression enhancements
       
    74  * (a few - around 5 or so - bytes even for very large files),
       
    75  * which would turn out rather negative if we'd suppress the
       
    76  * DAC (Define Arithmetic Conditioning) marker segments for
       
    77  * the default parameters in the future.
       
    78  * Note that currently the marker writing module emits 12-byte
       
    79  * DAC segments for a full-component scan in a color image.
       
    80  * This is not worth worrying about IMHO. However, since the
       
    81  * spec defines the default values to be used if the tables
       
    82  * are omitted (unlike Huffman tables, which are required
       
    83  * anyway), one might optimize this behaviour in the future,
       
    84  * and then it would be disadvantageous to use custom tables if
       
    85  * they don't provide sufficient gain to exceed the DAC size.
       
    86  *
       
    87  * On the other hand, I'd consider it as a reasonable result
       
    88  * that the conditioning has no significant influence on the
       
    89  * compression performance. This means that the basic
       
    90  * statistical model is already rather stable.
       
    91  *
       
    92  * Thus, at the moment, we use the default conditioning values
       
    93  * anyway, and do not use the custom formula.
       
    94  *
       
    95 #define CALCULATE_SPECTRAL_CONDITIONING
       
    96  */
       
    97 
       
    98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
       
    99  * We assume that int right shift is unsigned if INT32 right shift is,
       
   100  * which should be safe.
       
   101  */
       
   102 
       
   103 #ifdef RIGHT_SHIFT_IS_UNSIGNED
       
   104 #define ISHIFT_TEMPS	int ishift_temp;
       
   105 #define IRIGHT_SHIFT(x,shft)  \
       
   106 	((ishift_temp = (x)) < 0 ? \
       
   107 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
       
   108 	 (ishift_temp >> (shft)))
       
   109 #else
       
   110 #define ISHIFT_TEMPS
       
   111 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
       
   112 #endif
       
   113 
       
   114 
       
   115 LOCAL(void)
       
   116 emit_byte (int val, j_compress_ptr cinfo)
       
   117 /* Write next output byte; we do not support suspension in this module. */
       
   118 {
       
   119   struct jpeg_destination_mgr * dest = cinfo->dest;
       
   120 
       
   121   *dest->next_output_byte++ = (JOCTET) val;
       
   122   if (--dest->free_in_buffer == 0)
       
   123     if (! (*dest->empty_output_buffer) (cinfo))
       
   124       ERREXIT(cinfo, JERR_CANT_SUSPEND);
       
   125 }
       
   126 
       
   127 
       
   128 /*
       
   129  * Finish up at the end of an arithmetic-compressed scan.
       
   130  */
       
   131 
       
   132 METHODDEF(void)
       
   133 finish_pass (j_compress_ptr cinfo)
       
   134 {
       
   135   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
       
   136   INT32 temp;
       
   137 
       
   138   /* Section D.1.8: Termination of encoding */
       
   139 
       
   140   /* Find the e->c in the coding interval with the largest
       
   141    * number of trailing zero bits */
       
   142   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
       
   143     e->c = temp + 0x8000L;
       
   144   else
       
   145     e->c = temp;
       
   146   /* Send remaining bytes to output */
       
   147   e->c <<= e->ct;
       
   148   if (e->c & 0xF8000000L) {
       
   149     /* One final overflow has to be handled */
       
   150     if (e->buffer >= 0) {
       
   151       if (e->zc)
       
   152 	do emit_byte(0x00, cinfo);
       
   153 	while (--e->zc);
       
   154       emit_byte(e->buffer + 1, cinfo);
       
   155       if (e->buffer + 1 == 0xFF)
       
   156 	emit_byte(0x00, cinfo);
       
   157     }
       
   158     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
       
   159     e->sc = 0;
       
   160   } else {
       
   161     if (e->buffer == 0)
       
   162       ++e->zc;
       
   163     else if (e->buffer >= 0) {
       
   164       if (e->zc)
       
   165 	do emit_byte(0x00, cinfo);
       
   166 	while (--e->zc);
       
   167       emit_byte(e->buffer, cinfo);
       
   168     }
       
   169     if (e->sc) {
       
   170       if (e->zc)
       
   171 	do emit_byte(0x00, cinfo);
       
   172 	while (--e->zc);
       
   173       do {
       
   174 	emit_byte(0xFF, cinfo);
       
   175 	emit_byte(0x00, cinfo);
       
   176       } while (--e->sc);
       
   177     }
       
   178   }
       
   179   /* Output final bytes only if they are not 0x00 */
       
   180   if (e->c & 0x7FFF800L) {
       
   181     if (e->zc)  /* output final pending zero bytes */
       
   182       do emit_byte(0x00, cinfo);
       
   183       while (--e->zc);
       
   184     emit_byte((e->c >> 19) & 0xFF, cinfo);
       
   185     if (((e->c >> 19) & 0xFF) == 0xFF)
       
   186       emit_byte(0x00, cinfo);
       
   187     if (e->c & 0x7F800L) {
       
   188       emit_byte((e->c >> 11) & 0xFF, cinfo);
       
   189       if (((e->c >> 11) & 0xFF) == 0xFF)
       
   190 	emit_byte(0x00, cinfo);
       
   191     }
       
   192   }
       
   193 }
       
   194 
       
   195 
       
   196 /*
       
   197  * The core arithmetic encoding routine (common in JPEG and JBIG).
       
   198  * This needs to go as fast as possible.
       
   199  * Machine-dependent optimization facilities
       
   200  * are not utilized in this portable implementation.
       
   201  * However, this code should be fairly efficient and
       
   202  * may be a good base for further optimizations anyway.
       
   203  *
       
   204  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
       
   205  *
       
   206  * Note: I've added full "Pacman" termination support to the
       
   207  * byte output routines, which is equivalent to the optional
       
   208  * Discard_final_zeros procedure (Figure D.15) in the spec.
       
   209  * Thus, we always produce the shortest possible output
       
   210  * stream compliant to the spec (no trailing zero bytes,
       
   211  * except for FF stuffing).
       
   212  *
       
   213  * I've also introduced a new scheme for accessing
       
   214  * the probability estimation state machine table,
       
   215  * derived from Markus Kuhn's JBIG implementation.
       
   216  */
       
   217 
       
   218 LOCAL(void)
       
   219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) 
       
   220 {
       
   221   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
       
   222   register unsigned char nl, nm;
       
   223   register INT32 qe, temp;
       
   224   register int sv;
       
   225 
       
   226   /* Fetch values from our compact representation of Table D.2:
       
   227    * Qe values and probability estimation state machine
       
   228    */
       
   229   sv = *st;
       
   230   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
       
   231   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
       
   232   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
       
   233 
       
   234   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
       
   235   e->a -= qe;
       
   236   if (val != (sv >> 7)) {
       
   237     /* Encode the less probable symbol */
       
   238     if (e->a >= qe) {
       
   239       /* If the interval size (qe) for the less probable symbol (LPS)
       
   240        * is larger than the interval size for the MPS, then exchange
       
   241        * the two symbols for coding efficiency, otherwise code the LPS
       
   242        * as usual: */
       
   243       e->c += e->a;
       
   244       e->a = qe;
       
   245     }
       
   246     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
       
   247   } else {
       
   248     /* Encode the more probable symbol */
       
   249     if (e->a >= 0x8000L)
       
   250       return;  /* A >= 0x8000 -> ready, no renormalization required */
       
   251     if (e->a < qe) {
       
   252       /* If the interval size (qe) for the less probable symbol (LPS)
       
   253        * is larger than the interval size for the MPS, then exchange
       
   254        * the two symbols for coding efficiency: */
       
   255       e->c += e->a;
       
   256       e->a = qe;
       
   257     }
       
   258     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
       
   259   }
       
   260 
       
   261   /* Renormalization & data output per section D.1.6 */
       
   262   do {
       
   263     e->a <<= 1;
       
   264     e->c <<= 1;
       
   265     if (--e->ct == 0) {
       
   266       /* Another byte is ready for output */
       
   267       temp = e->c >> 19;
       
   268       if (temp > 0xFF) {
       
   269 	/* Handle overflow over all stacked 0xFF bytes */
       
   270 	if (e->buffer >= 0) {
       
   271 	  if (e->zc)
       
   272 	    do emit_byte(0x00, cinfo);
       
   273 	    while (--e->zc);
       
   274 	  emit_byte(e->buffer + 1, cinfo);
       
   275 	  if (e->buffer + 1 == 0xFF)
       
   276 	    emit_byte(0x00, cinfo);
       
   277 	}
       
   278 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
       
   279 	e->sc = 0;
       
   280 	/* Note: The 3 spacer bits in the C register guarantee
       
   281 	 * that the new buffer byte can't be 0xFF here
       
   282 	 * (see page 160 in the P&M JPEG book). */
       
   283 	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
       
   284       } else if (temp == 0xFF) {
       
   285 	++e->sc;  /* stack 0xFF byte (which might overflow later) */
       
   286       } else {
       
   287 	/* Output all stacked 0xFF bytes, they will not overflow any more */
       
   288 	if (e->buffer == 0)
       
   289 	  ++e->zc;
       
   290 	else if (e->buffer >= 0) {
       
   291 	  if (e->zc)
       
   292 	    do emit_byte(0x00, cinfo);
       
   293 	    while (--e->zc);
       
   294 	  emit_byte(e->buffer, cinfo);
       
   295 	}
       
   296 	if (e->sc) {
       
   297 	  if (e->zc)
       
   298 	    do emit_byte(0x00, cinfo);
       
   299 	    while (--e->zc);
       
   300 	  do {
       
   301 	    emit_byte(0xFF, cinfo);
       
   302 	    emit_byte(0x00, cinfo);
       
   303 	  } while (--e->sc);
       
   304 	}
       
   305 	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
       
   306       }
       
   307       e->c &= 0x7FFFFL;
       
   308       e->ct += 8;
       
   309     }
       
   310   } while (e->a < 0x8000L);
       
   311 }
       
   312 
       
   313 
       
   314 /*
       
   315  * Emit a restart marker & resynchronize predictions.
       
   316  */
       
   317 
       
   318 LOCAL(void)
       
   319 emit_restart (j_compress_ptr cinfo, int restart_num)
       
   320 {
       
   321   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   322   int ci;
       
   323   jpeg_component_info * compptr;
       
   324 
       
   325   finish_pass(cinfo);
       
   326 
       
   327   emit_byte(0xFF, cinfo);
       
   328   emit_byte(JPEG_RST0 + restart_num, cinfo);
       
   329 
       
   330   /* Re-initialize statistics areas */
       
   331   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   332     compptr = cinfo->cur_comp_info[ci];
       
   333     /* DC needs no table for refinement scan */
       
   334     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
       
   335       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
       
   336       /* Reset DC predictions to 0 */
       
   337       entropy->last_dc_val[ci] = 0;
       
   338       entropy->dc_context[ci] = 0;
       
   339     }
       
   340     /* AC needs no table when not present */
       
   341     if (cinfo->Se) {
       
   342       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
       
   343     }
       
   344   }
       
   345 
       
   346   /* Reset arithmetic encoding variables */
       
   347   entropy->c = 0;
       
   348   entropy->a = 0x10000L;
       
   349   entropy->sc = 0;
       
   350   entropy->zc = 0;
       
   351   entropy->ct = 11;
       
   352   entropy->buffer = -1;  /* empty */
       
   353 }
       
   354 
       
   355 
       
   356 /*
       
   357  * MCU encoding for DC initial scan (either spectral selection,
       
   358  * or first pass of successive approximation).
       
   359  */
       
   360 
       
   361 METHODDEF(boolean)
       
   362 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   363 {
       
   364   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   365   JBLOCKROW block;
       
   366   unsigned char *st;
       
   367   int blkn, ci, tbl;
       
   368   int v, v2, m;
       
   369   ISHIFT_TEMPS
       
   370 
       
   371   /* Emit restart marker if needed */
       
   372   if (cinfo->restart_interval) {
       
   373     if (entropy->restarts_to_go == 0) {
       
   374       emit_restart(cinfo, entropy->next_restart_num);
       
   375       entropy->restarts_to_go = cinfo->restart_interval;
       
   376       entropy->next_restart_num++;
       
   377       entropy->next_restart_num &= 7;
       
   378     }
       
   379     entropy->restarts_to_go--;
       
   380   }
       
   381 
       
   382   /* Encode the MCU data blocks */
       
   383   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   384     block = MCU_data[blkn];
       
   385     ci = cinfo->MCU_membership[blkn];
       
   386     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
       
   387 
       
   388     /* Compute the DC value after the required point transform by Al.
       
   389      * This is simply an arithmetic right shift.
       
   390      */
       
   391     m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
       
   392 
       
   393     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
       
   394 
       
   395     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
       
   396     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
       
   397 
       
   398     /* Figure F.4: Encode_DC_DIFF */
       
   399     if ((v = m - entropy->last_dc_val[ci]) == 0) {
       
   400       arith_encode(cinfo, st, 0);
       
   401       entropy->dc_context[ci] = 0;	/* zero diff category */
       
   402     } else {
       
   403       entropy->last_dc_val[ci] = m;
       
   404       arith_encode(cinfo, st, 1);
       
   405       /* Figure F.6: Encoding nonzero value v */
       
   406       /* Figure F.7: Encoding the sign of v */
       
   407       if (v > 0) {
       
   408 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
       
   409 	st += 2;			/* Table F.4: SP = S0 + 2 */
       
   410 	entropy->dc_context[ci] = 4;	/* small positive diff category */
       
   411       } else {
       
   412 	v = -v;
       
   413 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
       
   414 	st += 3;			/* Table F.4: SN = S0 + 3 */
       
   415 	entropy->dc_context[ci] = 8;	/* small negative diff category */
       
   416       }
       
   417       /* Figure F.8: Encoding the magnitude category of v */
       
   418       m = 0;
       
   419       if (v -= 1) {
       
   420 	arith_encode(cinfo, st, 1);
       
   421 	m = 1;
       
   422 	v2 = v;
       
   423 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
       
   424 	while (v2 >>= 1) {
       
   425 	  arith_encode(cinfo, st, 1);
       
   426 	  m <<= 1;
       
   427 	  st += 1;
       
   428 	}
       
   429       }
       
   430       arith_encode(cinfo, st, 0);
       
   431       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
       
   432       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
       
   433 	entropy->dc_context[ci] = 0;	/* zero diff category */
       
   434       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
       
   435 	entropy->dc_context[ci] += 8;	/* large diff category */
       
   436       /* Figure F.9: Encoding the magnitude bit pattern of v */
       
   437       st += 14;
       
   438       while (m >>= 1)
       
   439 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
       
   440     }
       
   441   }
       
   442 
       
   443   return TRUE;
       
   444 }
       
   445 
       
   446 
       
   447 /*
       
   448  * MCU encoding for AC initial scan (either spectral selection,
       
   449  * or first pass of successive approximation).
       
   450  */
       
   451 
       
   452 METHODDEF(boolean)
       
   453 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   454 {
       
   455   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   456   JBLOCKROW block;
       
   457   unsigned char *st;
       
   458   int tbl, k, ke;
       
   459   int v, v2, m;
       
   460   const int * natural_order;
       
   461 
       
   462   /* Emit restart marker if needed */
       
   463   if (cinfo->restart_interval) {
       
   464     if (entropy->restarts_to_go == 0) {
       
   465       emit_restart(cinfo, entropy->next_restart_num);
       
   466       entropy->restarts_to_go = cinfo->restart_interval;
       
   467       entropy->next_restart_num++;
       
   468       entropy->next_restart_num &= 7;
       
   469     }
       
   470     entropy->restarts_to_go--;
       
   471   }
       
   472 
       
   473   natural_order = cinfo->natural_order;
       
   474 
       
   475   /* Encode the MCU data block */
       
   476   block = MCU_data[0];
       
   477   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
       
   478 
       
   479   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
       
   480 
       
   481   /* Establish EOB (end-of-block) index */
       
   482   for (ke = cinfo->Se; ke > 0; ke--)
       
   483     /* We must apply the point transform by Al.  For AC coefficients this
       
   484      * is an integer division with rounding towards 0.  To do this portably
       
   485      * in C, we shift after obtaining the absolute value.
       
   486      */
       
   487     if ((v = (*block)[natural_order[ke]]) >= 0) {
       
   488       if (v >>= cinfo->Al) break;
       
   489     } else {
       
   490       v = -v;
       
   491       if (v >>= cinfo->Al) break;
       
   492     }
       
   493 
       
   494   /* Figure F.5: Encode_AC_Coefficients */
       
   495   for (k = cinfo->Ss; k <= ke; k++) {
       
   496     st = entropy->ac_stats[tbl] + 3 * (k - 1);
       
   497     arith_encode(cinfo, st, 0);		/* EOB decision */
       
   498     for (;;) {
       
   499       if ((v = (*block)[natural_order[k]]) >= 0) {
       
   500 	if (v >>= cinfo->Al) {
       
   501 	  arith_encode(cinfo, st + 1, 1);
       
   502 	  arith_encode(cinfo, entropy->fixed_bin, 0);
       
   503 	  break;
       
   504 	}
       
   505       } else {
       
   506 	v = -v;
       
   507 	if (v >>= cinfo->Al) {
       
   508 	  arith_encode(cinfo, st + 1, 1);
       
   509 	  arith_encode(cinfo, entropy->fixed_bin, 1);
       
   510 	  break;
       
   511 	}
       
   512       }
       
   513       arith_encode(cinfo, st + 1, 0); st += 3; k++;
       
   514     }
       
   515     st += 2;
       
   516     /* Figure F.8: Encoding the magnitude category of v */
       
   517     m = 0;
       
   518     if (v -= 1) {
       
   519       arith_encode(cinfo, st, 1);
       
   520       m = 1;
       
   521       v2 = v;
       
   522       if (v2 >>= 1) {
       
   523 	arith_encode(cinfo, st, 1);
       
   524 	m <<= 1;
       
   525 	st = entropy->ac_stats[tbl] +
       
   526 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
       
   527 	while (v2 >>= 1) {
       
   528 	  arith_encode(cinfo, st, 1);
       
   529 	  m <<= 1;
       
   530 	  st += 1;
       
   531 	}
       
   532       }
       
   533     }
       
   534     arith_encode(cinfo, st, 0);
       
   535     /* Figure F.9: Encoding the magnitude bit pattern of v */
       
   536     st += 14;
       
   537     while (m >>= 1)
       
   538       arith_encode(cinfo, st, (m & v) ? 1 : 0);
       
   539   }
       
   540   /* Encode EOB decision only if k <= cinfo->Se */
       
   541   if (k <= cinfo->Se) {
       
   542     st = entropy->ac_stats[tbl] + 3 * (k - 1);
       
   543     arith_encode(cinfo, st, 1);
       
   544   }
       
   545 
       
   546   return TRUE;
       
   547 }
       
   548 
       
   549 
       
   550 /*
       
   551  * MCU encoding for DC successive approximation refinement scan.
       
   552  */
       
   553 
       
   554 METHODDEF(boolean)
       
   555 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   556 {
       
   557   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   558   unsigned char *st;
       
   559   int Al, blkn;
       
   560 
       
   561   /* Emit restart marker if needed */
       
   562   if (cinfo->restart_interval) {
       
   563     if (entropy->restarts_to_go == 0) {
       
   564       emit_restart(cinfo, entropy->next_restart_num);
       
   565       entropy->restarts_to_go = cinfo->restart_interval;
       
   566       entropy->next_restart_num++;
       
   567       entropy->next_restart_num &= 7;
       
   568     }
       
   569     entropy->restarts_to_go--;
       
   570   }
       
   571 
       
   572   st = entropy->fixed_bin;	/* use fixed probability estimation */
       
   573   Al = cinfo->Al;
       
   574 
       
   575   /* Encode the MCU data blocks */
       
   576   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   577     /* We simply emit the Al'th bit of the DC coefficient value. */
       
   578     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
       
   579   }
       
   580 
       
   581   return TRUE;
       
   582 }
       
   583 
       
   584 
       
   585 /*
       
   586  * MCU encoding for AC successive approximation refinement scan.
       
   587  */
       
   588 
       
   589 METHODDEF(boolean)
       
   590 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   591 {
       
   592   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   593   JBLOCKROW block;
       
   594   unsigned char *st;
       
   595   int tbl, k, ke, kex;
       
   596   int v;
       
   597   const int * natural_order;
       
   598 
       
   599   /* Emit restart marker if needed */
       
   600   if (cinfo->restart_interval) {
       
   601     if (entropy->restarts_to_go == 0) {
       
   602       emit_restart(cinfo, entropy->next_restart_num);
       
   603       entropy->restarts_to_go = cinfo->restart_interval;
       
   604       entropy->next_restart_num++;
       
   605       entropy->next_restart_num &= 7;
       
   606     }
       
   607     entropy->restarts_to_go--;
       
   608   }
       
   609 
       
   610   natural_order = cinfo->natural_order;
       
   611 
       
   612   /* Encode the MCU data block */
       
   613   block = MCU_data[0];
       
   614   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
       
   615 
       
   616   /* Section G.1.3.3: Encoding of AC coefficients */
       
   617 
       
   618   /* Establish EOB (end-of-block) index */
       
   619   for (ke = cinfo->Se; ke > 0; ke--)
       
   620     /* We must apply the point transform by Al.  For AC coefficients this
       
   621      * is an integer division with rounding towards 0.  To do this portably
       
   622      * in C, we shift after obtaining the absolute value.
       
   623      */
       
   624     if ((v = (*block)[natural_order[ke]]) >= 0) {
       
   625       if (v >>= cinfo->Al) break;
       
   626     } else {
       
   627       v = -v;
       
   628       if (v >>= cinfo->Al) break;
       
   629     }
       
   630 
       
   631   /* Establish EOBx (previous stage end-of-block) index */
       
   632   for (kex = ke; kex > 0; kex--)
       
   633     if ((v = (*block)[natural_order[kex]]) >= 0) {
       
   634       if (v >>= cinfo->Ah) break;
       
   635     } else {
       
   636       v = -v;
       
   637       if (v >>= cinfo->Ah) break;
       
   638     }
       
   639 
       
   640   /* Figure G.10: Encode_AC_Coefficients_SA */
       
   641   for (k = cinfo->Ss; k <= ke; k++) {
       
   642     st = entropy->ac_stats[tbl] + 3 * (k - 1);
       
   643     if (k > kex)
       
   644       arith_encode(cinfo, st, 0);	/* EOB decision */
       
   645     for (;;) {
       
   646       if ((v = (*block)[natural_order[k]]) >= 0) {
       
   647 	if (v >>= cinfo->Al) {
       
   648 	  if (v >> 1)			/* previously nonzero coef */
       
   649 	    arith_encode(cinfo, st + 2, (v & 1));
       
   650 	  else {			/* newly nonzero coef */
       
   651 	    arith_encode(cinfo, st + 1, 1);
       
   652 	    arith_encode(cinfo, entropy->fixed_bin, 0);
       
   653 	  }
       
   654 	  break;
       
   655 	}
       
   656       } else {
       
   657 	v = -v;
       
   658 	if (v >>= cinfo->Al) {
       
   659 	  if (v >> 1)			/* previously nonzero coef */
       
   660 	    arith_encode(cinfo, st + 2, (v & 1));
       
   661 	  else {			/* newly nonzero coef */
       
   662 	    arith_encode(cinfo, st + 1, 1);
       
   663 	    arith_encode(cinfo, entropy->fixed_bin, 1);
       
   664 	  }
       
   665 	  break;
       
   666 	}
       
   667       }
       
   668       arith_encode(cinfo, st + 1, 0); st += 3; k++;
       
   669     }
       
   670   }
       
   671   /* Encode EOB decision only if k <= cinfo->Se */
       
   672   if (k <= cinfo->Se) {
       
   673     st = entropy->ac_stats[tbl] + 3 * (k - 1);
       
   674     arith_encode(cinfo, st, 1);
       
   675   }
       
   676 
       
   677   return TRUE;
       
   678 }
       
   679 
       
   680 
       
   681 /*
       
   682  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
       
   683  */
       
   684 
       
   685 METHODDEF(boolean)
       
   686 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   687 {
       
   688   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   689   jpeg_component_info * compptr;
       
   690   JBLOCKROW block;
       
   691   unsigned char *st;
       
   692   int blkn, ci, tbl, k, ke;
       
   693   int v, v2, m;
       
   694   const int * natural_order;
       
   695 
       
   696   /* Emit restart marker if needed */
       
   697   if (cinfo->restart_interval) {
       
   698     if (entropy->restarts_to_go == 0) {
       
   699       emit_restart(cinfo, entropy->next_restart_num);
       
   700       entropy->restarts_to_go = cinfo->restart_interval;
       
   701       entropy->next_restart_num++;
       
   702       entropy->next_restart_num &= 7;
       
   703     }
       
   704     entropy->restarts_to_go--;
       
   705   }
       
   706 
       
   707   natural_order = cinfo->natural_order;
       
   708 
       
   709   /* Encode the MCU data blocks */
       
   710   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   711     block = MCU_data[blkn];
       
   712     ci = cinfo->MCU_membership[blkn];
       
   713     compptr = cinfo->cur_comp_info[ci];
       
   714 
       
   715     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
       
   716 
       
   717     tbl = compptr->dc_tbl_no;
       
   718 
       
   719     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
       
   720     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
       
   721 
       
   722     /* Figure F.4: Encode_DC_DIFF */
       
   723     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
       
   724       arith_encode(cinfo, st, 0);
       
   725       entropy->dc_context[ci] = 0;	/* zero diff category */
       
   726     } else {
       
   727       entropy->last_dc_val[ci] = (*block)[0];
       
   728       arith_encode(cinfo, st, 1);
       
   729       /* Figure F.6: Encoding nonzero value v */
       
   730       /* Figure F.7: Encoding the sign of v */
       
   731       if (v > 0) {
       
   732 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
       
   733 	st += 2;			/* Table F.4: SP = S0 + 2 */
       
   734 	entropy->dc_context[ci] = 4;	/* small positive diff category */
       
   735       } else {
       
   736 	v = -v;
       
   737 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
       
   738 	st += 3;			/* Table F.4: SN = S0 + 3 */
       
   739 	entropy->dc_context[ci] = 8;	/* small negative diff category */
       
   740       }
       
   741       /* Figure F.8: Encoding the magnitude category of v */
       
   742       m = 0;
       
   743       if (v -= 1) {
       
   744 	arith_encode(cinfo, st, 1);
       
   745 	m = 1;
       
   746 	v2 = v;
       
   747 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
       
   748 	while (v2 >>= 1) {
       
   749 	  arith_encode(cinfo, st, 1);
       
   750 	  m <<= 1;
       
   751 	  st += 1;
       
   752 	}
       
   753       }
       
   754       arith_encode(cinfo, st, 0);
       
   755       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
       
   756       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
       
   757 	entropy->dc_context[ci] = 0;	/* zero diff category */
       
   758       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
       
   759 	entropy->dc_context[ci] += 8;	/* large diff category */
       
   760       /* Figure F.9: Encoding the magnitude bit pattern of v */
       
   761       st += 14;
       
   762       while (m >>= 1)
       
   763 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
       
   764     }
       
   765 
       
   766     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
       
   767 
       
   768     tbl = compptr->ac_tbl_no;
       
   769 
       
   770     /* Establish EOB (end-of-block) index */
       
   771     for (ke = cinfo->lim_Se; ke > 0; ke--)
       
   772       if ((*block)[natural_order[ke]]) break;
       
   773 
       
   774     /* Figure F.5: Encode_AC_Coefficients */
       
   775     for (k = 1; k <= ke; k++) {
       
   776       st = entropy->ac_stats[tbl] + 3 * (k - 1);
       
   777       arith_encode(cinfo, st, 0);	/* EOB decision */
       
   778       while ((v = (*block)[natural_order[k]]) == 0) {
       
   779 	arith_encode(cinfo, st + 1, 0); st += 3; k++;
       
   780       }
       
   781       arith_encode(cinfo, st + 1, 1);
       
   782       /* Figure F.6: Encoding nonzero value v */
       
   783       /* Figure F.7: Encoding the sign of v */
       
   784       if (v > 0) {
       
   785 	arith_encode(cinfo, entropy->fixed_bin, 0);
       
   786       } else {
       
   787 	v = -v;
       
   788 	arith_encode(cinfo, entropy->fixed_bin, 1);
       
   789       }
       
   790       st += 2;
       
   791       /* Figure F.8: Encoding the magnitude category of v */
       
   792       m = 0;
       
   793       if (v -= 1) {
       
   794 	arith_encode(cinfo, st, 1);
       
   795 	m = 1;
       
   796 	v2 = v;
       
   797 	if (v2 >>= 1) {
       
   798 	  arith_encode(cinfo, st, 1);
       
   799 	  m <<= 1;
       
   800 	  st = entropy->ac_stats[tbl] +
       
   801 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
       
   802 	  while (v2 >>= 1) {
       
   803 	    arith_encode(cinfo, st, 1);
       
   804 	    m <<= 1;
       
   805 	    st += 1;
       
   806 	  }
       
   807 	}
       
   808       }
       
   809       arith_encode(cinfo, st, 0);
       
   810       /* Figure F.9: Encoding the magnitude bit pattern of v */
       
   811       st += 14;
       
   812       while (m >>= 1)
       
   813 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
       
   814     }
       
   815     /* Encode EOB decision only if k <= cinfo->lim_Se */
       
   816     if (k <= cinfo->lim_Se) {
       
   817       st = entropy->ac_stats[tbl] + 3 * (k - 1);
       
   818       arith_encode(cinfo, st, 1);
       
   819     }
       
   820   }
       
   821 
       
   822   return TRUE;
       
   823 }
       
   824 
       
   825 
       
   826 /*
       
   827  * Initialize for an arithmetic-compressed scan.
       
   828  */
       
   829 
       
   830 METHODDEF(void)
       
   831 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
       
   832 {
       
   833   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
       
   834   int ci, tbl;
       
   835   jpeg_component_info * compptr;
       
   836 
       
   837   if (gather_statistics)
       
   838     /* Make sure to avoid that in the master control logic!
       
   839      * We are fully adaptive here and need no extra
       
   840      * statistics gathering pass!
       
   841      */
       
   842     ERREXIT(cinfo, JERR_NOT_COMPILED);
       
   843 
       
   844   /* We assume jcmaster.c already validated the progressive scan parameters. */
       
   845 
       
   846   /* Select execution routines */
       
   847   if (cinfo->progressive_mode) {
       
   848     if (cinfo->Ah == 0) {
       
   849       if (cinfo->Ss == 0)
       
   850 	entropy->pub.encode_mcu = encode_mcu_DC_first;
       
   851       else
       
   852 	entropy->pub.encode_mcu = encode_mcu_AC_first;
       
   853     } else {
       
   854       if (cinfo->Ss == 0)
       
   855 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
       
   856       else
       
   857 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
       
   858     }
       
   859   } else
       
   860     entropy->pub.encode_mcu = encode_mcu;
       
   861 
       
   862   /* Allocate & initialize requested statistics areas */
       
   863   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   864     compptr = cinfo->cur_comp_info[ci];
       
   865     /* DC needs no table for refinement scan */
       
   866     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
       
   867       tbl = compptr->dc_tbl_no;
       
   868       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
       
   869 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
       
   870       if (entropy->dc_stats[tbl] == NULL)
       
   871 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
       
   872 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
       
   873       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
       
   874       /* Initialize DC predictions to 0 */
       
   875       entropy->last_dc_val[ci] = 0;
       
   876       entropy->dc_context[ci] = 0;
       
   877     }
       
   878     /* AC needs no table when not present */
       
   879     if (cinfo->Se) {
       
   880       tbl = compptr->ac_tbl_no;
       
   881       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
       
   882 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
       
   883       if (entropy->ac_stats[tbl] == NULL)
       
   884 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
       
   885 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
       
   886       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
       
   887 #ifdef CALCULATE_SPECTRAL_CONDITIONING
       
   888       if (cinfo->progressive_mode)
       
   889 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
       
   890 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
       
   891 #endif
       
   892     }
       
   893   }
       
   894 
       
   895   /* Initialize arithmetic encoding variables */
       
   896   entropy->c = 0;
       
   897   entropy->a = 0x10000L;
       
   898   entropy->sc = 0;
       
   899   entropy->zc = 0;
       
   900   entropy->ct = 11;
       
   901   entropy->buffer = -1;  /* empty */
       
   902 
       
   903   /* Initialize restart stuff */
       
   904   entropy->restarts_to_go = cinfo->restart_interval;
       
   905   entropy->next_restart_num = 0;
       
   906 }
       
   907 
       
   908 
       
   909 /*
       
   910  * Module initialization routine for arithmetic entropy encoding.
       
   911  */
       
   912 
       
   913 GLOBAL(void)
       
   914 jinit_arith_encoder (j_compress_ptr cinfo)
       
   915 {
       
   916   arith_entropy_ptr entropy;
       
   917   int i;
       
   918 
       
   919   entropy = (arith_entropy_ptr)
       
   920     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   921 				SIZEOF(arith_entropy_encoder));
       
   922   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
       
   923   entropy->pub.start_pass = start_pass;
       
   924   entropy->pub.finish_pass = finish_pass;
       
   925 
       
   926   /* Mark tables unallocated */
       
   927   for (i = 0; i < NUM_ARITH_TBLS; i++) {
       
   928     entropy->dc_stats[i] = NULL;
       
   929     entropy->ac_stats[i] = NULL;
       
   930   }
       
   931 
       
   932   /* Initialize index for fixed probability estimation */
       
   933   entropy->fixed_bin[0] = 113;
       
   934 }