src/3rdparty/webkit/JavaScriptCore/jit/JITArithmetic.cpp
changeset 0 1918ee327afb
child 30 5dc02b23752f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/3rdparty/webkit/JavaScriptCore/jit/JITArithmetic.cpp	Mon Jan 11 14:00:40 2010 +0000
@@ -0,0 +1,2542 @@
+/*
+ * Copyright (C) 2008 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
+ */
+
+#include "config.h"
+#include "JIT.h"
+
+#if ENABLE(JIT)
+
+#include "CodeBlock.h"
+#include "JITInlineMethods.h"
+#include "JITStubCall.h"
+#include "JSArray.h"
+#include "JSFunction.h"
+#include "Interpreter.h"
+#include "ResultType.h"
+#include "SamplingTool.h"
+
+#ifndef NDEBUG
+#include <stdio.h>
+#endif
+
+using namespace std;
+
+namespace JSC {
+
+#if USE(JSVALUE32_64)
+
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned src = currentInstruction[2].u.operand;
+
+    emitLoad(src, regT1, regT0);
+
+    Jump srcNotInt = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+    addSlowCase(branch32(Equal, regT0, Imm32(0)));
+
+    neg32(regT0);
+    emitStoreInt32(dst, regT0, (dst == src));
+
+    Jump end = jump();
+
+    srcNotInt.link(this);
+    addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+
+    xor32(Imm32(1 << 31), regT1);
+    store32(regT1, tagFor(dst));
+    if (dst != src)
+        store32(regT0, payloadFor(dst));
+
+    end.link(this);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+
+    linkSlowCase(iter); // 0 check
+    linkSlowCase(iter); // double check
+
+    JITStubCall stubCall(this, cti_op_negate);
+    stubCall.addArgument(regT1, regT0);
+    stubCall.call(dst);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    JumpList notInt32Op1;
+    JumpList notInt32Op2;
+
+    // Int32 less.
+    if (isOperandConstantImmediateInt(op1)) {
+        emitLoad(op2, regT3, regT2);
+        notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+        addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitLoad(op1, regT1, regT0);
+        notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+    } else {
+        emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+        notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+        addJump(branch32(GreaterThanOrEqual, regT0, regT2), target);
+    }
+
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32Op1);
+        addSlowCase(notInt32Op2);
+        return;
+    }
+    Jump end = jump();
+
+    // Double less.
+    emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+    end.link(this);
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    if (!supportsFloatingPoint()) {
+        if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+            linkSlowCase(iter); // int32 check
+        linkSlowCase(iter); // int32 check
+    } else {
+        if (!isOperandConstantImmediateInt(op1)) {
+            linkSlowCase(iter); // double check
+            linkSlowCase(iter); // int32 check
+        }
+        if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+            linkSlowCase(iter); // double check
+    }
+
+    JITStubCall stubCall(this, cti_op_jless);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call();
+    emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    JumpList notInt32Op1;
+    JumpList notInt32Op2;
+
+    // Int32 less.
+    if (isOperandConstantImmediateInt(op1)) {
+        emitLoad(op2, regT3, regT2);
+        notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+        addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitLoad(op1, regT1, regT0);
+        notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+    } else {
+        emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+        notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+        addJump(branch32(GreaterThan, regT0, regT2), target);
+    }
+
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32Op1);
+        addSlowCase(notInt32Op2);
+        return;
+    }
+    Jump end = jump();
+
+    // Double less.
+    emitBinaryDoubleOp(op_jnlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+    end.link(this);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    if (!supportsFloatingPoint()) {
+        if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+            linkSlowCase(iter); // int32 check
+        linkSlowCase(iter); // int32 check
+    } else {
+        if (!isOperandConstantImmediateInt(op1)) {
+            linkSlowCase(iter); // double check
+            linkSlowCase(iter); // int32 check
+        }
+        if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+            linkSlowCase(iter); // double check
+    }
+
+    JITStubCall stubCall(this, cti_op_jlesseq);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call();
+    emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+// LeftShift (<<)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op2)) {
+        emitLoad(op1, regT1, regT0);
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+        emitStoreInt32(dst, regT0, dst == op1);
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    if (!isOperandConstantImmediateInt(op1))
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+    lshift32(regT2, regT0);
+    emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+        linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // int32 check
+
+    JITStubCall stubCall(this, cti_op_lshift);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// RightShift (>>)
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op2)) {
+        emitLoad(op1, regT1, regT0);
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        rshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+        emitStoreInt32(dst, regT0, dst == op1);
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    if (!isOperandConstantImmediateInt(op1))
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+    rshift32(regT2, regT0);
+    emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+        linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // int32 check
+
+    JITStubCall stubCall(this, cti_op_rshift);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// BitAnd (&)
+
+void JIT::emit_op_bitand(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    unsigned op;
+    int32_t constant;
+    if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+        emitLoad(op, regT1, regT0);
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        and32(Imm32(constant), regT0);
+        emitStoreInt32(dst, regT0, (op == dst));
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+    and32(regT2, regT0);
+    emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+        linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // int32 check
+
+    JITStubCall stubCall(this, cti_op_bitand);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// BitOr (|)
+
+void JIT::emit_op_bitor(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    unsigned op;
+    int32_t constant;
+    if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+        emitLoad(op, regT1, regT0);
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        or32(Imm32(constant), regT0);
+        emitStoreInt32(dst, regT0, (op == dst));
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+    or32(regT2, regT0);
+    emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+        linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // int32 check
+
+    JITStubCall stubCall(this, cti_op_bitor);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// BitXor (^)
+
+void JIT::emit_op_bitxor(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    unsigned op;
+    int32_t constant;
+    if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+        emitLoad(op, regT1, regT0);
+        addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+        xor32(Imm32(constant), regT0);
+        emitStoreInt32(dst, regT0, (op == dst));
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+    xor32(regT2, regT0);
+    emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+        linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // int32 check
+
+    JITStubCall stubCall(this, cti_op_bitxor);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// BitNot (~)
+
+void JIT::emit_op_bitnot(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned src = currentInstruction[2].u.operand;
+
+    emitLoad(src, regT1, regT0);
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+    not32(regT0);
+    emitStoreInt32(dst, regT0, (dst == src));
+}
+
+void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+
+    linkSlowCase(iter); // int32 check
+
+    JITStubCall stubCall(this, cti_op_bitnot);
+    stubCall.addArgument(regT1, regT0);
+    stubCall.call(dst);
+}
+
+// PostInc (i++)
+
+void JIT::emit_op_post_inc(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+    
+    emitLoad(srcDst, regT1, regT0);
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+    if (dst == srcDst) // x = x++ is a noop for ints.
+        return;
+
+    emitStoreInt32(dst, regT0);
+
+    addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+    emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    linkSlowCase(iter); // int32 check
+    if (dst != srcDst)
+        linkSlowCase(iter); // overflow check
+
+    JITStubCall stubCall(this, cti_op_post_inc);
+    stubCall.addArgument(srcDst);
+    stubCall.addArgument(Imm32(srcDst));
+    stubCall.call(dst);
+}
+
+// PostDec (i--)
+
+void JIT::emit_op_post_dec(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    emitLoad(srcDst, regT1, regT0);
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+    if (dst == srcDst) // x = x-- is a noop for ints.
+        return;
+
+    emitStoreInt32(dst, regT0);
+
+    addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
+    emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    linkSlowCase(iter); // int32 check
+    if (dst != srcDst)
+        linkSlowCase(iter); // overflow check
+
+    JITStubCall stubCall(this, cti_op_post_dec);
+    stubCall.addArgument(srcDst);
+    stubCall.addArgument(Imm32(srcDst));
+    stubCall.call(dst);
+}
+
+// PreInc (++i)
+
+void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    emitLoad(srcDst, regT1, regT0);
+
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+    emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // overflow check
+
+    JITStubCall stubCall(this, cti_op_pre_inc);
+    stubCall.addArgument(srcDst);
+    stubCall.call(srcDst);
+}
+
+// PreDec (--i)
+
+void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    emitLoad(srcDst, regT1, regT0);
+
+    addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
+    emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    linkSlowCase(iter); // int32 check
+    linkSlowCase(iter); // overflow check
+
+    JITStubCall stubCall(this, cti_op_pre_dec);
+    stubCall.addArgument(srcDst);
+    stubCall.call(srcDst);
+}
+
+// Addition (+)
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1);
+        stubCall.addArgument(op2);
+        stubCall.call(dst);
+        return;
+    }
+
+    JumpList notInt32Op1;
+    JumpList notInt32Op2;
+
+    unsigned op;
+    int32_t constant;
+    if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+        emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second());
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+    // Int32 case.
+    addSlowCase(branchAdd32(Overflow, regT2, regT0));
+    emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32Op1);
+        addSlowCase(notInt32Op2);
+        return;
+    }
+    Jump end = jump();
+
+    // Double case.
+    emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+    end.link(this);
+}
+
+void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
+{
+    // Int32 case.
+    emitLoad(op, regT1, regT0);
+    Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+    addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0));
+    emitStoreInt32(dst, regT0, (op == dst));
+
+    // Double case.
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32);
+        return;
+    }
+    Jump end = jump();
+
+    notInt32.link(this);
+    if (!opType.definitelyIsNumber())
+        addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+    move(Imm32(constant), regT2);
+    convertInt32ToDouble(regT2, fpRegT0);
+    emitLoadDouble(op, fpRegT1);
+    addDouble(fpRegT1, fpRegT0);
+    emitStoreDouble(dst, fpRegT0);
+
+    end.link(this);
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+        return;
+
+    unsigned op;
+    int32_t constant;
+    if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+        linkSlowCase(iter); // overflow check
+
+        if (!supportsFloatingPoint())
+            linkSlowCase(iter); // non-sse case
+        else {
+            ResultType opType = op == op1 ? types.first() : types.second();
+            if (!opType.definitelyIsNumber())
+                linkSlowCase(iter); // double check
+        }
+    } else {
+        linkSlowCase(iter); // overflow check
+
+        if (!supportsFloatingPoint()) {
+            linkSlowCase(iter); // int32 check
+            linkSlowCase(iter); // int32 check
+        } else {
+            if (!types.first().definitelyIsNumber())
+                linkSlowCase(iter); // double check
+
+            if (!types.second().definitelyIsNumber()) {
+                linkSlowCase(iter); // int32 check
+                linkSlowCase(iter); // double check
+            }
+        }
+    }
+
+    JITStubCall stubCall(this, cti_op_add);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// Subtraction (-)
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    JumpList notInt32Op1;
+    JumpList notInt32Op2;
+
+    if (isOperandConstantImmediateInt(op2)) {
+        emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first());
+        return;
+    }
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+    // Int32 case.
+    addSlowCase(branchSub32(Overflow, regT2, regT0));
+    emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32Op1);
+        addSlowCase(notInt32Op2);
+        return;
+    }
+    Jump end = jump();
+
+    // Double case.
+    emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+    end.link(this);
+}
+
+void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
+{
+    // Int32 case.
+    emitLoad(op, regT1, regT0);
+    Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+    addSlowCase(branchSub32(Overflow, Imm32(constant), regT0));
+    emitStoreInt32(dst, regT0, (op == dst));
+
+    // Double case.
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32);
+        return;
+    }
+    Jump end = jump();
+
+    notInt32.link(this);
+    if (!opType.definitelyIsNumber())
+        addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+    move(Imm32(constant), regT2);
+    convertInt32ToDouble(regT2, fpRegT0);
+    emitLoadDouble(op, fpRegT1);
+    subDouble(fpRegT0, fpRegT1);
+    emitStoreDouble(dst, fpRegT1);
+
+    end.link(this);
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter); // overflow check
+
+        if (!supportsFloatingPoint() || !types.first().definitelyIsNumber())
+            linkSlowCase(iter); // int32 or double check
+    } else {
+        linkSlowCase(iter); // overflow check
+
+        if (!supportsFloatingPoint()) {
+            linkSlowCase(iter); // int32 check
+            linkSlowCase(iter); // int32 check
+        } else {
+            if (!types.first().definitelyIsNumber())
+                linkSlowCase(iter); // double check
+
+            if (!types.second().definitelyIsNumber()) {
+                linkSlowCase(iter); // int32 check
+                linkSlowCase(iter); // double check
+            }
+        }
+    }
+
+    JITStubCall stubCall(this, cti_op_sub);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
+{
+    JumpList end;
+    
+    if (!notInt32Op1.empty()) {
+        // Double case 1: Op1 is not int32; Op2 is unknown.
+        notInt32Op1.link(this);
+
+        ASSERT(op1IsInRegisters);
+
+        // Verify Op1 is double.
+        if (!types.first().definitelyIsNumber())
+            addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+
+        if (!op2IsInRegisters)
+            emitLoad(op2, regT3, regT2);
+
+        Jump doubleOp2 = branch32(Below, regT3, Imm32(JSValue::LowestTag));
+
+        if (!types.second().definitelyIsNumber())
+            addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+        convertInt32ToDouble(regT2, fpRegT0);
+        Jump doTheMath = jump();
+
+        // Load Op2 as double into double register.
+        doubleOp2.link(this);
+        emitLoadDouble(op2, fpRegT0);
+
+        // Do the math.
+        doTheMath.link(this);
+        switch (opcodeID) {
+            case op_mul:
+                emitLoadDouble(op1, fpRegT2);
+                mulDouble(fpRegT2, fpRegT0);
+                emitStoreDouble(dst, fpRegT0);
+                break;
+            case op_add:
+                emitLoadDouble(op1, fpRegT2);
+                addDouble(fpRegT2, fpRegT0);
+                emitStoreDouble(dst, fpRegT0);
+                break;
+            case op_sub:
+                emitLoadDouble(op1, fpRegT1);
+                subDouble(fpRegT0, fpRegT1);
+                emitStoreDouble(dst, fpRegT1);
+                break;
+            case op_div:
+                emitLoadDouble(op1, fpRegT1);
+                divDouble(fpRegT0, fpRegT1);
+                emitStoreDouble(dst, fpRegT1);
+                break;
+            case op_jnless:
+                emitLoadDouble(op1, fpRegT2);
+                addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT2), dst);
+                break;
+            case op_jnlesseq:
+                emitLoadDouble(op1, fpRegT2);
+                addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT2), dst);
+                break;
+            default:
+                ASSERT_NOT_REACHED();
+        }
+
+        if (!notInt32Op2.empty())
+            end.append(jump());
+    }
+
+    if (!notInt32Op2.empty()) {
+        // Double case 2: Op1 is int32; Op2 is not int32.
+        notInt32Op2.link(this);
+
+        ASSERT(op2IsInRegisters);
+
+        if (!op1IsInRegisters)
+            emitLoadPayload(op1, regT0);
+
+        convertInt32ToDouble(regT0, fpRegT0);
+
+        // Verify op2 is double.
+        if (!types.second().definitelyIsNumber())
+            addSlowCase(branch32(Above, regT3, Imm32(JSValue::LowestTag)));
+
+        // Do the math.
+        switch (opcodeID) {
+            case op_mul:
+                emitLoadDouble(op2, fpRegT2);
+                mulDouble(fpRegT2, fpRegT0);
+                emitStoreDouble(dst, fpRegT0);
+                break;
+            case op_add:
+                emitLoadDouble(op2, fpRegT2);
+                addDouble(fpRegT2, fpRegT0);
+                emitStoreDouble(dst, fpRegT0);
+                break;
+            case op_sub:
+                emitLoadDouble(op2, fpRegT2);
+                subDouble(fpRegT2, fpRegT0);
+                emitStoreDouble(dst, fpRegT0);
+                break;
+            case op_div:
+                emitLoadDouble(op2, fpRegT2);
+                divDouble(fpRegT2, fpRegT0);
+                emitStoreDouble(dst, fpRegT0);
+                break;
+            case op_jnless:
+                emitLoadDouble(op2, fpRegT1);
+                addJump(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), dst);
+                break;
+            case op_jnlesseq:
+                emitLoadDouble(op2, fpRegT1);
+                addJump(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), dst);
+                break;
+            default:
+                ASSERT_NOT_REACHED();
+        }
+    }
+
+    end.link(this);
+}
+
+// Multiplication (*)
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    JumpList notInt32Op1;
+    JumpList notInt32Op2;
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+    notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+    // Int32 case.
+    move(regT0, regT3);
+    addSlowCase(branchMul32(Overflow, regT2, regT0));
+    addSlowCase(branchTest32(Zero, regT0));
+    emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+    if (!supportsFloatingPoint()) {
+        addSlowCase(notInt32Op1);
+        addSlowCase(notInt32Op2);
+        return;
+    }
+    Jump end = jump();
+
+    // Double case.
+    emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+    end.link(this);
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    Jump overflow = getSlowCase(iter); // overflow check
+    linkSlowCase(iter); // zero result check
+
+    Jump negZero = branchOr32(Signed, regT2, regT3);
+    emitStoreInt32(dst, Imm32(0), (op1 == dst || op2 == dst));
+
+    emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
+
+    negZero.link(this);
+    overflow.link(this);
+
+    if (!supportsFloatingPoint()) {
+        linkSlowCase(iter); // int32 check
+        linkSlowCase(iter); // int32 check
+    }
+
+    if (supportsFloatingPoint()) {
+        if (!types.first().definitelyIsNumber())
+            linkSlowCase(iter); // double check
+
+        if (!types.second().definitelyIsNumber()) {
+            linkSlowCase(iter); // int32 check
+            linkSlowCase(iter); // double check
+        }
+    }
+
+    Label jitStubCall(this);
+    JITStubCall stubCall(this, cti_op_mul);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// Division (/)
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!supportsFloatingPoint()) {
+        addSlowCase(jump());
+        return;
+    }
+
+    // Int32 divide.
+    JumpList notInt32Op1;
+    JumpList notInt32Op2;
+
+    JumpList end;
+
+    emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+
+    notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+    notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+    convertInt32ToDouble(regT0, fpRegT0);
+    convertInt32ToDouble(regT2, fpRegT1);
+    divDouble(fpRegT1, fpRegT0);
+
+    JumpList doubleResult;
+    if (!isOperandConstantImmediateInt(op1) || getConstantOperand(op1).asInt32() > 1) {
+        m_assembler.cvttsd2si_rr(fpRegT0, regT0);
+        convertInt32ToDouble(regT0, fpRegT1);
+        m_assembler.ucomisd_rr(fpRegT1, fpRegT0);
+
+        doubleResult.append(m_assembler.jne());
+        doubleResult.append(m_assembler.jp());
+        
+        doubleResult.append(branchTest32(Zero, regT0));
+
+        // Int32 result.
+        emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+        end.append(jump());
+    }
+
+    // Double result.
+    doubleResult.link(this);
+    emitStoreDouble(dst, fpRegT0);
+    end.append(jump());
+
+    // Double divide.
+    emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+    end.link(this);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!supportsFloatingPoint())
+        linkSlowCase(iter);
+    else {
+        if (!types.first().definitelyIsNumber())
+            linkSlowCase(iter); // double check
+
+        if (!types.second().definitelyIsNumber()) {
+            linkSlowCase(iter); // int32 check
+            linkSlowCase(iter); // double check
+        }
+    }
+
+    JITStubCall stubCall(this, cti_op_div);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+// Mod (%)
+
+/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
+
+#if PLATFORM(X86) || PLATFORM(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
+        emitLoad(op1, X86Registers::edx, X86Registers::eax);
+        move(Imm32(getConstantOperand(op2).asInt32()), X86Registers::ecx);
+        addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+        if (getConstantOperand(op2).asInt32() == -1)
+            addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+    } else {
+        emitLoad2(op1, X86Registers::edx, X86Registers::eax, op2, X86Registers::ebx, X86Registers::ecx);
+        addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+        addSlowCase(branch32(NotEqual, X86Registers::ebx, Imm32(JSValue::Int32Tag)));
+
+        addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+        addSlowCase(branch32(Equal, X86Registers::ecx, Imm32(0))); // divide by 0
+    }
+
+    move(X86Registers::eax, X86Registers::ebx); // Save dividend payload, in case of 0.
+    m_assembler.cdq();
+    m_assembler.idivl_r(X86Registers::ecx);
+    
+    // If the remainder is zero and the dividend is negative, the result is -0.
+    Jump storeResult1 = branchTest32(NonZero, X86Registers::edx);
+    Jump storeResult2 = branchTest32(Zero, X86Registers::ebx, Imm32(0x80000000)); // not negative
+    emitStore(dst, jsNumber(m_globalData, -0.0));
+    Jump end = jump();
+
+    storeResult1.link(this);
+    storeResult2.link(this);
+    emitStoreInt32(dst, X86Registers::edx, (op1 == dst || op2 == dst));
+    end.link(this);
+}
+
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
+        linkSlowCase(iter); // int32 check
+        if (getConstantOperand(op2).asInt32() == -1)
+            linkSlowCase(iter); // 0x80000000 check
+    } else {
+        linkSlowCase(iter); // int32 check
+        linkSlowCase(iter); // int32 check
+        linkSlowCase(iter); // 0 check
+        linkSlowCase(iter); // 0x80000000 check
+    }
+
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+#else // PLATFORM(X86) || PLATFORM(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(op1);
+    stubCall.addArgument(op2);
+    stubCall.call(dst);
+}
+
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
+{
+}
+
+#endif // PLATFORM(X86) || PLATFORM(X86_64)
+
+/* ------------------------------ END: OP_MOD ------------------------------ */
+
+#else // USE(JSVALUE32_64)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    emitGetVirtualRegisters(op1, regT0, op2, regT2);
+    // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT2);
+    emitFastArithImmToInt(regT0);
+    emitFastArithImmToInt(regT2);
+#if !PLATFORM(X86)
+    // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+    // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction.
+    and32(Imm32(0x1f), regT2);
+#endif
+    lshift32(regT2, regT0);
+#if !USE(JSVALUE64)
+    addSlowCase(branchAdd32(Overflow, regT0, regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitFastArithReTagImmediate(regT0, regT0);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+#if USE(JSVALUE64)
+    UNUSED_PARAM(op1);
+    UNUSED_PARAM(op2);
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+#else
+    // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
+    Jump notImm1 = getSlowCase(iter);
+    Jump notImm2 = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitGetVirtualRegisters(op1, regT0, op2, regT2);
+    notImm1.link(this);
+    notImm2.link(this);
+#endif
+    JITStubCall stubCall(this, cti_op_lshift);
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(regT2);
+    stubCall.call(result);
+}
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op2)) {
+        // isOperandConstantImmediateInt(op2) => 1 SlowCase
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+#if USE(JSVALUE64)
+        rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
+#else
+        rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
+#endif
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT2);
+        if (supportsFloatingPointTruncate()) {
+            Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
+#if USE(JSVALUE64)
+            // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
+            addSlowCase(emitJumpIfNotImmediateNumber(regT0));
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+            addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+#else
+            // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell)
+            emitJumpSlowCaseIfNotJSCell(regT0, op1);
+            addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get()));
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+            addSlowCase(branchAdd32(Overflow, regT0, regT0));
+#endif
+            lhsIsInt.link(this);
+            emitJumpSlowCaseIfNotImmediateInteger(regT2);
+        } else {
+            // !supportsFloatingPoint() => 2 SlowCases
+            emitJumpSlowCaseIfNotImmediateInteger(regT0);
+            emitJumpSlowCaseIfNotImmediateInteger(regT2);
+        }
+        emitFastArithImmToInt(regT2);
+#if !PLATFORM(X86)
+        // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+        // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction.
+        and32(Imm32(0x1f), regT2);
+#endif
+#if USE(JSVALUE64)
+        rshift32(regT2, regT0);
+#else
+        rshiftPtr(regT2, regT0);
+#endif
+    }
+#if USE(JSVALUE64)
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+    orPtr(Imm32(JSImmediate::TagTypeNumber), regT0);
+#endif
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    JITStubCall stubCall(this, cti_op_rshift);
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+    } else {
+        if (supportsFloatingPointTruncate()) {
+#if USE(JSVALUE64)
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+#else
+            linkSlowCaseIfNotJSCell(iter, op1);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+#endif
+            // We're reloading op1 to regT0 as we can no longer guarantee that
+            // we have not munged the operand.  It may have already been shifted
+            // correctly, but it still will not have been tagged.
+            stubCall.addArgument(op1, regT0);
+            stubCall.addArgument(regT2);
+        } else {
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            stubCall.addArgument(regT0);
+            stubCall.addArgument(regT2);
+        }
+    }
+
+    stubCall.call(result);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the fast path:
+    // - int immediate to constant int immediate
+    // - constant int immediate to int immediate
+    // - int immediate to int immediate
+
+    if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+        int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+        addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+        int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+        int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+        addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+        addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
+    }
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the slow path:
+    // - floating-point number to constant int immediate
+    // - constant int immediate to floating-point number
+    // - floating-point number to floating-point number.
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+            
+            int32_t op2imm = getConstantOperand(op2).asInt32();;
+                    
+            move(Imm32(op2imm), regT1);
+            convertInt32ToDouble(regT1, fpRegT1);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+    } else if (isOperandConstantImmediateInt(op1)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1 = emitJumpIfNotJSCell(regT1);
+            
+            Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+            
+            int32_t op1imm = getConstantOperand(op1).asInt32();;
+                    
+            move(Imm32(op1imm), regT0);
+            convertInt32ToDouble(regT0, fpRegT0);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+    } else {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+            Jump fail3 = emitJumpIfImmediateInteger(regT1);
+            addPtr(tagTypeNumberRegister, regT0);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT0, fpRegT0);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+            Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+            fail2.link(this);
+            fail3.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2.link(this);
+            fail3.link(this);
+            fail4.link(this);
+#endif
+        }
+
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+    }
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the fast path:
+    // - int immediate to constant int immediate
+    // - constant int immediate to int immediate
+    // - int immediate to int immediate
+
+    if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+        int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+        addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+        int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+        int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+        addJump(branch32(LessThan, regT1, Imm32(op1imm)), target);
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+        addJump(branch32(GreaterThan, regT0, regT1), target);
+    }
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the slow path:
+    // - floating-point number to constant int immediate
+    // - constant int immediate to floating-point number
+    // - floating-point number to floating-point number.
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+            
+            int32_t op2imm = getConstantOperand(op2).asInt32();;
+                    
+            move(Imm32(op2imm), regT1);
+            convertInt32ToDouble(regT1, fpRegT1);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+    } else if (isOperandConstantImmediateInt(op1)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1 = emitJumpIfNotJSCell(regT1);
+            
+            Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+            
+            int32_t op1imm = getConstantOperand(op1).asInt32();;
+                    
+            move(Imm32(op1imm), regT0);
+            convertInt32ToDouble(regT0, fpRegT0);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+    } else {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+            Jump fail3 = emitJumpIfImmediateInteger(regT1);
+            addPtr(tagTypeNumberRegister, regT0);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT0, fpRegT0);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+            Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+            fail2.link(this);
+            fail3.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2.link(this);
+            fail3.link(this);
+            fail4.link(this);
+#endif
+        }
+
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+    }
+}
+
+void JIT::emit_op_bitand(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t imm = getConstantOperandImmediateInt(op1);
+        andPtr(Imm32(imm), regT0);
+        if (imm >= 0)
+            emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+        andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0);
+#endif
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t imm = getConstantOperandImmediateInt(op2);
+        andPtr(Imm32(imm), regT0);
+        if (imm >= 0)
+            emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+        andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0);
+#endif
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        andPtr(regT1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    }
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    linkSlowCase(iter);
+    if (isOperandConstantImmediateInt(op1)) {
+        JITStubCall stubCall(this, cti_op_bitand);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT0);
+        stubCall.call(result);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        JITStubCall stubCall(this, cti_op_bitand);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+    } else {
+        JITStubCall stubCall(this, cti_op_bitand);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call(result);
+    }
+}
+
+void JIT::emit_op_post_inc(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    move(regT0, regT1);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchAdd32(Overflow, Imm32(1), regT1));
+    emitFastArithIntToImmNoCheck(regT1, regT1);
+#else
+    addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
+    signExtend32ToPtr(regT1, regT1);
+#endif
+    emitPutVirtualRegister(srcDst, regT1);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    JITStubCall stubCall(this, cti_op_post_inc);
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(Imm32(srcDst));
+    stubCall.call(result);
+}
+
+void JIT::emit_op_post_dec(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    move(regT0, regT1);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchSub32(Zero, Imm32(1), regT1));
+    emitFastArithIntToImmNoCheck(regT1, regT1);
+#else
+    addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
+    signExtend32ToPtr(regT1, regT1);
+#endif
+    emitPutVirtualRegister(srcDst, regT1);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    JITStubCall stubCall(this, cti_op_post_dec);
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(Imm32(srcDst));
+    stubCall.call(result);
+}
+
+void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+    addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitPutVirtualRegister(srcDst);
+}
+
+void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    Jump notImm = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitGetVirtualRegister(srcDst, regT0);
+    notImm.link(this);
+    JITStubCall stubCall(this, cti_op_pre_inc);
+    stubCall.addArgument(regT0);
+    stubCall.call(srcDst);
+}
+
+void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchSub32(Zero, Imm32(1), regT0));
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+    addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitPutVirtualRegister(srcDst);
+}
+
+void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    Jump notImm = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitGetVirtualRegister(srcDst, regT0);
+    notImm.link(this);
+    JITStubCall stubCall(this, cti_op_pre_dec);
+    stubCall.addArgument(regT0);
+    stubCall.call(srcDst);
+}
+
+/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
+
+#if PLATFORM(X86) || PLATFORM(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx);
+    emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax);
+    emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx);
+#if USE(JSVALUE64)
+    addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
+    m_assembler.cdq();
+    m_assembler.idivl_r(X86Registers::ecx);
+#else
+    emitFastArithDeTagImmediate(X86Registers::eax);
+    addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx));
+    m_assembler.cdq();
+    m_assembler.idivl_r(X86Registers::ecx);
+    signExtend32ToPtr(X86Registers::edx, X86Registers::edx);
+#endif
+    emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+
+#if USE(JSVALUE64)
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+#else
+    Jump notImm1 = getSlowCase(iter);
+    Jump notImm2 = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax);
+    emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx);
+    notImm1.link(this);
+    notImm2.link(this);
+#endif
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(X86Registers::eax);
+    stubCall.addArgument(X86Registers::ecx);
+    stubCall.call(result);
+}
+
+#else // PLATFORM(X86) || PLATFORM(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(op1, regT2);
+    stubCall.addArgument(op2, regT2);
+    stubCall.call(result);
+}
+
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
+{
+    ASSERT_NOT_REACHED();
+}
+
+#endif // PLATFORM(X86) || PLATFORM(X86_64)
+
+/* ------------------------------ END: OP_MOD ------------------------------ */
+
+#if USE(JSVALUE64)
+
+/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
+
+void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
+{
+    emitGetVirtualRegisters(op1, regT0, op2, regT1);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT1);
+    if (opcodeID == op_add)
+        addSlowCase(branchAdd32(Overflow, regT1, regT0));
+    else if (opcodeID == op_sub)
+        addSlowCase(branchSub32(Overflow, regT1, regT0));
+    else {
+        ASSERT(opcodeID == op_mul);
+        addSlowCase(branchMul32(Overflow, regT1, regT0));
+        addSlowCase(branchTest32(Zero, regT0));
+    }
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+}
+
+void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
+{
+    // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
+    COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
+    
+    Jump notImm1;
+    Jump notImm2;
+    if (op1HasImmediateIntFastCase) {
+        notImm2 = getSlowCase(iter);
+    } else if (op2HasImmediateIntFastCase) {
+        notImm1 = getSlowCase(iter);
+    } else {
+        notImm1 = getSlowCase(iter);
+        notImm2 = getSlowCase(iter);
+    }
+
+    linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
+    if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
+        linkSlowCase(iter);
+    emitGetVirtualRegister(op1, regT0);
+
+    Label stubFunctionCall(this);
+    JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+    if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
+        emitGetVirtualRegister(op1, regT0);
+        emitGetVirtualRegister(op2, regT1);
+    }
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(regT1);
+    stubCall.call(result);
+    Jump end = jump();
+
+    if (op1HasImmediateIntFastCase) {
+        notImm2.link(this);
+        if (!types.second().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+        emitGetVirtualRegister(op1, regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT2);
+    } else if (op2HasImmediateIntFastCase) {
+        notImm1.link(this);
+        if (!types.first().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+        emitGetVirtualRegister(op2, regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT2);
+    } else {
+        // if we get here, eax is not an int32, edx not yet checked.
+        notImm1.link(this);
+        if (!types.first().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+        if (!types.second().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT1);
+        Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
+        convertInt32ToDouble(regT1, fpRegT2);
+        Jump op2wasInteger = jump();
+
+        // if we get here, eax IS an int32, edx is not.
+        notImm2.link(this);
+        if (!types.second().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+        convertInt32ToDouble(regT0, fpRegT1);
+        op2isDouble.link(this);
+        addPtr(tagTypeNumberRegister, regT1);
+        movePtrToDouble(regT1, fpRegT2);
+        op2wasInteger.link(this);
+    }
+
+    if (opcodeID == op_add)
+        addDouble(fpRegT2, fpRegT1);
+    else if (opcodeID == op_sub)
+        subDouble(fpRegT2, fpRegT1);
+    else if (opcodeID == op_mul)
+        mulDouble(fpRegT2, fpRegT1);
+    else {
+        ASSERT(opcodeID == op_div);
+        divDouble(fpRegT2, fpRegT1);
+    }
+    moveDoubleToPtr(fpRegT1, regT0);
+    subPtr(tagTypeNumberRegister, regT0);
+    emitPutVirtualRegister(result, regT0);
+
+    end.link(this);
+}
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
+        emitFastArithIntToImmNoCheck(regT0, regT0);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
+        emitFastArithIntToImmNoCheck(regT0, regT0);
+    } else
+        compileBinaryArithOp(op_add, result, op1, op2, types);
+
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+        return;
+
+    bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
+    bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
+    compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+}
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    // For now, only plant a fast int case if the constant operand is greater than zero.
+    int32_t value;
+    if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        emitFastArithReTagImmediate(regT0, regT0);
+    } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        emitFastArithReTagImmediate(regT0, regT0);
+    } else
+        compileBinaryArithOp(op_mul, result, op1, op2, types);
+
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
+    bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
+    compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+}
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (isOperandConstantImmediateDouble(op1)) {
+        emitGetVirtualRegister(op1, regT0);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT0);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitLoadInt32ToDouble(op1, fpRegT0);
+    } else {
+        emitGetVirtualRegister(op1, regT0);
+        if (!types.first().definitelyIsNumber())
+            emitJumpSlowCaseIfNotImmediateNumber(regT0);
+        Jump notInt = emitJumpIfNotImmediateInteger(regT0);
+        convertInt32ToDouble(regT0, fpRegT0);
+        Jump skipDoubleLoad = jump();
+        notInt.link(this);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT0);
+        skipDoubleLoad.link(this);
+    }
+    
+    if (isOperandConstantImmediateDouble(op2)) {
+        emitGetVirtualRegister(op2, regT1);
+        addPtr(tagTypeNumberRegister, regT1);
+        movePtrToDouble(regT1, fpRegT1);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitLoadInt32ToDouble(op2, fpRegT1);
+    } else {
+        emitGetVirtualRegister(op2, regT1);
+        if (!types.second().definitelyIsNumber())
+            emitJumpSlowCaseIfNotImmediateNumber(regT1);
+        Jump notInt = emitJumpIfNotImmediateInteger(regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        Jump skipDoubleLoad = jump();
+        notInt.link(this);
+        addPtr(tagTypeNumberRegister, regT1);
+        movePtrToDouble(regT1, fpRegT1);
+        skipDoubleLoad.link(this);
+    }
+    divDouble(fpRegT1, fpRegT0);
+
+    JumpList doubleResult;
+    Jump end;
+    bool attemptIntConversion = (!isOperandConstantImmediateInt(op1) || getConstantOperand(op1).asInt32() > 1) && isOperandConstantImmediateInt(op2);
+    if (attemptIntConversion) {
+        m_assembler.cvttsd2si_rr(fpRegT0, regT0);
+        doubleResult.append(branchTest32(Zero, regT0));
+        m_assembler.ucomisd_rr(fpRegT1, fpRegT0);
+        
+        doubleResult.append(m_assembler.jne());
+        doubleResult.append(m_assembler.jp());
+        emitFastArithIntToImmNoCheck(regT0, regT0);
+        end = jump();
+    }
+
+    // Double result.
+    doubleResult.link(this);
+    moveDoubleToPtr(fpRegT0, regT0);
+    subPtr(tagTypeNumberRegister, regT0);
+
+    if (attemptIntConversion)
+        end.link(this);
+    emitPutVirtualRegister(dst, regT0);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+    if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
+#ifndef NDEBUG
+        breakpoint();
+#endif
+        return;
+    }
+    if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
+        if (!types.first().definitelyIsNumber())
+            linkSlowCase(iter);
+    }
+    if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) {
+        if (!types.second().definitelyIsNumber())
+            linkSlowCase(iter);
+    }
+    // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
+    JITStubCall stubCall(this, cti_op_div);
+    stubCall.addArgument(op1, regT2);
+    stubCall.addArgument(op2, regT2);
+    stubCall.call(result);
+}
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    compileBinaryArithOp(op_sub, result, op1, op2, types);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
+}
+
+#else // USE(JSVALUE64)
+
+/* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
+
+void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
+{
+    Structure* numberStructure = m_globalData->numberStructure.get();
+    Jump wasJSNumberCell1;
+    Jump wasJSNumberCell2;
+
+    emitGetVirtualRegisters(src1, regT0, src2, regT1);
+
+    if (types.second().isReusable() && supportsFloatingPoint()) {
+        ASSERT(types.second().mightBeNumber());
+
+        // Check op2 is a number
+        Jump op2imm = emitJumpIfImmediateInteger(regT1);
+        if (!types.second().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT1, src2);
+            addSlowCase(checkStructure(regT1, numberStructure));
+        }
+
+        // (1) In this case src2 is a reusable number cell.
+        //     Slow case if src1 is not a number type.
+        Jump op1imm = emitJumpIfImmediateInteger(regT0);
+        if (!types.first().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT0, src1);
+            addSlowCase(checkStructure(regT0, numberStructure));
+        }
+
+        // (1a) if we get here, src1 is also a number cell
+        loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        Jump loadedDouble = jump();
+        // (1b) if we get here, src1 is an immediate
+        op1imm.link(this);
+        emitFastArithImmToInt(regT0);
+        convertInt32ToDouble(regT0, fpRegT0);
+        // (1c) 
+        loadedDouble.link(this);
+        if (opcodeID == op_add)
+            addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        else if (opcodeID == op_sub)
+            subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        else {
+            ASSERT(opcodeID == op_mul);
+            mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        }
+
+        // Store the result to the JSNumberCell and jump.
+        storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+        move(regT1, regT0);
+        emitPutVirtualRegister(dst);
+        wasJSNumberCell2 = jump();
+
+        // (2) This handles cases where src2 is an immediate number.
+        //     Two slow cases - either src1 isn't an immediate, or the subtract overflows.
+        op2imm.link(this);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    } else if (types.first().isReusable() && supportsFloatingPoint()) {
+        ASSERT(types.first().mightBeNumber());
+
+        // Check op1 is a number
+        Jump op1imm = emitJumpIfImmediateInteger(regT0);
+        if (!types.first().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT0, src1);
+            addSlowCase(checkStructure(regT0, numberStructure));
+        }
+
+        // (1) In this case src1 is a reusable number cell.
+        //     Slow case if src2 is not a number type.
+        Jump op2imm = emitJumpIfImmediateInteger(regT1);
+        if (!types.second().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT1, src2);
+            addSlowCase(checkStructure(regT1, numberStructure));
+        }
+
+        // (1a) if we get here, src2 is also a number cell
+        loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+        Jump loadedDouble = jump();
+        // (1b) if we get here, src2 is an immediate
+        op2imm.link(this);
+        emitFastArithImmToInt(regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        // (1c) 
+        loadedDouble.link(this);
+        loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        if (opcodeID == op_add)
+            addDouble(fpRegT1, fpRegT0);
+        else if (opcodeID == op_sub)
+            subDouble(fpRegT1, fpRegT0);
+        else {
+            ASSERT(opcodeID == op_mul);
+            mulDouble(fpRegT1, fpRegT0);
+        }
+        storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+        emitPutVirtualRegister(dst);
+
+        // Store the result to the JSNumberCell and jump.
+        storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+        emitPutVirtualRegister(dst);
+        wasJSNumberCell1 = jump();
+
+        // (2) This handles cases where src1 is an immediate number.
+        //     Two slow cases - either src2 isn't an immediate, or the subtract overflows.
+        op1imm.link(this);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+    } else
+        emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
+
+    if (opcodeID == op_add) {
+        emitFastArithDeTagImmediate(regT0);
+        addSlowCase(branchAdd32(Overflow, regT1, regT0));
+    } else  if (opcodeID == op_sub) {
+        addSlowCase(branchSub32(Overflow, regT1, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+    } else {
+        ASSERT(opcodeID == op_mul);
+        // convert eax & edx from JSImmediates to ints, and check if either are zero
+        emitFastArithImmToInt(regT1);
+        Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0);
+        Jump op2NonZero = branchTest32(NonZero, regT1);
+        op1Zero.link(this);
+        // if either input is zero, add the two together, and check if the result is < 0.
+        // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. 
+        move(regT0, regT2);
+        addSlowCase(branchAdd32(Signed, regT1, regT2));
+        // Skip the above check if neither input is zero
+        op2NonZero.link(this);
+        addSlowCase(branchMul32(Overflow, regT1, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+    }
+    emitPutVirtualRegister(dst);
+
+    if (types.second().isReusable() && supportsFloatingPoint())
+        wasJSNumberCell2.link(this);
+    else if (types.first().isReusable() && supportsFloatingPoint())
+        wasJSNumberCell1.link(this);
+}
+
+void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
+{
+    linkSlowCase(iter);
+    if (types.second().isReusable() && supportsFloatingPoint()) {
+        if (!types.first().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src1);
+            linkSlowCase(iter);
+        }
+        if (!types.second().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src2);
+            linkSlowCase(iter);
+        }
+    } else if (types.first().isReusable() && supportsFloatingPoint()) {
+        if (!types.first().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src1);
+            linkSlowCase(iter);
+        }
+        if (!types.second().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src2);
+            linkSlowCase(iter);
+        }
+    }
+    linkSlowCase(iter);
+
+    // additional entry point to handle -0 cases.
+    if (opcodeID == op_mul)
+        linkSlowCase(iter);
+
+    JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+    stubCall.addArgument(src1, regT2);
+    stubCall.addArgument(src2, regT2);
+    stubCall.call(dst);
+}
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else {
+        compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+    }
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+        return;
+
+    if (isOperandConstantImmediateInt(op1)) {
+        Jump notImm = getSlowCase(iter);
+        linkSlowCase(iter);
+        sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0);
+        notImm.link(this);
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT0);
+        stubCall.call(result);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        Jump notImm = getSlowCase(iter);
+        linkSlowCase(iter);
+        sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0);
+        notImm.link(this);
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+    } else {
+        OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+        ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber());
+        compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types);
+    }
+}
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    // For now, only plant a fast int case if the constant operand is greater than zero.
+    int32_t value;
+    if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitFastArithDeTagImmediate(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitFastArithDeTagImmediate(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else
+        compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0))
+        || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) {
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
+        JITStubCall stubCall(this, cti_op_mul);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+    } else
+        compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+    compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+#endif // USE(JSVALUE64)
+
+/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
+
+#endif // USE(JSVALUE32_64)
+
+} // namespace JSC
+
+#endif // ENABLE(JIT)