src/gui/image/qimage.cpp
changeset 0 1918ee327afb
child 3 41300fa6a67c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/gui/image/qimage.cpp	Mon Jan 11 14:00:40 2010 +0000
@@ -0,0 +1,6148 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file.  Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights.  These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include "qimage.h"
+#include "qdatastream.h"
+#include "qbuffer.h"
+#include "qmap.h"
+#include "qmatrix.h"
+#include "qtransform.h"
+#include "qimagereader.h"
+#include "qimagewriter.h"
+#include "qstringlist.h"
+#include "qvariant.h"
+#include "qimagepixmapcleanuphooks_p.h"
+#include <ctype.h>
+#include <stdlib.h>
+#include <limits.h>
+#include <math.h>
+#include <private/qdrawhelper_p.h>
+#include <private/qmemrotate_p.h>
+#include <private/qpixmapdata_p.h>
+#include <private/qimagescale_p.h>
+
+#include <qhash.h>
+
+#include <private/qpaintengine_raster_p.h>
+
+#include <private/qimage_p.h>
+
+QT_BEGIN_NAMESPACE
+
+static inline bool checkPixelSize(const QImage::Format format)
+{
+    switch (format) {
+    case QImage::Format_ARGB8565_Premultiplied:
+        return (sizeof(qargb8565) == 3);
+    case QImage::Format_RGB666:
+        return (sizeof(qrgb666) == 3);
+    case QImage::Format_ARGB6666_Premultiplied:
+        return (sizeof(qargb6666) == 3);
+    case QImage::Format_RGB555:
+        return (sizeof(qrgb555) == 2);
+    case QImage::Format_ARGB8555_Premultiplied:
+        return (sizeof(qargb8555) == 3);
+    case QImage::Format_RGB888:
+        return (sizeof(qrgb888) == 3);
+    case QImage::Format_RGB444:
+        return (sizeof(qrgb444) == 2);
+    case QImage::Format_ARGB4444_Premultiplied:
+        return (sizeof(qargb4444) == 2);
+    default:
+        return true;
+    }
+}
+
+#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001)
+#pragma message disable narrowptr
+#endif
+
+
+#define QIMAGE_SANITYCHECK_MEMORY(image) \
+    if ((image).isNull()) { \
+        qWarning("QImage: out of memory, returning null image"); \
+        return QImage(); \
+    }
+
+
+static QImage rotated90(const QImage &src);
+static QImage rotated180(const QImage &src);
+static QImage rotated270(const QImage &src);
+
+// ### Qt 5: remove
+Q_GUI_EXPORT qint64 qt_image_id(const QImage &image)
+{
+    return image.cacheKey();
+}
+
+const QVector<QRgb> *qt_image_colortable(const QImage &image)
+{
+    return &image.d->colortable;
+}
+
+extern int qt_defaultDpiX();
+extern int qt_defaultDpiY();
+
+QBasicAtomicInt qimage_serial_number = Q_BASIC_ATOMIC_INITIALIZER(1);
+
+QImageData::QImageData()
+    : ref(0), width(0), height(0), depth(0), nbytes(0), data(0),
+#ifdef QT3_SUPPORT
+      jumptable(0),
+#endif
+      format(QImage::Format_ARGB32), bytes_per_line(0),
+      ser_no(qimage_serial_number.fetchAndAddRelaxed(1)),
+      detach_no(0),
+      dpmx(qt_defaultDpiX() * 100 / qreal(2.54)),
+      dpmy(qt_defaultDpiY() * 100 / qreal(2.54)),
+      offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false),
+      is_cached(false), paintEngine(0)
+{
+}
+
+static int depthForFormat(QImage::Format format)
+{
+    int depth = 0;
+    switch(format) {
+    case QImage::Format_Invalid:
+    case QImage::NImageFormats:
+        Q_ASSERT(false);
+    case QImage::Format_Mono:
+    case QImage::Format_MonoLSB:
+        depth = 1;
+        break;
+    case QImage::Format_Indexed8:
+        depth = 8;
+        break;
+    case QImage::Format_RGB32:
+    case QImage::Format_ARGB32:
+    case QImage::Format_ARGB32_Premultiplied:
+        depth = 32;
+        break;
+    case QImage::Format_RGB555:
+    case QImage::Format_RGB16:
+    case QImage::Format_RGB444:
+    case QImage::Format_ARGB4444_Premultiplied:
+        depth = 16;
+        break;
+    case QImage::Format_RGB666:
+    case QImage::Format_ARGB6666_Premultiplied:
+    case QImage::Format_ARGB8565_Premultiplied:
+    case QImage::Format_ARGB8555_Premultiplied:
+    case QImage::Format_RGB888:
+        depth = 24;
+        break;
+    }
+    return depth;
+}
+
+/*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)
+
+    \internal
+
+    Creates a new image data.
+    Returns 0 if invalid parameters are give or anything else failed.
+*/
+QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)
+{
+    if (!size.isValid() || numColors < 0 || format == QImage::Format_Invalid)
+        return 0;                                // invalid parameter(s)
+
+    if (!checkPixelSize(format)) {
+        qWarning("QImageData::create(): Invalid pixel size for format %i",
+                 format);
+        return 0;
+    }
+
+    uint width = size.width();
+    uint height = size.height();
+    uint depth = depthForFormat(format);
+
+    switch (format) {
+    case QImage::Format_Mono:
+    case QImage::Format_MonoLSB:
+        numColors = 2;
+        break;
+    case QImage::Format_Indexed8:
+        numColors = qBound(0, numColors, 256);
+        break;
+    default:
+        numColors = 0;
+        break;
+    }
+
+    const int bytes_per_line = ((width * depth + 31) >> 5) << 2; // bytes per scanline (must be multiple of 8)
+
+    // sanity check for potential overflows
+    if (INT_MAX/depth < width
+        || bytes_per_line <= 0
+        || height <= 0
+        || INT_MAX/uint(bytes_per_line) < height
+        || INT_MAX/sizeof(uchar *) < uint(height))
+        return 0;
+
+    QScopedPointer<QImageData> d(new QImageData);
+    d->colortable.resize(numColors);
+    if (depth == 1) {
+        d->colortable[0] = QColor(Qt::black).rgba();
+        d->colortable[1] = QColor(Qt::white).rgba();
+    } else {
+        for (int i = 0; i < numColors; ++i)
+            d->colortable[i] = 0;
+    }
+
+    d->width = width;
+    d->height = height;
+    d->depth = depth;
+    d->format = format;
+    d->has_alpha_clut = false;
+    d->is_cached = false;
+
+    d->bytes_per_line = bytes_per_line;
+
+    d->nbytes = d->bytes_per_line*height;
+    d->data  = (uchar *)malloc(d->nbytes);
+
+    if (!d->data) {
+        return 0;
+    }
+
+    d->ref.ref();
+    return d.take();
+
+}
+
+QImageData::~QImageData()
+{
+    if (is_cached)
+        QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no));
+    delete paintEngine;
+    if (data && own_data)
+        free(data);
+#ifdef QT3_SUPPORT
+    if (jumptable)
+        free(jumptable);
+    jumptable = 0;
+#endif
+    data = 0;
+}
+
+
+bool QImageData::checkForAlphaPixels() const
+{
+    bool has_alpha_pixels = false;
+
+    switch (format) {
+
+    case QImage::Format_Indexed8:
+        has_alpha_pixels = has_alpha_clut;
+        break;
+
+    case QImage::Format_ARGB32:
+    case QImage::Format_ARGB32_Premultiplied: {
+        uchar *bits = data;
+        for (int y=0; y<height && !has_alpha_pixels; ++y) {
+            for (int x=0; x<width; ++x)
+                has_alpha_pixels |= (((uint *)bits)[x] & 0xff000000) != 0xff000000;
+            bits += bytes_per_line;
+        }
+    } break;
+
+    case QImage::Format_ARGB8555_Premultiplied:
+    case QImage::Format_ARGB8565_Premultiplied: {
+        uchar *bits = data;
+        uchar *end_bits = data + bytes_per_line;
+
+        for (int y=0; y<height && !has_alpha_pixels; ++y) {
+            while (bits < end_bits) {
+                has_alpha_pixels |= bits[0] != 0;
+                bits += 3;
+            }
+            bits = end_bits;
+            end_bits += bytes_per_line;
+        }
+    } break;
+
+    case QImage::Format_ARGB6666_Premultiplied: {
+        uchar *bits = data;
+        uchar *end_bits = data + bytes_per_line;
+
+        for (int y=0; y<height && !has_alpha_pixels; ++y) {
+            while (bits < end_bits) {
+                has_alpha_pixels |= (bits[0] & 0xfc) != 0;
+                bits += 3;
+            }
+            bits = end_bits;
+            end_bits += bytes_per_line;
+        }
+    } break;
+
+    case QImage::Format_ARGB4444_Premultiplied: {
+        uchar *bits = data;
+        uchar *end_bits = data + bytes_per_line;
+
+        for (int y=0; y<height && !has_alpha_pixels; ++y) {
+            while (bits < end_bits) {
+                has_alpha_pixels |= (bits[0] & 0xf0) != 0;
+                bits += 2;
+            }
+            bits = end_bits;
+            end_bits += bytes_per_line;
+        }
+    } break;
+
+    default:
+        break;
+    }
+
+    return has_alpha_pixels;
+}
+
+/*!
+    \class QImage
+
+    \ingroup painting
+    \ingroup shared
+
+    \reentrant
+
+    \brief The QImage class provides a hardware-independent image
+    representation that allows direct access to the pixel data, and
+    can be used as a paint device.
+
+    Qt provides four classes for handling image data: QImage, QPixmap,
+    QBitmap and QPicture.  QImage is designed and optimized for I/O,
+    and for direct pixel access and manipulation, while QPixmap is
+    designed and optimized for showing images on screen. QBitmap is
+    only a convenience class that inherits QPixmap, ensuring a
+    depth of 1. Finally, the QPicture class is a paint device that
+    records and replays QPainter commands.
+
+    Because QImage is a QPaintDevice subclass, QPainter can be used to
+    draw directly onto images.  When using QPainter on a QImage, the
+    painting can be performed in another thread than the current GUI
+    thread.
+
+    The QImage class supports several image formats described by the
+    \l Format enum. These include monochrome, 8-bit, 32-bit and
+    alpha-blended images which are available in all versions of Qt
+    4.x.
+
+    QImage provides a collection of functions that can be used to
+    obtain a variety of information about the image. There are also
+    several functions that enables transformation of the image.
+
+    QImage objects can be passed around by value since the QImage
+    class uses \l{Implicit Data Sharing}{implicit data
+    sharing}. QImage objects can also be streamed and compared.
+
+    \note If you would like to load QImage objects in a static build of Qt,
+    refer to the \l{How To Create Qt Plugins#Static Plugins}{Plugin HowTo}.
+
+    \warning Painting on a QImage with the format
+    QImage::Format_Indexed8 is not supported.
+
+    \tableofcontents
+
+    \section1 Reading and Writing Image Files
+
+    QImage provides several ways of loading an image file: The file
+    can be loaded when constructing the QImage object, or by using the
+    load() or loadFromData() functions later on. QImage also provides
+    the static fromData() function, constructing a QImage from the
+    given data.  When loading an image, the file name can either refer
+    to an actual file on disk or to one of the application's embedded
+    resources. See \l{The Qt Resource System} overview for details
+    on how to embed images and other resource files in the
+    application's executable.
+
+    Simply call the save() function to save a QImage object.
+
+    The complete list of supported file formats are available through
+    the QImageReader::supportedImageFormats() and
+    QImageWriter::supportedImageFormats() functions. New file formats
+    can be added as plugins. By default, Qt supports the following
+    formats:
+
+    \table
+    \header \o Format \o Description                      \o Qt's support
+    \row    \o BMP    \o Windows Bitmap                   \o Read/write
+    \row    \o GIF    \o Graphic Interchange Format (optional) \o Read
+    \row    \o JPG    \o Joint Photographic Experts Group \o Read/write
+    \row    \o JPEG   \o Joint Photographic Experts Group \o Read/write
+    \row    \o PNG    \o Portable Network Graphics        \o Read/write
+    \row    \o PBM    \o Portable Bitmap                  \o Read
+    \row    \o PGM    \o Portable Graymap                 \o Read
+    \row    \o PPM    \o Portable Pixmap                  \o Read/write
+    \row    \o TIFF   \o Tagged Image File Format         \o Read/write
+    \row    \o XBM    \o X11 Bitmap                       \o Read/write
+    \row    \o XPM    \o X11 Pixmap                       \o Read/write
+    \endtable
+
+    \section1 Image Information
+
+    QImage provides a collection of functions that can be used to
+    obtain a variety of information about the image:
+
+    \table
+    \header
+    \o \o Available Functions
+
+    \row
+    \o Geometry
+    \o
+
+    The size(), width(), height(), dotsPerMeterX(), and
+    dotsPerMeterY() functions provide information about the image size
+    and aspect ratio.
+
+    The rect() function returns the image's enclosing rectangle. The
+    valid() function tells if a given pair of coordinates is within
+    this rectangle. The offset() function returns the number of pixels
+    by which the image is intended to be offset by when positioned
+    relative to other images, which also can be manipulated using the
+    setOffset() function.
+
+    \row
+    \o Colors
+    \o
+
+    The color of a pixel can be retrieved by passing its coordinates
+    to the pixel() function.  The pixel() function returns the color
+    as a QRgb value indepedent of the image's format.
+
+    In case of monochrome and 8-bit images, the numColors() and
+    colorTable() functions provide information about the color
+    components used to store the image data: The colorTable() function
+    returns the image's entire color table. To obtain a single entry,
+    use the pixelIndex() function to retrieve the pixel index for a
+    given pair of coordinates, then use the color() function to
+    retrieve the color. Note that if you create an 8-bit image
+    manually, you have to set a valid color table on the image as
+    well.
+
+    The hasAlphaChannel() function tells if the image's format
+    respects the alpha channel, or not. The allGray() and
+    isGrayscale() functions tell whether an image's colors are all
+    shades of gray.
+
+    See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation}
+    and \l {QImage#Image Transformations}{Image Transformations}
+    sections.
+
+    \row
+    \o Text
+    \o
+
+    The text() function returns the image text associated with the
+    given text key. An image's text keys can be retrieved using the
+    textKeys() function. Use the setText() function to alter an
+    image's text.
+
+    \row
+    \o Low-level information
+    \o
+    The depth() function returns the depth of the image. The supported
+    depths are 1 (monochrome), 8 and 32 (for more information see the
+    \l {QImage#Image Formats}{Image Formats} section).
+
+    The format(), bytesPerLine(), and numBytes() functions provide
+    low-level information about the data stored in the image.
+
+    The cacheKey() function returns a number that uniquely
+    identifies the contents of this QImage object.
+    \endtable
+
+    \section1 Pixel Manipulation
+
+    The functions used to manipulate an image's pixels depend on the
+    image format. The reason is that monochrome and 8-bit images are
+    index-based and use a color lookup table, while 32-bit images
+    store ARGB values directly. For more information on image formats,
+    see the \l {Image Formats} section.
+
+    In case of a 32-bit image, the setPixel() function can be used to
+    alter the color of the pixel at the given coordinates to any other
+    color specified as an ARGB quadruplet. To make a suitable QRgb
+    value, use the qRgb() (adding a default alpha component to the
+    given RGB values, i.e. creating an opaque color) or qRgba()
+    function. For example:
+
+    \table
+    \row
+    \o \inlineimage qimage-32bit_scaled.png
+    \o
+    \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 0
+    \header
+    \o {2,1}32-bit
+    \endtable
+
+    In case of a 8-bit and monchrome images, the pixel value is only
+    an index from the image's color table. So the setPixel() function
+    can only be used to alter the color of the pixel at the given
+    coordinates to a predefined color from the image's color table,
+    i.e. it can only change the pixel's index value. To alter or add a
+    color to an image's color table, use the setColor() function.
+
+    An entry in the color table is an ARGB quadruplet encoded as an
+    QRgb value. Use the qRgb() and qRgba() functions to make a
+    suitable QRgb value for use with the setColor() function. For
+    example:
+
+    \table
+    \row
+    \o \inlineimage qimage-8bit_scaled.png
+    \o
+    \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 1
+    \header
+    \o {2,1} 8-bit
+    \endtable
+
+    QImage also provide the scanLine() function which returns a
+    pointer to the pixel data at the scanline with the given index,
+    and the bits() function which returns a pointer to the first pixel
+    data (this is equivalent to \c scanLine(0)).
+
+    \section1 Image Formats
+
+    Each pixel stored in a QImage is represented by an integer. The
+    size of the integer varies depending on the format. QImage
+    supports several image formats described by the \l Format
+    enum.
+
+    Monochrome images are stored using 1-bit indexes into a color table
+    with at most two colors. There are two different types of
+    monochrome images: big endian (MSB first) or little endian (LSB
+    first) bit order.
+
+    8-bit images are stored using 8-bit indexes into a color table,
+    i.e.  they have a single byte per pixel. The color table is a
+    QVector<QRgb>, and the QRgb typedef is equivalent to an unsigned
+    int containing an ARGB quadruplet on the format 0xAARRGGBB.
+
+    32-bit images have no color table; instead, each pixel contains an
+    QRgb value. There are three different types of 32-bit images
+    storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB
+    values respectively. In the premultiplied format the red, green,
+    and blue channels are multiplied by the alpha component divided by
+    255.
+
+    An image's format can be retrieved using the format()
+    function. Use the convertToFormat() functions to convert an image
+    into another format. The allGray() and isGrayscale() functions
+    tell whether a color image can safely be converted to a grayscale
+    image.
+
+    \section1 Image Transformations
+
+    QImage supports a number of functions for creating a new image
+    that is a transformed version of the original: The
+    createAlphaMask() function builds and returns a 1-bpp mask from
+    the alpha buffer in this image, and the createHeuristicMask()
+    function creates and returns a 1-bpp heuristic mask for this
+    image. The latter function works by selecting a color from one of
+    the corners, then chipping away pixels of that color starting at
+    all the edges.
+
+    The mirrored() function returns a mirror of the image in the
+    desired direction, the scaled() returns a copy of the image scaled
+    to a rectangle of the desired measures, and the rgbSwapped() function
+    constructs a BGR image from a RGB image.
+
+    The scaledToWidth() and scaledToHeight() functions return scaled
+    copies of the image.
+
+    The transformed() function returns a copy of the image that is
+    transformed with the given transformation matrix and
+    transformation mode: Internally, the transformation matrix is
+    adjusted to compensate for unwanted translation,
+    i.e. transformed() returns the smallest image containing all
+    transformed points of the original image. The static trueMatrix()
+    function returns the actual matrix used for transforming the
+    image.
+
+    There are also functions for changing attributes of an image
+    in-place:
+
+    \table
+    \header \o Function \o Description
+    \row
+    \o setDotsPerMeterX()
+    \o Defines the aspect ratio by setting the number of pixels that fit
+    horizontally in a physical meter.
+    \row
+    \o setDotsPerMeterY()
+    \o Defines the aspect ratio by setting the number of pixels that fit
+    vertically in a physical meter.
+    \row
+    \o fill()
+    \o Fills the entire image with the given pixel value.
+    \row
+    \o invertPixels()
+    \o Inverts all pixel values in the image using the given InvertMode value.
+    \row
+    \o setColorTable()
+    \o Sets the color table used to translate color indexes. Only
+    monochrome and 8-bit formats.
+    \row
+    \o setNumColors()
+    \o Resizes the color table. Only monochrome and 8-bit formats.
+
+    \endtable
+
+    \section1 Legal Information
+
+    For smooth scaling, the transformed() functions use code based on
+    smooth scaling algorithm by Daniel M. Duley.
+
+    \legalese
+     Copyright (C) 2004, 2005 Daniel M. Duley
+
+     Redistribution and use in source and binary forms, with or without
+        modification, are permitted provided that the following conditions
+        are met:
+
+     1. Redistributions of source code must retain the above copyright
+        notice, this list of conditions and the following disclaimer.
+     2. Redistributions in binary form must reproduce the above copyright
+        notice, this list of conditions and the following disclaimer in the
+        documentation and/or other materials provided with the distribution.
+
+     THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+     IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+     IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+     INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+     NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+     THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+    \endlegalese
+
+    \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example},
+        {Image Viewer Example}, {Scribble Example}, {Pixelator Example}
+*/
+
+/*!
+    \enum QImage::Endian
+    \compat
+
+    This enum type is used to describe the endianness of the CPU and
+    graphics hardware. It is provided here for compatibility with earlier versions of Qt.
+
+    Use the \l Format enum instead. The \l Format enum specify the
+    endianess for monchrome formats, but for other formats the
+    endianess is not relevant.
+
+    \value IgnoreEndian  Endianness does not matter. Useful for some
+                         operations that are independent of endianness.
+    \value BigEndian     Most significant bit first or network byte order, as on SPARC, PowerPC, and Motorola CPUs.
+    \value LittleEndian  Least significant bit first or little endian byte order, as on Intel x86.
+*/
+
+/*!
+    \enum QImage::InvertMode
+
+    This enum type is used to describe how pixel values should be
+    inverted in the invertPixels() function.
+
+    \value InvertRgb    Invert only the RGB values and leave the alpha
+                        channel unchanged.
+
+    \value InvertRgba   Invert all channels, including the alpha channel.
+
+    \sa invertPixels()
+*/
+
+/*!
+    \enum QImage::Format
+
+    The following image formats are available in all versions of Qt:
+
+    \value Format_Invalid   The image is invalid.
+    \value Format_Mono      The image is stored using 1-bit per pixel. Bytes are
+                            packed with the most significant bit (MSB) first.
+    \value Format_MonoLSB   The image is stored using 1-bit per pixel. Bytes are
+                            packed with the less significant bit (LSB) first.
+
+    \value Format_Indexed8  The image is stored using 8-bit indexes
+                            into a colormap. \warning Drawing into a
+                            QImage with Indexed8 format is not
+                            supported.
+
+    \value Format_RGB32     The image is stored using a 32-bit RGB format (0xffRRGGBB).
+
+    \value Format_ARGB32    The image is stored using a 32-bit ARGB
+                            format (0xAARRGGBB). \warning Do not
+                            render into ARGB32 images using
+                            QPainter. Format_ARGB32_Premultiplied is
+                            significantly faster.
+
+    \value Format_ARGB32_Premultiplied  The image is stored using a premultiplied 32-bit
+                            ARGB format (0xAARRGGBB), i.e. the red,
+                            green, and blue channels are multiplied
+                            by the alpha component divided by 255. (If RR, GG, or BB
+                            has a higher value than the alpha channel, the results are
+                            undefined.) Certain operations (such as image composition
+                            using alpha blending) are faster using premultiplied ARGB32
+                            than with plain ARGB32.
+
+    \value Format_RGB16     The image is stored using a 16-bit RGB format (5-6-5).
+
+    \value Format_ARGB8565_Premultiplied  The image is stored using a
+                            premultiplied 24-bit ARGB format (8-5-6-5).
+    \value Format_RGB666    The image is stored using a 24-bit RGB format (6-6-6).
+                            The unused most significant bits is always zero.
+    \value Format_ARGB6666_Premultiplied  The image is stored using a
+                            premultiplied 24-bit ARGB format (6-6-6-6).
+    \value Format_RGB555    The image is stored using a 16-bit RGB format (5-5-5).
+                            The unused most significant bit is always zero.
+    \value Format_ARGB8555_Premultiplied  The image is stored using a
+                            premultiplied 24-bit ARGB format (8-5-5-5).
+    \value Format_RGB888    The image is stored using a 24-bit RGB format (8-8-8).
+    \value Format_RGB444    The image is stored using a 16-bit RGB format (4-4-4).
+                            The unused bits are always zero.
+    \value Format_ARGB4444_Premultiplied  The image is stored using a
+                            premultiplied 16-bit ARGB format (4-4-4-4).
+
+    \sa format(), convertToFormat()
+*/
+
+/*****************************************************************************
+  QImage member functions
+ *****************************************************************************/
+
+// table to flip bits
+static const uchar bitflip[256] = {
+    /*
+        open OUT, "| fmt";
+        for $i (0..255) {
+            print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) |
+                      (($i >> 3) & 0x04) | (($i >> 1) & 0x08) |
+                      (($i << 7) & 0x80) | (($i << 5) & 0x40) |
+                      (($i << 3) & 0x20) | (($i << 1) & 0x10), ", ";
+        }
+        close OUT;
+    */
+    0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
+    8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
+    4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
+    12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
+    2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
+    10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
+    6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
+    14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
+    1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
+    9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
+    5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
+    13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
+    3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
+    11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
+    7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
+    15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
+};
+
+const uchar *qt_get_bitflip_array()                        // called from QPixmap code
+{
+    return bitflip;
+}
+
+#if defined(QT3_SUPPORT)
+static QImage::Format formatFor(int depth, QImage::Endian bitOrder)
+{
+    QImage::Format format;
+    if (depth == 1) {
+        format = bitOrder == QImage::BigEndian ? QImage::Format_Mono : QImage::Format_MonoLSB;
+    } else if (depth == 8) {
+        format = QImage::Format_Indexed8;
+    } else if (depth == 32) {
+        format = QImage::Format_RGB32;
+    } else if (depth == 24) {
+        format = QImage::Format_RGB888;
+    } else if (depth == 16) {
+        format = QImage::Format_RGB16;
+    } else {
+        qWarning("QImage: Depth %d not supported", depth);
+        format = QImage::Format_Invalid;
+    }
+    return format;
+}
+#endif
+
+/*!
+    Constructs a null image.
+
+    \sa isNull()
+*/
+
+QImage::QImage()
+    : QPaintDevice()
+{
+    d = 0;
+}
+
+/*!
+    Constructs an image with the given \a width, \a height and \a
+    format.
+
+    \warning This will create a QImage with uninitialized data. Call
+    fill() to fill the image with an appropriate pixel value before
+    drawing onto it with QPainter.
+*/
+QImage::QImage(int width, int height, Format format)
+    : QPaintDevice()
+{
+    d = QImageData::create(QSize(width, height), format, 0);
+}
+
+/*!
+    Constructs an image with the given \a size and \a format.
+
+    \warning This will create a QImage with uninitialized data. Call
+    fill() to fill the image with an appropriate pixel value before
+    drawing onto it with QPainter.
+*/
+QImage::QImage(const QSize &size, Format format)
+    : QPaintDevice()
+{
+    d = QImageData::create(size, format, 0);
+}
+
+
+
+QImageData *QImageData::create(uchar *data, int width, int height,  int bpl, QImage::Format format, bool readOnly)
+{
+    QImageData *d = 0;
+
+    if (format == QImage::Format_Invalid)
+        return d;
+
+    if (!checkPixelSize(format)) {
+        qWarning("QImageData::create(): Invalid pixel size for format %i",
+                 format);
+        return 0;
+    }
+
+    const int depth = depthForFormat(format);
+    const int calc_bytes_per_line = ((width * depth + 31)/32) * 4;
+    const int min_bytes_per_line = (width * depth + 7)/8;
+
+    if (bpl <= 0)
+        bpl = calc_bytes_per_line;
+
+    if (width <= 0 || height <= 0 || !data
+        || INT_MAX/sizeof(uchar *) < uint(height)
+        || INT_MAX/uint(depth) < uint(width)
+        || bpl <= 0
+        || height <= 0
+        || bpl < min_bytes_per_line
+        || INT_MAX/uint(bpl) < uint(height))
+        return d;                                        // invalid parameter(s)
+
+    d = new QImageData;
+    d->ref.ref();
+
+    d->own_data = false;
+    d->ro_data = readOnly;
+    d->data = data;
+    d->width = width;
+    d->height = height;
+    d->depth = depth;
+    d->format = format;
+
+    d->bytes_per_line = bpl;
+    d->nbytes = d->bytes_per_line * height;
+
+    return d;
+}
+
+/*!
+    Constructs an image with the given \a width, \a height and \a
+    format, that uses an existing memory buffer, \a data. The \a width
+    and \a height must be specified in pixels, \a data must be 32-bit aligned,
+    and each scanline of data in the image must also be 32-bit aligned.
+
+    The buffer must remain valid throughout the life of the
+    QImage. The image does not delete the buffer at destruction.
+
+    If \a format is an indexed color format, the image color table is
+    initially empty and must be sufficiently expanded with
+    setNumColors() or setColorTable() before the image is used.
+*/
+QImage::QImage(uchar* data, int width, int height, Format format)
+    : QPaintDevice()
+{
+    d = QImageData::create(data, width, height, 0, format, false);
+}
+
+/*!
+    Constructs an image with the given \a width, \a height and \a
+    format, that uses an existing read-only memory buffer, \a
+    data. The \a width and \a height must be specified in pixels, \a
+    data must be 32-bit aligned, and each scanline of data in the
+    image must also be 32-bit aligned.
+
+    The buffer must remain valid throughout the life of the QImage and
+    all copies that have not been modified or otherwise detached from
+    the original buffer. The image does not delete the buffer at
+    destruction.
+
+    If \a format is an indexed color format, the image color table is
+    initially empty and must be sufficiently expanded with
+    setNumColors() or setColorTable() before the image is used.
+
+    Unlike the similar QImage constructor that takes a non-const data buffer,
+    this version will never alter the contents of the buffer.  For example,
+    calling QImage::bits() will return a deep copy of the image, rather than
+    the buffer passed to the constructor.  This allows for the efficiency of
+    constructing a QImage from raw data, without the possibility of the raw
+    data being changed.
+*/
+QImage::QImage(const uchar* data, int width, int height, Format format)
+    : QPaintDevice()
+{
+    d = QImageData::create(const_cast<uchar*>(data), width, height, 0, format, true);
+}
+
+/*!
+    Constructs an image with the given \a width, \a height and \a
+    format, that uses an existing memory buffer, \a data. The \a width
+    and \a height must be specified in pixels. \a bytesPerLine
+    specifies the number of bytes per line (stride).
+
+    The buffer must remain valid throughout the life of the
+    QImage. The image does not delete the buffer at destruction.
+
+    If \a format is an indexed color format, the image color table is
+    initially empty and must be sufficiently expanded with
+    setNumColors() or setColorTable() before the image is used.
+*/
+QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format)
+    :QPaintDevice()
+{
+    d = QImageData::create(data, width, height, bytesPerLine, format, false);
+}
+
+
+/*!
+    Constructs an image with the given \a width, \a height and \a
+    format, that uses an existing memory buffer, \a data. The \a width
+    and \a height must be specified in pixels. \a bytesPerLine
+    specifies the number of bytes per line (stride).
+
+    The buffer must remain valid throughout the life of the
+    QImage. The image does not delete the buffer at destruction.
+
+    If \a format is an indexed color format, the image color table is
+    initially empty and must be sufficiently expanded with
+    setNumColors() or setColorTable() before the image is used.
+
+    Unlike the similar QImage constructor that takes a non-const data buffer,
+    this version will never alter the contents of the buffer.  For example,
+    calling QImage::bits() will return a deep copy of the image, rather than
+    the buffer passed to the constructor.  This allows for the efficiency of
+    constructing a QImage from raw data, without the possibility of the raw
+    data being changed.
+*/
+
+QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format)
+    :QPaintDevice()
+{
+    d = QImageData::create(const_cast<uchar*>(data), width, height, bytesPerLine, format, true);
+}
+
+/*!
+    Constructs an image and tries to load the image from the file with
+    the given \a fileName.
+
+    The loader attempts to read the image using the specified \a
+    format. If the \a format is not specified (which is the default),
+    the loader probes the file for a header to guess the file format.
+
+    If the loading of the image failed, this object is a null image.
+
+    The file name can either refer to an actual file on disk or to one
+    of the application's embedded resources. See the
+    \l{resources.html}{Resource System} overview for details on how to
+    embed images and other resource files in the application's
+    executable.
+
+    \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+*/
+
+QImage::QImage(const QString &fileName, const char *format)
+    : QPaintDevice()
+{
+    d = 0;
+    load(fileName, format);
+}
+
+/*!
+    Constructs an image and tries to load the image from the file with
+    the given \a fileName.
+
+    The loader attempts to read the image using the specified \a
+    format. If the \a format is not specified (which is the default),
+    the loader probes the file for a header to guess the file format.
+
+    If the loading of the image failed, this object is a null image.
+
+    The file name can either refer to an actual file on disk or to one
+    of the application's embedded resources. See the
+    \l{resources.html}{Resource System} overview for details on how to
+    embed images and other resource files in the application's
+    executable.
+
+    You can disable this constructor by defining \c
+    QT_NO_CAST_FROM_ASCII when you compile your applications. This can
+    be useful, for example, if you want to ensure that all
+    user-visible strings go through QObject::tr().
+
+    \sa QString::fromAscii(), isNull(), {QImage#Reading and Writing
+    Image Files}{Reading and Writing Image Files}
+*/
+#ifndef QT_NO_CAST_FROM_ASCII
+QImage::QImage(const char *fileName, const char *format)
+    : QPaintDevice()
+{
+    // ### Qt 5: if you remove the QImage(const QByteArray &) QT3_SUPPORT
+    // constructor, remove this constructor as well. The constructor here
+    // exists so that QImage("foo.png") compiles without ambiguity.
+    d = 0;
+    load(QString::fromAscii(fileName), format);
+}
+#endif
+
+#ifndef QT_NO_IMAGEFORMAT_XPM
+extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image);
+
+/*!
+    Constructs an image from the given \a xpm image.
+
+    Make sure that the image is a valid XPM image. Errors are silently
+    ignored.
+
+    Note that it's possible to squeeze the XPM variable a little bit
+    by using an unusual declaration:
+
+    \snippet doc/src/snippets/code/src_gui_image_qimage.cpp 2
+
+    The extra \c const makes the entire definition read-only, which is
+    slightly more efficient (e.g., when the code is in a shared
+    library) and able to be stored in ROM with the application.
+*/
+
+QImage::QImage(const char * const xpm[])
+    : QPaintDevice()
+{
+    d = 0;
+    if (!xpm)
+        return;
+    if (!qt_read_xpm_image_or_array(0, xpm, *this))
+        // Issue: Warning because the constructor may be ambigious
+        qWarning("QImage::QImage(), XPM is not supported");
+}
+#endif // QT_NO_IMAGEFORMAT_XPM
+
+/*!
+    \fn QImage::QImage(const QByteArray &data)
+
+    Use the static fromData() function instead.
+
+    \oldcode
+        QByteArray data;
+        ...
+        QImage image(data);
+    \newcode
+        QByteArray data;
+        ...
+        QImage image = QImage::fromData(data);
+    \endcode
+*/
+
+
+/*!
+    Constructs a shallow copy of the given \a image.
+
+    For more information about shallow copies, see the \l {Implicit
+    Data Sharing} documentation.
+
+    \sa copy()
+*/
+
+QImage::QImage(const QImage &image)
+    : QPaintDevice()
+{
+    d = image.d;
+    if (d)
+        d->ref.ref();
+}
+
+#ifdef QT3_SUPPORT
+/*!
+    \fn QImage::QImage(int width, int height, int depth, int numColors, Endian bitOrder)
+
+    Constructs an image with the given \a width, \a height, \a depth,
+    \a numColors colors and \a bitOrder.
+
+    Use the constructor that accepts a width, a height and a format
+    (i.e. specifying the depth and bit order), in combination with the
+    setNumColors() function, instead.
+
+    \oldcode
+        QImage image(width, height, depth, numColors);
+    \newcode
+        QImage image(width, height, format);
+
+        // For 8 bit images the default number of colors is 256. If
+        // another number of colors is required it can be specified
+        // using the setNumColors() function.
+        image.setNumColors(numColors);
+    \endcode
+*/
+
+QImage::QImage(int w, int h, int depth, int numColors, Endian bitOrder)
+    : QPaintDevice()
+{
+    d = QImageData::create(QSize(w, h), formatFor(depth, bitOrder), numColors);
+}
+
+/*!
+    Constructs an image with the given \a size, \a depth, \a numColors
+    and \a bitOrder.
+
+    Use the constructor that accepts a size and a format
+    (i.e. specifying the depth and bit order), in combination with the
+    setNumColors() function, instead.
+
+    \oldcode
+        QSize mySize(width, height);
+        QImage image(mySize, depth, numColors);
+    \newcode
+        QSize mySize(width, height);
+        QImage image(mySize, format);
+
+        // For 8 bit images the default number of colors is 256. If
+        // another number of colors is required it can be specified
+        // using the setNumColors() function.
+        image.setNumColors(numColors);
+    \endcode
+*/
+QImage::QImage(const QSize& size, int depth, int numColors, Endian bitOrder)
+    : QPaintDevice()
+{
+    d = QImageData::create(size, formatFor(depth, bitOrder), numColors);
+}
+
+/*!
+    \fn QImage::QImage(uchar* data, int width, int height, int depth, const QRgb* colortable, int numColors, Endian bitOrder)
+
+    Constructs an image with the given \a width, \a height, depth, \a
+    colortable, \a numColors and \a bitOrder, that uses an existing
+    memory buffer, \a data.
+
+    Use the constructor that accepts a uchar pointer, a width, a
+    height and a format (i.e. specifying the depth and bit order), in
+    combination with the setColorTable() function, instead.
+
+    \oldcode
+        uchar *myData;
+        QRgb *myColorTable;
+
+        QImage image(myData, width, height, depth,
+                               myColorTable, numColors, IgnoreEndian);
+    \newcode
+        uchar *myData;
+        QVector<QRgb> myColorTable;
+
+        QImage image(myData, width, height, format);
+        image.setColorTable(myColorTable);
+    \endcode
+*/
+QImage::QImage(uchar* data, int w, int h, int depth, const QRgb* colortable, int numColors, Endian bitOrder)
+    : QPaintDevice()
+{
+    d = 0;
+    Format f = formatFor(depth, bitOrder);
+    if (f == Format_Invalid)
+        return;
+
+    const int bytes_per_line = ((w*depth+31)/32)*4;        // bytes per scanline
+    if (w <= 0 || h <= 0 || numColors < 0 || !data
+        || INT_MAX/sizeof(uchar *) < uint(h)
+        || INT_MAX/uint(depth) < uint(w)
+        || bytes_per_line <= 0
+        || INT_MAX/uint(bytes_per_line) < uint(h))
+        return;                                        // invalid parameter(s)
+    d = new QImageData;
+    d->ref.ref();
+
+    d->own_data = false;
+    d->data = data;
+    d->width = w;
+    d->height = h;
+    d->depth = depth;
+    d->format = f;
+    if (depth == 32)
+        numColors = 0;
+
+    d->bytes_per_line = bytes_per_line;
+    d->nbytes = d->bytes_per_line * h;
+    if (colortable) {
+        d->colortable.resize(numColors);
+        for (int i = 0; i < numColors; ++i)
+            d->colortable[i] = colortable[i];
+    } else if (numColors) {
+        setNumColors(numColors);
+    }
+}
+
+#ifdef Q_WS_QWS
+
+/*!
+    \fn QImage::QImage(uchar* data, int width, int height, int depth, int bytesPerLine, const QRgb* colortable, int numColors, Endian bitOrder)
+
+    Constructs an image with the given \a width, \a height, \a depth,
+    \a bytesPerLine, \a colortable, \a numColors and \a bitOrder, that
+    uses an existing memory buffer, \a data. The image does not delete
+    the buffer at destruction.
+
+    \warning This constructor is only available in Qt for Embedded Linux.
+
+    The data has to be 32-bit aligned, and each scanline of data in the image
+    must also be 32-bit aligned, so it's no longer possible to specify a custom
+    \a bytesPerLine value.
+*/
+QImage::QImage(uchar* data, int w, int h, int depth, int bpl, const QRgb* colortable, int numColors, Endian bitOrder)
+    : QPaintDevice()
+{
+    d = 0;
+    Format f = formatFor(depth, bitOrder);
+    if (f == Format_Invalid)
+        return;
+    if (!data || w <= 0 || h <= 0 || depth <= 0 || numColors < 0
+        || INT_MAX/sizeof(uchar *) < uint(h)
+        || INT_MAX/uint(depth) < uint(w)
+        || bpl <= 0
+        || INT_MAX/uint(bpl) < uint(h))
+        return;                                        // invalid parameter(s)
+
+    d = new QImageData;
+    d->ref.ref();
+    d->own_data = false;
+    d->data = data;
+    d->width = w;
+    d->height = h;
+    d->depth = depth;
+    d->format = f;
+    if (depth == 32)
+        numColors = 0;
+    d->bytes_per_line = bpl;
+    d->nbytes = d->bytes_per_line * h;
+    if (colortable) {
+        d->colortable.resize(numColors);
+        for (int i = 0; i < numColors; ++i)
+            d->colortable[i] = colortable[i];
+    } else if (numColors) {
+        setNumColors(numColors);
+    }
+}
+#endif // Q_WS_QWS
+#endif // QT3_SUPPORT
+
+/*!
+    Destroys the image and cleans up.
+*/
+
+QImage::~QImage()
+{
+    if (d && !d->ref.deref())
+        delete d;
+}
+
+/*!
+    Assigns a shallow copy of the given \a image to this image and
+    returns a reference to this image.
+
+    For more information about shallow copies, see the \l {Implicit
+    Data Sharing} documentation.
+
+    \sa copy(), QImage()
+*/
+
+QImage &QImage::operator=(const QImage &image)
+{
+    if (image.d)
+        image.d->ref.ref();
+    if (d && !d->ref.deref())
+        delete d;
+    d = image.d;
+    return *this;
+}
+
+/*!
+  \internal
+*/
+int QImage::devType() const
+{
+    return QInternal::Image;
+}
+
+/*!
+   Returns the image as a QVariant.
+*/
+QImage::operator QVariant() const
+{
+    return QVariant(QVariant::Image, this);
+}
+
+/*!
+    \internal
+
+    If multiple images share common data, this image makes a copy of
+    the data and detaches itself from the sharing mechanism, making
+    sure that this image is the only one referring to the data.
+
+    Nothing is done if there is just a single reference.
+
+    \sa copy(), isDetached(), {Implicit Data Sharing}
+*/
+void QImage::detach()
+{
+    if (d) {
+        if (d->is_cached && d->ref == 1)
+            QImagePixmapCleanupHooks::executeImageHooks(cacheKey());
+
+        if (d->ref != 1 || d->ro_data)
+            *this = copy();
+
+        if (d)
+            ++d->detach_no;
+    }
+}
+
+
+/*!
+    \fn QImage QImage::copy(int x, int y, int width, int height) const
+    \overload
+
+    The returned image is copied from the position (\a x, \a y) in
+    this image, and will always have the given \a width and \a height.
+    In areas beyond this image, pixels are set to 0.
+
+*/
+
+/*!
+    \fn QImage QImage::copy(const QRect& rectangle) const
+
+    Returns a sub-area of the image as a new image.
+
+    The returned image is copied from the position (\a
+    {rectangle}.x(), \a{rectangle}.y()) in this image, and will always
+    have the size of the given \a rectangle.
+
+    In areas beyond this image, pixels are set to 0. For 32-bit RGB
+    images, this means black; for 32-bit ARGB images, this means
+    transparent black; for 8-bit images, this means the color with
+    index 0 in the color table which can be anything; for 1-bit
+    images, this means Qt::color0.
+
+    If the given \a rectangle is a null rectangle the entire image is
+    copied.
+
+    \sa QImage()
+*/
+QImage QImage::copy(const QRect& r) const
+{
+    if (!d)
+        return QImage();
+
+    if (r.isNull()) {
+        QImage image(d->width, d->height, d->format);
+        if (image.isNull())
+            return image;
+
+        // Qt for Embedded Linux can create images with non-default bpl
+        // make sure we don't crash.
+        if (image.d->nbytes != d->nbytes) {
+            int bpl = image.bytesPerLine();
+            for (int i = 0; i < height(); i++)
+                memcpy(image.scanLine(i), scanLine(i), bpl);
+        } else
+            memcpy(image.bits(), bits(), d->nbytes);
+        image.d->colortable = d->colortable;
+        image.d->dpmx = d->dpmx;
+        image.d->dpmy = d->dpmy;
+        image.d->offset = d->offset;
+        image.d->has_alpha_clut = d->has_alpha_clut;
+#ifndef QT_NO_IMAGE_TEXT
+        image.d->text = d->text;
+#endif
+        return image;
+    }
+
+    int x = r.x();
+    int y = r.y();
+    int w = r.width();
+    int h = r.height();
+
+    int dx = 0;
+    int dy = 0;
+    if (w <= 0 || h <= 0)
+        return QImage();
+
+    QImage image(w, h, d->format);
+    if (image.isNull())
+        return image;
+
+    if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) {
+        // bitBlt will not cover entire image - clear it.
+        image.fill(0);
+        if (x < 0) {
+            dx = -x;
+            x = 0;
+        }
+        if (y < 0) {
+            dy = -y;
+            y = 0;
+        }
+    }
+
+    image.d->colortable = d->colortable;
+
+    int pixels_to_copy = qMax(w - dx, 0);
+    if (x > d->width)
+        pixels_to_copy = 0;
+    else if (pixels_to_copy > d->width - x)
+        pixels_to_copy = d->width - x;
+    int lines_to_copy = qMax(h - dy, 0);
+    if (y > d->height)
+        lines_to_copy = 0;
+    else if (lines_to_copy > d->height - y)
+        lines_to_copy = d->height - y;
+
+    bool byteAligned = true;
+    if (d->format == Format_Mono || d->format == Format_MonoLSB)
+        byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7);
+
+    if (byteAligned) {
+        const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line;
+        uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line;
+        const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3;
+        for (int i = 0; i < lines_to_copy; ++i) {
+            memcpy(dest, src, bytes_to_copy);
+            src += d->bytes_per_line;
+            dest += image.d->bytes_per_line;
+        }
+    } else if (d->format == Format_Mono) {
+        const uchar *src = d->data + y * d->bytes_per_line;
+        uchar *dest = image.d->data + dy * image.d->bytes_per_line;
+        for (int i = 0; i < lines_to_copy; ++i) {
+            for (int j = 0; j < pixels_to_copy; ++j) {
+                if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7)))
+                    dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7));
+                else
+                    dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7));
+            }
+            src += d->bytes_per_line;
+            dest += image.d->bytes_per_line;
+        }
+    } else { // Format_MonoLSB
+        Q_ASSERT(d->format == Format_MonoLSB);
+        const uchar *src = d->data + y * d->bytes_per_line;
+        uchar *dest = image.d->data + dy * image.d->bytes_per_line;
+        for (int i = 0; i < lines_to_copy; ++i) {
+            for (int j = 0; j < pixels_to_copy; ++j) {
+                if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7)))
+                    dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7));
+                else
+                    dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7));
+            }
+            src += d->bytes_per_line;
+            dest += image.d->bytes_per_line;
+        }
+    }
+
+    image.d->dpmx = dotsPerMeterX();
+    image.d->dpmy = dotsPerMeterY();
+    image.d->offset = offset();
+    image.d->has_alpha_clut = d->has_alpha_clut;
+#ifndef QT_NO_IMAGE_TEXT
+    image.d->text = d->text;
+#endif
+    return image;
+}
+
+
+/*!
+    \fn bool QImage::isNull() const
+
+    Returns true if it is a null image, otherwise returns false.
+
+    A null image has all parameters set to zero and no allocated data.
+*/
+bool QImage::isNull() const
+{
+    return !d;
+}
+
+/*!
+    \fn int QImage::width() const
+
+    Returns the width of the image.
+
+    \sa {QImage#Image Information}{Image Information}
+*/
+int QImage::width() const
+{
+    return d ? d->width : 0;
+}
+
+/*!
+    \fn int QImage::height() const
+
+    Returns the height of the image.
+
+    \sa {QImage#Image Information}{Image Information}
+*/
+int QImage::height() const
+{
+    return d ? d->height : 0;
+}
+
+/*!
+    \fn QSize QImage::size() const
+
+    Returns the size of the image, i.e. its width() and height().
+
+    \sa {QImage#Image Information}{Image Information}
+*/
+QSize QImage::size() const
+{
+    return d ? QSize(d->width, d->height) : QSize(0, 0);
+}
+
+/*!
+    \fn QRect QImage::rect() const
+
+    Returns the enclosing rectangle (0, 0, width(), height()) of the
+    image.
+
+    \sa {QImage#Image Information}{Image Information}
+*/
+QRect QImage::rect() const
+{
+    return d ? QRect(0, 0, d->width, d->height) : QRect();
+}
+
+/*!
+    Returns the depth of the image.
+
+    The image depth is the number of bits used to encode a single
+    pixel, also called bits per pixel (bpp).
+
+    The supported depths are 1, 8, 16, 24 and 32.
+
+    \sa convertToFormat(), {QImage#Image Formats}{Image Formats},
+    {QImage#Image Information}{Image Information}
+
+*/
+int QImage::depth() const
+{
+    return d ? d->depth : 0;
+}
+
+/*!
+    \fn int QImage::numColors() const
+
+    Returns the size of the color table for the image.
+
+    Notice that numColors() returns 0 for 32-bpp images because these
+    images do not use color tables, but instead encode pixel values as
+    ARGB quadruplets.
+
+    \sa setNumColors(), {QImage#Image Information}{Image Information}
+*/
+int QImage::numColors() const
+{
+    return d ? d->colortable.size() : 0;
+}
+
+
+#ifdef QT3_SUPPORT
+/*!
+    \fn QImage::Endian QImage::bitOrder() const
+
+    Returns the bit order for the image. If it is a 1-bpp image, this
+    function returns either QImage::BigEndian or
+    QImage::LittleEndian. Otherwise, this function returns
+    QImage::IgnoreEndian.
+
+    Use the format() function instead for the monochrome formats. For
+    non-monochrome formats the bit order is irrelevant.
+*/
+
+/*!
+    Returns a pointer to the scanline pointer table. This is the
+    beginning of the data block for the image.
+    Returns 0 in case of an error.
+
+    Use the bits() or scanLine() function instead.
+*/
+uchar **QImage::jumpTable()
+{
+    if (!d)
+        return 0;
+    detach();
+
+    // in case detach() ran out of memory..
+    if (!d)
+        return 0;
+
+    if (!d->jumptable) {
+        d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));
+        if (!d->jumptable)
+            return 0;
+        uchar *data = d->data;
+        int height = d->height;
+        uchar **p = d->jumptable;
+        while (height--) {
+            *p++ = data;
+            data += d->bytes_per_line;
+        }
+    }
+    return d->jumptable;
+}
+
+/*!
+    \overload
+*/
+const uchar * const *QImage::jumpTable() const
+{
+    if (!d)
+        return 0;
+    if (!d->jumptable) {
+        d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));
+        if (!d->jumptable)
+            return 0;
+        uchar *data = d->data;
+        int height = d->height;
+        uchar **p = d->jumptable;
+        while (height--) {
+            *p++ = data;
+            data += d->bytes_per_line;
+        }
+    }
+    return d->jumptable;
+}
+#endif
+
+/*!
+    Sets the color table used to translate color indexes to QRgb
+    values, to the specified \a colors.
+
+    When the image is used, the color table must be large enough to
+    have entries for all the pixel/index values present in the image,
+    otherwise the results are undefined.
+
+    \sa colorTable(), setColor(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+void QImage::setColorTable(const QVector<QRgb> colors)
+{
+    if (!d)
+        return;
+    detach();
+
+    // In case detach() ran out of memory
+    if (!d)
+        return;
+
+    d->colortable = colors;
+    d->has_alpha_clut = false;
+    for (int i = 0; i < d->colortable.size(); ++i) {
+        if (qAlpha(d->colortable.at(i)) != 255) {
+            d->has_alpha_clut = true;
+            break;
+        }
+    }
+}
+
+/*!
+    Returns a list of the colors contained in the image's color table,
+    or an empty list if the image does not have a color table
+
+    \sa setColorTable(), numColors(), color()
+*/
+QVector<QRgb> QImage::colorTable() const
+{
+    return d ? d->colortable : QVector<QRgb>();
+}
+
+
+/*!
+    Returns the number of bytes occupied by the image data.
+
+    \sa bytesPerLine(), bits(), {QImage#Image Information}{Image
+    Information}
+*/
+int QImage::numBytes() const
+{
+    return d ? d->nbytes : 0;
+}
+
+/*!
+    Returns the number of bytes per image scanline.
+
+    This is equivalent to numBytes()/ height().
+
+    \sa scanLine()
+*/
+int QImage::bytesPerLine() const
+{
+    return (d && d->height) ? d->nbytes / d->height : 0;
+}
+
+
+/*!
+    Returns the color in the color table at index \a i. The first
+    color is at index 0.
+
+    The colors in an image's color table are specified as ARGB
+    quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and
+    qBlue() functions to get the color value components.
+
+    \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel
+    Manipulation}
+*/
+QRgb QImage::color(int i) const
+{
+    Q_ASSERT(i < numColors());
+    return d ? d->colortable.at(i) : QRgb(uint(-1));
+}
+
+/*!
+    \fn void QImage::setColor(int index, QRgb colorValue)
+
+    Sets the color at the given \a index in the color table, to the
+    given to \a colorValue. The color value is an ARGB quadruplet.
+
+    If \a index is outside the current size of the color table, it is
+    expanded with setNumColors().
+
+    \sa color(), numColors(), setColorTable(), {QImage#Pixel Manipulation}{Pixel
+    Manipulation}
+*/
+void QImage::setColor(int i, QRgb c)
+{
+    if (!d)
+        return;
+    if (i < 0 || d->depth > 8 || i >= 1<<d->depth) {
+        qWarning("QImage::setColor: Index out of bound %d", i);
+        return;
+    }
+    detach();
+
+    // In case detach() run out of memory
+    if (!d)
+        return;
+
+    if (i >= d->colortable.size())
+        setNumColors(i+1);
+    d->colortable[i] = c;
+    d->has_alpha_clut |= (qAlpha(c) != 255);
+}
+
+/*!
+    Returns a pointer to the pixel data at the scanline with index \a
+    i. The first scanline is at index 0.
+
+    The scanline data is aligned on a 32-bit boundary.
+
+    \warning If you are accessing 32-bpp image data, cast the returned
+    pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to
+    read/write the pixel value. You cannot use the \c{uchar*} pointer
+    directly, because the pixel format depends on the byte order on
+    the underlying platform. Use qRed(), qGreen(), qBlue(), and
+    qAlpha() to access the pixels.
+
+    \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel
+    Manipulation}
+*/
+uchar *QImage::scanLine(int i)
+{
+    if (!d)
+        return 0;
+
+    detach();
+
+    // In case detach() ran out of memory
+    if (!d)
+        return 0;
+
+    return d->data + i * d->bytes_per_line;
+}
+
+/*!
+    \overload
+*/
+const uchar *QImage::scanLine(int i) const
+{
+    if (!d)
+        return 0;
+
+    Q_ASSERT(i >= 0 && i < height());
+    return d->data + i * d->bytes_per_line;
+}
+
+
+/*!
+    Returns a pointer to the first pixel data. This is equivalent to
+    scanLine(0).
+
+    Note that QImage uses \l{Implicit Data Sharing} {implicit data
+    sharing}. This function performs a deep copy of the shared pixel
+    data, thus ensuring that this QImage is the only one using the
+    current return value.
+
+    \sa scanLine(), numBytes()
+*/
+uchar *QImage::bits()
+{
+    if (!d)
+        return 0;
+    detach();
+
+    // In case detach ran out of memory...
+    if (!d)
+        return 0;
+
+    return d->data;
+}
+
+/*!
+    \overload
+
+    Note that QImage uses \l{Implicit Data Sharing} {implicit data
+    sharing}, but this function does \e not perform a deep copy of the
+    shared pixel data, because the returned data is const.
+*/
+const uchar *QImage::bits() const
+{
+    return d ? d->data : 0;
+}
+
+
+
+/*!
+    \fn void QImage::reset()
+
+    Resets all image parameters and deallocates the image data.
+
+    Assign a null image instead.
+
+    \oldcode
+        QImage image;
+        image.reset();
+    \newcode
+        QImage image;
+        image = QImage();
+    \endcode
+*/
+
+/*!
+    \fn void QImage::fill(uint pixelValue)
+
+    Fills the entire image with the given \a pixelValue.
+
+    If the depth of this image is 1, only the lowest bit is used. If
+    you say fill(0), fill(2), etc., the image is filled with 0s. If
+    you say fill(1), fill(3), etc., the image is filled with 1s. If
+    the depth is 8, the lowest 8 bits are used and if the depth is 16
+    the lowest 16 bits are used.
+
+    Note: QImage::pixel() returns the color of the pixel at the given
+    coordinates while QColor::pixel() returns the pixel value of the
+    underlying window system (essentially an index value), so normally
+    you will want to use QImage::pixel() to use a color from an
+    existing image or QColor::rgb() to use a specific color.
+
+    \sa depth(), {QImage#Image Transformations}{Image Transformations}
+*/
+
+void QImage::fill(uint pixel)
+{
+    if (!d)
+        return;
+
+    detach();
+
+    // In case detach() ran out of memory
+    if (!d)
+        return;
+
+    if (d->depth == 1 || d->depth == 8) {
+        int w = d->width;
+        if (d->depth == 1) {
+            if (pixel & 1)
+                pixel = 0xffffffff;
+            else
+                pixel = 0;
+            w = (w + 7) / 8;
+        } else {
+            pixel &= 0xff;
+        }
+        qt_rectfill<quint8>(d->data, pixel, 0, 0,
+                            w, d->height, d->bytes_per_line);
+        return;
+    } else if (d->depth == 16) {
+        qt_rectfill<quint16>(reinterpret_cast<quint16*>(d->data), pixel,
+                             0, 0, d->width, d->height, d->bytes_per_line);
+        return;
+    } else if (d->depth == 24) {
+        qt_rectfill<quint24>(reinterpret_cast<quint24*>(d->data), pixel,
+                             0, 0, d->width, d->height, d->bytes_per_line);
+        return;
+    }
+
+    if (d->format == Format_RGB32)
+        pixel |= 0xff000000;
+
+    qt_rectfill<uint>(reinterpret_cast<uint*>(d->data), pixel,
+                      0, 0, d->width, d->height, d->bytes_per_line);
+}
+
+/*!
+    Inverts all pixel values in the image.
+
+    The given invert \a mode only have a meaning when the image's
+    depth is 32. The default \a mode is InvertRgb, which leaves the
+    alpha channel unchanged. If the \a mode is InvertRgba, the alpha
+    bits are also inverted.
+
+    Inverting an 8-bit image means to replace all pixels using color
+    index \e i with a pixel using color index 255 minus \e i. The same
+    is the case for a 1-bit image. Note that the color table is \e not
+    changed.
+
+    \sa {QImage#Image Transformations}{Image Transformations}
+*/
+
+void QImage::invertPixels(InvertMode mode)
+{
+    if (!d)
+        return;
+
+    detach();
+
+    // In case detach() ran out of memory
+    if (!d)
+        return;
+
+    if (depth() != 32) {
+        // number of used bytes pr line
+        int bpl = (d->width * d->depth + 7) / 8;
+        int pad = d->bytes_per_line - bpl;
+        uchar *sl = d->data;
+        for (int y=0; y<d->height; ++y) {
+            for (int x=0; x<bpl; ++x)
+                *sl++ ^= 0xff;
+            sl += pad;
+        }
+    } else {
+        quint32 *p = (quint32*)d->data;
+        quint32 *end = (quint32*)(d->data + d->nbytes);
+        uint xorbits = (mode == InvertRgba) ? 0xffffffff : 0x00ffffff;
+        while (p < end)
+            *p++ ^= xorbits;
+    }
+}
+
+/*!
+    \fn void QImage::invertPixels(bool invertAlpha)
+
+    Use the invertPixels() function that takes a QImage::InvertMode
+    parameter instead.
+*/
+
+/*! \fn QImage::Endian QImage::systemByteOrder()
+
+    Determines the host computer byte order. Returns
+    QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).
+
+    This function is no longer relevant for QImage. Use QSysInfo
+    instead.
+*/
+
+// Windows defines these
+#if defined(write)
+# undef write
+#endif
+#if defined(close)
+# undef close
+#endif
+#if defined(read)
+# undef read
+#endif
+
+/*!
+    Resizes the color table to contain \a numColors entries.
+
+    If the color table is expanded, all the extra colors will be set to
+    transparent (i.e qRgba(0, 0, 0, 0)).
+
+    When the image is used, the color table must be large enough to
+    have entries for all the pixel/index values present in the image,
+    otherwise the results are undefined.
+
+    \sa numColors(), colorTable(), setColor(), {QImage#Image
+    Transformations}{Image Transformations}
+*/
+
+void QImage::setNumColors(int numColors)
+{
+    if (!d) {
+        qWarning("QImage::setNumColors: null image");
+        return;
+    }
+
+    detach();
+
+    // In case detach() ran out of memory
+    if (!d)
+        return;
+
+    if (numColors == d->colortable.size())
+        return;
+    if (numColors <= 0) {                        // use no color table
+        d->colortable = QVector<QRgb>();
+        return;
+    }
+    int nc = d->colortable.size();
+    d->colortable.resize(numColors);
+    for (int i = nc; i < numColors; ++i)
+        d->colortable[i] = 0;
+
+}
+
+/*!
+    Returns the format of the image.
+
+    \sa {QImage#Image Formats}{Image Formats}
+*/
+QImage::Format QImage::format() const
+{
+    return d ? d->format : Format_Invalid;
+}
+
+
+#ifdef QT3_SUPPORT
+/*!
+    Returns true if alpha buffer mode is enabled; otherwise returns
+    false.
+
+    Use the hasAlphaChannel() function instead.
+
+*/
+bool QImage::hasAlphaBuffer() const
+{
+    if (!d)
+        return false;
+
+    switch (d->format) {
+    case Format_ARGB32:
+    case Format_ARGB32_Premultiplied:
+    case Format_ARGB8565_Premultiplied:
+    case Format_ARGB8555_Premultiplied:
+    case Format_ARGB6666_Premultiplied:
+    case Format_ARGB4444_Premultiplied:
+        return true;
+    default:
+        return false;
+    }
+}
+
+/*!
+    Enables alpha buffer mode if \a enable is true, otherwise disables
+    it. The alpha buffer is used to set a mask when a QImage is
+    translated to a QPixmap.
+
+    If a monochrome or indexed 8-bit image has alpha channels in their
+    color tables they will automatically detect that they have an
+    alpha channel, so this function is not required.  To force alpha
+    channels on 32-bit images, use the convertToFormat() function.
+*/
+
+void QImage::setAlphaBuffer(bool enable)
+{
+    if (!d
+        || d->format == Format_Mono
+        || d->format == Format_MonoLSB
+        || d->format == Format_Indexed8)
+        return;
+    if (enable && (d->format == Format_ARGB32 ||
+                   d->format == Format_ARGB32_Premultiplied ||
+                   d->format == Format_ARGB8565_Premultiplied ||
+                   d->format == Format_ARGB6666_Premultiplied ||
+                   d->format == Format_ARGB8555_Premultiplied ||
+                   d->format == Format_ARGB4444_Premultiplied))
+    {
+        return;
+    }
+    if (!enable && (d->format == Format_RGB32 ||
+                    d->format == Format_RGB555 ||
+                    d->format == Format_RGB666 ||
+                    d->format == Format_RGB888 ||
+                    d->format == Format_RGB444))
+    {
+        return;
+    }
+    detach();
+    d->format = (enable ? Format_ARGB32 : Format_RGB32);
+}
+
+
+/*!
+  \fn bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)
+
+    Sets the image \a width, \a height, \a depth, its number of colors
+    (in \a numColors), and bit order. Returns true if successful, or
+    false if the parameters are incorrect or if memory cannot be
+    allocated.
+
+    The \a width and \a height is limited to 32767. \a depth must be
+    1, 8, or 32. If \a depth is 1, \a bitOrder must be set to
+    either QImage::LittleEndian or QImage::BigEndian. For other depths
+    \a bitOrder must be QImage::IgnoreEndian.
+
+    This function allocates a color table and a buffer for the image
+    data. The image data is not initialized. The image buffer is
+    allocated as a single block that consists of a table of scanLine()
+    pointers (jumpTable()) and the image data (bits()).
+
+    Use a QImage constructor instead.
+*/
+bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)
+{
+    if (d && !d->ref.deref())
+        delete d;
+    d = QImageData::create(QSize(width, height), formatFor(depth, bitOrder), numColors);
+    return true;
+}
+
+/*!
+    \fn bool QImage::create(const QSize& size, int depth, int numColors, Endian bitOrder)
+    \overload
+
+    The width and height are specified in the \a size argument.
+
+    Use a QImage constructor instead.
+*/
+bool QImage::create(const QSize& size, int depth, int numColors, QImage::Endian bitOrder)
+{
+    if (d && !d->ref.deref())
+        delete d;
+    d = QImageData::create(size, formatFor(depth, bitOrder), numColors);
+    return true;
+}
+#endif // QT3_SUPPORT
+
+/*****************************************************************************
+  Internal routines for converting image depth.
+ *****************************************************************************/
+
+typedef void (*Image_Converter)(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags);
+
+static void convert_ARGB_to_ARGB_PM(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_ARGB32);
+    Q_ASSERT(dest->format == QImage::Format_ARGB32_Premultiplied);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    const int src_pad = (src->bytes_per_line >> 2) - src->width;
+    const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+    const QRgb *src_data = (QRgb *) src->data;
+    QRgb *dest_data = (QRgb *) dest->data;
+
+    for (int i = 0; i < src->height; ++i) {
+        const QRgb *end = src_data + src->width;
+        while (src_data < end) {
+            *dest_data = PREMUL(*src_data);
+            ++src_data;
+            ++dest_data;
+        }
+        src_data += src_pad;
+        dest_data += dest_pad;
+    }
+}
+
+static void convert_ARGB_PM_to_ARGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);
+    Q_ASSERT(dest->format == QImage::Format_ARGB32);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    const int src_pad = (src->bytes_per_line >> 2) - src->width;
+    const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+    const QRgb *src_data = (QRgb *) src->data;
+    QRgb *dest_data = (QRgb *) dest->data;
+
+    for (int i = 0; i < src->height; ++i) {
+        const QRgb *end = src_data + src->width;
+        while (src_data < end) {
+            *dest_data = INV_PREMUL(*src_data);
+            ++src_data;
+            ++dest_data;
+        }
+        src_data += src_pad;
+        dest_data += dest_pad;
+    }
+}
+
+static void convert_ARGB_PM_to_RGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);
+    Q_ASSERT(dest->format == QImage::Format_RGB32);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    const int src_pad = (src->bytes_per_line >> 2) - src->width;
+    const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+    const QRgb *src_data = (QRgb *) src->data;
+    QRgb *dest_data = (QRgb *) dest->data;
+
+    for (int i = 0; i < src->height; ++i) {
+        const QRgb *end = src_data + src->width;
+        while (src_data < end) {
+            *dest_data = 0xff000000 | INV_PREMUL(*src_data);
+            ++src_data;
+            ++dest_data;
+        }
+        src_data += src_pad;
+        dest_data += dest_pad;
+    }
+}
+
+static void swap_bit_order(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
+    Q_ASSERT(dest->format == QImage::Format_Mono || dest->format == QImage::Format_MonoLSB);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+    Q_ASSERT(src->nbytes == dest->nbytes);
+    Q_ASSERT(src->bytes_per_line == dest->bytes_per_line);
+
+    dest->colortable = src->colortable;
+
+    const uchar *src_data = src->data;
+    const uchar *end = src->data + src->nbytes;
+    uchar *dest_data = dest->data;
+    while (src_data < end) {
+        *dest_data = bitflip[*src_data];
+        ++src_data;
+        ++dest_data;
+    }
+}
+
+static void mask_alpha_converter(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    const int src_pad = (src->bytes_per_line >> 2) - src->width;
+    const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
+    const uint *src_data = (const uint *)src->data;
+    uint *dest_data = (uint *)dest->data;
+
+    for (int i = 0; i < src->height; ++i) {
+        const uint *end = src_data + src->width;
+        while (src_data < end) {
+            *dest_data = *src_data | 0xff000000;
+            ++src_data;
+            ++dest_data;
+        }
+        src_data += src_pad;
+        dest_data += dest_pad;
+    }
+}
+
+static QVector<QRgb> fix_color_table(const QVector<QRgb> &ctbl, QImage::Format format)
+{
+    QVector<QRgb> colorTable = ctbl;
+    if (format == QImage::Format_RGB32) {
+        // check if the color table has alpha
+        for (int i = 0; i < colorTable.size(); ++i)
+            if (qAlpha(colorTable.at(i) != 0xff))
+                colorTable[i] = colorTable.at(i) | 0xff000000;
+    } else if (format == QImage::Format_ARGB32_Premultiplied) {
+        // check if the color table has alpha
+        for (int i = 0; i < colorTable.size(); ++i)
+            colorTable[i] = PREMUL(colorTable.at(i));
+    }
+    return colorTable;
+}
+
+//
+// dither_to_1:  Uses selected dithering algorithm.
+//
+
+static void dither_to_Mono(QImageData *dst, const QImageData *src,
+                           Qt::ImageConversionFlags flags, bool fromalpha)
+{
+    Q_ASSERT(src->width == dst->width);
+    Q_ASSERT(src->height == dst->height);
+    Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB);
+
+    dst->colortable.clear();
+    dst->colortable.append(0xffffffff);
+    dst->colortable.append(0xff000000);
+
+    enum { Threshold, Ordered, Diffuse } dithermode;
+
+    if (fromalpha) {
+        if ((flags & Qt::AlphaDither_Mask) == Qt::DiffuseAlphaDither)
+            dithermode = Diffuse;
+        else if ((flags & Qt::AlphaDither_Mask) == Qt::OrderedAlphaDither)
+            dithermode = Ordered;
+        else
+            dithermode = Threshold;
+    } else {
+        if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither)
+            dithermode = Threshold;
+        else if ((flags & Qt::Dither_Mask) == Qt::OrderedDither)
+            dithermode = Ordered;
+        else
+            dithermode = Diffuse;
+    }
+
+    int          w = src->width;
+    int          h = src->height;
+    int          d = src->depth;
+    uchar gray[256];                                // gray map for 8 bit images
+    bool  use_gray = (d == 8);
+    if (use_gray) {                                // make gray map
+        if (fromalpha) {
+            // Alpha 0x00 -> 0 pixels (white)
+            // Alpha 0xFF -> 1 pixels (black)
+            for (int i = 0; i < src->colortable.size(); i++)
+                gray[i] = (255 - (src->colortable.at(i) >> 24));
+        } else {
+            // Pixel 0x00 -> 1 pixels (black)
+            // Pixel 0xFF -> 0 pixels (white)
+            for (int i = 0; i < src->colortable.size(); i++)
+                gray[i] = qGray(src->colortable.at(i));
+        }
+    }
+
+    uchar *dst_data = dst->data;
+    int dst_bpl = dst->bytes_per_line;
+    const uchar *src_data = src->data;
+    int src_bpl = src->bytes_per_line;
+
+    switch (dithermode) {
+    case Diffuse: {
+        QScopedArrayPointer<int> lineBuffer(new int[w * 2]);
+        int *line1 = lineBuffer.data();
+        int *line2 = lineBuffer.data() + w;
+        int bmwidth = (w+7)/8;
+
+        int *b1, *b2;
+        int wbytes = w * (d/8);
+        register const uchar *p = src->data;
+        const uchar *end = p + wbytes;
+        b2 = line2;
+        if (use_gray) {                        // 8 bit image
+            while (p < end)
+                *b2++ = gray[*p++];
+        } else {                                // 32 bit image
+            if (fromalpha) {
+                while (p < end) {
+                    *b2++ = 255 - (*(uint*)p >> 24);
+                    p += 4;
+                }
+            } else {
+                while (p < end) {
+                    *b2++ = qGray(*(uint*)p);
+                    p += 4;
+                }
+            }
+        }
+        for (int y=0; y<h; y++) {                        // for each scan line...
+            int *tmp = line1; line1 = line2; line2 = tmp;
+            bool not_last_line = y < h - 1;
+            if (not_last_line) {                // calc. grayvals for next line
+                p = src->data + (y+1)*src->bytes_per_line;
+                end = p + wbytes;
+                b2 = line2;
+                if (use_gray) {                // 8 bit image
+                    while (p < end)
+                        *b2++ = gray[*p++];
+                } else {                        // 24 bit image
+                    if (fromalpha) {
+                        while (p < end) {
+                            *b2++ = 255 - (*(uint*)p >> 24);
+                            p += 4;
+                        }
+                    } else {
+                        while (p < end) {
+                            *b2++ = qGray(*(uint*)p);
+                            p += 4;
+                        }
+                    }
+                }
+            }
+
+            int err;
+            uchar *p = dst->data + y*dst->bytes_per_line;
+            memset(p, 0, bmwidth);
+            b1 = line1;
+            b2 = line2;
+            int bit = 7;
+            for (int x=1; x<=w; x++) {
+                if (*b1 < 128) {                // black pixel
+                    err = *b1++;
+                    *p |= 1 << bit;
+                } else {                        // white pixel
+                    err = *b1++ - 255;
+                }
+                if (bit == 0) {
+                    p++;
+                    bit = 7;
+                } else {
+                    bit--;
+                }
+                if (x < w)
+                    *b1 += (err*7)>>4;                // spread error to right pixel
+                if (not_last_line) {
+                    b2[0] += (err*5)>>4;        // pixel below
+                    if (x > 1)
+                        b2[-1] += (err*3)>>4;        // pixel below left
+                    if (x < w)
+                        b2[1] += err>>4;        // pixel below right
+                }
+                b2++;
+            }
+        }
+    } break;
+    case Ordered: {
+
+        memset(dst->data, 0, dst->nbytes);
+        if (d == 32) {
+            for (int i=0; i<h; i++) {
+                const uint *p = (const uint *)src_data;
+                const uint *end = p + w;
+                uchar *m = dst_data;
+                int bit = 7;
+                int j = 0;
+                if (fromalpha) {
+                    while (p < end) {
+                        if ((*p++ >> 24) >= qt_bayer_matrix[j++&15][i&15])
+                            *m |= 1 << bit;
+                        if (bit == 0) {
+                            m++;
+                            bit = 7;
+                        } else {
+                            bit--;
+                        }
+                    }
+                } else {
+                    while (p < end) {
+                        if ((uint)qGray(*p++) < qt_bayer_matrix[j++&15][i&15])
+                            *m |= 1 << bit;
+                        if (bit == 0) {
+                            m++;
+                            bit = 7;
+                        } else {
+                            bit--;
+                        }
+                    }
+                }
+                dst_data += dst_bpl;
+                src_data += src_bpl;
+            }
+        } else
+            /* (d == 8) */ {
+            for (int i=0; i<h; i++) {
+                const uchar *p = src_data;
+                const uchar *end = p + w;
+                uchar *m = dst_data;
+                int bit = 7;
+                int j = 0;
+                while (p < end) {
+                    if ((uint)gray[*p++] < qt_bayer_matrix[j++&15][i&15])
+                        *m |= 1 << bit;
+                    if (bit == 0) {
+                        m++;
+                        bit = 7;
+                    } else {
+                        bit--;
+                    }
+                }
+                dst_data += dst_bpl;
+                src_data += src_bpl;
+            }
+        }
+    } break;
+    default: { // Threshold:
+        memset(dst->data, 0, dst->nbytes);
+        if (d == 32) {
+            for (int i=0; i<h; i++) {
+                const uint *p = (const uint *)src_data;
+                const uint *end = p + w;
+                uchar *m = dst_data;
+                int bit = 7;
+                if (fromalpha) {
+                    while (p < end) {
+                        if ((*p++ >> 24) >= 128)
+                            *m |= 1 << bit;        // Set mask "on"
+                        if (bit == 0) {
+                            m++;
+                            bit = 7;
+                        } else {
+                            bit--;
+                        }
+                    }
+                } else {
+                    while (p < end) {
+                        if (qGray(*p++) < 128)
+                            *m |= 1 << bit;        // Set pixel "black"
+                        if (bit == 0) {
+                            m++;
+                            bit = 7;
+                        } else {
+                            bit--;
+                        }
+                    }
+                }
+                dst_data += dst_bpl;
+                src_data += src_bpl;
+            }
+        } else
+            if (d == 8) {
+                for (int i=0; i<h; i++) {
+                    const uchar *p = src_data;
+                    const uchar *end = p + w;
+                    uchar *m = dst_data;
+                    int bit = 7;
+                    while (p < end) {
+                        if (gray[*p++] < 128)
+                            *m |= 1 << bit;                // Set mask "on"/ pixel "black"
+                        if (bit == 0) {
+                            m++;
+                            bit = 7;
+                        } else {
+                            bit--;
+                        }
+                    }
+                    dst_data += dst_bpl;
+                    src_data += src_bpl;
+                }
+            }
+        }
+    }
+
+    if (dst->format == QImage::Format_MonoLSB) {
+        // need to swap bit order
+        uchar *sl = dst->data;
+        int bpl = (dst->width + 7) * dst->depth / 8;
+        int pad = dst->bytes_per_line - bpl;
+        for (int y=0; y<dst->height; ++y) {
+            for (int x=0; x<bpl; ++x) {
+                *sl = bitflip[*sl];
+                ++sl;
+            }
+            sl += pad;
+        }
+    }
+}
+
+static void convert_X_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+    dither_to_Mono(dst, src, flags, false);
+}
+
+static void convert_ARGB_PM_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+    QScopedPointer<QImageData> tmp(QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32));
+    convert_ARGB_PM_to_ARGB(tmp.data(), src, flags);
+    dither_to_Mono(dst, tmp.data(), flags, false);
+}
+
+//
+// convert_32_to_8:  Converts a 32 bits depth (true color) to an 8 bit
+// image with a colormap. If the 32 bit image has more than 256 colors,
+// we convert the red,green and blue bytes into a single byte encoded
+// as 6 shades of each of red, green and blue.
+//
+// if dithering is needed, only 1 color at most is available for alpha.
+//
+struct QRgbMap {
+    inline QRgbMap() : used(0) { }
+    uchar  pix;
+    uchar used;
+    QRgb  rgb;
+};
+
+static void convert_RGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+    Q_ASSERT(src->format == QImage::Format_RGB32 || src->format == QImage::Format_ARGB32);
+    Q_ASSERT(dst->format == QImage::Format_Indexed8);
+    Q_ASSERT(src->width == dst->width);
+    Q_ASSERT(src->height == dst->height);
+
+    bool    do_quant = (flags & Qt::DitherMode_Mask) == Qt::PreferDither
+                       || src->format == QImage::Format_ARGB32;
+    uint alpha_mask = src->format == QImage::Format_RGB32 ? 0xff000000 : 0;
+
+    const int tablesize = 997; // prime
+    QRgbMap table[tablesize];
+    int   pix=0;
+
+    if (!dst->colortable.isEmpty()) {
+        QVector<QRgb> ctbl = dst->colortable;
+        dst->colortable.resize(256);
+        // Preload palette into table.
+        // Almost same code as pixel insertion below
+        for (int i = 0; i < dst->colortable.size(); ++i) {
+            // Find in table...
+            QRgb p = ctbl.at(i) | alpha_mask;
+            int hash = p % tablesize;
+            for (;;) {
+                if (table[hash].used) {
+                    if (table[hash].rgb == p) {
+                        // Found previous insertion - use it
+                        break;
+                    } else {
+                        // Keep searching...
+                        if (++hash == tablesize) hash = 0;
+                    }
+                } else {
+                    // Cannot be in table
+                    Q_ASSERT (pix != 256);        // too many colors
+                    // Insert into table at this unused position
+                    dst->colortable[pix] = p;
+                    table[hash].pix = pix++;
+                    table[hash].rgb = p;
+                    table[hash].used = 1;
+                    break;
+                }
+            }
+        }
+    }
+
+    if ((flags & Qt::DitherMode_Mask) != Qt::PreferDither) {
+        dst->colortable.resize(256);
+        const uchar *src_data = src->data;
+        uchar *dest_data = dst->data;
+        for (int y = 0; y < src->height; y++) {        // check if <= 256 colors
+            const QRgb *s = (const QRgb *)src_data;
+            uchar *b = dest_data;
+            for (int x = 0; x < src->width; ++x) {
+                QRgb p = s[x] | alpha_mask;
+                int hash = p % tablesize;
+                for (;;) {
+                    if (table[hash].used) {
+                        if (table[hash].rgb == (p)) {
+                            // Found previous insertion - use it
+                            break;
+                        } else {
+                            // Keep searching...
+                            if (++hash == tablesize) hash = 0;
+                        }
+                    } else {
+                        // Cannot be in table
+                        if (pix == 256) {        // too many colors
+                            do_quant = true;
+                            // Break right out
+                            x = src->width;
+                            y = src->height;
+                        } else {
+                            // Insert into table at this unused position
+                            dst->colortable[pix] = p;
+                            table[hash].pix = pix++;
+                            table[hash].rgb = p;
+                            table[hash].used = 1;
+                        }
+                        break;
+                    }
+                }
+                *b++ = table[hash].pix;                // May occur once incorrectly
+            }
+            src_data += src->bytes_per_line;
+            dest_data += dst->bytes_per_line;
+        }
+    }
+    int numColors = do_quant ? 256 : pix;
+
+    dst->colortable.resize(numColors);
+
+    if (do_quant) {                                // quantization needed
+
+#define MAX_R 5
+#define MAX_G 5
+#define MAX_B 5
+#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))
+
+        for (int rc=0; rc<=MAX_R; rc++)                // build 6x6x6 color cube
+            for (int gc=0; gc<=MAX_G; gc++)
+                for (int bc=0; bc<=MAX_B; bc++)
+                    dst->colortable[INDEXOF(rc,gc,bc)] = 0xff000000 | qRgb(rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B);
+
+        const uchar *src_data = src->data;
+        uchar *dest_data = dst->data;
+        if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither) {
+            for (int y = 0; y < src->height; y++) {
+                const QRgb *p = (const QRgb *)src_data;
+                const QRgb *end = p + src->width;
+                uchar *b = dest_data;
+
+                while (p < end) {
+#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255))
+                    *b++ =
+                        INDEXOF(
+                            DITHER(qRed(*p), MAX_R),
+                            DITHER(qGreen(*p), MAX_G),
+                            DITHER(qBlue(*p), MAX_B)
+                            );
+#undef DITHER
+                    p++;
+                }
+                src_data += src->bytes_per_line;
+                dest_data += dst->bytes_per_line;
+            }
+        } else if ((flags & Qt::Dither_Mask) == Qt::DiffuseDither) {
+            int* line1[3];
+            int* line2[3];
+            int* pv[3];
+            QScopedArrayPointer<int> lineBuffer(new int[src->width * 9]);
+            line1[0] = lineBuffer.data();
+            line2[0] = lineBuffer.data() + src->width;
+            line1[1] = lineBuffer.data() + src->width * 2;
+            line2[1] = lineBuffer.data() + src->width * 3;
+            line1[2] = lineBuffer.data() + src->width * 4;
+            line2[2] = lineBuffer.data() + src->width * 5;
+            pv[0] = lineBuffer.data() + src->width * 6;
+            pv[1] = lineBuffer.data() + src->width * 7;
+            pv[2] = lineBuffer.data() + src->width * 8;
+
+            int endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian);
+            for (int y = 0; y < src->height; y++) {
+                const uchar* q = src_data;
+                const uchar* q2 = y < src->height - 1 ? q + src->bytes_per_line : src->data;
+                uchar *b = dest_data;
+                for (int chan = 0; chan < 3; chan++) {
+                    int *l1 = (y&1) ? line2[chan] : line1[chan];
+                    int *l2 = (y&1) ? line1[chan] : line2[chan];
+                    if (y == 0) {
+                        for (int i = 0; i < src->width; i++)
+                            l1[i] = q[i*4+chan+endian];
+                    }
+                    if (y+1 < src->height) {
+                        for (int i = 0; i < src->width; i++)
+                            l2[i] = q2[i*4+chan+endian];
+                    }
+                    // Bi-directional error diffusion
+                    if (y&1) {
+                        for (int x = 0; x < src->width; x++) {
+                            int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);
+                            int err = l1[x] - pix * 255 / 5;
+                            pv[chan][x] = pix;
+
+                            // Spread the error around...
+                            if (x + 1< src->width) {
+                                l1[x+1] += (err*7)>>4;
+                                l2[x+1] += err>>4;
+                            }
+                            l2[x]+=(err*5)>>4;
+                            if (x>1)
+                                l2[x-1]+=(err*3)>>4;
+                        }
+                    } else {
+                        for (int x = src->width; x-- > 0;) {
+                            int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);
+                            int err = l1[x] - pix * 255 / 5;
+                            pv[chan][x] = pix;
+
+                            // Spread the error around...
+                            if (x > 0) {
+                                l1[x-1] += (err*7)>>4;
+                                l2[x-1] += err>>4;
+                            }
+                            l2[x]+=(err*5)>>4;
+                            if (x + 1 < src->width)
+                                l2[x+1]+=(err*3)>>4;
+                        }
+                    }
+                }
+                if (endian) {
+                    for (int x = 0; x < src->width; x++) {
+                        *b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);
+                    }
+                } else {
+                    for (int x = 0; x < src->width; x++) {
+                        *b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);
+                    }
+                }
+                src_data += src->bytes_per_line;
+                dest_data += dst->bytes_per_line;
+            }
+        } else { // OrderedDither
+            for (int y = 0; y < src->height; y++) {
+                const QRgb *p = (const QRgb *)src_data;
+                const QRgb *end = p + src->width;
+                uchar *b = dest_data;
+
+                int x = 0;
+                while (p < end) {
+                    uint d = qt_bayer_matrix[y & 15][x & 15] << 8;
+
+#define DITHER(p, d, m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) >> 16))
+                    *b++ =
+                        INDEXOF(
+                            DITHER(qRed(*p), d, MAX_R),
+                            DITHER(qGreen(*p), d, MAX_G),
+                            DITHER(qBlue(*p), d, MAX_B)
+                            );
+#undef DITHER
+
+                    p++;
+                    x++;
+                }
+                src_data += src->bytes_per_line;
+                dest_data += dst->bytes_per_line;
+            }
+        }
+
+        if (src->format != QImage::Format_RGB32
+            && src->format != QImage::Format_RGB16) {
+            const int trans = 216;
+            Q_ASSERT(dst->colortable.size() > trans);
+            dst->colortable[trans] = 0;
+            QScopedPointer<QImageData> mask(QImageData::create(QSize(src->width, src->height), QImage::Format_Mono));
+            dither_to_Mono(mask.data(), src, flags, true);
+            uchar *dst_data = dst->data;
+            const uchar *mask_data = mask->data;
+            for (int y = 0; y < src->height; y++) {
+                for (int x = 0; x < src->width ; x++) {
+                    if (!(mask_data[x>>3] & (0x80 >> (x & 7))))
+                        dst_data[x] = trans;
+                }
+                mask_data += mask->bytes_per_line;
+                dst_data += dst->bytes_per_line;
+            }
+            dst->has_alpha_clut = true;
+        }
+
+#undef MAX_R
+#undef MAX_G
+#undef MAX_B
+#undef INDEXOF
+
+    }
+}
+
+static void convert_ARGB_PM_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+    QScopedPointer<QImageData> tmp(QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32));
+    convert_ARGB_PM_to_ARGB(tmp.data(), src, flags);
+    convert_RGB_to_Indexed8(dst, tmp.data(), flags);
+}
+
+static void convert_ARGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
+{
+    convert_RGB_to_Indexed8(dst, src, flags);
+}
+
+static void convert_Indexed8_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_Indexed8);
+    Q_ASSERT(dest->format == QImage::Format_RGB32
+             || dest->format == QImage::Format_ARGB32
+             || dest->format == QImage::Format_ARGB32_Premultiplied);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);
+    if (colorTable.size() == 0) {
+        colorTable.resize(256);
+        for (int i=0; i<256; ++i)
+            colorTable[i] = qRgb(i, i, i);
+
+    }
+
+    int w = src->width;
+    const uchar *src_data = src->data;
+    uchar *dest_data = dest->data;
+    for (int y = 0; y < src->height; y++) {
+        uint *p = (uint *)dest_data;
+        const uchar *b = src_data;
+        uint *end = p + w;
+
+        while (p < end)
+            *p++ = colorTable.at(*b++);
+
+        src_data += src->bytes_per_line;
+        dest_data += dest->bytes_per_line;
+    }
+}
+
+static void convert_Mono_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
+    Q_ASSERT(dest->format == QImage::Format_RGB32
+             || dest->format == QImage::Format_ARGB32
+             || dest->format == QImage::Format_ARGB32_Premultiplied);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);
+
+    // Default to black / white colors
+    if (colorTable.size() < 2) {
+        if (colorTable.size() == 0)
+            colorTable << 0xff000000;
+        colorTable << 0xffffffff;
+    }
+
+    const uchar *src_data = src->data;
+    uchar *dest_data = dest->data;
+    if (src->format == QImage::Format_Mono) {
+        for (int y = 0; y < dest->height; y++) {
+            register uint *p = (uint *)dest_data;
+            for (int x = 0; x < dest->width; x++)
+                *p++ = colorTable.at((src_data[x>>3] >> (7 - (x & 7))) & 1);
+
+            src_data += src->bytes_per_line;
+            dest_data += dest->bytes_per_line;
+        }
+    } else {
+        for (int y = 0; y < dest->height; y++) {
+            register uint *p = (uint *)dest_data;
+            for (int x = 0; x < dest->width; x++)
+                *p++ = colorTable.at((src_data[x>>3] >> (x & 7)) & 1);
+
+            src_data += src->bytes_per_line;
+            dest_data += dest->bytes_per_line;
+        }
+    }
+}
+
+
+static void convert_Mono_to_Indexed8(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
+{
+    Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
+    Q_ASSERT(dest->format == QImage::Format_Indexed8);
+    Q_ASSERT(src->width == dest->width);
+    Q_ASSERT(src->height == dest->height);
+
+    QVector<QRgb> ctbl = src->colortable;
+    if (ctbl.size() > 2) {
+        ctbl.resize(2);
+    } else if (ctbl.size() < 2) {
+        if (ctbl.size() == 0)
+            ctbl << 0xff000000;
+        ctbl << 0xffffffff;
+    }
+    dest->colortable = ctbl;
+    dest->has_alpha_clut = src->has_alpha_clut;
+
+
+    const uchar *src_data = src->data;
+    uchar *dest_data = dest->data;
+    if (src->format == QImage::Format_Mono) {
+        for (int y = 0; y < dest->height; y++) {
+            register uchar *p = dest_data;
+            for (int x = 0; x < dest->width; x++)
+                *p++ = (src_data[x>>3] >> (7 - (x & 7))) & 1;
+            src_data += src->bytes_per_line;
+            dest_data += dest->bytes_per_line;
+        }
+    } else {
+        for (int y = 0; y < dest->height; y++) {
+            register uchar *p = dest_data;
+            for (int x = 0; x < dest->width; x++)
+                *p++ = (src_data[x>>3] >> (x & 7)) & 1;
+            src_data += src->bytes_per_line;
+            dest_data += dest->bytes_per_line;
+        }
+    }
+}
+
+#define CONVERT_DECL(DST, SRC)                                          \
+    static void convert_##SRC##_to_##DST(QImageData *dest,              \
+                                         const QImageData *src,         \
+                                         Qt::ImageConversionFlags)      \
+    {                                                                   \
+        qt_rectconvert<DST, SRC>(reinterpret_cast<DST*>(dest->data),    \
+                                 reinterpret_cast<const SRC*>(src->data), \
+                                 0, 0, src->width, src->height,         \
+                                 dest->bytes_per_line, src->bytes_per_line); \
+    }
+
+CONVERT_DECL(quint32, quint16)
+CONVERT_DECL(quint16, quint32)
+CONVERT_DECL(quint32, qargb8565)
+CONVERT_DECL(qargb8565, quint32)
+CONVERT_DECL(quint32, qrgb555)
+CONVERT_DECL(qrgb666, quint32)
+CONVERT_DECL(quint32, qrgb666)
+CONVERT_DECL(qargb6666, quint32)
+CONVERT_DECL(quint32, qargb6666)
+CONVERT_DECL(qrgb555, quint32)
+#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
+CONVERT_DECL(quint16, qrgb555)
+CONVERT_DECL(qrgb555, quint16)
+#endif
+CONVERT_DECL(quint32, qrgb888)
+CONVERT_DECL(qrgb888, quint32)
+CONVERT_DECL(quint32, qargb8555)
+CONVERT_DECL(qargb8555, quint32)
+CONVERT_DECL(quint32, qrgb444)
+CONVERT_DECL(qrgb444, quint32)
+CONVERT_DECL(quint32, qargb4444)
+CONVERT_DECL(qargb4444, quint32)
+#undef CONVERT_DECL
+#define CONVERT_PTR(DST, SRC) convert_##SRC##_to_##DST
+
+/*
+        Format_Invalid,
+        Format_Mono,
+        Format_MonoLSB,
+        Format_Indexed8,
+        Format_RGB32,
+        Format_ARGB32,
+        Format_ARGB32_Premultiplied,
+        Format_RGB16,
+        Format_ARGB8565_Premultiplied,
+        Format_RGB666,
+        Format_ARGB6666_Premultiplied,
+        Format_RGB555,
+        Format_ARGB8555_Premultiplied,
+        Format_RGB888
+        Format_RGB444
+        Format_ARGB4444_Premultiplied
+*/
+
+
+// first index source, second dest
+static const Image_Converter converter_map[QImage::NImageFormats][QImage::NImageFormats] =
+{
+    {
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+    },
+    {
+        0,
+        0,
+        swap_bit_order,
+        convert_Mono_to_Indexed8,
+        convert_Mono_to_X32,
+        convert_Mono_to_X32,
+        convert_Mono_to_X32,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_Mono
+
+    {
+        0,
+        swap_bit_order,
+        0,
+        convert_Mono_to_Indexed8,
+        convert_Mono_to_X32,
+        convert_Mono_to_X32,
+        convert_Mono_to_X32,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_MonoLSB
+
+    {
+        0,
+        convert_X_to_Mono,
+        convert_X_to_Mono,
+        0,
+        convert_Indexed8_to_X32,
+        convert_Indexed8_to_X32,
+        convert_Indexed8_to_X32,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_Indexed8
+
+    {
+        0,
+        convert_X_to_Mono,
+        convert_X_to_Mono,
+        convert_RGB_to_Indexed8,
+        0,
+        mask_alpha_converter,
+        mask_alpha_converter,
+        CONVERT_PTR(quint16, quint32),
+        CONVERT_PTR(qargb8565, quint32),
+        CONVERT_PTR(qrgb666, quint32),
+        CONVERT_PTR(qargb6666, quint32),
+        CONVERT_PTR(qrgb555, quint32),
+        CONVERT_PTR(qargb8555, quint32),
+        CONVERT_PTR(qrgb888, quint32),
+        CONVERT_PTR(qrgb444, quint32),
+        CONVERT_PTR(qargb4444, quint32)
+    }, // Format_RGB32
+
+    {
+        0,
+        convert_X_to_Mono,
+        convert_X_to_Mono,
+        convert_ARGB_to_Indexed8,
+        mask_alpha_converter,
+        0,
+        convert_ARGB_to_ARGB_PM,
+        CONVERT_PTR(quint16, quint32),
+        CONVERT_PTR(qargb8565, quint32),
+        CONVERT_PTR(qrgb666, quint32),
+        CONVERT_PTR(qargb6666, quint32),
+        CONVERT_PTR(qrgb555, quint32),
+        CONVERT_PTR(qargb8555, quint32),
+        CONVERT_PTR(qrgb888, quint32),
+        CONVERT_PTR(qrgb444, quint32),
+        CONVERT_PTR(qargb4444, quint32)
+    }, // Format_ARGB32
+
+    {
+        0,
+        convert_ARGB_PM_to_Mono,
+        convert_ARGB_PM_to_Mono,
+        convert_ARGB_PM_to_Indexed8,
+        convert_ARGB_PM_to_RGB,
+        convert_ARGB_PM_to_ARGB,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    },  // Format_ARGB32_Premultiplied
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, quint16),
+        CONVERT_PTR(quint32, quint16),
+        CONVERT_PTR(quint32, quint16),
+        0,
+        0,
+        0,
+        0,
+#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
+        CONVERT_PTR(qrgb555, quint16),
+#else
+        0,
+#endif
+        0,
+        0,
+        0,
+        0
+    }, // Format_RGB16
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qargb8565),
+        CONVERT_PTR(quint32, qargb8565),
+        CONVERT_PTR(quint32, qargb8565),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_ARGB8565_Premultiplied
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qrgb666),
+        CONVERT_PTR(quint32, qrgb666),
+        CONVERT_PTR(quint32, qrgb666),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_RGB666
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qargb6666),
+        CONVERT_PTR(quint32, qargb6666),
+        CONVERT_PTR(quint32, qargb6666),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_ARGB6666_Premultiplied
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qrgb555),
+        CONVERT_PTR(quint32, qrgb555),
+        CONVERT_PTR(quint32, qrgb555),
+#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
+        CONVERT_PTR(quint16, qrgb555),
+#else
+        0,
+#endif
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_RGB555
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qargb8555),
+        CONVERT_PTR(quint32, qargb8555),
+        CONVERT_PTR(quint32, qargb8555),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_ARGB8555_Premultiplied
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qrgb888),
+        CONVERT_PTR(quint32, qrgb888),
+        CONVERT_PTR(quint32, qrgb888),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_RGB888
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qrgb444),
+        CONVERT_PTR(quint32, qrgb444),
+        CONVERT_PTR(quint32, qrgb444),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    }, // Format_RGB444
+
+    {
+        0,
+        0,
+        0,
+        0,
+        CONVERT_PTR(quint32, qargb4444),
+        CONVERT_PTR(quint32, qargb4444),
+        CONVERT_PTR(quint32, qargb4444),
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0,
+        0
+    } // Format_ARGB4444_Premultiplied
+};
+
+/*!
+    Returns a copy of the image in the given \a format.
+
+    The specified image conversion \a flags control how the image data
+    is handled during the conversion process.
+
+    \sa {QImage#Image Format}{Image Format}
+*/
+QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const
+{
+    if (!d || d->format == format)
+        return *this;
+
+    if (format == Format_Invalid || d->format == Format_Invalid)
+        return QImage();
+
+    const Image_Converter *converterPtr = &converter_map[d->format][format];
+    Image_Converter converter = *converterPtr;
+    if (converter) {
+        QImage image(d->width, d->height, format);
+
+        QIMAGE_SANITYCHECK_MEMORY(image);
+
+        image.setDotsPerMeterY(dotsPerMeterY());
+        image.setDotsPerMeterX(dotsPerMeterX());
+
+#if !defined(QT_NO_IMAGE_TEXT)
+        image.d->text = d->text;
+#endif // !QT_NO_IMAGE_TEXT
+
+        converter(image.d, d, flags);
+        return image;
+    }
+
+    Q_ASSERT(format != QImage::Format_ARGB32);
+    Q_ASSERT(d->format != QImage::Format_ARGB32);
+
+    QImage image = convertToFormat(Format_ARGB32, flags);
+    return image.convertToFormat(format, flags);
+}
+
+
+
+static inline int pixel_distance(QRgb p1, QRgb p2) {
+    int r1 = qRed(p1);
+    int g1 = qGreen(p1);
+    int b1 = qBlue(p1);
+    int a1 = qAlpha(p1);
+
+    int r2 = qRed(p2);
+    int g2 = qGreen(p2);
+    int b2 = qBlue(p2);
+    int a2 = qAlpha(p2);
+
+    return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2);
+}
+
+static inline int closestMatch(QRgb pixel, const QVector<QRgb> &clut) {
+    int idx = 0;
+    int current_distance = INT_MAX;
+    for (int i=0; i<clut.size(); ++i) {
+        int dist = pixel_distance(pixel, clut.at(i));
+        if (dist < current_distance) {
+            current_distance = dist;
+            idx = i;
+        }
+    }
+    return idx;
+}
+
+static QImage convertWithPalette(const QImage &src, QImage::Format format,
+                                 const QVector<QRgb> &clut) {
+    QImage dest(src.size(), format);
+    dest.setColorTable(clut);
+
+#if !defined(QT_NO_IMAGE_TEXT)
+    QString textsKeys = src.text();
+    QStringList textKeyList = textsKeys.split(QLatin1Char('\n'), QString::SkipEmptyParts);
+    foreach (const QString &textKey, textKeyList) {
+        QStringList textKeySplitted = textKey.split(QLatin1String(": "));
+        dest.setText(textKeySplitted[0], textKeySplitted[1]);
+    }
+#endif // !QT_NO_IMAGE_TEXT
+
+    int h = src.height();
+    int w = src.width();
+
+    QHash<QRgb, int> cache;
+
+    if (format == QImage::Format_Indexed8) {
+        for (int y=0; y<h; ++y) {
+            QRgb *src_pixels = (QRgb *) src.scanLine(y);
+            uchar *dest_pixels = (uchar *) dest.scanLine(y);
+            for (int x=0; x<w; ++x) {
+                int src_pixel = src_pixels[x];
+                int value = cache.value(src_pixel, -1);
+                if (value == -1) {
+                    value = closestMatch(src_pixel, clut);
+                    cache.insert(src_pixel, value);
+                }
+                dest_pixels[x] = (uchar) value;
+            }
+        }
+    } else {
+        QVector<QRgb> table = clut;
+        table.resize(2);
+        for (int y=0; y<h; ++y) {
+            QRgb *src_pixels = (QRgb *) src.scanLine(y);
+            for (int x=0; x<w; ++x) {
+                int src_pixel = src_pixels[x];
+                int value = cache.value(src_pixel, -1);
+                if (value == -1) {
+                    value = closestMatch(src_pixel, table);
+                    cache.insert(src_pixel, value);
+                }
+                dest.setPixel(x, y, value);
+            }
+        }
+    }
+
+    return dest;
+}
+
+/*!
+    \overload
+
+    Returns a copy of the image converted to the given \a format,
+    using the specified \a colorTable.
+
+    Conversion from 32 bit to 8 bit indexed is a slow operation and
+    will use a straightforward nearest color approach, with no
+    dithering.
+*/
+QImage QImage::convertToFormat(Format format, const QVector<QRgb> &colorTable, Qt::ImageConversionFlags flags) const
+{
+    if (d->format == format)
+        return *this;
+
+    if (format <= QImage::Format_Indexed8 && depth() == 32) {
+        return convertWithPalette(*this, format, colorTable);
+    }
+
+    const Image_Converter *converterPtr = &converter_map[d->format][format];
+    Image_Converter converter = *converterPtr;
+    if (!converter)
+        return QImage();
+
+    QImage image(d->width, d->height, format);
+    QIMAGE_SANITYCHECK_MEMORY(image);
+
+#if !defined(QT_NO_IMAGE_TEXT)
+        image.d->text = d->text;
+#endif // !QT_NO_IMAGE_TEXT
+
+    converter(image.d, d, flags);
+    return image;
+}
+
+#ifdef QT3_SUPPORT
+/*!
+    Converts the depth (bpp) of the image to the given \a depth and
+    returns the converted image. The original image is not changed.
+    Returns this image if \a depth is equal to the image depth, or a
+    null image if this image cannot be converted. The \a depth
+    argument must be 1, 8 or 32. If the image needs to be modified to
+    fit in a lower-resolution result (e.g. converting from 32-bit to
+    8-bit), use the \a flags to specify how you'd prefer this to
+    happen.
+
+    Use the convertToFormat() function instead.
+*/
+
+QImage QImage::convertDepth(int depth, Qt::ImageConversionFlags flags) const
+{
+    if (!d || d->depth == depth)
+        return *this;
+
+    Format format = formatFor (depth, QImage::LittleEndian);
+    return convertToFormat(format, flags);
+}
+#endif
+
+/*!
+    \fn bool QImage::valid(const QPoint &pos) const
+
+    Returns true if \a pos is a valid coordinate pair within the
+    image; otherwise returns false.
+
+    \sa rect(), QRect::contains()
+*/
+
+/*!
+    \overload
+
+    Returns true if QPoint(\a x, \a y) is a valid coordinate pair
+    within the image; otherwise returns false.
+*/
+bool QImage::valid(int x, int y) const
+{
+    return d
+        && x >= 0 && x < d->width
+        && y >= 0 && y < d->height;
+}
+
+/*!
+    \fn int QImage::pixelIndex(const QPoint &position) const
+
+    Returns the pixel index at the given \a position.
+
+    If \a position is not valid, or if the image is not a paletted
+    image (depth() > 8), the results are undefined.
+
+    \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation}
+*/
+
+/*!
+    \overload
+
+    Returns the pixel index at (\a x, \a y).
+*/
+int QImage::pixelIndex(int x, int y) const
+{
+    if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {
+        qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range", x, y);
+        return -12345;
+    }
+    const uchar * s = scanLine(y);
+    switch(d->format) {
+    case Format_Mono:
+        return (*(s + (x >> 3)) >> (7- (x & 7))) & 1;
+    case Format_MonoLSB:
+        return (*(s + (x >> 3)) >> (x & 7)) & 1;
+    case Format_Indexed8:
+        return (int)s[x];
+    default:
+        qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)", d->depth);
+    }
+    return 0;
+}
+
+
+/*!
+    \fn QRgb QImage::pixel(const QPoint &position) const
+
+    Returns the color of the pixel at the given \a position.
+
+    If the \a position is not valid, the results are undefined.
+
+    \warning This function is expensive when used for massive pixel
+    manipulations.
+
+    \sa setPixel(), valid(), {QImage#Pixel Manipulation}{Pixel
+    Manipulation}
+*/
+
+/*!
+    \overload
+
+    Returns the color of the pixel at coordinates (\a x, \a y).
+*/
+QRgb QImage::pixel(int x, int y) const
+{
+    if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {
+        qWarning("QImage::pixel: coordinate (%d,%d) out of range", x, y);
+        return 12345;
+    }
+    const uchar * s = scanLine(y);
+    switch(d->format) {
+    case Format_Mono:
+        return d->colortable.at((*(s + (x >> 3)) >> (7- (x & 7))) & 1);
+    case Format_MonoLSB:
+        return d->colortable.at((*(s + (x >> 3)) >> (x & 7)) & 1);
+    case Format_Indexed8:
+        return d->colortable.at((int)s[x]);
+    case Format_ARGB8565_Premultiplied:
+        return qt_colorConvert<quint32, qargb8565>(reinterpret_cast<const qargb8565*>(s)[x], 0);
+    case Format_RGB666:
+        return qt_colorConvert<quint32, qrgb666>(reinterpret_cast<const qrgb666*>(s)[x], 0);
+    case Format_ARGB6666_Premultiplied:
+        return qt_colorConvert<quint32, qargb6666>(reinterpret_cast<const qargb6666*>(s)[x], 0);
+    case Format_RGB555:
+        return qt_colorConvert<quint32, qrgb555>(reinterpret_cast<const qrgb555*>(s)[x], 0);
+    case Format_ARGB8555_Premultiplied:
+        return qt_colorConvert<quint32, qargb8555>(reinterpret_cast<const qargb8555*>(s)[x], 0);
+    case Format_RGB888:
+        return qt_colorConvert<quint32, qrgb888>(reinterpret_cast<const qrgb888*>(s)[x], 0);
+    case Format_RGB444:
+        return qt_colorConvert<quint32, qrgb444>(reinterpret_cast<const qrgb444*>(s)[x], 0);
+    case Format_ARGB4444_Premultiplied:
+        return qt_colorConvert<quint32, qargb4444>(reinterpret_cast<const qargb4444*>(s)[x], 0);
+    case Format_RGB16:
+        return qt_colorConvert<quint32, quint16>(reinterpret_cast<const quint16*>(s)[x], 0);
+    default:
+        return ((QRgb*)s)[x];
+    }
+}
+
+
+/*!
+    \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb)
+
+    Sets the pixel index or color at the given \a position to \a
+    index_or_rgb.
+
+    If the image's format is either monochrome or 8-bit, the given \a
+    index_or_rgb value must be an index in the image's color table,
+    otherwise the parameter must be a QRgb value.
+
+    If \a position is not a valid coordinate pair in the image, or if
+    \a index_or_rgb >= numColors() in the case of monochrome and
+    8-bit images, the result is undefined.
+
+    \warning This function is expensive due to the call of the internal
+    \c{detach()} function called within; if performance is a concern, we
+    recommend the use of \l{QImage::}{scanLine()} to access pixel data
+    directly.
+
+    \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation}
+*/
+
+/*!
+    \overload
+
+    Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb.
+*/
+void QImage::setPixel(int x, int y, uint index_or_rgb)
+{
+    if (!d || x < 0 || x >= width() || y < 0 || y >= height()) {
+        qWarning("QImage::setPixel: coordinate (%d,%d) out of range", x, y);
+        return;
+    }
+    // detach is called from within scanLine
+    uchar * s = scanLine(y);
+    const quint32p p = quint32p::fromRawData(index_or_rgb);
+    switch(d->format) {
+    case Format_Mono:
+    case Format_MonoLSB:
+        if (index_or_rgb > 1) {
+            qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);
+        } else if (format() == Format_MonoLSB) {
+            if (index_or_rgb==0)
+                *(s + (x >> 3)) &= ~(1 << (x & 7));
+            else
+                *(s + (x >> 3)) |= (1 << (x & 7));
+        } else {
+            if (index_or_rgb==0)
+                *(s + (x >> 3)) &= ~(1 << (7-(x & 7)));
+            else
+                *(s + (x >> 3)) |= (1 << (7-(x & 7)));
+        }
+        break;
+    case Format_Indexed8:
+        if (index_or_rgb > (uint)d->colortable.size()) {
+            qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);
+            return;
+        }
+        s[x] = index_or_rgb;
+        break;
+    case Format_RGB32:
+        //make sure alpha is 255, we depend on it in qdrawhelper for cases
+        // when image is set as a texture pattern on a qbrush
+        ((uint *)s)[x] = uint(255 << 24) | index_or_rgb;
+        break;
+    case Format_ARGB32:
+    case Format_ARGB32_Premultiplied:
+        ((uint *)s)[x] = index_or_rgb;
+        break;
+    case Format_RGB16:
+        ((quint16 *)s)[x] = qt_colorConvert<quint16, quint32p>(p, 0);
+        break;
+    case Format_ARGB8565_Premultiplied:
+        ((qargb8565*)s)[x] = qt_colorConvert<qargb8565, quint32p>(p, 0);
+        break;
+    case Format_RGB666:
+        ((qrgb666*)s)[x] = qt_colorConvert<qrgb666, quint32p>(p, 0);
+        break;
+    case Format_ARGB6666_Premultiplied:
+        ((qargb6666*)s)[x] = qt_colorConvert<qargb6666, quint32p>(p, 0);
+        break;
+    case Format_RGB555:
+        ((qrgb555*)s)[x] = qt_colorConvert<qrgb555, quint32p>(p, 0);
+        break;
+    case Format_ARGB8555_Premultiplied:
+        ((qargb8555*)s)[x] = qt_colorConvert<qargb8555, quint32p>(p, 0);
+        break;
+    case Format_RGB888:
+        ((qrgb888*)s)[x] = qt_colorConvert<qrgb888, quint32p>(p, 0);
+        break;
+    case Format_RGB444:
+        ((qrgb444*)s)[x] = qt_colorConvert<qrgb444, quint32p>(p, 0);
+        break;
+    case Format_ARGB4444_Premultiplied:
+        ((qargb4444*)s)[x] = qt_colorConvert<qargb4444, quint32p>(p, 0);
+        break;
+    case Format_Invalid:
+    case NImageFormats:
+        Q_ASSERT(false);
+    }
+}
+
+#ifdef QT3_SUPPORT
+/*!
+    Converts the bit order of the image to the given \a bitOrder and
+    returns the converted image. The original image is not changed.
+    Returns this image if the given \a bitOrder is equal to the image
+    current bit order, or a null image if this image cannot be
+    converted.
+
+    Use convertToFormat() instead.
+*/
+
+QImage QImage::convertBitOrder(Endian bitOrder) const
+{
+    if (!d || isNull() || d->depth != 1 || !(bitOrder == BigEndian || bitOrder == LittleEndian))
+        return QImage();
+
+    if ((d->format == Format_Mono && bitOrder == BigEndian)
+        || (d->format == Format_MonoLSB && bitOrder == LittleEndian))
+        return *this;
+
+    QImage image(d->width, d->height, d->format == Format_Mono ? Format_MonoLSB : Format_Mono);
+
+    const uchar *data = d->data;
+    const uchar *end = data + d->nbytes;
+    uchar *ndata = image.d->data;
+    while (data < end)
+        *ndata++ = bitflip[*data++];
+
+    image.setDotsPerMeterX(dotsPerMeterX());
+    image.setDotsPerMeterY(dotsPerMeterY());
+
+    image.d->colortable = d->colortable;
+    return image;
+}
+#endif
+/*!
+    Returns true if all the colors in the image are shades of gray
+    (i.e. their red, green and blue components are equal); otherwise
+    false.
+
+    Note that this function is slow for images without color table.
+
+    \sa isGrayscale()
+*/
+bool QImage::allGray() const
+{
+    if (!d)
+        return true;
+
+    if (d->depth == 32) {
+        int p = width()*height();
+        const QRgb* b = (const QRgb*)bits();
+        while (p--)
+            if (!qIsGray(*b++))
+                return false;
+    } else if (d->depth == 16) {
+        int p = width()*height();
+        const ushort* b = (const ushort *)bits();
+        while (p--)
+            if (!qIsGray(qt_colorConvert<quint32, quint16>(*b++, 0)))
+                return false;
+    } else if (d->format == QImage::Format_RGB888) {
+        int p = width()*height();
+        const qrgb888* b = (const qrgb888 *)bits();
+        while (p--)
+            if (!qIsGray(qt_colorConvert<quint32, qrgb888>(*b++, 0)))
+                return false;
+    } else {
+        if (d->colortable.isEmpty())
+            return true;
+        for (int i = 0; i < numColors(); i++)
+            if (!qIsGray(d->colortable.at(i)))
+                return false;
+    }
+    return true;
+}
+
+/*!
+    For 32-bit images, this function is equivalent to allGray().
+
+    For 8-bpp images, this function returns true if color(i) is
+    QRgb(i, i, i) for all indexes of the color table; otherwise
+    returns false.
+
+    \sa allGray(), {QImage#Image Formats}{Image Formats}
+*/
+bool QImage::isGrayscale() const
+{
+    if (!d)
+        return false;
+
+    switch (depth()) {
+    case 32:
+    case 24:
+    case 16:
+        return allGray();
+    case 8: {
+        for (int i = 0; i < numColors(); i++)
+            if (d->colortable.at(i) != qRgb(i,i,i))
+                return false;
+        return true;
+        }
+    }
+    return false;
+}
+
+
+/*!
+    \fn QImage QImage::smoothScale(int width, int height, Qt::AspectRatioMode mode) const
+
+    Use scaled() instead.
+
+    \oldcode
+        QImage image;
+        image.smoothScale(width, height, mode);
+    \newcode
+        QImage image;
+        image.scaled(width, height, mode, Qt::SmoothTransformation);
+    \endcode
+*/
+
+/*!
+    \fn QImage QImage::smoothScale(const QSize &size, Qt::AspectRatioMode mode) const
+    \overload
+
+    Use scaled() instead.
+
+    \oldcode
+        QImage image;
+        image.smoothScale(size, mode);
+    \newcode
+        QImage image;
+        image.scaled(size, mode, Qt::SmoothTransformation);
+    \endcode
+*/
+
+/*!
+    \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode,
+                             Qt::TransformationMode transformMode) const
+    \overload
+
+    Returns a copy of the image scaled to a rectangle with the given
+    \a width and \a height according to the given \a aspectRatioMode
+    and \a transformMode.
+
+    If either the \a width or the \a height is zero or negative, this
+    function returns a null image.
+*/
+
+/*!
+    \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode,
+                             Qt::TransformationMode transformMode) const
+
+    Returns a copy of the image scaled to a rectangle defined by the
+    given \a size according to the given \a aspectRatioMode and \a
+    transformMode.
+
+    \image qimage-scaling.png
+
+    \list
+    \i If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image
+       is scaled to \a size.
+    \i If \a aspectRatioMode is Qt::KeepAspectRatio, the image is
+       scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio.
+    \i If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding,
+       the image is scaled to a rectangle as small as possible
+       outside \a size, preserving the aspect ratio.
+    \endlist
+
+    If the given \a size is empty, this function returns a null image.
+
+    \sa isNull(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const
+{
+    if (!d) {
+        qWarning("QImage::scaled: Image is a null image");
+        return QImage();
+    }
+    if (s.isEmpty())
+        return QImage();
+
+    QSize newSize = size();
+    newSize.scale(s, aspectMode);
+    if (newSize == size())
+        return copy();
+
+    QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height());
+    QImage img = transformed(wm, mode);
+    return img;
+}
+
+/*!
+    \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const
+
+    Returns a scaled copy of the image. The returned image is scaled
+    to the given \a width using the specified transformation \a
+    mode.
+
+    This function automatically calculates the height of the image so
+    that its aspect ratio is preserved.
+
+    If the given \a width is 0 or negative, a null image is returned.
+
+    \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const
+{
+    if (!d) {
+        qWarning("QImage::scaleWidth: Image is a null image");
+        return QImage();
+    }
+    if (w <= 0)
+        return QImage();
+
+    qreal factor = (qreal) w / width();
+    QTransform wm = QTransform::fromScale(factor, factor);
+    return transformed(wm, mode);
+}
+
+/*!
+    \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const
+
+    Returns a scaled copy of the image. The returned image is scaled
+    to the given \a height using the specified transformation \a
+    mode.
+
+    This function automatically calculates the width of the image so that
+    the ratio of the image is preserved.
+
+    If the given \a height is 0 or negative, a null image is returned.
+
+    \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const
+{
+    if (!d) {
+        qWarning("QImage::scaleHeight: Image is a null image");
+        return QImage();
+    }
+    if (h <= 0)
+        return QImage();
+
+    qreal factor = (qreal) h / height();
+    QTransform wm = QTransform::fromScale(factor, factor);
+    return transformed(wm, mode);
+}
+
+
+/*!
+    \fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height)
+
+    Returns the actual matrix used for transforming an image with the
+    given \a width, \a height and \a matrix.
+
+    When transforming an image using the transformed() function, the
+    transformation matrix is internally adjusted to compensate for
+    unwanted translation, i.e. transformed() returns the smallest
+    image containing all transformed points of the original image.
+    This function returns the modified matrix, which maps points
+    correctly from the original image into the new image.
+
+    \sa transformed(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h)
+{
+    return trueMatrix(QTransform(matrix), w, h).toAffine();
+}
+
+/*!
+    Returns a copy of the image that is transformed using the given
+    transformation \a matrix and transformation \a mode.
+
+    The transformation \a matrix is internally adjusted to compensate
+    for unwanted translation; i.e. the image produced is the smallest
+    image that contains all the transformed points of the original
+    image. Use the trueMatrix() function to retrieve the actual matrix
+    used for transforming an image.
+
+    \sa trueMatrix(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const
+{
+    return transformed(QTransform(matrix), mode);
+}
+
+/*!
+    Builds and returns a 1-bpp mask from the alpha buffer in this
+    image. Returns a null image if the image's format is
+    QImage::Format_RGB32.
+
+    The \a flags argument is a bitwise-OR of the
+    Qt::ImageConversionFlags, and controls the conversion
+    process. Passing 0 for flags sets all the default options.
+
+    The returned image has little-endian bit order (i.e. the image's
+    format is QImage::Format_MonoLSB), which you can convert to
+    big-endian (QImage::Format_Mono) using the convertToFormat()
+    function.
+
+    \sa createHeuristicMask(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const
+{
+    if (!d || d->format == QImage::Format_RGB32)
+        return QImage();
+
+    if (d->depth == 1) {
+        // A monochrome pixmap, with alpha channels on those two colors.
+        // Pretty unlikely, so use less efficient solution.
+        return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags);
+    }
+
+    QImage mask(d->width, d->height, Format_MonoLSB);
+    dither_to_Mono(mask.d, d, flags, true);
+    return mask;
+}
+
+#ifndef QT_NO_IMAGE_HEURISTIC_MASK
+/*!
+    Creates and returns a 1-bpp heuristic mask for this image.
+
+    The function works by selecting a color from one of the corners,
+    then chipping away pixels of that color starting at all the edges.
+    The four corners vote for which color is to be masked away. In
+    case of a draw (this generally means that this function is not
+    applicable to the image), the result is arbitrary.
+
+    The returned image has little-endian bit order (i.e. the image's
+    format is QImage::Format_MonoLSB), which you can convert to
+    big-endian (QImage::Format_Mono) using the convertToFormat()
+    function.
+
+    If \a clipTight is true (the default) the mask is just large
+    enough to cover the pixels; otherwise, the mask is larger than the
+    data pixels.
+
+    Note that this function disregards the alpha buffer.
+
+    \sa createAlphaMask(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+
+QImage QImage::createHeuristicMask(bool clipTight) const
+{
+    if (!d)
+        return QImage();
+
+    if (d->depth != 32) {
+        QImage img32 = convertToFormat(Format_RGB32);
+        return img32.createHeuristicMask(clipTight);
+    }
+
+#define PIX(x,y)  (*((QRgb*)scanLine(y)+x) & 0x00ffffff)
+
+    int w = width();
+    int h = height();
+    QImage m(w, h, Format_MonoLSB);
+    m.setNumColors(2);
+    m.setColor(0, QColor(Qt::color0).rgba());
+    m.setColor(1, QColor(Qt::color1).rgba());
+    m.fill(0xff);
+
+    QRgb background = PIX(0,0);
+    if (background != PIX(w-1,0) &&
+         background != PIX(0,h-1) &&
+         background != PIX(w-1,h-1)) {
+        background = PIX(w-1,0);
+        if (background != PIX(w-1,h-1) &&
+             background != PIX(0,h-1) &&
+             PIX(0,h-1) == PIX(w-1,h-1)) {
+            background = PIX(w-1,h-1);
+        }
+    }
+
+    int x,y;
+    bool done = false;
+    uchar *ypp, *ypc, *ypn;
+    while(!done) {
+        done = true;
+        ypn = m.scanLine(0);
+        ypc = 0;
+        for (y = 0; y < h; y++) {
+            ypp = ypc;
+            ypc = ypn;
+            ypn = (y == h-1) ? 0 : m.scanLine(y+1);
+            QRgb *p = (QRgb *)scanLine(y);
+            for (x = 0; x < w; x++) {
+                // slowness here - it's possible to do six of these tests
+                // together in one go. oh well.
+                if ((x == 0 || y == 0 || x == w-1 || y == h-1 ||
+                       !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) ||
+                       !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) ||
+                       !(*(ypp + (x     >> 3)) & (1 << (x     & 7))) ||
+                       !(*(ypn + (x     >> 3)) & (1 << (x     & 7)))) &&
+                     (       (*(ypc + (x     >> 3)) & (1 << (x     & 7)))) &&
+                     ((*p & 0x00ffffff) == background)) {
+                    done = false;
+                    *(ypc + (x >> 3)) &= ~(1 << (x & 7));
+                }
+                p++;
+            }
+        }
+    }
+
+    if (!clipTight) {
+        ypn = m.scanLine(0);
+        ypc = 0;
+        for (y = 0; y < h; y++) {
+            ypp = ypc;
+            ypc = ypn;
+            ypn = (y == h-1) ? 0 : m.scanLine(y+1);
+            QRgb *p = (QRgb *)scanLine(y);
+            for (x = 0; x < w; x++) {
+                if ((*p & 0x00ffffff) != background) {
+                    if (x > 0)
+                        *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7));
+                    if (x < w-1)
+                        *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7));
+                    if (y > 0)
+                        *(ypp + (x >> 3)) |= (1 << (x & 7));
+                    if (y < h-1)
+                        *(ypn + (x >> 3)) |= (1 << (x & 7));
+                }
+                p++;
+            }
+        }
+    }
+
+#undef PIX
+
+    return m;
+}
+#endif //QT_NO_IMAGE_HEURISTIC_MASK
+
+/*!
+    Creates and returns a mask for this image based on the given \a
+    color value. If the \a mode is MaskInColor (the default value),
+    all pixels matching \a color will be opaque pixels in the mask. If
+    \a mode is MaskOutColor, all pixels matching the given color will
+    be transparent.
+
+    \sa createAlphaMask(), createHeuristicMask()
+*/
+
+QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const
+{
+    if (!d)
+        return QImage();
+    QImage maskImage(size(), QImage::Format_MonoLSB);
+    maskImage.fill(0);
+    uchar *s = maskImage.bits();
+
+    if (depth() == 32) {
+        for (int h = 0; h < d->height; h++) {
+            const uint *sl = (uint *) scanLine(h);
+            for (int w = 0; w < d->width; w++) {
+                if (sl[w] == color)
+                    *(s + (w >> 3)) |= (1 << (w & 7));
+            }
+            s += maskImage.bytesPerLine();
+        }
+    } else {
+        for (int h = 0; h < d->height; h++) {
+            for (int w = 0; w < d->width; w++) {
+                if ((uint) pixel(w, h) == color)
+                    *(s + (w >> 3)) |= (1 << (w & 7));
+            }
+            s += maskImage.bytesPerLine();
+        }
+    }
+    if  (mode == Qt::MaskOutColor)
+        maskImage.invertPixels();
+    return maskImage;
+}
+
+
+/*
+  This code is contributed by Philipp Lang,
+  GeneriCom Software Germany (www.generi.com)
+  under the terms of the QPL, Version 1.0
+*/
+
+/*!
+    \fn QImage QImage::mirror(bool horizontal, bool vertical) const
+
+    Use mirrored() instead.
+*/
+
+/*!
+    Returns a mirror of the image, mirrored in the horizontal and/or
+    the vertical direction depending on whether \a horizontal and \a
+    vertical are set to true or false.
+
+    Note that the original image is not changed.
+
+    \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::mirrored(bool horizontal, bool vertical) const
+{
+    if (!d)
+        return QImage();
+
+    if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical))
+        return *this;
+
+    int w = d->width;
+    int h = d->height;
+    // Create result image, copy colormap
+    QImage result(d->width, d->height, d->format);
+
+    // check if we ran out of of memory..
+    if (!result.d)
+        return QImage();
+
+    result.d->colortable = d->colortable;
+    result.d->has_alpha_clut = d->has_alpha_clut;
+
+    if (depth() == 1)
+        w = (w+7)/8;
+    int dxi = horizontal ? -1 : 1;
+    int dxs = horizontal ? w-1 : 0;
+    int dyi = vertical ? -1 : 1;
+    int dy = vertical ? h-1: 0;
+
+    // 1 bit, 8 bit
+    if (d->depth == 1 || d->depth == 8) {
+        for (int sy = 0; sy < h; sy++, dy += dyi) {
+            quint8* ssl = (quint8*)(d->data + sy*d->bytes_per_line);
+            quint8* dsl = (quint8*)(result.d->data + dy*result.d->bytes_per_line);
+            int dx = dxs;
+            for (int sx = 0; sx < w; sx++, dx += dxi)
+                dsl[dx] = ssl[sx];
+        }
+    }
+    // 16 bit
+    else if (d->depth == 16) {
+        for (int sy = 0; sy < h; sy++, dy += dyi) {
+            quint16* ssl = (quint16*)(d->data + sy*d->bytes_per_line);
+            quint16* dsl = (quint16*)(result.d->data + dy*result.d->bytes_per_line);
+            int dx = dxs;
+            for (int sx = 0; sx < w; sx++, dx += dxi)
+                dsl[dx] = ssl[sx];
+        }
+    }
+    // 24 bit
+    else if (d->depth == 24) {
+        for (int sy = 0; sy < h; sy++, dy += dyi) {
+            quint24* ssl = (quint24*)(d->data + sy*d->bytes_per_line);
+            quint24* dsl = (quint24*)(result.d->data + dy*result.d->bytes_per_line);
+            int dx = dxs;
+            for (int sx = 0; sx < w; sx++, dx += dxi)
+                dsl[dx] = ssl[sx];
+        }
+    }
+    // 32 bit
+    else if (d->depth == 32) {
+        for (int sy = 0; sy < h; sy++, dy += dyi) {
+            quint32* ssl = (quint32*)(d->data + sy*d->bytes_per_line);
+            quint32* dsl = (quint32*)(result.d->data + dy*result.d->bytes_per_line);
+            int dx = dxs;
+            for (int sx = 0; sx < w; sx++, dx += dxi)
+                dsl[dx] = ssl[sx];
+        }
+    }
+
+    // special handling of 1 bit images for horizontal mirroring
+    if (horizontal && d->depth == 1) {
+        int shift = width() % 8;
+        for (int y = h-1; y >= 0; y--) {
+            quint8* a0 = (quint8*)(result.d->data + y*d->bytes_per_line);
+            // Swap bytes
+            quint8* a = a0+dxs;
+            while (a >= a0) {
+                *a = bitflip[*a];
+                a--;
+            }
+            // Shift bits if unaligned
+            if (shift != 0) {
+                a = a0+dxs;
+                quint8 c = 0;
+                if (format() == Format_MonoLSB) {
+                    while (a >= a0) {
+                        quint8 nc = *a << shift;
+                        *a = (*a >> (8-shift)) | c;
+                        --a;
+                        c = nc;
+                    }
+                } else {
+                    while (a >= a0) {
+                        quint8 nc = *a >> shift;
+                        *a = (*a << (8-shift)) | c;
+                        --a;
+                        c = nc;
+                    }
+                }
+            }
+        }
+    }
+
+    return result;
+}
+
+/*!
+    \fn QImage QImage::swapRGB() const
+
+    Use rgbSwapped() instead.
+
+    \omit
+    Returns a QImage in which the values of the red and blue
+    components of all pixels have been swapped, effectively converting
+    an RGB image to an BGR image. The original QImage is not changed.
+    \endomit
+*/
+
+/*!
+    Returns a QImage in which the values of the red and blue
+    components of all pixels have been swapped, effectively converting
+    an RGB image to an BGR image.
+
+    The original QImage is not changed.
+
+    \sa {QImage#Image Transformations}{Image Transformations}
+*/
+QImage QImage::rgbSwapped() const
+{
+    if (isNull())
+        return *this;
+    QImage res;
+    switch (d->format) {
+    case Format_Invalid:
+    case NImageFormats:
+        Q_ASSERT(false);
+        break;
+    case Format_Mono:
+    case Format_MonoLSB:
+    case Format_Indexed8:
+        res = copy();
+        for (int i = 0; i < res.d->colortable.size(); i++) {
+            QRgb c = res.d->colortable.at(i);
+            res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00));
+        }
+        break;
+    case Format_RGB32:
+    case Format_ARGB32:
+    case Format_ARGB32_Premultiplied:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            uint *q = (uint*)res.scanLine(i);
+            uint *p = (uint*)scanLine(i);
+            uint *end = p + d->width;
+            while (p < end) {
+                *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);
+                p++;
+                q++;
+            }
+        }
+        break;
+    case Format_RGB16:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            ushort *q = (ushort*)res.scanLine(i);
+            const ushort *p = (const ushort*)scanLine(i);
+            const ushort *end = p + d->width;
+            while (p < end) {
+                *q = ((*p << 11) & 0xf800) | ((*p >> 11) & 0x1f) | (*p & 0x07e0);
+                p++;
+                q++;
+            }
+        }
+        break;
+    case Format_ARGB8565_Premultiplied:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            quint8 *p = (quint8*)scanLine(i);
+            const quint8 *end = p + d->width * sizeof(qargb8565);
+            while (p < end) {
+                quint16 *q = reinterpret_cast<quint16*>(p + 1);
+                *q = ((*q << 11) & 0xf800) | ((*q >> 11) & 0x1f) | (*q & 0x07e0);
+                p += sizeof(qargb8565);
+            }
+        }
+        break;
+    case Format_RGB666:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            qrgb666 *q = reinterpret_cast<qrgb666*>(res.scanLine(i));
+            const qrgb666 *p = reinterpret_cast<const qrgb666*>(scanLine(i));
+            const qrgb666 *end = p + d->width;
+            while (p < end) {
+                const QRgb rgb = quint32(*p++);
+                *q++ = qRgb(qBlue(rgb), qGreen(rgb), qRed(rgb));
+            }
+        }
+        break;
+    case Format_ARGB6666_Premultiplied:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            qargb6666 *q = reinterpret_cast<qargb6666*>(res.scanLine(i));
+            const qargb6666 *p = reinterpret_cast<const qargb6666*>(scanLine(i));
+            const qargb6666 *end = p + d->width;
+            while (p < end) {
+                const QRgb rgb = quint32(*p++);
+                *q++ = qRgba(qBlue(rgb), qGreen(rgb), qRed(rgb), qAlpha(rgb));
+            }
+        }
+        break;
+    case Format_RGB555:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            ushort *q = (ushort*)res.scanLine(i);
+            const ushort *p = (const ushort*)scanLine(i);
+            const ushort *end = p + d->width;
+            while (p < end) {
+                *q = ((*p << 10) & 0x7800) | ((*p >> 10) & 0x1f) | (*p & 0x83e0);
+                p++;
+                q++;
+            }
+        }
+        break;
+    case Format_ARGB8555_Premultiplied:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            quint8 *p = (quint8*)scanLine(i);
+            const quint8 *end = p + d->width * sizeof(qargb8555);
+            while (p < end) {
+                quint16 *q = reinterpret_cast<quint16*>(p + 1);
+                *q = ((*q << 10) & 0x7800) | ((*q >> 10) & 0x1f) | (*q & 0x83e0);
+                p += sizeof(qargb8555);
+            }
+        }
+        break;
+    case Format_RGB888:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));
+            const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));
+            const quint8 *end = p + d->width * sizeof(qrgb888);
+            while (p < end) {
+                q[0] = p[2];
+                q[1] = p[1];
+                q[2] = p[0];
+                q += sizeof(qrgb888);
+                p += sizeof(qrgb888);
+            }
+        }
+        break;
+    case Format_RGB444:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));
+            const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));
+            const quint8 *end = p + d->width * sizeof(qrgb444);
+            while (p < end) {
+                q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8);
+                q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0);
+                q += sizeof(qrgb444);
+                p += sizeof(qrgb444);
+            }
+        }
+        break;
+    case Format_ARGB4444_Premultiplied:
+        res = QImage(d->width, d->height, d->format);
+        for (int i = 0; i < d->height; i++) {
+            quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));
+            const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));
+            const quint8 *end = p + d->width * sizeof(qargb4444);
+            while (p < end) {
+                q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8);
+                q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0);
+                q += sizeof(qargb4444);
+                p += sizeof(qargb4444);
+            }
+        }
+        break;
+    }
+    return res;
+}
+
+/*!
+    Loads an image from the file with the given \a fileName. Returns true if
+    the image was successfully loaded; otherwise returns false.
+
+    The loader attempts to read the image using the specified \a format, e.g.,
+    PNG or JPG. If \a format is not specified (which is the default), the
+    loader probes the file for a header to guess the file format.
+
+    The file name can either refer to an actual file on disk or to one
+    of the application's embedded resources. See the
+    \l{resources.html}{Resource System} overview for details on how to
+    embed images and other resource files in the application's
+    executable.
+
+    \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+*/
+
+bool QImage::load(const QString &fileName, const char* format)
+{
+    if (fileName.isEmpty())
+        return false;
+
+    QImage image = QImageReader(fileName, format).read();
+    if (!image.isNull()) {
+        operator=(image);
+        return true;
+    }
+    return false;
+}
+
+/*!
+    \overload
+
+    This function reads a QImage from the given \a device. This can,
+    for example, be used to load an image directly into a QByteArray.
+*/
+
+bool QImage::load(QIODevice* device, const char* format)
+{
+    QImage image = QImageReader(device, format).read();
+    if(!image.isNull()) {
+        operator=(image);
+        return true;
+    }
+    return false;
+}
+
+/*!
+    \fn bool QImage::loadFromData(const uchar *data, int len, const char *format)
+
+    Loads an image from the first \a len bytes of the given binary \a
+    data. Returns true if the image was successfully loaded; otherwise
+    returns false.
+
+    The loader attempts to read the image using the specified \a format, e.g.,
+    PNG or JPG. If \a format is not specified (which is the default), the
+    loader probes the file for a header to guess the file format.
+
+    \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+*/
+
+bool QImage::loadFromData(const uchar *data, int len, const char *format)
+{
+    QImage image = fromData(data, len, format);
+    if (!image.isNull()) {
+        operator=(image);
+        return true;
+    }
+    return false;
+}
+
+/*!
+    \fn bool QImage::loadFromData(const QByteArray &data, const char *format)
+
+    \overload
+
+    Loads an image from the given QByteArray \a data.
+*/
+
+/*!
+    \fn QImage QImage::fromData(const uchar *data, int size, const char *format)
+
+    Constructs a QImage from the first \a size bytes of the given
+    binary \a data. The loader attempts to read the image using the
+    specified \a format. If \a format is not specified (which is the default),
+    the loader probes the file for a header to guess the file format.
+    binary \a data. The loader attempts to read the image, either using the
+    optional image \a format specified or by determining the image format from
+    the data.
+
+    If \a format is not specified (which is the default), the loader probes the
+    file for a header to determine the file format. If \a format is specified,
+    it must be one of the values returned by QImageReader::supportedImageFormats().
+
+    If the loading of the image fails, the image returned will be a null image.
+
+    \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
+ */
+
+QImage QImage::fromData(const uchar *data, int size, const char *format)
+{
+    QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size);
+    QBuffer b;
+    b.setData(a);
+    b.open(QIODevice::ReadOnly);
+    return QImageReader(&b, format).read();
+}
+
+/*!
+    \fn QImage QImage::fromData(const QByteArray &data, const char *format)
+
+    \overload
+
+    Loads an image from the given QByteArray \a data.
+*/
+
+/*!
+    Saves the image to the file with the given \a fileName, using the
+    given image file \a format and \a quality factor. If \a format is
+    0, QImage will attempt to guess the format by looking at \a fileName's
+    suffix.
+
+    The \a quality factor must be in the range 0 to 100 or -1. Specify
+    0 to obtain small compressed files, 100 for large uncompressed
+    files, and -1 (the default) to use the default settings.
+
+    Returns true if the image was successfully saved; otherwise
+    returns false.
+
+    \sa {QImage#Reading and Writing Image Files}{Reading and Writing
+    Image Files}
+*/
+bool QImage::save(const QString &fileName, const char *format, int quality) const
+{
+    if (isNull())
+        return false;
+    QImageWriter writer(fileName, format);
+    return d->doImageIO(this, &writer, quality);
+}
+
+/*!
+    \overload
+
+    This function writes a QImage to the given \a device.
+
+    This can, for example, be used to save an image directly into a
+    QByteArray:
+
+    \snippet doc/src/snippets/image/image.cpp 0
+*/
+
+bool QImage::save(QIODevice* device, const char* format, int quality) const
+{
+    if (isNull())
+        return false;                                // nothing to save
+    QImageWriter writer(device, format);
+    return d->doImageIO(this, &writer, quality);
+}
+
+/* \internal
+*/
+
+bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const
+{
+    if (quality > 100  || quality < -1)
+        qWarning("QPixmap::save: Quality out of range [-1, 100]");
+    if (quality >= 0)
+        writer->setQuality(qMin(quality,100));
+    return writer->write(*image);
+}
+
+/*****************************************************************************
+  QImage stream functions
+ *****************************************************************************/
+#if !defined(QT_NO_DATASTREAM)
+/*!
+    \fn QDataStream &operator<<(QDataStream &stream, const QImage &image)
+    \relates QImage
+
+    Writes the given \a image to the given \a stream as a PNG image,
+    or as a BMP image if the stream's version is 1. Note that writing
+    the stream to a file will not produce a valid image file.
+
+    \sa QImage::save(), {Format of the QDataStream Operators}
+*/
+
+QDataStream &operator<<(QDataStream &s, const QImage &image)
+{
+    if (s.version() >= 5) {
+        if (image.isNull()) {
+            s << (qint32) 0; // null image marker
+            return s;
+        } else {
+            s << (qint32) 1;
+            // continue ...
+        }
+    }
+    QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png");
+    writer.write(image);
+    return s;
+}
+
+/*!
+    \fn QDataStream &operator>>(QDataStream &stream, QImage &image)
+    \relates QImage
+
+    Reads an image from the given \a stream and stores it in the given
+    \a image.
+
+    \sa QImage::load(), {Format of the QDataStream Operators}
+*/
+
+QDataStream &operator>>(QDataStream &s, QImage &image)
+{
+    if (s.version() >= 5) {
+        qint32 nullMarker;
+        s >> nullMarker;
+        if (!nullMarker) {
+            image = QImage(); // null image
+            return s;
+        }
+    }
+    image = QImageReader(s.device(), 0).read();
+    return s;
+}
+#endif // QT_NO_DATASTREAM
+
+
+#ifdef QT3_SUPPORT
+/*!
+    \fn QImage QImage::convertDepthWithPalette(int depth, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const
+
+    Returns an image with the given \a depth, using the \a
+    palette_count colors pointed to by \a palette. If \a depth is 1 or
+    8, the returned image will have its color table ordered in the
+    same way as \a palette.
+
+    If the image needs to be modified to fit in a lower-resolution
+    result (e.g. converting from 32-bit to 8-bit), use the \a flags to
+    specify how you'd prefer this to happen.
+
+    Note: currently no closest-color search is made. If colors are
+    found that are not in the palette, the palette may not be used at
+    all. This result should not be considered valid because it may
+    change in future implementations.
+
+    Currently inefficient for non-32-bit images.
+
+    Use the convertToFormat() function in combination with the
+    setColorTable() function instead.
+*/
+QImage QImage::convertDepthWithPalette(int d, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const
+{
+    Format f = formatFor(d, QImage::LittleEndian);
+    QVector<QRgb> colortable;
+    for (int i = 0; i < palette_count; ++i)
+        colortable.append(palette[i]);
+    return convertToFormat(f, colortable, flags);
+}
+
+/*!
+    \relates QImage
+
+    Copies a block of pixels from \a src to \a dst. The pixels
+    copied from source (src) are converted according to
+    \a flags if it is incompatible with the destination
+    (\a dst).
+
+    \a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy is the
+    top-left position in \a dst and \a sw, \a sh is the size of the
+    copied block. The copying is clipped if areas outside \a src or \a
+    dst are specified. If \a sw is -1, it is adjusted to
+    src->width(). Similarly, if \a sh is -1, it is adjusted to
+    src->height().
+
+    Currently inefficient for non 32-bit images.
+
+    Use copy() or QPainter::drawImage() instead.
+*/
+void bitBlt(QImage *dst, int dx, int dy, const QImage *src, int sx, int sy, int sw, int sh,
+            Qt::ImageConversionFlags flags)
+{
+    if (dst->isNull() || src->isNull())
+        return;
+    QPainter p(dst);
+    p.drawImage(QPoint(dx, dy), *src, QRect(sx, sy, sw, sh), flags);
+}
+#endif
+
+/*!
+    \fn bool QImage::operator==(const QImage & image) const
+
+    Returns true if this image and the given \a image have the same
+    contents; otherwise returns false.
+
+    The comparison can be slow, unless there is some obvious
+    difference (e.g. different size or format), in which case the
+    function will return quickly.
+
+    \sa operator=()
+*/
+
+bool QImage::operator==(const QImage & i) const
+{
+    // same object, or shared?
+    if (i.d == d)
+        return true;
+    if (!i.d || !d)
+        return false;
+
+    // obviously different stuff?
+    if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format)
+        return false;
+
+    if (d->format != Format_RGB32) {
+        if (d->format >= Format_ARGB32) { // all bits defined
+            const int n = d->width * d->depth / 8;
+            if (n == d->bytes_per_line && n == i.d->bytes_per_line) {
+                if (memcmp(bits(), i.bits(), d->nbytes))
+                    return false;
+            } else {
+                for (int y = 0; y < d->height; ++y) {
+                    if (memcmp(scanLine(y), i.scanLine(y), n))
+                        return false;
+                }
+            }
+        } else {
+            const int w = width();
+            const int h = height();
+            const QVector<QRgb> &colortable = d->colortable;
+            const QVector<QRgb> &icolortable = i.d->colortable;
+            for (int y=0; y<h; ++y) {
+                for (int x=0; x<w; ++x) {
+                    if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)])
+                        return false;
+                }
+            }
+        }
+    } else {
+        //alpha channel undefined, so we must mask it out
+        for(int l = 0; l < d->height; l++) {
+            int w = d->width;
+            const uint *p1 = reinterpret_cast<const uint*>(scanLine(l));
+            const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(l));
+            while (w--) {
+                if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff))
+                    return false;
+            }
+        }
+    }
+    return true;
+}
+
+
+/*!
+    \fn bool QImage::operator!=(const QImage & image) const
+
+    Returns true if this image and the given \a image have different
+    contents; otherwise returns false.
+
+    The comparison can be slow, unless there is some obvious
+    difference, such as different widths, in which case the function
+    will return quickly.
+
+    \sa operator=()
+*/
+
+bool QImage::operator!=(const QImage & i) const
+{
+    return !(*this == i);
+}
+
+
+
+
+/*!
+    Returns the number of pixels that fit horizontally in a physical
+    meter. Together with dotsPerMeterY(), this number defines the
+    intended scale and aspect ratio of the image.
+
+    \sa setDotsPerMeterX(), {QImage#Image Information}{Image
+    Information}
+*/
+int QImage::dotsPerMeterX() const
+{
+    return d ? qRound(d->dpmx) : 0;
+}
+
+/*!
+    Returns the number of pixels that fit vertically in a physical
+    meter. Together with dotsPerMeterX(), this number defines the
+    intended scale and aspect ratio of the image.
+
+    \sa setDotsPerMeterY(), {QImage#Image Information}{Image
+    Information}
+*/
+int QImage::dotsPerMeterY() const
+{
+    return d ? qRound(d->dpmy) : 0;
+}
+
+/*!
+    Sets the number of pixels that fit horizontally in a physical
+    meter, to \a x.
+
+    Together with dotsPerMeterY(), this number defines the intended
+    scale and aspect ratio of the image, and determines the scale
+    at which QPainter will draw graphics on the image. It does not
+    change the scale or aspect ratio of the image when it is rendered
+    on other paint devices.
+
+    \sa dotsPerMeterX(), {QImage#Image Information}{Image Information}
+*/
+void QImage::setDotsPerMeterX(int x)
+{
+    if (!d || !x)
+        return;
+    detach();
+
+    if (d)
+        d->dpmx = x;
+}
+
+/*!
+    Sets the number of pixels that fit vertically in a physical meter,
+    to \a y.
+
+    Together with dotsPerMeterX(), this number defines the intended
+    scale and aspect ratio of the image, and determines the scale
+    at which QPainter will draw graphics on the image. It does not
+    change the scale or aspect ratio of the image when it is rendered
+    on other paint devices.
+
+    \sa dotsPerMeterY(), {QImage#Image Information}{Image Information}
+*/
+void QImage::setDotsPerMeterY(int y)
+{
+    if (!d || !y)
+        return;
+    detach();
+
+    if (d)
+        d->dpmy = y;
+}
+
+/*!
+    \fn QPoint QImage::offset() const
+
+    Returns the number of pixels by which the image is intended to be
+    offset by when positioning relative to other images.
+
+    \sa setOffset(), {QImage#Image Information}{Image Information}
+*/
+QPoint QImage::offset() const
+{
+    return d ? d->offset : QPoint();
+}
+
+
+/*!
+    \fn void QImage::setOffset(const QPoint& offset)
+
+    Sets the number of pixels by which the image is intended to be
+    offset by when positioning relative to other images, to \a offset.
+
+    \sa offset(), {QImage#Image Information}{Image Information}
+*/
+void QImage::setOffset(const QPoint& p)
+{
+    if (!d)
+        return;
+    detach();
+
+    if (d)
+        d->offset = p;
+}
+#ifndef QT_NO_IMAGE_TEXT
+
+/*!
+    Returns the text keys for this image.
+
+    You can use these keys with text() to list the image text for a
+    certain key.
+
+    \sa text()
+*/
+QStringList QImage::textKeys() const
+{
+    return d ? QStringList(d->text.keys()) : QStringList();
+}
+
+/*!
+    Returns the image text associated with the given \a key. If the
+    specified \a key is an empty string, the whole image text is
+    returned, with each key-text pair separated by a newline.
+
+    \sa setText(), textKeys()
+*/
+QString QImage::text(const QString &key) const
+{
+    if (!d)
+        return QString();
+
+    if (!key.isEmpty())
+        return d->text.value(key);
+
+    QString tmp;
+    foreach (const QString &key, d->text.keys()) {
+        if (!tmp.isEmpty())
+            tmp += QLatin1String("\n\n");
+        tmp += key + QLatin1String(": ") + d->text.value(key).simplified();
+    }
+    return tmp;
+}
+
+/*!
+    \fn void QImage::setText(const QString &key, const QString &text)
+
+    Sets the image text to the given \a text and associate it with the
+    given \a key.
+
+    If you just want to store a single text block (i.e., a "comment"
+    or just a description), you can either pass an empty key, or use a
+    generic key like "Description".
+
+    The image text is embedded into the image data when you
+    call save() or QImageWriter::write().
+
+    Not all image formats support embedded text. You can find out
+    if a specific image or format supports embedding text
+    by using QImageWriter::supportsOption(). We give an example:
+
+    \snippet doc/src/snippets/image/supportedformat.cpp 0
+
+    You can use QImageWriter::supportedImageFormats() to find out
+    which image formats are available to you.
+
+    \sa text(), textKeys()
+*/
+void QImage::setText(const QString &key, const QString &value)
+{
+    if (!d)
+        return;
+    detach();
+
+    if (d)
+        d->text.insert(key, value);
+}
+
+/*!
+    \fn QString QImage::text(const char* key, const char* language) const
+    \obsolete
+
+    Returns the text recorded for the given \a key in the given \a
+    language, or in a default language if \a language is 0.
+
+    Use text() instead.
+
+    The language the text is recorded in is no longer relevant since
+    the text is always set using QString and UTF-8 representation.
+*/
+QString QImage::text(const char* key, const char* lang) const
+{
+    if (!d)
+        return QString();
+    QString k = QString::fromAscii(key);
+    if (lang && *lang)
+        k += QLatin1Char('/') + QString::fromAscii(lang);
+    return d->text.value(k);
+}
+
+/*!
+    \fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const
+    \overload
+    \obsolete
+
+    Returns the text recorded for the given \a keywordAndLanguage.
+
+    Use text() instead.
+
+    The language the text is recorded in is no longer relevant since
+    the text is always set using QString and UTF-8 representation.
+*/
+QString QImage::text(const QImageTextKeyLang& kl) const
+{
+    if (!d)
+        return QString();
+    QString k = QString::fromAscii(kl.key);
+    if (!kl.lang.isEmpty())
+        k += QLatin1Char('/') + QString::fromAscii(kl.lang);
+    return d->text.value(k);
+}
+
+/*!
+    \obsolete
+
+    Returns the language identifiers for which some texts are
+    recorded. Note that if you want to iterate over the list, you
+    should iterate over a copy.
+
+    The language the text is recorded in is no longer relevant since
+    the text is always set using QString and UTF-8 representation.
+*/
+QStringList QImage::textLanguages() const
+{
+    if (!d)
+        return QStringList();
+    QStringList keys = textKeys();
+    QStringList languages;
+    for (int i = 0; i < keys.size(); ++i) {
+        int index = keys.at(i).indexOf(QLatin1Char('/'));
+        if (index > 0)
+            languages += keys.at(i).mid(index+1);
+    }
+
+    return languages;
+}
+
+/*!
+    \obsolete
+
+    Returns a list of QImageTextKeyLang objects that enumerate all the
+    texts key/language pairs set for this image.
+
+    Use textKeys() instead.
+
+    The language the text is recorded in is no longer relevant since
+    the text is always set using QString and UTF-8 representation.
+*/
+QList<QImageTextKeyLang> QImage::textList() const
+{
+    QList<QImageTextKeyLang> imageTextKeys;
+    if (!d)
+        return imageTextKeys;
+    QStringList keys = textKeys();
+    for (int i = 0; i < keys.size(); ++i) {
+        int index = keys.at(i).indexOf(QLatin1Char('/'));
+        if (index > 0) {
+            QImageTextKeyLang tkl;
+            tkl.key = keys.at(i).left(index).toAscii();
+            tkl.lang = keys.at(i).mid(index+1).toAscii();
+            imageTextKeys += tkl;
+        }
+    }
+
+    return imageTextKeys;
+}
+
+/*!
+    \fn void QImage::setText(const char* key, const char* language, const QString& text)
+    \obsolete
+
+    Sets the image text to the given \a text and associate it with the
+    given \a key. The text is recorded in the specified \a language,
+    or in a default language if \a language is 0.
+
+    Use setText() instead.
+
+    The language the text is recorded in is no longer relevant since
+    the text is always set using QString and UTF-8 representation.
+
+    \omit
+    Records string \a  for the keyword \a key. The \a key should be
+    a portable keyword recognizable by other software - some suggested
+    values can be found in
+    \l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text}
+    {the PNG specification}. \a s can be any text. \a lang should
+    specify the language code (see
+    \l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or 0.
+    \endomit
+*/
+void QImage::setText(const char* key, const char* lang, const QString& s)
+{
+    if (!d)
+        return;
+    detach();
+
+    // In case detach() ran out of memory
+    if (!d)
+        return;
+
+    QString k = QString::fromAscii(key);
+    if (lang && *lang)
+        k += QLatin1Char('/') + QString::fromAscii(lang);
+    d->text.insert(k, s);
+}
+
+#endif // QT_NO_IMAGE_TEXT
+
+/*
+    Sets the image bits to the \a pixmap contents and returns a
+    reference to the image.
+
+    If the image shares data with other images, it will first
+    dereference the shared data.
+
+    Makes a call to QPixmap::convertToImage().
+*/
+
+/*! \fn QImage::Endian QImage::systemBitOrder()
+
+    Determines the bit order of the display hardware. Returns
+    QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).
+
+    This function is no longer relevant for QImage. Use QSysInfo
+    instead.
+*/
+
+
+/*!
+    \internal
+
+    Used by QPainter to retrieve a paint engine for the image.
+*/
+
+QPaintEngine *QImage::paintEngine() const
+{
+    if (!d)
+        return 0;
+
+    if (!d->paintEngine) {
+        d->paintEngine = new QRasterPaintEngine(const_cast<QImage *>(this));
+    }
+
+    return d->paintEngine;
+}
+
+
+/*!
+    \internal
+
+    Returns the size for the specified \a metric on the device.
+*/
+int QImage::metric(PaintDeviceMetric metric) const
+{
+    if (!d)
+        return 0;
+
+    switch (metric) {
+    case PdmWidth:
+        return d->width;
+        break;
+
+    case PdmHeight:
+        return d->height;
+        break;
+
+    case PdmWidthMM:
+        return qRound(d->width * 1000 / d->dpmx);
+        break;
+
+    case PdmHeightMM:
+        return qRound(d->height * 1000 / d->dpmy);
+        break;
+
+    case PdmNumColors:
+        return d->colortable.size();
+        break;
+
+    case PdmDepth:
+        return d->depth;
+        break;
+
+    case PdmDpiX:
+        return qRound(d->dpmx * 0.0254);
+        break;
+
+    case PdmDpiY:
+        return qRound(d->dpmy * 0.0254);
+        break;
+
+    case PdmPhysicalDpiX:
+        return qRound(d->dpmx * 0.0254);
+        break;
+
+    case PdmPhysicalDpiY:
+        return qRound(d->dpmy * 0.0254);
+        break;
+
+    default:
+        qWarning("QImage::metric(): Unhandled metric type %d", metric);
+        break;
+    }
+    return 0;
+}
+
+
+
+/*****************************************************************************
+  QPixmap (and QImage) helper functions
+ *****************************************************************************/
+/*
+  This internal function contains the common (i.e. platform independent) code
+  to do a transformation of pixel data. It is used by QPixmap::transform() and by
+  QImage::transform().
+
+  \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and
+  \a xoffset is an offset to the matrix.
+
+  \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a
+  depth specifies the colordepth of the data.
+
+  \a dptr is a pointer to the destination data, \a dbpl specifies the bits per
+  line for the destination data, \a p_inc is the offset that we advance for
+  every scanline and \a dHeight is the height of the destination image.
+
+  \a sprt is the pointer to the source data, \a sbpl specifies the bits per
+  line of the source data, \a sWidth and \a sHeight are the width and height of
+  the source data.
+*/
+
+#undef IWX_MSB
+#define IWX_MSB(b)        if (trigx < maxws && trigy < maxhs) {                              \
+                            if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) &                      \
+                                 (1 << (7-((trigx>>12)&7))))                              \
+                                *dptr |= b;                                              \
+                        }                                                              \
+                        trigx += m11;                                                      \
+                        trigy += m12;
+        // END OF MACRO
+#undef IWX_LSB
+#define IWX_LSB(b)        if (trigx < maxws && trigy < maxhs) {                              \
+                            if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) &                      \
+                                 (1 << ((trigx>>12)&7)))                              \
+                                *dptr |= b;                                              \
+                        }                                                              \
+                        trigx += m11;                                                      \
+                        trigy += m12;
+        // END OF MACRO
+#undef IWX_PIX
+#define IWX_PIX(b)        if (trigx < maxws && trigy < maxhs) {                              \
+                            if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) &              \
+                                 (1 << (7-((trigx>>12)&7)))) == 0)                      \
+                                *dptr &= ~b;                                              \
+                        }                                                              \
+                        trigx += m11;                                                      \
+                        trigy += m12;
+        // END OF MACRO
+bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth,
+                     uchar *dptr, int dbpl, int p_inc, int dHeight,
+                     const uchar *sptr, int sbpl, int sWidth, int sHeight)
+{
+    int m11 = int(trueMat.m11()*4096.0);
+    int m12 = int(trueMat.m12()*4096.0);
+    int m21 = int(trueMat.m21()*4096.0);
+    int m22 = int(trueMat.m22()*4096.0);
+    int dx  = qRound(trueMat.dx()*4096.0);
+    int dy  = qRound(trueMat.dy()*4096.0);
+
+    int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2;
+    int m22ydy = dy + (m12 + m22) / 2;
+    uint trigx;
+    uint trigy;
+    uint maxws = sWidth<<12;
+    uint maxhs = sHeight<<12;
+
+    for (int y=0; y<dHeight; y++) {                // for each target scanline
+        trigx = m21ydx;
+        trigy = m22ydy;
+        uchar *maxp = dptr + dbpl;
+        if (depth != 1) {
+            switch (depth) {
+                case 8:                                // 8 bpp transform
+                while (dptr < maxp) {
+                    if (trigx < maxws && trigy < maxhs)
+                        *dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12));
+                    trigx += m11;
+                    trigy += m12;
+                    dptr++;
+                }
+                break;
+
+                case 16:                        // 16 bpp transform
+                while (dptr < maxp) {
+                    if (trigx < maxws && trigy < maxhs)
+                        *((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>12) +
+                                                     ((trigx>>12)<<1)));
+                    trigx += m11;
+                    trigy += m12;
+                    dptr++;
+                    dptr++;
+                }
+                break;
+
+                case 24:                        // 24 bpp transform
+                while (dptr < maxp) {
+                    if (trigx < maxws && trigy < maxhs) {
+                        const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3);
+                        dptr[0] = p2[0];
+                        dptr[1] = p2[1];
+                        dptr[2] = p2[2];
+                    }
+                    trigx += m11;
+                    trigy += m12;
+                    dptr += 3;
+                }
+                break;
+
+                case 32:                        // 32 bpp transform
+                while (dptr < maxp) {
+                    if (trigx < maxws && trigy < maxhs)
+                        *((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>12) +
+                                                   ((trigx>>12)<<2)));
+                    trigx += m11;
+                    trigy += m12;
+                    dptr += 4;
+                }
+                break;
+
+                default: {
+                return false;
+                }
+            }
+        } else  {
+            switch (type) {
+                case QT_XFORM_TYPE_MSBFIRST:
+                    while (dptr < maxp) {
+                        IWX_MSB(128);
+                        IWX_MSB(64);
+                        IWX_MSB(32);
+                        IWX_MSB(16);
+                        IWX_MSB(8);
+                        IWX_MSB(4);
+                        IWX_MSB(2);
+                        IWX_MSB(1);
+                        dptr++;
+                    }
+                    break;
+                case QT_XFORM_TYPE_LSBFIRST:
+                    while (dptr < maxp) {
+                        IWX_LSB(1);
+                        IWX_LSB(2);
+                        IWX_LSB(4);
+                        IWX_LSB(8);
+                        IWX_LSB(16);
+                        IWX_LSB(32);
+                        IWX_LSB(64);
+                        IWX_LSB(128);
+                        dptr++;
+                    }
+                    break;
+#  if defined(Q_WS_WIN)
+                case QT_XFORM_TYPE_WINDOWSPIXMAP:
+                    while (dptr < maxp) {
+                        IWX_PIX(128);
+                        IWX_PIX(64);
+                        IWX_PIX(32);
+                        IWX_PIX(16);
+                        IWX_PIX(8);
+                        IWX_PIX(4);
+                        IWX_PIX(2);
+                        IWX_PIX(1);
+                        dptr++;
+                    }
+                    break;
+#  endif
+            }
+        }
+        m21ydx += m21;
+        m22ydy += m22;
+        dptr += p_inc;
+    }
+    return true;
+}
+#undef IWX_MSB
+#undef IWX_LSB
+#undef IWX_PIX
+
+/*!
+    \fn QImage QImage::xForm(const QMatrix &matrix) const
+
+    Use transformed() instead.
+
+    \oldcode
+        QImage image;
+        ...
+        image.xForm(matrix);
+    \newcode
+        QImage image;
+        ...
+        image.transformed(matrix);
+    \endcode
+*/
+
+/*! \obsolete
+    Returns a number that identifies the contents of this
+    QImage object. Distinct QImage objects can only have the same
+    serial number if they refer to the same contents (but they don't
+    have to).
+
+    Use cacheKey() instead.
+
+    \warning The serial number doesn't necessarily change when the
+    image is altered. This means that it may be dangerous to use
+    it as a cache key.
+
+    \sa operator==()
+*/
+
+int QImage::serialNumber() const
+{
+    if (!d)
+        return 0;
+    else
+        return d->ser_no;
+}
+
+/*!
+    Returns a number that identifies the contents of this QImage
+    object. Distinct QImage objects can only have the same key if they
+    refer to the same contents.
+
+    The key will change when the image is altered.
+*/
+qint64 QImage::cacheKey() const
+{
+    if (!d)
+        return 0;
+    else
+        return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no);
+}
+
+/*!
+    \internal
+
+    Returns true if the image is detached; otherwise returns false.
+
+    \sa detach(), {Implicit Data Sharing}
+*/
+
+bool QImage::isDetached() const
+{
+    return d && d->ref == 1;
+}
+
+
+/*!
+    \obsolete
+    Sets the alpha channel of this image to the given \a alphaChannel.
+
+    If \a alphaChannel is an 8 bit grayscale image, the intensity values are
+    written into this buffer directly. Otherwise, \a alphaChannel is converted
+    to 32 bit and the intensity of the RGB pixel values is used.
+
+    Note that the image will be converted to the Format_ARGB32_Premultiplied
+    format if the function succeeds.
+
+    Use one of the composition modes in QPainter::CompositionMode instead.
+
+    \warning This function is expensive.
+
+    \sa alphaChannel(), {QImage#Image Transformations}{Image
+    Transformations}, {QImage#Image Formats}{Image Formats}
+*/
+
+void QImage::setAlphaChannel(const QImage &alphaChannel)
+{
+    if (!d)
+        return;
+
+    int w = d->width;
+    int h = d->height;
+
+    if (w != alphaChannel.d->width || h != alphaChannel.d->height) {
+        qWarning("QImage::setAlphaChannel: "
+                 "Alpha channel must have same dimensions as the target image");
+        return;
+    }
+
+    if (d->paintEngine && d->paintEngine->isActive()) {
+        qWarning("QImage::setAlphaChannel: "
+                 "Unable to set alpha channel while image is being painted on");
+        return;
+    }
+
+    detach();
+
+    *this = convertToFormat(QImage::Format_ARGB32_Premultiplied);
+
+    // Slight optimization since alphachannels are returned as 8-bit grays.
+    if (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale()) {
+        const uchar *src_data = alphaChannel.d->data;
+        const uchar *dest_data = d->data;
+        for (int y=0; y<h; ++y) {
+            const uchar *src = src_data;
+            QRgb *dest = (QRgb *)dest_data;
+            for (int x=0; x<w; ++x) {
+                int alpha = *src;
+                int destAlpha = qt_div_255(alpha * qAlpha(*dest));
+                *dest = ((destAlpha << 24)
+                         | (qt_div_255(qRed(*dest) * alpha) << 16)
+                         | (qt_div_255(qGreen(*dest) * alpha) << 8)
+                         | (qt_div_255(qBlue(*dest) * alpha)));
+                ++dest;
+                ++src;
+            }
+            src_data += alphaChannel.d->bytes_per_line;
+            dest_data += d->bytes_per_line;
+        }
+
+    } else {
+        const QImage sourceImage = alphaChannel.convertToFormat(QImage::Format_RGB32);
+        const uchar *src_data = sourceImage.d->data;
+        const uchar *dest_data = d->data;
+        for (int y=0; y<h; ++y) {
+            const QRgb *src = (const QRgb *) src_data;
+            QRgb *dest = (QRgb *) dest_data;
+            for (int x=0; x<w; ++x) {
+                int alpha = qGray(*src);
+                int destAlpha = qt_div_255(alpha * qAlpha(*dest));
+                *dest = ((destAlpha << 24)
+                         | (qt_div_255(qRed(*dest) * alpha) << 16)
+                         | (qt_div_255(qGreen(*dest) * alpha) << 8)
+                         | (qt_div_255(qBlue(*dest) * alpha)));
+                ++dest;
+                ++src;
+            }
+            src_data += sourceImage.d->bytes_per_line;
+            dest_data += d->bytes_per_line;
+        }
+    }
+}
+
+
+/*!
+    \obsolete
+
+    Returns the alpha channel of the image as a new grayscale QImage in which
+    each pixel's red, green, and blue values are given the alpha value of the
+    original image. The color depth of the returned image is 8-bit.
+
+    You can see an example of use of this function in QPixmap's
+    \l{QPixmap::}{alphaChannel()}, which works in the same way as
+    this function on QPixmaps.
+
+    Most usecases for this function can be replaced with QPainter and
+    using composition modes.
+
+    \warning This is an expensive function.
+
+    \sa setAlphaChannel(), hasAlphaChannel(),
+    {QPixmap#Pixmap Information}{Pixmap},
+    {QImage#Image Transformations}{Image Transformations}
+*/
+
+QImage QImage::alphaChannel() const
+{
+    if (!d)
+        return QImage();
+
+    int w = d->width;
+    int h = d->height;
+
+    QImage image(w, h, Format_Indexed8);
+    image.setNumColors(256);
+
+    // set up gray scale table.
+    for (int i=0; i<256; ++i)
+        image.setColor(i, qRgb(i, i, i));
+
+    if (!hasAlphaChannel()) {
+        image.fill(255);
+        return image;
+    }
+
+    if (d->format == Format_Indexed8) {
+        const uchar *src_data = d->data;
+        uchar *dest_data = image.d->data;
+        for (int y=0; y<h; ++y) {
+            const uchar *src = src_data;
+            uchar *dest = dest_data;
+            for (int x=0; x<w; ++x) {
+                *dest = qAlpha(d->colortable.at(*src));
+                ++dest;
+                ++src;
+            }
+            src_data += d->bytes_per_line;
+            dest_data += image.d->bytes_per_line;
+        }
+    } else {
+        QImage alpha32 = *this;
+        if (d->format != Format_ARGB32 && d->format != Format_ARGB32_Premultiplied)
+            alpha32 = convertToFormat(Format_ARGB32);
+
+        const uchar *src_data = alpha32.d->data;
+        uchar *dest_data = image.d->data;
+        for (int y=0; y<h; ++y) {
+            const QRgb *src = (const QRgb *) src_data;
+            uchar *dest = dest_data;
+            for (int x=0; x<w; ++x) {
+                *dest = qAlpha(*src);
+                ++dest;
+                ++src;
+            }
+            src_data += alpha32.d->bytes_per_line;
+            dest_data += image.d->bytes_per_line;
+        }
+    }
+
+    return image;
+}
+
+/*!
+    Returns true if the image has a format that respects the alpha
+    channel, otherwise returns false.
+
+    \sa {QImage#Image Information}{Image Information}
+*/
+bool QImage::hasAlphaChannel() const
+{
+    return d && (d->format == Format_ARGB32_Premultiplied
+                 || d->format == Format_ARGB32
+                 || d->format == Format_ARGB8565_Premultiplied
+                 || d->format == Format_ARGB8555_Premultiplied
+                 || d->format == Format_ARGB6666_Premultiplied
+                 || d->format == Format_ARGB4444_Premultiplied
+                 || (d->has_alpha_clut && (d->format == Format_Indexed8
+                                           || d->format == Format_Mono
+                                           || d->format == Format_MonoLSB)));
+}
+
+
+#ifdef QT3_SUPPORT
+#if defined(Q_WS_X11)
+QT_BEGIN_INCLUDE_NAMESPACE
+#include <private/qt_x11_p.h>
+QT_END_INCLUDE_NAMESPACE
+#endif
+
+QImage::Endian QImage::systemBitOrder()
+{
+#if defined(Q_WS_X11)
+    return BitmapBitOrder(X11->display) == MSBFirst ? BigEndian : LittleEndian;
+#else
+    return BigEndian;
+#endif
+}
+#endif
+
+/*!
+    \fn QImage QImage::copy(const QRect &rect, Qt::ImageConversionFlags flags) const
+    \compat
+
+    Use copy() instead.
+*/
+
+/*!
+    \fn QImage QImage::copy(int x, int y, int w, int h, Qt::ImageConversionFlags flags) const
+    \compat
+
+    Use copy() instead.
+*/
+
+/*!
+    \fn QImage QImage::scaleWidth(int w) const
+    \compat
+
+    Use scaledToWidth() instead.
+*/
+
+/*!
+    \fn QImage QImage::scaleHeight(int h) const
+    \compat
+
+    Use scaledToHeight() instead.
+*/
+
+static QImage smoothScaled(const QImage &source, int w, int h) {
+    QImage src = source;
+    if (src.format() == QImage::Format_ARGB32)
+        src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);
+    else if (src.depth() < 32) {
+        if (src.hasAlphaChannel())
+            src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);
+        else
+            src = src.convertToFormat(QImage::Format_RGB32);
+    }
+
+    return qSmoothScaleImage(src, w, h);
+}
+
+
+static QImage rotated90(const QImage &image) {
+    QImage out(image.height(), image.width(), image.format());
+    if (image.numColors() > 0)
+        out.setColorTable(image.colorTable());
+    int w = image.width();
+    int h = image.height();
+    switch (image.format()) {
+    case QImage::Format_RGB32:
+    case QImage::Format_ARGB32:
+    case QImage::Format_ARGB32_Premultiplied:
+        qt_memrotate270(reinterpret_cast<const quint32*>(image.bits()),
+                        w, h, image.bytesPerLine(),
+                        reinterpret_cast<quint32*>(out.bits()),
+                        out.bytesPerLine());
+        break;
+    case QImage::Format_RGB666:
+    case QImage::Format_ARGB6666_Premultiplied:
+    case QImage::Format_ARGB8565_Premultiplied:
+    case QImage::Format_ARGB8555_Premultiplied:
+    case QImage::Format_RGB888:
+        qt_memrotate270(reinterpret_cast<const quint24*>(image.bits()),
+                        w, h, image.bytesPerLine(),
+                        reinterpret_cast<quint24*>(out.bits()),
+                        out.bytesPerLine());
+        break;
+    case QImage::Format_RGB555:
+    case QImage::Format_RGB16:
+    case QImage::Format_ARGB4444_Premultiplied:
+        qt_memrotate270(reinterpret_cast<const quint16*>(image.bits()),
+                        w, h, image.bytesPerLine(),
+                        reinterpret_cast<quint16*>(out.bits()),
+                        out.bytesPerLine());
+        break;
+    case QImage::Format_Indexed8:
+        qt_memrotate270(reinterpret_cast<const quint8*>(image.bits()),
+                        w, h, image.bytesPerLine(),
+                        reinterpret_cast<quint8*>(out.bits()),
+                        out.bytesPerLine());
+        break;
+    default:
+        for (int y=0; y<h; ++y) {
+            if (image.numColors())
+                for (int x=0; x<w; ++x)
+                    out.setPixel(h-y-1, x, image.pixelIndex(x, y));
+            else
+                for (int x=0; x<w; ++x)
+                    out.setPixel(h-y-1, x, image.pixel(x, y));
+        }
+        break;
+    }
+    return out;
+}
+
+
+static QImage rotated180(const QImage &image) {
+    return image.mirrored(true, true);
+}
+
+
+static QImage rotated270(const QImage &image) {
+    QImage out(image.height(), image.width(), image.format());
+    if (image.numColors() > 0)
+        out.setColorTable(image.colorTable());
+    int w = image.width();
+    int h = image.height();
+    switch (image.format()) {
+    case QImage::Format_RGB32:
+    case QImage::Format_ARGB32:
+    case QImage::Format_ARGB32_Premultiplied:
+        qt_memrotate90(reinterpret_cast<const quint32*>(image.bits()),
+                       w, h, image.bytesPerLine(),
+                       reinterpret_cast<quint32*>(out.bits()),
+                       out.bytesPerLine());
+        break;
+    case QImage::Format_RGB666:
+    case QImage::Format_ARGB6666_Premultiplied:
+    case QImage::Format_ARGB8565_Premultiplied:
+    case QImage::Format_ARGB8555_Premultiplied:
+    case QImage::Format_RGB888:
+        qt_memrotate90(reinterpret_cast<const quint24*>(image.bits()),
+                       w, h, image.bytesPerLine(),
+                       reinterpret_cast<quint24*>(out.bits()),
+                       out.bytesPerLine());
+        break;
+    case QImage::Format_RGB555:
+    case QImage::Format_RGB16:
+    case QImage::Format_ARGB4444_Premultiplied:
+       qt_memrotate90(reinterpret_cast<const quint16*>(image.bits()),
+                       w, h, image.bytesPerLine(),
+                       reinterpret_cast<quint16*>(out.bits()),
+                       out.bytesPerLine());
+        break;
+    case QImage::Format_Indexed8:
+        qt_memrotate90(reinterpret_cast<const quint8*>(image.bits()),
+                       w, h, image.bytesPerLine(),
+                       reinterpret_cast<quint8*>(out.bits()),
+                       out.bytesPerLine());
+        break;
+    default:
+        for (int y=0; y<h; ++y) {
+            if (image.numColors())
+                for (int x=0; x<w; ++x)
+                    out.setPixel(y, w-x-1, image.pixelIndex(x, y));
+            else
+                for (int x=0; x<w; ++x)
+                    out.setPixel(y, w-x-1, image.pixel(x, y));
+        }
+        break;
+    }
+    return out;
+}
+
+/*!
+    Returns a copy of the image that is transformed using the given
+    transformation \a matrix and transformation \a mode.
+
+    The transformation \a matrix is internally adjusted to compensate
+    for unwanted translation; i.e. the image produced is the smallest
+    image that contains all the transformed points of the original
+    image. Use the trueMatrix() function to retrieve the actual matrix
+    used for transforming an image.
+
+    Unlike the other overload, this function can be used to perform perspective
+    transformations on images.
+
+    \sa trueMatrix(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+
+QImage QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const
+{
+    if (!d)
+        return QImage();
+
+    // source image data
+    int ws = width();
+    int hs = height();
+
+    // target image data
+    int wd;
+    int hd;
+
+    // compute size of target image
+    QTransform mat = trueMatrix(matrix, ws, hs);
+    bool complex_xform = false;
+    bool scale_xform = false;
+    if (mat.type() <= QTransform::TxScale) {
+        if (mat.type() == QTransform::TxNone) // identity matrix
+            return *this;
+        else if (mat.m11() == -1. && mat.m22() == -1.)
+            return rotated180(*this);
+
+        if (mode == Qt::FastTransformation) {
+            hd = qRound(qAbs(mat.m22()) * hs);
+            wd = qRound(qAbs(mat.m11()) * ws);
+        } else {
+            hd = int(qAbs(mat.m22()) * hs + 0.9999);
+            wd = int(qAbs(mat.m11()) * ws + 0.9999);
+        }
+        scale_xform = true;
+    } else {
+        if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) {
+            if (mat.m12() == 1. && mat.m21() == -1.)
+                return rotated90(*this);
+            else if (mat.m12() == -1. && mat.m21() == 1.)
+                return rotated270(*this);
+        }
+
+        QPolygonF a(QRectF(0, 0, ws, hs));
+        a = mat.map(a);
+        QRect r = a.boundingRect().toAlignedRect();
+        wd = r.width();
+        hd = r.height();
+        complex_xform = true;
+    }
+
+    if (wd == 0 || hd == 0)
+        return QImage();
+
+    // Make use of the optimized algorithm when we're scaling
+    if (scale_xform && mode == Qt::SmoothTransformation) {
+        if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip
+            return smoothScaled(mirrored(true, true), wd, hd);
+        } else if (mat.m11() < 0.0F) { // horizontal flip
+            return smoothScaled(mirrored(true, false), wd, hd);
+        } else if (mat.m22() < 0.0F) { // vertical flip
+            return smoothScaled(mirrored(false, true), wd, hd);
+        } else { // no flipping
+            return smoothScaled(*this, wd, hd);
+        }
+    }
+
+    int bpp = depth();
+
+    int sbpl = bytesPerLine();
+    const uchar *sptr = bits();
+
+    QImage::Format target_format = d->format;
+
+    if (complex_xform || mode == Qt::SmoothTransformation) {
+        if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) {
+            switch(d->format) {
+            case QImage::Format_RGB16:
+                target_format = Format_ARGB8565_Premultiplied;
+                break;
+            case QImage::Format_RGB555:
+                target_format = Format_ARGB8555_Premultiplied;
+                break;
+            case QImage::Format_RGB666:
+                target_format = Format_ARGB6666_Premultiplied;
+                break;
+            case QImage::Format_RGB444:
+                target_format = Format_ARGB4444_Premultiplied;
+                break;
+            default:
+                target_format = Format_ARGB32_Premultiplied;
+                break;
+            }
+        }
+    }
+
+    QImage dImage(wd, hd, target_format);
+    QIMAGE_SANITYCHECK_MEMORY(dImage);
+
+    if (target_format == QImage::Format_MonoLSB
+        || target_format == QImage::Format_Mono
+        || target_format == QImage::Format_Indexed8) {
+        dImage.d->colortable = d->colortable;
+        dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform;
+    }
+
+    dImage.d->dpmx = dotsPerMeterX();
+    dImage.d->dpmy = dotsPerMeterY();
+
+    switch (bpp) {
+        // initizialize the data
+        case 8:
+            if (dImage.d->colortable.size() < 256) {
+                // colors are left in the color table, so pick that one as transparent
+                dImage.d->colortable.append(0x0);
+                memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.numBytes());
+            } else {
+                memset(dImage.bits(), 0, dImage.numBytes());
+            }
+            break;
+        case 1:
+        case 16:
+        case 24:
+        case 32:
+            memset(dImage.bits(), 0x00, dImage.numBytes());
+            break;
+    }
+
+    if (target_format >= QImage::Format_RGB32) {
+        QPainter p(&dImage);
+        if (mode == Qt::SmoothTransformation) {
+            p.setRenderHint(QPainter::Antialiasing);
+            p.setRenderHint(QPainter::SmoothPixmapTransform);
+        }
+        p.setTransform(mat);
+        p.drawImage(QPoint(0, 0), *this);
+    } else {
+        bool invertible;
+        mat = mat.inverted(&invertible);                // invert matrix
+        if (!invertible)        // error, return null image
+            return QImage();
+
+        // create target image (some of the code is from QImage::copy())
+        int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST;
+        int dbpl = dImage.bytesPerLine();
+        qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs);
+    }
+    return dImage;
+}
+
+/*!
+    \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height)
+
+    Returns the actual matrix used for transforming an image with the
+    given \a width, \a height and \a matrix.
+
+    When transforming an image using the transformed() function, the
+    transformation matrix is internally adjusted to compensate for
+    unwanted translation, i.e. transformed() returns the smallest
+    image containing all transformed points of the original image.
+    This function returns the modified matrix, which maps points
+    correctly from the original image into the new image.
+
+    Unlike the other overload, this function creates transformation
+    matrices that can be used to perform perspective
+    transformations on images.
+
+    \sa transformed(), {QImage#Image Transformations}{Image
+    Transformations}
+*/
+
+QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h)
+{
+    const QRectF rect(0, 0, w, h);
+    const QRect mapped = matrix.mapRect(rect).toAlignedRect();
+    const QPoint delta = mapped.topLeft();
+    return matrix * QTransform().translate(-delta.x(), -delta.y());
+}
+
+
+/*!
+    \typedef QImage::DataPtr
+    \internal
+*/
+
+/*!
+    \fn DataPtr & QImage::data_ptr()
+    \internal
+*/
+
+QT_END_NAMESPACE