src/gui/math3d/qquaternion.cpp
changeset 0 1918ee327afb
child 3 41300fa6a67c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/gui/math3d/qquaternion.cpp	Mon Jan 11 14:00:40 2010 +0000
@@ -0,0 +1,636 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file.  Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights.  These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include "qquaternion.h"
+#include <QtCore/qmath.h>
+#include <QtCore/qvariant.h>
+#include <QtCore/qdebug.h>
+
+QT_BEGIN_NAMESPACE
+
+#ifndef QT_NO_QUATERNION
+
+/*!
+    \class QQuaternion
+    \brief The QQuaternion class represents a quaternion consisting of a vector and scalar.
+    \since 4.6
+    \ingroup painting-3D
+
+    Quaternions are used to represent rotations in 3D space, and
+    consist of a 3D rotation axis specified by the x, y, and z
+    coordinates, and a scalar representing the rotation angle.
+*/
+
+/*!
+    \fn QQuaternion::QQuaternion()
+
+    Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0).
+*/
+
+/*!
+    \fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos)
+
+    Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
+    and \a scalar.
+*/
+
+#ifndef QT_NO_VECTOR3D
+
+/*!
+    \fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector)
+
+    Constructs a quaternion vector from the specified \a vector and
+    \a scalar.
+
+    \sa vector(), scalar()
+*/
+
+/*!
+    \fn QVector3D QQuaternion::vector() const
+
+    Returns the vector component of this quaternion.
+
+    \sa setVector(), scalar()
+*/
+
+/*!
+    \fn void QQuaternion::setVector(const QVector3D& vector)
+
+    Sets the vector component of this quaternion to \a vector.
+
+    \sa vector(), setScalar()
+*/
+
+#endif
+
+/*!
+    \fn void QQuaternion::setVector(qreal x, qreal y, qreal z)
+
+    Sets the vector component of this quaternion to (\a x, \a y, \a z).
+
+    \sa vector(), setScalar()
+*/
+
+#ifndef QT_NO_VECTOR4D
+
+/*!
+    \fn QQuaternion::QQuaternion(const QVector4D& vector)
+
+    Constructs a quaternion from the components of \a vector.
+*/
+
+/*!
+    \fn QVector4D QQuaternion::toVector4D() const
+
+    Returns this quaternion as a 4D vector.
+*/
+
+#endif
+
+/*!
+    \fn bool QQuaternion::isNull() const
+
+    Returns true if the x, y, z, and scalar components of this
+    quaternion are set to 0.0; otherwise returns false.
+*/
+
+/*!
+    \fn bool QQuaternion::isIdentity() const
+
+    Returns true if the x, y, and z components of this
+    quaternion are set to 0.0, and the scalar component is set
+    to 1.0; otherwise returns false.
+*/
+
+/*!
+    \fn qreal QQuaternion::x() const
+
+    Returns the x coordinate of this quaternion's vector.
+
+    \sa setX(), y(), z(), scalar()
+*/
+
+/*!
+    \fn qreal QQuaternion::y() const
+
+    Returns the y coordinate of this quaternion's vector.
+
+    \sa setY(), x(), z(), scalar()
+*/
+
+/*!
+    \fn qreal QQuaternion::z() const
+
+    Returns the z coordinate of this quaternion's vector.
+
+    \sa setZ(), x(), y(), scalar()
+*/
+
+/*!
+    \fn qreal QQuaternion::scalar() const
+
+    Returns the scalar component of this quaternion.
+
+    \sa setScalar(), x(), y(), z()
+*/
+
+/*!
+    \fn void QQuaternion::setX(qreal x)
+
+    Sets the x coordinate of this quaternion's vector to the given
+    \a x coordinate.
+
+    \sa x(), setY(), setZ(), setScalar()
+*/
+
+/*!
+    \fn void QQuaternion::setY(qreal y)
+
+    Sets the y coordinate of this quaternion's vector to the given
+    \a y coordinate.
+
+    \sa y(), setX(), setZ(), setScalar()
+*/
+
+/*!
+    \fn void QQuaternion::setZ(qreal z)
+
+    Sets the z coordinate of this quaternion's vector to the given
+    \a z coordinate.
+
+    \sa z(), setX(), setY(), setScalar()
+*/
+
+/*!
+    \fn void QQuaternion::setScalar(qreal scalar)
+
+    Sets the scalar component of this quaternion to \a scalar.
+
+    \sa scalar(), setX(), setY(), setZ()
+*/
+
+/*!
+    Returns the length of the quaternion.  This is also called the "norm".
+
+    \sa lengthSquared(), normalized()
+*/
+qreal QQuaternion::length() const
+{
+    return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp);
+}
+
+/*!
+    Returns the squared length of the quaternion.
+
+    \sa length()
+*/
+qreal QQuaternion::lengthSquared() const
+{
+    return xp * xp + yp * yp + zp * zp + wp * wp;
+}
+
+/*!
+    Returns the normalized unit form of this quaternion.
+
+    If this quaternion is null, then a null quaternion is returned.
+    If the length of the quaternion is very close to 1, then the quaternion
+    will be returned as-is.  Otherwise the normalized form of the
+    quaternion of length 1 will be returned.
+
+    \sa length(), normalize()
+*/
+QQuaternion QQuaternion::normalized() const
+{
+    // Need some extra precision if the length is very small.
+    double len = double(xp) * double(xp) +
+                 double(yp) * double(yp) +
+                 double(zp) * double(zp) +
+                 double(wp) * double(wp);
+    if (qFuzzyIsNull(len - 1.0f))
+        return *this;
+    else if (!qFuzzyIsNull(len))
+        return *this / qSqrt(len);
+    else
+        return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);
+}
+
+/*!
+    Normalizes the currect quaternion in place.  Nothing happens if this
+    is a null quaternion or the length of the quaternion is very close to 1.
+
+    \sa length(), normalized()
+*/
+void QQuaternion::normalize()
+{
+    // Need some extra precision if the length is very small.
+    double len = double(xp) * double(xp) +
+                 double(yp) * double(yp) +
+                 double(zp) * double(zp) +
+                 double(wp) * double(wp);
+    if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
+        return;
+
+    len = qSqrt(len);
+
+    xp /= len;
+    yp /= len;
+    zp /= len;
+    wp /= len;
+}
+
+/*!
+    \fn QQuaternion QQuaternion::conjugate() const
+
+    Returns the conjugate of this quaternion, which is
+    (-x, -y, -z, scalar).
+*/
+
+/*!
+    Rotates \a vector with this quaternion to produce a new vector
+    in 3D space.  The following code:
+
+    \code
+    QVector3D result = q.rotateVector(vector);
+    \endcode
+
+    is equivalent to the following:
+
+    \code
+    QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector();
+    \endcode
+*/
+QVector3D QQuaternion::rotateVector(const QVector3D& vector) const
+{
+    return (*this * QQuaternion(0, vector) * conjugate()).vector();
+}
+
+/*!
+    \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion)
+
+    Adds the given \a quaternion to this quaternion and returns a reference to
+    this quaternion.
+
+    \sa operator-=()
+*/
+
+/*!
+    \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion)
+
+    Subtracts the given \a quaternion from this quaternion and returns a
+    reference to this quaternion.
+
+    \sa operator+=()
+*/
+
+/*!
+    \fn QQuaternion &QQuaternion::operator*=(qreal factor)
+
+    Multiplies this quaternion's components by the given \a factor, and
+    returns a reference to this quaternion.
+
+    \sa operator/=()
+*/
+
+/*!
+    \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion)
+
+    Multiplies this quaternion by \a quaternion and returns a reference
+    to this quaternion.
+*/
+
+/*!
+    \fn QQuaternion &QQuaternion::operator/=(qreal divisor)
+
+    Divides this quaternion's components by the given \a divisor, and
+    returns a reference to this quaternion.
+
+    \sa operator*=()
+*/
+
+#ifndef QT_NO_VECTOR3D
+
+/*!
+    Creates a normalized quaternion that corresponds to rotating through
+    \a angle degrees about the specified 3D \a axis.
+*/
+QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle)
+{
+    // Algorithm from:
+    // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
+    // We normalize the result just in case the values are close
+    // to zero, as suggested in the above FAQ.
+    qreal a = (angle / 2.0f) * M_PI / 180.0f;
+    qreal s = qSin(a);
+    qreal c = qCos(a);
+    QVector3D ax = axis.normalized();
+    return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized();
+}
+
+#endif
+
+/*!
+    Creates a normalized quaternion that corresponds to rotating through
+    \a angle degrees about the 3D axis (\a x, \a y, \a z).
+*/
+QQuaternion QQuaternion::fromAxisAndAngle
+        (qreal x, qreal y, qreal z, qreal angle)
+{
+    qreal length = qSqrt(x * x + y * y + z * z);
+    if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) {
+        x /= length;
+        y /= length;
+        z /= length;
+    }
+    qreal a = (angle / 2.0f) * M_PI / 180.0f;
+    qreal s = qSin(a);
+    qreal c = qCos(a);
+    return QQuaternion(c, x * s, y * s, z * s).normalized();
+}
+
+/*!
+    \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2)
+    \relates QQuaternion
+
+    Returns true if \a q1 is equal to \a q2; otherwise returns false.
+    This operator uses an exact floating-point comparison.
+*/
+
+/*!
+    \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2)
+    \relates QQuaternion
+
+    Returns true if \a q1 is not equal to \a q2; otherwise returns false.
+    This operator uses an exact floating-point comparison.
+*/
+
+/*!
+    \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2)
+    \relates QQuaternion
+
+    Returns a QQuaternion object that is the sum of the given quaternions,
+    \a q1 and \a q2; each component is added separately.
+
+    \sa QQuaternion::operator+=()
+*/
+
+/*!
+    \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2)
+    \relates QQuaternion
+
+    Returns a QQuaternion object that is formed by subtracting
+    \a q2 from \a q1; each component is subtracted separately.
+
+    \sa QQuaternion::operator-=()
+*/
+
+/*!
+    \fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion)
+    \relates QQuaternion
+
+    Returns a copy of the given \a quaternion,  multiplied by the
+    given \a factor.
+
+    \sa QQuaternion::operator*=()
+*/
+
+/*!
+    \fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor)
+    \relates QQuaternion
+
+    Returns a copy of the given \a quaternion,  multiplied by the
+    given \a factor.
+
+    \sa QQuaternion::operator*=()
+*/
+
+/*!
+    \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2)
+    \relates QQuaternion
+
+    Multiplies \a q1 and \a q2 using quaternion multiplication.
+    The result corresponds to applying both of the rotations specified
+    by \a q1 and \a q2.
+
+    \sa QQuaternion::operator*=()
+*/
+
+/*!
+    \fn const QQuaternion operator-(const QQuaternion &quaternion)
+    \relates QQuaternion
+    \overload
+
+    Returns a QQuaternion object that is formed by changing the sign of
+    all three components of the given \a quaternion.
+
+    Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}.
+*/
+
+/*!
+    \fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor)
+    \relates QQuaternion
+
+    Returns the QQuaternion object formed by dividing all components of
+    the given \a quaternion by the given \a divisor.
+
+    \sa QQuaternion::operator/=()
+*/
+
+/*!
+    \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2)
+    \relates QQuaternion
+
+    Returns true if \a q1 and \a q2 are equal, allowing for a small
+    fuzziness factor for floating-point comparisons; false otherwise.
+*/
+
+/*!
+    Interpolates along the shortest spherical path between the
+    rotational positions \a q1 and \a q2.  The value \a t should
+    be between 0 and 1, indicating the spherical distance to travel
+    between \a q1 and \a q2.
+
+    If \a t is less than or equal to 0, then \a q1 will be returned.
+    If \a t is greater than or equal to 1, then \a q2 will be returned.
+
+    \sa nlerp()
+*/
+QQuaternion QQuaternion::slerp
+    (const QQuaternion& q1, const QQuaternion& q2, qreal t)
+{
+    // Handle the easy cases first.
+    if (t <= 0.0f)
+        return q1;
+    else if (t >= 1.0f)
+        return q2;
+
+    // Determine the angle between the two quaternions.
+    QQuaternion q2b;
+    qreal dot;
+    dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
+    if (dot >= 0.0f) {
+        q2b = q2;
+    } else {
+        q2b = -q2;
+        dot = -dot;
+    }
+
+    // Get the scale factors.  If they are too small,
+    // then revert to simple linear interpolation.
+    qreal factor1 = 1.0f - t;
+    qreal factor2 = t;
+    if ((1.0f - dot) > 0.0000001) {
+        qreal angle = qreal(qAcos(dot));
+        qreal sinOfAngle = qreal(qSin(angle));
+        if (sinOfAngle > 0.0000001) {
+            factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle;
+            factor2 = qreal(qSin(t * angle)) / sinOfAngle;
+        }
+    }
+
+    // Construct the result quaternion.
+    return q1 * factor1 + q2b * factor2;
+}
+
+/*!
+    Interpolates along the shortest linear path between the rotational
+    positions \a q1 and \a q2.  The value \a t should be between 0 and 1,
+    indicating the distance to travel between \a q1 and \a q2.
+    The result will be normalized().
+
+    If \a t is less than or equal to 0, then \a q1 will be returned.
+    If \a t is greater than or equal to 1, then \a q2 will be returned.
+
+    The nlerp() function is typically faster than slerp() and will
+    give approximate results to spherical interpolation that are
+    good enough for some applications.
+
+    \sa slerp()
+*/
+QQuaternion QQuaternion::nlerp
+    (const QQuaternion& q1, const QQuaternion& q2, qreal t)
+{
+    // Handle the easy cases first.
+    if (t <= 0.0f)
+        return q1;
+    else if (t >= 1.0f)
+        return q2;
+
+    // Determine the angle between the two quaternions.
+    QQuaternion q2b;
+    qreal dot;
+    dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
+    if (dot >= 0.0f)
+        q2b = q2;
+    else
+        q2b = -q2;
+
+    // Perform the linear interpolation.
+    return (q1 * (1.0f - t) + q2b * t).normalized();
+}
+
+/*!
+    Returns the quaternion as a QVariant.
+*/
+QQuaternion::operator QVariant() const
+{
+    return QVariant(QVariant::Quaternion, this);
+}
+
+#ifndef QT_NO_DEBUG_STREAM
+
+QDebug operator<<(QDebug dbg, const QQuaternion &q)
+{
+    dbg.nospace() << "QQuaternion(scalar:" << q.scalar()
+        << ", vector:(" << q.x() << ", "
+        << q.y() << ", " << q.z() << "))";
+    return dbg.space();
+}
+
+#endif
+
+#ifndef QT_NO_DATASTREAM
+
+/*!
+    \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
+    \relates QQuaternion
+
+    Writes the given \a quaternion to the given \a stream and returns a
+    reference to the stream.
+
+    \sa {Format of the QDataStream Operators}
+*/
+
+QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
+{
+    stream << double(quaternion.scalar()) << double(quaternion.x())
+           << double(quaternion.y()) << double(quaternion.z());
+    return stream;
+}
+
+/*!
+    \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
+    \relates QQuaternion
+
+    Reads a quaternion from the given \a stream into the given \a quaternion
+    and returns a reference to the stream.
+
+    \sa {Format of the QDataStream Operators}
+*/
+
+QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
+{
+    double scalar, x, y, z;
+    stream >> scalar;
+    stream >> x;
+    stream >> y;
+    stream >> z;
+    quaternion.setScalar(qreal(scalar));
+    quaternion.setX(qreal(x));
+    quaternion.setY(qreal(y));
+    quaternion.setZ(qreal(z));
+    return stream;
+}
+
+#endif // QT_NO_DATASTREAM
+
+#endif
+
+QT_END_NAMESPACE