/* adler32.c -- compute the Adler-32 checksum of a data stream+ −
* Copyright (C) 1995-2004 Mark Adler+ −
* For conditions of distribution and use, see copyright notice in zlib.h+ −
*/+ −
+ −
/* @(#) $Id$ */+ −
+ −
#define ZLIB_INTERNAL+ −
#include "zlib.h"+ −
+ −
#define BASE 65521UL /* largest prime smaller than 65536 */+ −
#define NMAX 5552+ −
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */+ −
+ −
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}+ −
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);+ −
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);+ −
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);+ −
#define DO16(buf) DO8(buf,0); DO8(buf,8);+ −
+ −
/* use NO_DIVIDE if your processor does not do division in hardware */+ −
#ifdef NO_DIVIDE+ −
# define MOD(a) \+ −
do { \+ −
if (a >= (BASE << 16)) a -= (BASE << 16); \+ −
if (a >= (BASE << 15)) a -= (BASE << 15); \+ −
if (a >= (BASE << 14)) a -= (BASE << 14); \+ −
if (a >= (BASE << 13)) a -= (BASE << 13); \+ −
if (a >= (BASE << 12)) a -= (BASE << 12); \+ −
if (a >= (BASE << 11)) a -= (BASE << 11); \+ −
if (a >= (BASE << 10)) a -= (BASE << 10); \+ −
if (a >= (BASE << 9)) a -= (BASE << 9); \+ −
if (a >= (BASE << 8)) a -= (BASE << 8); \+ −
if (a >= (BASE << 7)) a -= (BASE << 7); \+ −
if (a >= (BASE << 6)) a -= (BASE << 6); \+ −
if (a >= (BASE << 5)) a -= (BASE << 5); \+ −
if (a >= (BASE << 4)) a -= (BASE << 4); \+ −
if (a >= (BASE << 3)) a -= (BASE << 3); \+ −
if (a >= (BASE << 2)) a -= (BASE << 2); \+ −
if (a >= (BASE << 1)) a -= (BASE << 1); \+ −
if (a >= BASE) a -= BASE; \+ −
} while (0)+ −
# define MOD4(a) \+ −
do { \+ −
if (a >= (BASE << 4)) a -= (BASE << 4); \+ −
if (a >= (BASE << 3)) a -= (BASE << 3); \+ −
if (a >= (BASE << 2)) a -= (BASE << 2); \+ −
if (a >= (BASE << 1)) a -= (BASE << 1); \+ −
if (a >= BASE) a -= BASE; \+ −
} while (0)+ −
#else+ −
# define MOD(a) a %= BASE+ −
# define MOD4(a) a %= BASE+ −
#endif+ −
+ −
/* ========================================================================= */+ −
uLong ZEXPORT adler32(adler, buf, len)+ −
uLong adler;+ −
const Bytef *buf;+ −
uInt len;+ −
{+ −
unsigned long sum2;+ −
unsigned n;+ −
+ −
/* split Adler-32 into component sums */+ −
sum2 = (adler >> 16) & 0xffff;+ −
adler &= 0xffff;+ −
+ −
/* in case user likes doing a byte at a time, keep it fast */+ −
if (len == 1) {+ −
adler += buf[0];+ −
if (adler >= BASE)+ −
adler -= BASE;+ −
sum2 += adler;+ −
if (sum2 >= BASE)+ −
sum2 -= BASE;+ −
return adler | (sum2 << 16);+ −
}+ −
+ −
/* initial Adler-32 value (deferred check for len == 1 speed) */+ −
if (buf == Z_NULL)+ −
return 1L;+ −
+ −
/* in case short lengths are provided, keep it somewhat fast */+ −
if (len < 16) {+ −
while (len--) {+ −
adler += *buf++;+ −
sum2 += adler;+ −
}+ −
if (adler >= BASE)+ −
adler -= BASE;+ −
MOD4(sum2); /* only added so many BASE's */+ −
return adler | (sum2 << 16);+ −
}+ −
+ −
/* do length NMAX blocks -- requires just one modulo operation */+ −
while (len >= NMAX) {+ −
len -= NMAX;+ −
n = NMAX / 16; /* NMAX is divisible by 16 */+ −
do {+ −
DO16(buf); /* 16 sums unrolled */+ −
buf += 16;+ −
} while (--n);+ −
MOD(adler);+ −
MOD(sum2);+ −
}+ −
+ −
/* do remaining bytes (less than NMAX, still just one modulo) */+ −
if (len) { /* avoid modulos if none remaining */+ −
while (len >= 16) {+ −
len -= 16;+ −
DO16(buf);+ −
buf += 16;+ −
}+ −
while (len--) {+ −
adler += *buf++;+ −
sum2 += adler;+ −
}+ −
MOD(adler);+ −
MOD(sum2);+ −
}+ −
+ −
/* return recombined sums */+ −
return adler | (sum2 << 16);+ −
}+ −
+ −
/* ========================================================================= */+ −
uLong ZEXPORT adler32_combine(adler1, adler2, len2)+ −
uLong adler1;+ −
uLong adler2;+ −
z_off_t len2;+ −
{+ −
unsigned long sum1;+ −
unsigned long sum2;+ −
unsigned rem;+ −
+ −
/* the derivation of this formula is left as an exercise for the reader */+ −
rem = (unsigned)(len2 % BASE);+ −
sum1 = adler1 & 0xffff;+ −
sum2 = rem * sum1;+ −
MOD(sum2);+ −
sum1 += (adler2 & 0xffff) + BASE - 1;+ −
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;+ −
if (sum1 > BASE) sum1 -= BASE;+ −
if (sum1 > BASE) sum1 -= BASE;+ −
if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);+ −
if (sum2 > BASE) sum2 -= BASE;+ −
return sum1 | (sum2 << 16);+ −
}+ −