/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtOpenGL module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <qdebug.h>
#include <private/qfontengine_p.h>
#include <qmath.h>
#include <private/qmath_p.h>
#include <private/qdrawhelper_p.h>
#include <private/qpaintengine_p.h>
#include "qapplication.h"
#include "qbrush.h"
#include "qgl.h"
#include <private/qgl_p.h>
#include <private/qglpaintdevice_p.h>
#include <private/qpainter_p.h>
#include "qmap.h"
#include <private/qpaintengine_opengl_p.h>
#include <private/qdatabuffer_p.h>
#include "qpen.h"
#include "qvarlengtharray.h"
#include <private/qpainter_p.h>
#include <private/qglpixelbuffer_p.h>
#include <private/qbezier_p.h>
#include <qglframebufferobject.h>
#include "private/qtessellator_p.h"
#include "util/fragmentprograms_p.h"
#ifdef Q_WS_QWS
#include "private/qglwindowsurface_qws_p.h"
#include "qwsmanager_qws.h"
#include "private/qwsmanager_p.h"
#endif
#ifdef QT_OPENGL_ES_1_CL
#include "qgl_cl_p.h"
#endif
#define QGL_FUNC_CONTEXT QGLContext *ctx = const_cast<QGLContext *>(device->context());
#include <stdlib.h>
#include "qpaintengine_opengl_p.h"
QT_BEGIN_NAMESPACE
extern QImage qt_imageForBrush(int brushStyle, bool invert); //in qbrush.cpp
#ifdef QT_MAC_USE_COCOA
extern void *qt_current_nsopengl_context(); // qgl_mac.mm
#endif
#define QREAL_MAX 9e100
#define QREAL_MIN -9e100
extern int qt_next_power_of_two(int v);
#define DISABLE_DEBUG_ONCE
//#define DEBUG_DISPLAY_MASK_TEXTURE
#ifdef DISABLE_DEBUG_ONCE
#define DEBUG_OVERRIDE(state) ;
#define DEBUG_ONCE_STR(str) ;
#define DEBUG_ONCE if (0)
#else
static int DEBUG_OVERRIDE_FLAG = 0;
static bool DEBUG_TEMP_FLAG;
#define DEBUG_OVERRIDE(state) { state ? ++DEBUG_OVERRIDE_FLAG : --DEBUG_OVERRIDE_FLAG; }
#define DEBUG_ONCE if ((DEBUG_TEMP_FLAG = DEBUG_OVERRIDE_FLAG) && 0) ; else for (static int DEBUG_ONCE_FLAG = false; !DEBUG_ONCE_FLAG || DEBUG_TEMP_FLAG; DEBUG_ONCE_FLAG = true, DEBUG_TEMP_FLAG = false)
#define DEBUG_ONCE_STR(str) DEBUG_ONCE qDebug() << (str);
#endif
static inline void qt_glColor4ubv(unsigned char *col)
{
#ifdef QT_OPENGL_ES
glColor4f(col[0]/255.0, col[1]/255.0, col[2]/255.0, col[3]/255.0);
#else
glColor4ubv(col);
#endif
}
struct QT_PointF {
qreal x;
qreal y;
};
struct QGLTrapezoid
{
QGLTrapezoid()
{}
QGLTrapezoid(qreal top_, qreal bottom_, qreal topLeftX_, qreal topRightX_, qreal bottomLeftX_, qreal bottomRightX_)
: top(top_),
bottom(bottom_),
topLeftX(topLeftX_),
topRightX(topRightX_),
bottomLeftX(bottomLeftX_),
bottomRightX(bottomRightX_)
{}
const QGLTrapezoid translated(const QPointF &delta) const;
qreal top;
qreal bottom;
qreal topLeftX;
qreal topRightX;
qreal bottomLeftX;
qreal bottomRightX;
};
const QGLTrapezoid QGLTrapezoid::translated(const QPointF &delta) const
{
QGLTrapezoid trap(*this);
trap.top += delta.y();
trap.bottom += delta.y();
trap.topLeftX += delta.x();
trap.topRightX += delta.x();
trap.bottomLeftX += delta.x();
trap.bottomRightX += delta.x();
return trap;
}
class QOpenGLImmediateModeTessellator;
class QGLMaskGenerator;
class QGLOffscreen;
class QGLMaskTextureCache
{
public:
void setOffscreenSize(const QSize &offscreenSize);
void setDrawableSize(const QSize &drawableSize);
struct CacheLocation {
QRect rect;
int channel;
QRect screen_rect;
};
struct CacheInfo {
inline CacheInfo(const QPainterPath &p, const QTransform &m, qreal w = -1) :
path(p), matrix(m), stroke_width(w), age(0) {}
QPainterPath path;
QTransform matrix;
qreal stroke_width;
CacheLocation loc;
int age;
};
struct QuadTreeNode {
quint64 key;
int largest_available_block;
int largest_used_block;
};
CacheLocation getMask(QGLMaskGenerator &maskGenerator, QOpenGLPaintEnginePrivate *engine);
typedef QMultiHash<quint64, CacheInfo> QGLTextureCacheHash;
enum {block_size = 64};
// throw out keys that are too old
void maintainCache();
void clearCache();
private:
quint64 hash(const QPainterPath &p, const QTransform &m, qreal w);
void createMask(quint64 key, CacheInfo &info, QGLMaskGenerator &maskGenerator);
QSize offscreenSize;
QSize drawableSize;
QGLTextureCacheHash cache;
QVector<QuadTreeNode> occupied_quadtree[4];
void quadtreeUpdate(int channel, int node, int current_block_size);
void quadtreeAllocate(quint64 key, const QSize &size, QRect *rect, int *channel);
bool quadtreeFindAvailableLocation(const QSize &size, QRect *rect, int *channel);
void quadtreeFindExistingLocation(const QSize &size, QRect *rect, int *channel);
void quadtreeInsert(int channel, quint64 key, const QRect &rect, int node = 0);
void quadtreeClear(int channel, const QRect &rect, int node = 0);
int quadtreeBlocksize(int node);
QPoint quadtreeLocation(int node);
QOpenGLPaintEnginePrivate *engine;
};
Q_GLOBAL_STATIC(QGLMaskTextureCache, qt_mask_texture_cache)
class QGLOffscreen : public QObject
{
Q_OBJECT
public:
QGLOffscreen()
: QObject(),
offscreen(0),
ctx(0),
mask_dim(0),
activated(false),
bound(false)
{
connect(QGLSignalProxy::instance(),
SIGNAL(aboutToDestroyContext(const QGLContext *)),
SLOT(cleanupGLContextRefs(const QGLContext *)));
}
inline void setDevice(QPaintDevice *pdev);
void begin();
void end();
inline void bind();
inline void release();
inline bool isBound() const;
inline QSize drawableSize() const;
inline QSize offscreenSize() const;
inline GLuint offscreenTexture() const;
QGLContext *context() const;
static bool isSupported();
inline void initialize();
inline bool isValid() const;
public Q_SLOTS:
void cleanupGLContextRefs(const QGLContext *context) {
if (context == ctx) {
delete offscreen;
ctx = 0;
offscreen = 0;
mask_dim = 0;
}
}
private:
QGLPaintDevice* device;
QGLFramebufferObject *offscreen;
QGLContext *ctx;
// dimensions of mask texture (square)
int mask_dim;
QSize last_failed_size;
bool drawable_fbo;
bool activated;
bool initialized;
bool bound;
};
inline void QGLOffscreen::setDevice(QPaintDevice *pdev)
{
if (pdev->devType() == QInternal::OpenGL)
device = static_cast<QGLPaintDevice*>(pdev);
else
device = QGLPaintDevice::getDevice(pdev);
if (!device)
return;
drawable_fbo = (pdev->devType() == QInternal::FramebufferObject);
}
void QGLOffscreen::begin()
{
#ifndef QT_OPENGL_ES
initialized = false;
if (activated)
initialize();
#endif
}
void QGLOffscreen::initialize()
{
#ifndef QT_OPENGL_ES
if (initialized)
return;
activated = true;
initialized = true;
int dim = qMax(2048, static_cast<int>(qt_next_power_of_two(qMax(device->size().width(), device->size().height()))));
bool shared_context = QGLContext::areSharing(device->context(), ctx);
bool would_fail = last_failed_size.isValid() &&
(device->size().width() >= last_failed_size.width() ||
device->size().height() >= last_failed_size.height());
bool needs_refresh = dim > mask_dim || !shared_context;
if (needs_refresh && !would_fail) {
DEBUG_ONCE qDebug() << "QGLOffscreen::initialize(): creating offscreen of size" << dim;
delete offscreen;
offscreen = new QGLFramebufferObject(dim, dim, GLenum(GL_TEXTURE_2D));
mask_dim = dim;
if (!offscreen->isValid()) {
qWarning("QGLOffscreen: Invalid offscreen fbo (size %dx%d)", mask_dim, mask_dim);
delete offscreen;
offscreen = 0;
mask_dim = 0;
last_failed_size = device->size();
}
}
qt_mask_texture_cache()->setOffscreenSize(offscreenSize());
qt_mask_texture_cache()->setDrawableSize(device->size());
ctx = device->context();
#endif
}
inline bool QGLOffscreen::isValid() const
{
return offscreen;
}
void QGLOffscreen::end()
{
if (bound)
release();
#ifdef DEBUG_DISPLAY_MASK_TEXTURE
glReadBuffer(GL_BACK);
glDrawBuffer(GL_BACK);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glColor4f(1, 1, 1, 1);
glDisable(GL_DEPTH_TEST);
glBlendFunc(GL_ONE, GL_ZERO);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, offscreen->texture());
glBegin(GL_QUADS);
glTexCoord2f(0.0, 1.0); glVertex2f(0.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex2f(drawable.size().width(), 0.0);
glTexCoord2f(1.0, 0.0); glVertex2f(drawable.size().width(), drawable.size().height());
glTexCoord2f(0.0, 0.0); glVertex2f(0.0, drawable.size().height());
glEnd();
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
#endif
}
inline void QGLOffscreen::bind()
{
#ifndef QT_OPENGL_ES
Q_ASSERT(initialized);
if (!offscreen || bound)
return;
DEBUG_ONCE qDebug() << "QGLOffscreen: binding offscreen";
offscreen->bind();
bound = true;
glViewport(0, 0, offscreenSize().width(), offscreenSize().height());
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, offscreenSize().width(), offscreenSize().height(), 0, -999999, 999999);
glMatrixMode(GL_MODELVIEW);
#endif
}
inline void QGLOffscreen::release()
{
#ifndef QT_OPENGL_ES
if (!offscreen || !bound)
return;
#ifdef Q_WS_X11
// workaround for bug in nvidia driver versions 9x.xx
if (QGLExtensions::nvidiaFboNeedsFinish)
glFinish();
#endif
DEBUG_ONCE_STR("QGLOffscreen: releasing offscreen");
if (drawable_fbo)
device->ensureActiveTarget(); //###
else
offscreen->release();
QSize sz(device->size());
glViewport(0, 0, sz.width(), sz.height());
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
#ifndef QT_OPENGL_ES
glOrtho(0, sz.width(), sz.height(), 0, -999999, 999999);
#else
glOrthof(0, sz.width(), sz.height(), 0, -999999, 999999);
#endif
glMatrixMode(GL_MODELVIEW);
bound = false;
#endif
}
inline bool QGLOffscreen::isBound() const
{
return bound;
}
inline QSize QGLOffscreen::drawableSize() const
{
return device->size();
}
inline QSize QGLOffscreen::offscreenSize() const
{
return QSize(mask_dim, mask_dim);
}
inline GLuint QGLOffscreen::offscreenTexture() const
{
return offscreen ? offscreen->texture() : 0;
}
inline QGLContext *QGLOffscreen::context() const
{
return ctx;
}
bool QGLOffscreen::isSupported()
{
return (QGLExtensions::glExtensions & QGLExtensions::FramebufferObject); // for fbo
}
struct QDrawQueueItem
{
QDrawQueueItem(qreal _opacity,
QBrush _brush,
const QPointF &_brush_origion,
QPainter::CompositionMode _composition_mode,
const QTransform &_matrix,
QGLMaskTextureCache::CacheLocation _location)
: opacity(_opacity),
brush(_brush),
brush_origin(_brush_origion),
composition_mode(_composition_mode),
matrix(_matrix),
location(_location) {}
qreal opacity;
QBrush brush;
QPointF brush_origin;
QPainter::CompositionMode composition_mode;
QTransform matrix;
QGLMaskTextureCache::CacheLocation location;
};
////////// GL program cache: start
typedef struct {
int brush; // brush index or mask index
int mode; // composition mode index
bool mask;
GLuint program;
} GLProgram;
typedef QMultiHash<const QGLContext *, GLProgram> QGLProgramHash;
class QGLProgramCache : public QObject
{
Q_OBJECT
public:
QGLProgramCache() {
// we have to know when a context is deleted so we can free
// any program handles it holds
connect(QGLSignalProxy::instance(), SIGNAL(aboutToDestroyContext(const QGLContext *)),
SLOT(cleanupPrograms(const QGLContext *)));
}
~QGLProgramCache() {
// at this point the cache should contain 0 elements
// Q_ASSERT(program.size() == 0);
}
GLuint getProgram(const QGLContext *ctx, int brush, int mode, bool mask_mode)
{
// 1. see if we have an entry for the ctx context
QList<GLProgram> progs = programs.values(ctx);
for (int i=0; i<progs.size(); ++i) {
const GLProgram &prg = progs.at(i);
if (mask_mode) {
if (prg.mask && prg.brush == brush)
return prg.program;
} else {
if (!prg.mask && prg.brush == brush && prg.mode == mode)
return prg.program;
}
}
// 2. try to find a match in a shared context, and update the
// hash with the entry found
QList<const QGLContext *> contexts = programs.uniqueKeys();
for (int i=0; i<contexts.size(); ++i) {
const QGLContext *cx = contexts.at(i);
if (cx != ctx && QGLContext::areSharing(cx, ctx)) {
QList<GLProgram> progs = programs.values(cx);
for (int k=0; k<progs.size(); ++k) {
const GLProgram &prg = progs.at(k);
if (mask_mode) {
if (prg.mask && prg.brush == brush) {
programs.insert(ctx, prg);
return prg.program;
}
} else {
if (!prg.mask && prg.brush == brush && prg.mode == mode) {
programs.insert(ctx, prg);
return prg.program;
}
}
}
}
}
// 3. compile a new program and place it into the cache
// NB! assumes ctx is the current GL context
GLProgram prg;
prg.brush = brush;
prg.mode = mode;
prg.mask = mask_mode;
glGenProgramsARB(1, &prg.program);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, prg.program);
const char *src = mask_mode
? mask_fragment_program_sources[brush]
: painter_fragment_program_sources[brush][mode];
// necessary for .NET 2002, apparently
const GLbyte *gl_src = reinterpret_cast<const GLbyte *>(src);
while (glGetError() != GL_NO_ERROR) {} // reset error state
glProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
int(strlen(src)), gl_src);
if (glGetError() != GL_NO_ERROR) {
// qDebug() << "QGLProgramCache: Unable to compile fragment program.";
glDeleteProgramsARB(1, &prg.program);
return 0;
}
// qDebug() << "QGLProgramCache: Creating GL program:" << prg.program << hex << ctx;
programs.insert(ctx, prg);
return prg.program;
}
public Q_SLOTS:
void cleanupPrograms(const QGLContext *context)
{
QGLProgramHash::iterator it = programs.begin();
while (it != programs.end()) {
if (it.key() == context) {
if (!context->isSharing()) {
// the ctx variable below is needed for the glDeleteProgramARB call
// since it is resolved from our extension system
// NB! assumes context is the current GL context
const QGLContext *ctx = context;
// qDebug() << "QGLProgramHash: Deleting GL program:" << it.value().program << hex << it.key();
glDeleteProgramsARB(1, &it.value().program);
}
it = programs.erase(it);
} else {
++it;
}
}
}
private:
QGLProgramHash programs;
};
Q_GLOBAL_STATIC(QGLProgramCache, qt_gl_program_cache)
////////// GL program cache: end
class QOpenGLPaintEnginePrivate;
class QGLPrivateCleanup : public QObject
{
Q_OBJECT
public:
QGLPrivateCleanup(QOpenGLPaintEnginePrivate *priv)
: p(priv)
{
connect(QGLSignalProxy::instance(),
SIGNAL(aboutToDestroyContext(const QGLContext *)),
SLOT(cleanupGLContextRefs(const QGLContext *)));
}
public Q_SLOTS:
void cleanupGLContextRefs(const QGLContext *context);
private:
QOpenGLPaintEnginePrivate *p;
};
class QOpenGLPaintEnginePrivate : public QPaintEngineExPrivate
{
Q_DECLARE_PUBLIC(QOpenGLPaintEngine)
public:
QOpenGLPaintEnginePrivate()
: opacity(1)
, composition_mode(QPainter::CompositionMode_SourceOver)
, has_fast_pen(false)
, use_stencil_method(false)
, dirty_drawable_texture(false)
, has_stencil_face_ext(false)
, use_fragment_programs(false)
, high_quality_antialiasing(false)
, use_smooth_pixmap_transform(false)
, use_emulation(false)
, txop(QTransform::TxNone)
, inverseScale(1)
, moveToCount(0)
, last_created_state(0)
, shader_ctx(0)
, grad_palette(0)
, drawable_texture(0)
, ref_cleaner(this)
{}
inline void setGLPen(const QColor &c) {
uint alpha = qRound(c.alpha() * opacity);
pen_color[0] = qt_div_255(c.red() * alpha);
pen_color[1] = qt_div_255(c.green() * alpha);
pen_color[2] = qt_div_255(c.blue() * alpha);
pen_color[3] = alpha;
}
inline void setGLBrush(const QColor &c) {
uint alpha = qRound(c.alpha() * opacity);
brush_color[0] = qt_div_255(c.red() * alpha);
brush_color[1] = qt_div_255(c.green() * alpha);
brush_color[2] = qt_div_255(c.blue() * alpha);
brush_color[3] = alpha;
}
inline void setGradientOps(const QBrush &brush, const QRectF &bounds);
void createGradientPaletteTexture(const QGradient& g);
void updateGradient(const QBrush &brush, const QRectF &bounds);
inline void lineToStencil(qreal x, qreal y);
inline void curveToStencil(const QPointF &cp1, const QPointF &cp2, const QPointF &ep);
void pathToVertexArrays(const QPainterPath &path);
void fillVertexArray(Qt::FillRule fillRule);
void drawVertexArrays();
void fillPath(const QPainterPath &path);
void fillPolygon_dev(const QPointF *polygonPoints, int pointCount,
Qt::FillRule fill);
void drawFastRect(const QRectF &rect);
void strokePath(const QPainterPath &path, bool use_cache);
void strokePathFastPen(const QPainterPath &path, bool needsResolving);
void strokeLines(const QPainterPath &path);
void updateDepthClip();
void systemStateChanged();
void cleanupGLContextRefs(const QGLContext *context) {
if (context == shader_ctx)
shader_ctx = 0;
}
inline void updateFastPen() {
qreal pen_width = cpen.widthF();
has_fast_pen =
((pen_width == 0 || (pen_width <= 1 && matrix.type() <= QTransform::TxTranslate))
|| cpen.isCosmetic())
&& cpen.style() == Qt::SolidLine
&& cpen.isSolid();
}
void disableClipping();
void enableClipping();
void ensureDrawableTexture();
QPen cpen;
QBrush cbrush;
Qt::BrushStyle brush_style;
QPointF brush_origin;
Qt::BrushStyle pen_brush_style;
qreal opacity;
QPainter::CompositionMode composition_mode;
Qt::BrushStyle current_style;
uint has_pen : 1;
uint has_brush : 1;
uint has_fast_pen : 1;
uint use_stencil_method : 1;
uint dirty_drawable_texture : 1;
uint has_stencil_face_ext : 1;
uint use_fragment_programs : 1;
uint high_quality_antialiasing : 1;
uint has_antialiasing : 1;
uint has_fast_composition_mode : 1;
uint use_smooth_pixmap_transform : 1;
uint use_system_clip : 1;
uint use_emulation : 1;
QRegion dirty_stencil;
void updateUseEmulation();
QTransform matrix;
GLubyte pen_color[4];
GLubyte brush_color[4];
QTransform::TransformationType txop;
QGLPaintDevice* device;
QGLOffscreen offscreen;
qreal inverseScale;
int moveToCount;
QPointF path_start;
bool isFastRect(const QRectF &r);
void drawImageAsPath(const QRectF &r, const QImage &img, const QRectF &sr);
void drawTiledImageAsPath(const QRectF &r, const QImage &img, qreal sx, qreal sy, const QPointF &offset);
void drawOffscreenPath(const QPainterPath &path);
void composite(const QRectF &rect, const QPoint &maskOffset = QPoint());
void composite(GLuint primitive, const q_vertexType *vertexArray, int vertexCount, const QPoint &maskOffset = QPoint());
bool createFragmentPrograms();
void deleteFragmentPrograms();
void updateFragmentProgramData(int locations[]);
void cacheItemErased(int channel, const QRect &rect);
void addItem(const QGLMaskTextureCache::CacheLocation &location);
void drawItem(const QDrawQueueItem &item);
void flushDrawQueue();
void copyDrawable(const QRectF &rect);
void updateGLMatrix() const;
mutable QPainterState *last_created_state;
QGLContext *shader_ctx;
GLuint grad_palette;
GLuint painter_fragment_programs[num_fragment_brushes][num_fragment_composition_modes];
GLuint mask_fragment_programs[num_fragment_masks];
float inv_matrix_data[3][4];
float fmp_data[4];
float fmp2_m_radius2_data[4];
float angle_data[4];
float linear_data[4];
float porterduff_ab_data[4];
float porterduff_xyz_data[4];
float mask_offset_data[4];
float mask_channel_data[4];
FragmentBrushType fragment_brush;
FragmentCompositionModeType fragment_composition_mode;
void setPorterDuffData(float a, float b, float x, float y, float z);
void setInvMatrixData(const QTransform &inv_matrix);
qreal max_x;
qreal max_y;
qreal min_x;
qreal min_y;
QDataBuffer<QPointF> tess_points;
QVector<int> tess_points_stops;
GLdouble projection_matrix[4][4];
#if defined(QT_OPENGL_ES_1) || defined(QT_OPENGL_ES_2)
GLfloat mv_matrix[4][4];
#else
GLdouble mv_matrix[4][4];
#endif
QList<QDrawQueueItem> drawQueue;
GLuint drawable_texture;
QSize drawable_texture_size;
int max_texture_size;
QGLPrivateCleanup ref_cleaner;
friend class QGLMaskTextureCache;
};
class QOpenGLCoordinateOffset
{
public:
QOpenGLCoordinateOffset(QOpenGLPaintEnginePrivate *d);
~QOpenGLCoordinateOffset();
static void enableOffset(QOpenGLPaintEnginePrivate *d);
static void disableOffset(QOpenGLPaintEnginePrivate *d);
private:
QOpenGLPaintEnginePrivate *d;
};
QOpenGLCoordinateOffset::QOpenGLCoordinateOffset(QOpenGLPaintEnginePrivate *d_)
: d(d_)
{
enableOffset(d);
}
void QOpenGLCoordinateOffset::enableOffset(QOpenGLPaintEnginePrivate *d)
{
if (!d->has_antialiasing) {
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
d->mv_matrix[3][0] += 0.5;
d->mv_matrix[3][1] += 0.5;
d->updateGLMatrix();
}
}
QOpenGLCoordinateOffset::~QOpenGLCoordinateOffset()
{
disableOffset(d);
}
void QOpenGLCoordinateOffset::disableOffset(QOpenGLPaintEnginePrivate *d)
{
if (!d->has_antialiasing) {
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
d->mv_matrix[3][0] -= 0.5;
d->mv_matrix[3][1] -= 0.5;
}
}
void QGLPrivateCleanup::cleanupGLContextRefs(const QGLContext *context)
{
p->cleanupGLContextRefs(context);
}
static inline void updateTextureFilter(GLenum target, GLenum wrapMode, bool smoothPixmapTransform)
{
if (smoothPixmapTransform) {
glTexParameterf(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameterf(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexParameterf(target, GL_TEXTURE_WRAP_S, wrapMode);
glTexParameterf(target, GL_TEXTURE_WRAP_T, wrapMode);
}
static inline QPainterPath strokeForPath(const QPainterPath &path, const QPen &cpen) {
QPainterPathStroker stroker;
if (cpen.style() == Qt::CustomDashLine)
stroker.setDashPattern(cpen.dashPattern());
else
stroker.setDashPattern(cpen.style());
stroker.setCapStyle(cpen.capStyle());
stroker.setJoinStyle(cpen.joinStyle());
stroker.setMiterLimit(cpen.miterLimit());
qreal width = cpen.widthF();
if (width == 0)
stroker.setWidth(1);
else
stroker.setWidth(width);
QPainterPath stroke = stroker.createStroke(path);
stroke.setFillRule(Qt::WindingFill);
return stroke;
}
class QGLStrokeCache
{
struct CacheInfo
{
inline CacheInfo(QPainterPath p, QPainterPath sp, QPen stroke_pen) :
path(p), stroked_path(sp), pen(stroke_pen) {}
QPainterPath path;
QPainterPath stroked_path;
QPen pen;
};
typedef QMultiHash<quint64, CacheInfo> QGLStrokeTableHash;
public:
inline QPainterPath getStrokedPath(const QPainterPath &path, const QPen &pen) {
quint64 hash_val = 0;
for (int i = 0; i < path.elementCount() && i <= 2; i++) {
hash_val += quint64(path.elementAt(i).x);
hash_val += quint64(path.elementAt(i).y);
}
QGLStrokeTableHash::const_iterator it = cache.constFind(hash_val);
if (it == cache.constEnd())
return addCacheElement(hash_val, path, pen);
else {
do {
const CacheInfo &cache_info = it.value();
if (cache_info.path == path && cache_info.pen == pen)
return cache_info.stroked_path;
++it;
} while (it != cache.constEnd() && it.key() == hash_val);
// an exact match for this path was not found, create new cache element
return addCacheElement(hash_val, path, pen);
}
}
protected:
inline int maxCacheSize() const { return 500; }
QPainterPath addCacheElement(quint64 hash_val, QPainterPath path, const QPen &pen) {
if (cache.size() == maxCacheSize()) {
int elem_to_remove = qrand() % maxCacheSize();
cache.remove(cache.keys()[elem_to_remove]); // may remove more than 1, but OK
}
QPainterPath stroke = strokeForPath(path, pen);
CacheInfo cache_entry(path, stroke, pen);
return cache.insert(hash_val, cache_entry).value().stroked_path;
}
QGLStrokeTableHash cache;
};
Q_GLOBAL_STATIC(QGLStrokeCache, qt_opengl_stroke_cache)
class QGLGradientCache : public QObject
{
Q_OBJECT
struct CacheInfo
{
inline CacheInfo(QGradientStops s, qreal op, QGradient::InterpolationMode mode) :
stops(s), opacity(op), interpolationMode(mode) {}
GLuint texId;
QGradientStops stops;
qreal opacity;
QGradient::InterpolationMode interpolationMode;
};
typedef QMultiHash<quint64, CacheInfo> QGLGradientColorTableHash;
public:
QGLGradientCache() : QObject(), buffer_ctx(0)
{
connect(QGLSignalProxy::instance(),
SIGNAL(aboutToDestroyContext(const QGLContext *)),
SLOT(cleanupGLContextRefs(const QGLContext *)));
}
inline GLuint getBuffer(const QGradient &gradient, qreal opacity, QGLContext *ctx) {
if (buffer_ctx && !QGLContext::areSharing(buffer_ctx, ctx))
cleanCache();
buffer_ctx = ctx;
quint64 hash_val = 0;
QGradientStops stops = gradient.stops();
for (int i = 0; i < stops.size() && i <= 2; i++)
hash_val += stops[i].second.rgba();
QGLGradientColorTableHash::const_iterator it = cache.constFind(hash_val);
if (it == cache.constEnd())
return addCacheElement(hash_val, gradient, opacity);
else {
do {
const CacheInfo &cache_info = it.value();
if (cache_info.stops == stops && cache_info.opacity == opacity && cache_info.interpolationMode == gradient.interpolationMode()) {
return cache_info.texId;
}
++it;
} while (it != cache.constEnd() && it.key() == hash_val);
// an exact match for these stops and opacity was not found, create new cache
return addCacheElement(hash_val, gradient, opacity);
}
}
inline int paletteSize() const { return 1024; }
protected:
inline int maxCacheSize() const { return 60; }
inline void generateGradientColorTable(const QGradient& g,
uint *colorTable,
int size, qreal opacity) const;
GLuint addCacheElement(quint64 hash_val, const QGradient &gradient, qreal opacity) {
if (cache.size() == maxCacheSize()) {
int elem_to_remove = qrand() % maxCacheSize();
quint64 key = cache.keys()[elem_to_remove];
// need to call glDeleteTextures on each removed cache entry:
QGLGradientColorTableHash::const_iterator it = cache.constFind(key);
do {
glDeleteTextures(1, &it.value().texId);
} while (++it != cache.constEnd() && it.key() == key);
cache.remove(key); // may remove more than 1, but OK
}
CacheInfo cache_entry(gradient.stops(), opacity, gradient.interpolationMode());
uint buffer[1024];
generateGradientColorTable(gradient, buffer, paletteSize(), opacity);
glGenTextures(1, &cache_entry.texId);
#ifndef QT_OPENGL_ES
glBindTexture(GL_TEXTURE_1D, cache_entry.texId);
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, paletteSize(),
0, GL_BGRA, GL_UNSIGNED_BYTE, buffer);
#else
// create 2D one-line texture instead. This requires an impl of manual GL_TEXGEN for all primitives
#endif
return cache.insert(hash_val, cache_entry).value().texId;
}
void cleanCache() {
QGLShareContextScope scope(buffer_ctx);
QGLGradientColorTableHash::const_iterator it = cache.constBegin();
for (; it != cache.constEnd(); ++it) {
const CacheInfo &cache_info = it.value();
glDeleteTextures(1, &cache_info.texId);
}
cache.clear();
}
QGLGradientColorTableHash cache;
QGLContext *buffer_ctx;
public Q_SLOTS:
void cleanupGLContextRefs(const QGLContext *context) {
if (context == buffer_ctx) {
cleanCache();
buffer_ctx = 0;
}
}
};
static inline uint endianColor(uint c)
{
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
return c;
#else
return ( (c << 24) & 0xff000000)
| ((c >> 24) & 0x000000ff)
| ((c << 8) & 0x00ff0000)
| ((c >> 8) & 0x0000ff00);
#endif // Q_BYTE_ORDER
}
void QGLGradientCache::generateGradientColorTable(const QGradient& gradient, uint *colorTable, int size, qreal opacity) const
{
int pos = 0;
QGradientStops s = gradient.stops();
QVector<uint> colors(s.size());
for (int i = 0; i < s.size(); ++i)
colors[i] = s[i].second.rgba();
bool colorInterpolation = (gradient.interpolationMode() == QGradient::ColorInterpolation);
uint alpha = qRound(opacity * 256);
uint current_color = ARGB_COMBINE_ALPHA(colors[0], alpha);
qreal incr = 1.0 / qreal(size);
qreal fpos = 1.5 * incr;
colorTable[pos++] = endianColor(PREMUL(current_color));
while (fpos <= s.first().first) {
colorTable[pos] = colorTable[pos - 1];
pos++;
fpos += incr;
}
if (colorInterpolation)
current_color = PREMUL(current_color);
for (int i = 0; i < s.size() - 1; ++i) {
qreal delta = 1/(s[i+1].first - s[i].first);
uint next_color = ARGB_COMBINE_ALPHA(colors[i+1], alpha);
if (colorInterpolation)
next_color = PREMUL(next_color);
while (fpos < s[i+1].first && pos < size) {
int dist = int(256 * ((fpos - s[i].first) * delta));
int idist = 256 - dist;
if (colorInterpolation)
colorTable[pos] = endianColor(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist));
else
colorTable[pos] = endianColor(PREMUL(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist)));
++pos;
fpos += incr;
}
current_color = next_color;
}
Q_ASSERT(s.size() > 0);
uint last_color = endianColor(PREMUL(ARGB_COMBINE_ALPHA(colors[s.size() - 1], alpha)));
for (;pos < size; ++pos)
colorTable[pos] = last_color;
// Make sure the last color stop is represented at the end of the table
colorTable[size-1] = last_color;
}
#ifndef Q_WS_QWS
Q_GLOBAL_STATIC(QGLGradientCache, qt_opengl_gradient_cache)
#endif
void QOpenGLPaintEnginePrivate::createGradientPaletteTexture(const QGradient& g)
{
#ifdef QT_OPENGL_ES //###
Q_UNUSED(g);
#else
GLuint texId = qt_opengl_gradient_cache()->getBuffer(g, opacity, device->context());
glBindTexture(GL_TEXTURE_1D, texId);
grad_palette = texId;
if (g.spread() == QGradient::RepeatSpread || g.type() == QGradient::ConicalGradient)
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
else if (g.spread() == QGradient::ReflectSpread)
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT_IBM);
else
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#endif
}
inline void QOpenGLPaintEnginePrivate::setGradientOps(const QBrush &brush, const QRectF &bounds)
{
current_style = brush.style();
if (current_style < Qt::LinearGradientPattern || current_style > Qt::ConicalGradientPattern) {
setGLBrush(brush.color());
qt_glColor4ubv(brush_color);
}
updateGradient(brush, bounds);
#ifndef QT_OPENGL_ES //### GLES does not have GL_TEXTURE_GEN_ so we are falling back for gradients
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_1D);
if (current_style == Qt::LinearGradientPattern) {
if (high_quality_antialiasing || !has_fast_composition_mode) {
fragment_brush = FRAGMENT_PROGRAM_BRUSH_LINEAR;
} else {
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_1D);
}
} else {
if (use_fragment_programs) {
if (current_style == Qt::RadialGradientPattern)
fragment_brush = FRAGMENT_PROGRAM_BRUSH_RADIAL;
else if (current_style == Qt::ConicalGradientPattern)
fragment_brush = FRAGMENT_PROGRAM_BRUSH_CONICAL;
else if (current_style == Qt::SolidPattern)
fragment_brush = FRAGMENT_PROGRAM_BRUSH_SOLID;
else if (current_style == Qt::TexturePattern && !brush.texture().isQBitmap())
fragment_brush = FRAGMENT_PROGRAM_BRUSH_TEXTURE;
else
fragment_brush = FRAGMENT_PROGRAM_BRUSH_PATTERN;
}
}
#endif
}
QOpenGLPaintEngine::QOpenGLPaintEngine()
: QPaintEngineEx(*(new QOpenGLPaintEnginePrivate))
{
}
QOpenGLPaintEngine::~QOpenGLPaintEngine()
{
}
bool QOpenGLPaintEngine::begin(QPaintDevice *pdev)
{
Q_D(QOpenGLPaintEngine);
if (pdev->devType() == QInternal::OpenGL)
d->device = static_cast<QGLPaintDevice*>(pdev);
else
d->device = QGLPaintDevice::getDevice(pdev);
if (!d->device)
return false;
d->offscreen.setDevice(pdev);
d->has_fast_pen = false;
d->inverseScale = 1;
d->opacity = 1;
d->device->beginPaint();
d->matrix = QTransform();
d->has_antialiasing = false;
d->high_quality_antialiasing = false;
QSize sz(d->device->size());
d->dirty_stencil = QRect(0, 0, sz.width(), sz.height());
d->use_emulation = false;
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j)
d->mv_matrix[i][j] = (i == j ? qreal(1) : qreal(0));
bool has_frag_program = (QGLExtensions::glExtensions & QGLExtensions::FragmentProgram)
&& (pdev->devType() != QInternal::Pixmap);
QGLContext *ctx = const_cast<QGLContext *>(d->device->context());
if (!ctx) {
qWarning() << "QOpenGLPaintEngine: paint device doesn't have a valid GL context.";
return false;
}
if (has_frag_program)
has_frag_program = qt_resolve_frag_program_extensions(ctx) && qt_resolve_version_1_3_functions(ctx);
d->use_stencil_method = d->device->format().stencil()
&& (QGLExtensions::glExtensions & QGLExtensions::StencilWrap);
if (d->device->format().directRendering()
&& (d->use_stencil_method && QGLExtensions::glExtensions & QGLExtensions::StencilTwoSide))
d->has_stencil_face_ext = qt_resolve_stencil_face_extension(ctx);
#ifndef QT_OPENGL_ES
if (!ctx->d_ptr->internal_context) {
glGetDoublev(GL_PROJECTION_MATRIX, &d->projection_matrix[0][0]);
glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS);
glPushAttrib(GL_ALL_ATTRIB_BITS);
glDisableClientState(GL_EDGE_FLAG_ARRAY);
glDisableClientState(GL_INDEX_ARRAY);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glDisable(GL_TEXTURE_1D);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glPixelTransferi(GL_MAP_COLOR, false);
glPixelTransferi(GL_MAP_STENCIL, false);
glDisable(GL_TEXTURE_GEN_S);
glPixelStorei(GL_PACK_SWAP_BYTES, false);
glPixelStorei(GL_PACK_LSB_FIRST, false);
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
glPixelStorei(GL_PACK_SKIP_ROWS, 0);
glPixelStorei(GL_PACK_SKIP_PIXELS, 0);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glPixelStorei(GL_UNPACK_SWAP_BYTES, false);
glPixelStorei(GL_UNPACK_LSB_FIRST, false);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
if (QGLFormat::openGLVersionFlags() & QGLFormat::OpenGL_Version_1_2) {
glPixelStorei(GL_PACK_IMAGE_HEIGHT, 0);
glPixelStorei(GL_PACK_SKIP_IMAGES, 0);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, 0);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, 0);
}
}
#endif
if (!ctx->d_ptr->internal_context) {
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glLoadIdentity();
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
glDisable(GL_MULTISAMPLE);
glDisable(GL_TEXTURE_2D);
if (QGLExtensions::glExtensions & QGLExtensions::TextureRectangle)
glDisable(GL_TEXTURE_RECTANGLE_NV);
glDisable(GL_STENCIL_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_LIGHTING);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
d->offscreen.begin();
glViewport(0, 0, sz.width(), sz.height()); // XXX (Embedded): We need a solution for GLWidgets that draw in a part or a bigger surface...
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
#ifdef QT_OPENGL_ES
glOrthof(0, sz.width(), sz.height(), 0, -999999, 999999);
#else
glOrtho(0, sz.width(), sz.height(), 0, -999999, 999999);
#endif
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_BLEND);
d->composition_mode = QPainter::CompositionMode_SourceOver;
#ifdef QT_OPENGL_ES
d->max_texture_size = ctx->d_func()->maxTextureSize();
#else
bool shared_ctx = QGLContext::areSharing(d->device->context(), d->shader_ctx);
if (shared_ctx) {
d->max_texture_size = d->shader_ctx->d_func()->maxTextureSize();
} else {
d->max_texture_size = ctx->d_func()->maxTextureSize();
if (d->shader_ctx) {
d->shader_ctx->makeCurrent();
glBindTexture(GL_TEXTURE_1D, 0);
glDeleteTextures(1, &d->grad_palette);
if (has_frag_program && d->use_fragment_programs)
glDeleteTextures(1, &d->drawable_texture);
ctx->makeCurrent();
}
d->shader_ctx = d->device->context();
glGenTextures(1, &d->grad_palette);
qt_mask_texture_cache()->clearCache();
d->use_fragment_programs = has_frag_program;
}
if (d->use_fragment_programs && (!shared_ctx || sz.width() > d->drawable_texture_size.width()
|| sz.height() > d->drawable_texture_size.height()))
{
// delete old texture if size has increased, otherwise it was deleted earlier
if (shared_ctx)
glDeleteTextures(1, &d->drawable_texture);
d->dirty_drawable_texture = true;
d->drawable_texture_size = QSize(qt_next_power_of_two(sz.width()),
qt_next_power_of_two(sz.height()));
}
#endif
updateClipRegion(QRegion(), Qt::NoClip);
penChanged();
brushChanged();
opacityChanged();
compositionModeChanged();
renderHintsChanged();
transformChanged();
return true;
}
bool QOpenGLPaintEngine::end()
{
Q_D(QOpenGLPaintEngine);
d->flushDrawQueue();
d->offscreen.end();
QGLContext *ctx = const_cast<QGLContext *>(d->device->context());
if (!ctx->d_ptr->internal_context) {
glMatrixMode(GL_TEXTURE);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
}
#ifndef QT_OPENGL_ES
if (ctx->d_ptr->internal_context) {
glDisable(GL_SCISSOR_TEST);
} else {
glMatrixMode(GL_PROJECTION);
glLoadMatrixd(&d->projection_matrix[0][0]);
glPopAttrib();
glPopClientAttrib();
}
#endif
d->device->endPaint();
qt_mask_texture_cache()->maintainCache();
return true;
}
void QOpenGLPaintEngine::updateState(const QPaintEngineState &state)
{
Q_D(QOpenGLPaintEngine);
QPaintEngine::DirtyFlags flags = state.state();
bool update_fast_pen = false;
if (flags & DirtyOpacity) {
update_fast_pen = true;
d->opacity = state.opacity();
if (d->opacity > 1.0f)
d->opacity = 1.0f;
if (d->opacity < 0.f)
d->opacity = 0.f;
// force update
flags |= DirtyPen;
flags |= DirtyBrush;
}
if (flags & DirtyTransform) {
update_fast_pen = true;
updateMatrix(state.transform());
// brush setup depends on transform state
if (state.brush().style() != Qt::NoBrush)
flags |= DirtyBrush;
}
if (flags & DirtyPen) {
update_fast_pen = true;
updatePen(state.pen());
}
if (flags & (DirtyBrush | DirtyBrushOrigin)) {
updateBrush(state.brush(), state.brushOrigin());
}
if (flags & DirtyFont) {
updateFont(state.font());
}
if (state.state() & DirtyClipEnabled) {
if (state.isClipEnabled())
updateClipRegion(painter()->clipRegion(), Qt::ReplaceClip);
else
updateClipRegion(QRegion(), Qt::NoClip);
}
if (flags & DirtyClipPath) {
updateClipRegion(QRegion(state.clipPath().toFillPolygon().toPolygon(),
state.clipPath().fillRule()),
state.clipOperation());
}
if (flags & DirtyClipRegion) {
updateClipRegion(state.clipRegion(), state.clipOperation());
}
if (flags & DirtyHints) {
updateRenderHints(state.renderHints());
}
if (flags & DirtyCompositionMode) {
updateCompositionMode(state.compositionMode());
}
if (update_fast_pen) {
Q_D(QOpenGLPaintEngine);
qreal pen_width = d->cpen.widthF();
d->has_fast_pen =
((pen_width == 0 || (pen_width <= 1 && d->txop <= QTransform::TxTranslate))
|| d->cpen.isCosmetic())
&& d->cpen.style() == Qt::SolidLine
&& d->cpen.isSolid();
}
}
void QOpenGLPaintEnginePrivate::setInvMatrixData(const QTransform &inv_matrix)
{
inv_matrix_data[0][0] = inv_matrix.m11();
inv_matrix_data[1][0] = inv_matrix.m21();
inv_matrix_data[2][0] = inv_matrix.m31();
inv_matrix_data[0][1] = inv_matrix.m12();
inv_matrix_data[1][1] = inv_matrix.m22();
inv_matrix_data[2][1] = inv_matrix.m32();
inv_matrix_data[0][2] = inv_matrix.m13();
inv_matrix_data[1][2] = inv_matrix.m23();
inv_matrix_data[2][2] = inv_matrix.m33();
}
void QOpenGLPaintEnginePrivate::updateGradient(const QBrush &brush, const QRectF &)
{
#ifdef QT_OPENGL_ES
Q_UNUSED(brush);
#else
bool has_mirrored_repeat = QGLExtensions::glExtensions & QGLExtensions::MirroredRepeat;
Qt::BrushStyle style = brush.style();
QTransform m = brush.transform();
if (has_mirrored_repeat && style == Qt::LinearGradientPattern) {
const QLinearGradient *g = static_cast<const QLinearGradient *>(brush.gradient());
QTransform m = brush.transform();
QPointF realStart = g->start();
QPointF realFinal = g->finalStop();
QPointF start = m.map(realStart);
QPointF stop;
if (qFuzzyCompare(m.m11(), m.m22()) && m.m12() == 0.0 && m.m21() == 0.0) {
// It is a simple uniform scale and/or translation
stop = m.map(realFinal);
} else {
// It is not enough to just transform the endpoints.
// We have to make sure the _pattern_ is transformed correctly.
qreal odx = realFinal.x() - realStart.x();
qreal ody = realFinal.y() - realStart.y();
// nx, ny and dx, dy are normal and gradient direction after transform:
qreal nx = m.m11()*ody - m.m21()*odx;
qreal ny = m.m12()*ody - m.m22()*odx;
qreal dx = m.m11()*odx + m.m21()*ody;
qreal dy = m.m12()*odx + m.m22()*ody;
qreal lx = 1 / (dx - dy*nx/ny);
qreal ly = 1 / (dy - dx*ny/nx);
qreal l = 1 / qSqrt(lx*lx+ly*ly);
stop = start + QPointF(-ny, nx) * l/qSqrt(nx*nx+ny*ny);
}
float tr[4], f;
tr[0] = stop.x() - start.x();
tr[1] = stop.y() - start.y();
f = 1.0 / (tr[0]*tr[0] + tr[1]*tr[1]);
tr[0] *= f;
tr[1] *= f;
tr[2] = 0;
tr[3] = -(start.x()*tr[0] + start.y()*tr[1]);
brush_color[0] = brush_color[1] = brush_color[2] = brush_color[3] = 255;
qt_glColor4ubv(brush_color);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_PLANE, tr);
}
if (use_fragment_programs) {
if (style == Qt::RadialGradientPattern) {
const QRadialGradient *g = static_cast<const QRadialGradient *>(brush.gradient());
QPointF realCenter = g->center();
QPointF realFocal = g->focalPoint();
qreal realRadius = g->radius();
QTransform translate(1, 0, 0, 1, -realFocal.x(), -realFocal.y());
QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted() * translate;
setInvMatrixData(inv_matrix);
fmp_data[0] = realCenter.x() - realFocal.x();
fmp_data[1] = realCenter.y() - realFocal.y();
fmp2_m_radius2_data[0] = -fmp_data[0] * fmp_data[0] - fmp_data[1] * fmp_data[1] + realRadius * realRadius;
} else if (style == Qt::ConicalGradientPattern) {
const QConicalGradient *g = static_cast<const QConicalGradient *>(brush.gradient());
QPointF realCenter = g->center();
QTransform translate(1, 0, 0, 1, -realCenter.x(), -realCenter.y());
QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted() * translate;
setInvMatrixData(inv_matrix);
angle_data[0] = -(g->angle() * 2 * Q_PI) / 360.0;
} else if (style == Qt::LinearGradientPattern) {
const QLinearGradient *g = static_cast<const QLinearGradient *>(brush.gradient());
QPointF realStart = g->start();
QPointF realFinal = g->finalStop();
QTransform translate(1, 0, 0, 1, -realStart.x(), -realStart.y());
QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted() * translate;
setInvMatrixData(inv_matrix);
QPointF l = realFinal - realStart;
linear_data[0] = l.x();
linear_data[1] = l.y();
linear_data[2] = 1.0f / (l.x() * l.x() + l.y() * l.y());
} else if (style != Qt::SolidPattern) {
QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted();
setInvMatrixData(inv_matrix);
}
}
if (style >= Qt::LinearGradientPattern && style <= Qt::ConicalGradientPattern) {
createGradientPaletteTexture(*brush.gradient());
}
#endif
}
class QOpenGLTessellator : public QTessellator
{
public:
QOpenGLTessellator() {}
~QOpenGLTessellator() { }
QGLTrapezoid toGLTrapezoid(const Trapezoid &trap);
};
QGLTrapezoid QOpenGLTessellator::toGLTrapezoid(const Trapezoid &trap)
{
QGLTrapezoid t;
t.top = Q27Dot5ToDouble(trap.top);
t.bottom = Q27Dot5ToDouble(trap.bottom);
Q27Dot5 y = trap.topLeft->y - trap.bottomLeft->y;
qreal topLeftY = Q27Dot5ToDouble(trap.topLeft->y);
qreal tx = Q27Dot5ToDouble(trap.topLeft->x);
qreal m = (-tx + Q27Dot5ToDouble(trap.bottomLeft->x)) / Q27Dot5ToDouble(y);
t.topLeftX = tx + m * (topLeftY - t.top);
t.bottomLeftX = tx + m * (topLeftY - t.bottom);
y = trap.topRight->y - trap.bottomRight->y;
qreal topRightY = Q27Dot5ToDouble(trap.topRight->y);
tx = Q27Dot5ToDouble(trap.topRight->x);
m = (-tx + Q27Dot5ToDouble(trap.bottomRight->x)) / Q27Dot5ToDouble(y);
t.topRightX = tx + m * (topRightY - Q27Dot5ToDouble(trap.top));
t.bottomRightX = tx + m * (topRightY - Q27Dot5ToDouble(trap.bottom));
return t;
}
class QOpenGLImmediateModeTessellator : public QOpenGLTessellator
{
public:
void addTrap(const Trapezoid &trap);
void tessellate(const QPointF *points, int nPoints, bool winding) {
trapezoids.reserve(trapezoids.size() + nPoints);
setWinding(winding);
QTessellator::tessellate(points, nPoints);
}
QVector<QGLTrapezoid> trapezoids;
};
void QOpenGLImmediateModeTessellator::addTrap(const Trapezoid &trap)
{
trapezoids.append(toGLTrapezoid(trap));
}
#ifndef QT_OPENGL_ES
static void drawTrapezoid(const QGLTrapezoid &trap, const qreal offscreenHeight, QGLContext *ctx)
{
qreal minX = qMin(trap.topLeftX, trap.bottomLeftX);
qreal maxX = qMax(trap.topRightX, trap.bottomRightX);
if (qFuzzyCompare(trap.top, trap.bottom) || qFuzzyCompare(minX, maxX) ||
(qFuzzyCompare(trap.topLeftX, trap.topRightX) && qFuzzyCompare(trap.bottomLeftX, trap.bottomRightX)))
return;
const qreal xpadding = 1.0;
const qreal ypadding = 1.0;
qreal topDist = offscreenHeight - trap.top;
qreal bottomDist = offscreenHeight - trap.bottom;
qreal reciprocal = bottomDist / (bottomDist - topDist);
qreal leftB = trap.bottomLeftX + (trap.topLeftX - trap.bottomLeftX) * reciprocal;
qreal rightB = trap.bottomRightX + (trap.topRightX - trap.bottomRightX) * reciprocal;
const bool topZero = qFuzzyIsNull(topDist);
reciprocal = topZero ? 1.0 / bottomDist : 1.0 / topDist;
qreal leftA = topZero ? (trap.bottomLeftX - leftB) * reciprocal : (trap.topLeftX - leftB) * reciprocal;
qreal rightA = topZero ? (trap.bottomRightX - rightB) * reciprocal : (trap.topRightX - rightB) * reciprocal;
qreal invLeftA = qFuzzyIsNull(leftA) ? 0.0 : 1.0 / leftA;
qreal invRightA = qFuzzyIsNull(rightA) ? 0.0 : 1.0 / rightA;
// fragment program needs the negative of invRightA as it mirrors the line
glTexCoord4f(topDist, bottomDist, invLeftA, -invRightA);
glMultiTexCoord4f(GL_TEXTURE1, leftA, leftB, rightA, rightB);
qreal topY = trap.top - ypadding;
qreal bottomY = trap.bottom + ypadding;
qreal bounds_bottomLeftX = leftA * (offscreenHeight - bottomY) + leftB;
qreal bounds_bottomRightX = rightA * (offscreenHeight - bottomY) + rightB;
qreal bounds_topLeftX = leftA * (offscreenHeight - topY) + leftB;
qreal bounds_topRightX = rightA * (offscreenHeight - topY) + rightB;
QPointF leftNormal(1, -leftA);
leftNormal /= qSqrt(leftNormal.x() * leftNormal.x() + leftNormal.y() * leftNormal.y());
QPointF rightNormal(1, -rightA);
rightNormal /= qSqrt(rightNormal.x() * rightNormal.x() + rightNormal.y() * rightNormal.y());
qreal left_padding = xpadding / qAbs(leftNormal.x());
qreal right_padding = xpadding / qAbs(rightNormal.x());
glVertex2d(bounds_topLeftX - left_padding, topY);
glVertex2d(bounds_topRightX + right_padding, topY);
glVertex2d(bounds_bottomRightX + right_padding, bottomY);
glVertex2d(bounds_bottomLeftX - left_padding, bottomY);
glTexCoord4f(0.0f, 0.0f, 0.0f, 1.0f);
}
#endif // !Q_WS_QWS
class QOpenGLTrapezoidToArrayTessellator : public QOpenGLTessellator
{
public:
QOpenGLTrapezoidToArrayTessellator() : vertices(0), allocated(0), size(0) {}
~QOpenGLTrapezoidToArrayTessellator() { free(vertices); }
q_vertexType *vertices;
int allocated;
int size;
QRectF bounds;
void addTrap(const Trapezoid &trap);
void tessellate(const QPointF *points, int nPoints, bool winding) {
size = 0;
setWinding(winding);
bounds = QTessellator::tessellate(points, nPoints);
}
};
void QOpenGLTrapezoidToArrayTessellator::addTrap(const Trapezoid &trap)
{
// On OpenGL ES we convert the trap to 2 triangles
#ifndef QT_OPENGL_ES
if (size > allocated - 8) {
#else
if (size > allocated - 12) {
#endif
allocated = qMax(2*allocated, 512);
vertices = (q_vertexType *)realloc(vertices, allocated * sizeof(q_vertexType));
}
QGLTrapezoid t = toGLTrapezoid(trap);
#ifndef QT_OPENGL_ES
vertices[size++] = f2vt(t.topLeftX);
vertices[size++] = f2vt(t.top);
vertices[size++] = f2vt(t.topRightX);
vertices[size++] = f2vt(t.top);
vertices[size++] = f2vt(t.bottomRightX);
vertices[size++] = f2vt(t.bottom);
vertices[size++] = f2vt(t.bottomLeftX);
vertices[size++] = f2vt(t.bottom);
#else
// First triangle
vertices[size++] = f2vt(t.topLeftX);
vertices[size++] = f2vt(t.top);
vertices[size++] = f2vt(t.topRightX);
vertices[size++] = f2vt(t.top);
vertices[size++] = f2vt(t.bottomRightX);
vertices[size++] = f2vt(t.bottom);
// Second triangle
vertices[size++] = f2vt(t.bottomLeftX);
vertices[size++] = f2vt(t.bottom);
vertices[size++] = f2vt(t.topLeftX);
vertices[size++] = f2vt(t.top);
vertices[size++] = f2vt(t.bottomRightX);
vertices[size++] = f2vt(t.bottom);
#endif
}
void QOpenGLPaintEnginePrivate::fillPolygon_dev(const QPointF *polygonPoints, int pointCount,
Qt::FillRule fill)
{
QOpenGLTrapezoidToArrayTessellator tessellator;
tessellator.tessellate(polygonPoints, pointCount, fill == Qt::WindingFill);
DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Drawing polygon with" << pointCount << "points using fillPolygon_dev";
setGradientOps(cbrush, tessellator.bounds);
bool fast_style = current_style == Qt::LinearGradientPattern
|| current_style == Qt::SolidPattern;
#ifndef QT_OPENGL_ES
GLenum geometry_mode = GL_QUADS;
#else
GLenum geometry_mode = GL_TRIANGLES;
#endif
if (use_fragment_programs && !(fast_style && has_fast_composition_mode)) {
composite(geometry_mode, tessellator.vertices, tessellator.size / 2);
} else {
glVertexPointer(2, q_vertexTypeEnum, 0, tessellator.vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(geometry_mode, 0, tessellator.size/2);
glDisableClientState(GL_VERTEX_ARRAY);
}
}
inline void QOpenGLPaintEnginePrivate::lineToStencil(qreal x, qreal y)
{
tess_points.add(QPointF(x, y));
if (x > max_x)
max_x = x;
else if (x < min_x)
min_x = x;
if (y > max_y)
max_y = y;
else if (y < min_y)
min_y = y;
}
inline void QOpenGLPaintEnginePrivate::curveToStencil(const QPointF &cp1, const QPointF &cp2, const QPointF &ep)
{
qreal inverseScaleHalf = inverseScale / 2;
QBezier beziers[32];
beziers[0] = QBezier::fromPoints(tess_points.last(), cp1, cp2, ep);
QBezier *b = beziers;
while (b >= beziers) {
// check if we can pop the top bezier curve from the stack
qreal l = qAbs(b->x4 - b->x1) + qAbs(b->y4 - b->y1);
qreal d;
if (l > inverseScale) {
d = qAbs( (b->x4 - b->x1)*(b->y1 - b->y2) - (b->y4 - b->y1)*(b->x1 - b->x2) )
+ qAbs( (b->x4 - b->x1)*(b->y1 - b->y3) - (b->y4 - b->y1)*(b->x1 - b->x3) );
d /= l;
} else {
d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
}
if (d < inverseScaleHalf || b == beziers + 31) {
// good enough, we pop it off and add the endpoint
lineToStencil(b->x4, b->y4);
--b;
} else {
// split, second half of the polygon goes lower into the stack
b->split(b+1, b);
++b;
}
}
}
void QOpenGLPaintEnginePrivate::pathToVertexArrays(const QPainterPath &path)
{
const QPainterPath::Element &first = path.elementAt(0);
min_x = max_x = first.x;
min_y = max_y = first.y;
tess_points.reset();
tess_points_stops.clear();
lineToStencil(first.x, first.y);
for (int i=1; i<path.elementCount(); ++i) {
const QPainterPath::Element &e = path.elementAt(i);
switch (e.type) {
case QPainterPath::MoveToElement:
tess_points_stops.append(tess_points.size());
lineToStencil(e.x, e.y);
break;
case QPainterPath::LineToElement:
lineToStencil(e.x, e.y);
break;
case QPainterPath::CurveToElement:
curveToStencil(e, path.elementAt(i+1), path.elementAt(i+2));
i+=2;
break;
default:
break;
}
}
lineToStencil(first.x, first.y);
tess_points_stops.append(tess_points.size());
}
void QOpenGLPaintEnginePrivate::drawVertexArrays()
{
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_DOUBLE, 0, tess_points.data());
int previous_stop = 0;
foreach(int stop, tess_points_stops) {
glDrawArrays(GL_TRIANGLE_FAN, previous_stop, stop-previous_stop);
previous_stop = stop;
}
glDisableClientState(GL_VERTEX_ARRAY);
}
void QOpenGLPaintEnginePrivate::fillVertexArray(Qt::FillRule fillRule)
{
Q_Q(QOpenGLPaintEngine);
QRect rect = dirty_stencil.boundingRect();
if (use_system_clip)
rect = q->systemClip().intersected(dirty_stencil).boundingRect();
glStencilMask(~0);
if (!rect.isEmpty()) {
disableClipping();
glEnable(GL_SCISSOR_TEST);
const int left = rect.left();
const int width = rect.width();
const int bottom = device->size().height() - (rect.bottom() + 1);
const int height = rect.height();
glScissor(left, bottom, width, height);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
dirty_stencil -= rect;
glDisable(GL_SCISSOR_TEST);
enableClipping();
}
// Enable stencil.
glEnable(GL_STENCIL_TEST);
// Disable color writes.
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
GLuint stencilMask = 0;
if (fillRule == Qt::OddEvenFill) {
stencilMask = 1;
// Enable stencil writes.
glStencilMask(stencilMask);
// Set stencil xor mode.
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);
// Disable stencil func.
glStencilFunc(GL_ALWAYS, 0, ~0);
drawVertexArrays();
} else if (fillRule == Qt::WindingFill) {
stencilMask = ~0;
if (has_stencil_face_ext) {
QGL_FUNC_CONTEXT;
glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);
glActiveStencilFaceEXT(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
glStencilFunc(GL_ALWAYS, 0, ~0);
glActiveStencilFaceEXT(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
glStencilFunc(GL_ALWAYS, 0, ~0);
drawVertexArrays();
glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);
} else {
glStencilFunc(GL_ALWAYS, 0, ~0);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
drawVertexArrays();
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
drawVertexArrays();
glDisable(GL_CULL_FACE);
}
}
// Enable color writes.
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glStencilMask(stencilMask);
setGradientOps(cbrush, QRectF(QPointF(min_x, min_y), QSizeF(max_x - min_x, max_y - min_y)));
bool fast_fill = has_fast_composition_mode && (current_style == Qt::LinearGradientPattern || current_style == Qt::SolidPattern);
if (use_fragment_programs && !fast_fill) {
DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Drawing polygon using stencil method (fragment programs)";
QRectF rect(QPointF(min_x, min_y), QSizeF(max_x - min_x, max_y - min_y));
// Enable stencil func.
glStencilFunc(GL_NOTEQUAL, 0, stencilMask);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
composite(rect);
} else {
DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Drawing polygon using stencil method (no fragment programs)";
// Enable stencil func.
glStencilFunc(GL_NOTEQUAL, 0, stencilMask);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
#ifndef QT_OPENGL_ES
glBegin(GL_QUADS);
glVertex2f(min_x, min_y);
glVertex2f(max_x, min_y);
glVertex2f(max_x, max_y);
glVertex2f(min_x, max_y);
glEnd();
#endif
}
// Disable stencil writes.
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilMask(0);
glDisable(GL_STENCIL_TEST);
}
void QOpenGLPaintEnginePrivate::fillPath(const QPainterPath &path)
{
if (path.isEmpty())
return;
if (use_stencil_method && !high_quality_antialiasing) {
pathToVertexArrays(path);
fillVertexArray(path.fillRule());
return;
}
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
if (high_quality_antialiasing)
drawOffscreenPath(path);
else {
QPolygonF poly = path.toFillPolygon(matrix);
fillPolygon_dev(poly.data(), poly.count(),
path.fillRule());
}
updateGLMatrix();
}
static inline bool needsEmulation(Qt::BrushStyle style)
{
return !(style == Qt::SolidPattern
|| (style == Qt::LinearGradientPattern
&& (QGLExtensions::glExtensions & QGLExtensions::MirroredRepeat)));
}
void QOpenGLPaintEnginePrivate::updateUseEmulation()
{
use_emulation = !use_fragment_programs
&& ((has_pen && needsEmulation(pen_brush_style))
|| (has_brush && needsEmulation(brush_style)));
}
void QOpenGLPaintEngine::updatePen(const QPen &pen)
{
Q_D(QOpenGLPaintEngine);
Qt::PenStyle pen_style = pen.style();
d->pen_brush_style = pen.brush().style();
d->cpen = pen;
d->has_pen = (pen_style != Qt::NoPen) && (d->pen_brush_style != Qt::NoBrush);
d->updateUseEmulation();
if (pen.isCosmetic()) {
GLfloat width = pen.widthF() == 0.0f ? 1.0f : pen.widthF();
glLineWidth(width);
glPointSize(width);
}
if (d->pen_brush_style >= Qt::LinearGradientPattern
&& d->pen_brush_style <= Qt::ConicalGradientPattern)
{
d->setGLPen(Qt::white);
} else {
d->setGLPen(pen.color());
}
d->updateFastPen();
}
void QOpenGLPaintEngine::updateBrush(const QBrush &brush, const QPointF &origin)
{
Q_D(QOpenGLPaintEngine);
d->cbrush = brush;
d->brush_style = brush.style();
d->brush_origin = origin;
d->has_brush = (d->brush_style != Qt::NoBrush);
d->updateUseEmulation();
}
void QOpenGLPaintEngine::updateFont(const QFont &)
{
}
void QOpenGLPaintEngine::updateMatrix(const QTransform &mtx)
{
Q_D(QOpenGLPaintEngine);
d->matrix = mtx;
d->mv_matrix[0][0] = mtx.m11();
d->mv_matrix[0][1] = mtx.m12();
d->mv_matrix[0][2] = 0;
d->mv_matrix[0][3] = mtx.m13();
d->mv_matrix[1][0] = mtx.m21();
d->mv_matrix[1][1] = mtx.m22();
d->mv_matrix[1][2] = 0;
d->mv_matrix[1][3] = mtx.m23();
d->mv_matrix[2][0] = 0;
d->mv_matrix[2][1] = 0;
d->mv_matrix[2][2] = 1;
d->mv_matrix[2][3] = 0;
d->mv_matrix[3][0] = mtx.dx();
d->mv_matrix[3][1] = mtx.dy();
d->mv_matrix[3][2] = 0;
d->mv_matrix[3][3] = mtx.m33();
d->txop = mtx.type();
// 1/10000 == 0.0001, so we have good enough res to cover curves
// that span the entire widget...
d->inverseScale = qMax(1 / qMax( qMax(qAbs(mtx.m11()), qAbs(mtx.m22())),
qMax(qAbs(mtx.m12()), qAbs(mtx.m21())) ),
qreal(0.0001));
d->updateGLMatrix();
d->updateFastPen();
}
void QOpenGLPaintEnginePrivate::updateGLMatrix() const
{
glMatrixMode(GL_MODELVIEW);
#ifndef QT_OPENGL_ES
glLoadMatrixd(&mv_matrix[0][0]);
#else
glLoadMatrixf(&mv_matrix[0][0]);
#endif
}
void QOpenGLPaintEnginePrivate::disableClipping()
{
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
}
void QOpenGLPaintEnginePrivate::enableClipping()
{
Q_Q(QOpenGLPaintEngine);
if (!q->state()->hasClipping)
return;
if (q->state()->fastClip.isEmpty())
glEnable(GL_DEPTH_TEST);
else
updateDepthClip(); // this will enable the scissor test
}
void QOpenGLPaintEnginePrivate::updateDepthClip()
{
Q_Q(QOpenGLPaintEngine);
++q->state()->depthClipId;
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
if (!q->state()->hasClipping)
return;
QRect fastClip;
if (q->state()->clipEnabled) {
fastClip = q->state()->fastClip;
} else if (use_system_clip && q->systemClip().rects().count() == 1) {
fastClip = q->systemClip().rects().at(0);
}
if (!fastClip.isEmpty()) {
glEnable(GL_SCISSOR_TEST);
const int left = fastClip.left();
const int width = fastClip.width();
const int bottom = device->size().height() - (fastClip.bottom() + 1);
const int height = fastClip.height();
glScissor(left, bottom, width, height);
return;
}
#if defined(QT_OPENGL_ES_1) || defined(QT_OPENGL_ES_2) || defined(QT_OPENGL_ES_1_CL)
glClearDepthf(0.0f);
#else
glClearDepth(0.0f);
#endif
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glClear(GL_DEPTH_BUFFER_BIT);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthFunc(GL_ALWAYS);
const QVector<QRect> rects = q->state()->clipEnabled ? q->state()->clipRegion.rects() : q->systemClip().rects();
// rectangle count * 2 (triangles) * vertex count * component count (Z omitted)
QDataBuffer<q_vertexType> clipVertex(rects.size()*2*3*2);
for (int i = 0; i < rects.size(); ++i) {
q_vertexType x = i2vt(rects.at(i).left());
q_vertexType w = i2vt(rects.at(i).width());
q_vertexType h = i2vt(rects.at(i).height());
q_vertexType y = i2vt(rects.at(i).top());
// First triangle
clipVertex.add(x);
clipVertex.add(y);
clipVertex.add(x);
clipVertex.add(y + h);
clipVertex.add(x + w);
clipVertex.add(y);
// Second triangle
clipVertex.add(x);
clipVertex.add(y + h);
clipVertex.add(x + w);
clipVertex.add(y + h);
clipVertex.add (x + w);
clipVertex.add(y);
}
if (rects.size()) {
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, clipVertex.data());
glDrawArrays(GL_TRIANGLES, 0, rects.size()*2*3);
glDisableClientState(GL_VERTEX_ARRAY);
updateGLMatrix();
}
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_FALSE);
glDepthFunc(GL_LEQUAL);
}
void QOpenGLPaintEnginePrivate::systemStateChanged()
{
Q_Q(QOpenGLPaintEngine);
if (q->painter()->hasClipping())
q->updateClipRegion(q->painter()->clipRegion(), Qt::ReplaceClip);
else
q->updateClipRegion(QRegion(), Qt::NoClip);
}
void QOpenGLPaintEngine::updateClipRegion(const QRegion &clipRegion, Qt::ClipOperation op)
{
Q_D(QOpenGLPaintEngine);
// clipping is only supported when a stencil or depth buffer is
// available
if (!d->device->format().depth())
return;
d->use_system_clip = false;
QRegion sysClip = systemClip();
if (!sysClip.isEmpty()) {
if (d->pdev->devType() != QInternal::Widget) {
d->use_system_clip = true;
} else {
#ifndef Q_WS_QWS
// Only use the system clip if we're currently rendering a widget with a GL painter.
if (d->currentClipWidget) {
QWidgetPrivate *widgetPrivate = qt_widget_private(d->currentClipWidget->window());
d->use_system_clip = widgetPrivate->extra && widgetPrivate->extra->inRenderWithPainter;
}
#endif
}
}
d->flushDrawQueue();
if (op == Qt::NoClip && !d->use_system_clip) {
state()->hasClipping = false;
state()->clipRegion = QRegion();
d->updateDepthClip();
return;
}
bool isScreenClip = false;
if (!d->use_system_clip) {
QVector<QRect> untransformedRects = clipRegion.rects();
if (untransformedRects.size() == 1) {
QPainterPath path;
path.addRect(untransformedRects[0]);
path = d->matrix.map(path);
if (path.contains(QRectF(QPointF(), d->device->size())))
isScreenClip = true;
}
}
QRegion region = isScreenClip ? QRegion() : clipRegion * d->matrix;
switch (op) {
case Qt::NoClip:
if (!d->use_system_clip)
break;
state()->clipRegion = sysClip;
break;
case Qt::IntersectClip:
if (isScreenClip)
return;
if (state()->hasClipping) {
state()->clipRegion &= region;
break;
}
// fall through
case Qt::ReplaceClip:
if (d->use_system_clip)
state()->clipRegion = region & sysClip;
else
state()->clipRegion = region;
break;
case Qt::UniteClip:
state()->clipRegion |= region;
if (d->use_system_clip)
state()->clipRegion &= sysClip;
break;
default:
break;
}
if (isScreenClip) {
state()->hasClipping = false;
state()->clipRegion = QRegion();
} else {
state()->hasClipping = op != Qt::NoClip || d->use_system_clip;
}
if (state()->hasClipping && state()->clipRegion.rects().size() == 1)
state()->fastClip = state()->clipRegion.rects().at(0);
else
state()->fastClip = QRect();
d->updateDepthClip();
}
void QOpenGLPaintEngine::updateRenderHints(QPainter::RenderHints hints)
{
Q_D(QOpenGLPaintEngine);
d->flushDrawQueue();
d->use_smooth_pixmap_transform = bool(hints & QPainter::SmoothPixmapTransform);
if ((hints & QPainter::Antialiasing) || (hints & QPainter::HighQualityAntialiasing)) {
if (d->use_fragment_programs && QGLOffscreen::isSupported()
&& (hints & QPainter::HighQualityAntialiasing)) {
d->high_quality_antialiasing = true;
} else {
d->high_quality_antialiasing = false;
if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
glEnable(GL_MULTISAMPLE);
}
} else {
d->high_quality_antialiasing = false;
if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
glDisable(GL_MULTISAMPLE);
}
if (d->high_quality_antialiasing) {
d->offscreen.initialize();
if (!d->offscreen.isValid()) {
DEBUG_ONCE_STR("Unable to initialize offscreen, disabling high quality antialiasing");
d->high_quality_antialiasing = false;
if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
glEnable(GL_MULTISAMPLE);
}
}
d->has_antialiasing = d->high_quality_antialiasing
|| ((hints & QPainter::Antialiasing)
&& (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers));
}
void QOpenGLPaintEnginePrivate::setPorterDuffData(float a, float b, float x, float y, float z)
{
porterduff_ab_data[0] = a;
porterduff_ab_data[1] = b;
porterduff_xyz_data[0] = x;
porterduff_xyz_data[1] = y;
porterduff_xyz_data[2] = z;
}
void QOpenGLPaintEngine::updateCompositionMode(QPainter::CompositionMode composition_mode)
{
Q_D(QOpenGLPaintEngine);
if (!d->use_fragment_programs && composition_mode > QPainter::CompositionMode_Plus)
composition_mode = QPainter::CompositionMode_SourceOver;
d->composition_mode = composition_mode;
d->has_fast_composition_mode = (!d->high_quality_antialiasing && composition_mode <= QPainter::CompositionMode_Plus)
|| composition_mode == QPainter::CompositionMode_SourceOver
|| composition_mode == QPainter::CompositionMode_Destination
|| composition_mode == QPainter::CompositionMode_DestinationOver
|| composition_mode == QPainter::CompositionMode_DestinationOut
|| composition_mode == QPainter::CompositionMode_SourceAtop
|| composition_mode == QPainter::CompositionMode_Xor
|| composition_mode == QPainter::CompositionMode_Plus;
if (d->has_fast_composition_mode)
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODE_BLEND_MODE_MASK : COMPOSITION_MODE_BLEND_MODE_NOMASK;
else if (composition_mode <= QPainter::CompositionMode_Plus)
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_SIMPLE_PORTER_DUFF : COMPOSITION_MODES_SIMPLE_PORTER_DUFF_NOMASK;
else
switch (composition_mode) {
case QPainter::CompositionMode_Multiply:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_MULTIPLY : COMPOSITION_MODES_MULTIPLY_NOMASK;
break;
case QPainter::CompositionMode_Screen:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_SCREEN : COMPOSITION_MODES_SCREEN_NOMASK;
break;
case QPainter::CompositionMode_Overlay:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_OVERLAY : COMPOSITION_MODES_OVERLAY_NOMASK;
break;
case QPainter::CompositionMode_Darken:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_DARKEN : COMPOSITION_MODES_DARKEN_NOMASK;
break;
case QPainter::CompositionMode_Lighten:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_LIGHTEN : COMPOSITION_MODES_LIGHTEN_NOMASK;
break;
case QPainter::CompositionMode_ColorDodge:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_COLORDODGE : COMPOSITION_MODES_COLORDODGE_NOMASK;
break;
case QPainter::CompositionMode_ColorBurn:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_COLORBURN : COMPOSITION_MODES_COLORBURN_NOMASK;
break;
case QPainter::CompositionMode_HardLight:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_HARDLIGHT : COMPOSITION_MODES_HARDLIGHT_NOMASK;
break;
case QPainter::CompositionMode_SoftLight:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_SOFTLIGHT : COMPOSITION_MODES_SOFTLIGHT_NOMASK;
break;
case QPainter::CompositionMode_Difference:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_DIFFERENCE : COMPOSITION_MODES_DIFFERENCE_NOMASK;
break;
case QPainter::CompositionMode_Exclusion:
d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_EXCLUSION : COMPOSITION_MODES_EXCLUSION_NOMASK;
break;
default:
Q_ASSERT(false);
}
switch(composition_mode) {
case QPainter::CompositionMode_DestinationOver:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);
d->setPorterDuffData(0, 1, 1, 1, 1);
break;
case QPainter::CompositionMode_Clear:
glBlendFunc(GL_ZERO, GL_ZERO);
d->setPorterDuffData(0, 0, 0, 0, 0);
break;
case QPainter::CompositionMode_Source:
glBlendFunc(GL_ONE, GL_ZERO);
d->setPorterDuffData(1, 0, 1, 1, 0);
break;
case QPainter::CompositionMode_Destination:
glBlendFunc(GL_ZERO, GL_ONE);
d->setPorterDuffData(0, 1, 1, 0, 1);
break;
case QPainter::CompositionMode_SourceIn:
glBlendFunc(GL_DST_ALPHA, GL_ZERO);
d->setPorterDuffData(1, 0, 1, 0, 0);
break;
case QPainter::CompositionMode_DestinationIn:
glBlendFunc(GL_ZERO, GL_SRC_ALPHA);
d->setPorterDuffData(0, 1, 1, 0, 0);
break;
case QPainter::CompositionMode_SourceOut:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
d->setPorterDuffData(0, 0, 0, 1, 0);
break;
case QPainter::CompositionMode_DestinationOut:
glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA);
d->setPorterDuffData(0, 0, 0, 0, 1);
break;
case QPainter::CompositionMode_SourceAtop:
glBlendFunc(GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
d->setPorterDuffData(1, 0, 1, 0, 1);
break;
case QPainter::CompositionMode_DestinationAtop:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA);
d->setPorterDuffData(0, 1, 1, 1, 0);
break;
case QPainter::CompositionMode_Xor:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
d->setPorterDuffData(0, 0, 0, 1, 1);
break;
case QPainter::CompositionMode_SourceOver:
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
d->setPorterDuffData(1, 0, 1, 1, 1);
break;
case QPainter::CompositionMode_Plus:
glBlendFunc(GL_ONE, GL_ONE);
d->setPorterDuffData(1, 1, 1, 1, 1);
break;
default:
break;
}
}
class QGLMaskGenerator
{
public:
QGLMaskGenerator(const QPainterPath &path, const QTransform &matrix, qreal stroke_width = -1)
: p(path),
m(matrix),
w(stroke_width)
{
}
virtual QRect screenRect() = 0;
virtual void drawMask(const QRect &rect) = 0;
QPainterPath path() const { return p; }
QTransform matrix() const { return m; }
qreal strokeWidth() const { return w; }
virtual ~QGLMaskGenerator() {}
private:
QPainterPath p;
QTransform m;
qreal w;
};
void QGLMaskTextureCache::setOffscreenSize(const QSize &sz)
{
Q_ASSERT(sz.width() == sz.height());
if (offscreenSize != sz) {
offscreenSize = sz;
clearCache();
}
}
void QGLMaskTextureCache::clearCache()
{
cache.clear();
int quad_tree_size = 1;
for (int i = block_size; i < offscreenSize.width(); i *= 2)
quad_tree_size += quad_tree_size * 4;
for (int i = 0; i < 4; ++i) {
occupied_quadtree[i].resize(quad_tree_size);
occupied_quadtree[i][0].key = 0;
occupied_quadtree[i][0].largest_available_block = offscreenSize.width();
occupied_quadtree[i][0].largest_used_block = 0;
DEBUG_ONCE qDebug() << "QGLMaskTextureCache:: created quad tree of size" << quad_tree_size;
}
}
void QGLMaskTextureCache::setDrawableSize(const QSize &sz)
{
drawableSize = sz;
}
void QGLMaskTextureCache::maintainCache()
{
QGLTextureCacheHash::iterator it = cache.begin();
QGLTextureCacheHash::iterator end = cache.end();
while (it != end) {
CacheInfo &cache_info = it.value();
++cache_info.age;
if (cache_info.age > 1) {
quadtreeInsert(cache_info.loc.channel, 0, cache_info.loc.rect);
it = cache.erase(it);
} else {
++it;
}
}
}
//#define DISABLE_MASK_CACHE
QGLMaskTextureCache::CacheLocation QGLMaskTextureCache::getMask(QGLMaskGenerator &maskGenerator, QOpenGLPaintEnginePrivate *e)
{
#ifndef DISABLE_MASK_CACHE
engine = e;
quint64 key = hash(maskGenerator.path(), maskGenerator.matrix(), maskGenerator.strokeWidth());
if (key == 0)
key = 1;
CacheInfo info(maskGenerator.path(), maskGenerator.matrix(), maskGenerator.strokeWidth());
QGLTextureCacheHash::iterator it = cache.find(key);
while (it != cache.end() && it.key() == key) {
CacheInfo &cache_info = it.value();
if (info.stroke_width == cache_info.stroke_width && info.matrix == cache_info.matrix && info.path == cache_info.path) {
DEBUG_ONCE_STR("QGLMaskTextureCache::getMask(): Using cached mask");
cache_info.age = 0;
return cache_info.loc;
}
++it;
}
// mask was not found, create new mask
DEBUG_ONCE_STR("QGLMaskTextureCache::getMask(): Creating new mask...");
createMask(key, info, maskGenerator);
cache.insert(key, info);
return info.loc;
#else
CacheInfo info(maskGenerator.path(), maskGenerator.matrix());
createMask(0, info, maskGenerator);
return info.loc;
#endif
}
#ifndef FloatToQuint64
#define FloatToQuint64(i) (quint64)((i) * 32)
#endif
quint64 QGLMaskTextureCache::hash(const QPainterPath &p, const QTransform &m, qreal w)
{
Q_ASSERT(sizeof(quint64) == 8);
quint64 h = 0;
for (int i = 0; i < p.elementCount(); ++i) {
h += FloatToQuint64(p.elementAt(i).x) << 32;
h += FloatToQuint64(p.elementAt(i).y);
h += p.elementAt(i).type;
}
h += FloatToQuint64(m.m11());
#ifndef Q_OS_WINCE // ###
//Compiler crashes for arm on WinCE
h += FloatToQuint64(m.m12()) << 4;
h += FloatToQuint64(m.m13()) << 8;
h += FloatToQuint64(m.m21()) << 12;
h += FloatToQuint64(m.m22()) << 16;
h += FloatToQuint64(m.m23()) << 20;
h += FloatToQuint64(m.m31()) << 24;
h += FloatToQuint64(m.m32()) << 28;
#endif
h += FloatToQuint64(m.m33()) << 32;
h += FloatToQuint64(w);
return h;
}
void QGLMaskTextureCache::createMask(quint64 key, CacheInfo &info, QGLMaskGenerator &maskGenerator)
{
info.loc.screen_rect = maskGenerator.screenRect();
if (info.loc.screen_rect.isEmpty()) {
info.loc.channel = 0;
info.loc.rect = QRect();
return;
}
quadtreeAllocate(key, info.loc.screen_rect.size(), &info.loc.rect, &info.loc.channel);
int ch = info.loc.channel;
glColorMask(ch == 0, ch == 1, ch == 2, ch == 3);
maskGenerator.drawMask(info.loc.rect);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
int QGLMaskTextureCache::quadtreeBlocksize(int node)
{
DEBUG_ONCE qDebug() << "Offscreen size:" << offscreenSize.width();
int blocksize = offscreenSize.width();
while (node) {
node = (node - 1) / 4;
blocksize /= 2;
}
return blocksize;
}
QPoint QGLMaskTextureCache::quadtreeLocation(int node)
{
QPoint location;
int blocksize = quadtreeBlocksize(node);
while (node) {
--node;
if (node & 1)
location.setX(location.x() + blocksize);
if (node & 2)
location.setY(location.y() + blocksize);
node /= 4;
blocksize *= 2;
}
return location;
}
void QGLMaskTextureCache::quadtreeUpdate(int channel, int node, int current_block_size)
{
while (node) {
node = (node - 1) / 4;
int first_child = node * 4 + 1;
int largest_available = 0;
int largest_used = 0;
bool all_empty = true;
for (int i = 0; i < 4; ++i) {
largest_available = qMax(largest_available, occupied_quadtree[channel][first_child + i].largest_available_block);
largest_used = qMax(largest_used, occupied_quadtree[channel][first_child + i].largest_used_block);
if (occupied_quadtree[channel][first_child + i].largest_available_block < current_block_size)
all_empty = false;
}
current_block_size *= 2;
if (all_empty) {
occupied_quadtree[channel][node].largest_available_block = current_block_size;
occupied_quadtree[channel][node].largest_used_block = 0;
} else {
occupied_quadtree[channel][node].largest_available_block = largest_available;
occupied_quadtree[channel][node].largest_used_block = largest_used;
}
}
}
void QGLMaskTextureCache::quadtreeInsert(int channel, quint64 key, const QRect &rect, int node)
{
int current_block_size = quadtreeBlocksize(node);
QPoint location = quadtreeLocation(node);
QRect relative = rect.translated(-location);
if (relative.left() >= current_block_size || relative.top() >= current_block_size
|| relative.right() < 0 || relative.bottom() < 0)
return;
if (current_block_size == block_size // no more refining possible
|| (relative.top() < block_size && relative.bottom() >= (current_block_size - block_size)
&& relative.left() < block_size && relative.right() >= (current_block_size - block_size)))
{
if (key != 0) {
occupied_quadtree[channel][node].largest_available_block = 0;
occupied_quadtree[channel][node].largest_used_block = rect.width() * rect.height();
} else {
occupied_quadtree[channel][node].largest_available_block = current_block_size;
occupied_quadtree[channel][node].largest_used_block = 0;
}
occupied_quadtree[channel][node].key = key;
quadtreeUpdate(channel, node, current_block_size);
} else {
if (key && occupied_quadtree[channel][node].largest_available_block == current_block_size) {
// refining the quad tree, initialize child nodes
int half_block_size = current_block_size / 2;
int temp = node * 4 + 1;
for (int sibling = 0; sibling < 4; ++sibling) {
occupied_quadtree[channel][temp + sibling].largest_available_block = half_block_size;
occupied_quadtree[channel][temp + sibling].largest_used_block = 0;
occupied_quadtree[channel][temp + sibling].key = 0;
}
}
node = node * 4 + 1;
for (int sibling = 0; sibling < 4; ++sibling)
quadtreeInsert(channel, key, rect, node + sibling);
}
}
void QGLMaskTextureCache::quadtreeClear(int channel, const QRect &rect, int node)
{
const quint64 &key = occupied_quadtree[channel][node].key;
int current_block_size = quadtreeBlocksize(node);
QPoint location = quadtreeLocation(node);
QRect relative = rect.translated(-location);
if (relative.left() >= current_block_size || relative.top() >= current_block_size
|| relative.right() < 0 || relative.bottom() < 0)
return;
if (key != 0) {
QGLTextureCacheHash::iterator it = cache.find(key);
Q_ASSERT(it != cache.end());
while (it != cache.end() && it.key() == key) {
const CacheInfo &cache_info = it.value();
if (cache_info.loc.channel == channel
&& cache_info.loc.rect.left() <= location.x()
&& cache_info.loc.rect.top() <= location.y()
&& cache_info.loc.rect.right() >= location.x()
&& cache_info.loc.rect.bottom() >= location.y())
{
quadtreeInsert(channel, 0, cache_info.loc.rect);
engine->cacheItemErased(channel, cache_info.loc.rect);
cache.erase(it);
goto found;
} else {
++it;
}
}
// if we don't find the key there's an error in the quadtree
Q_ASSERT(false);
found:
Q_ASSERT(occupied_quadtree[channel][node].key == 0);
} else if (occupied_quadtree[channel][node].largest_available_block < current_block_size) {
Q_ASSERT(current_block_size >= block_size);
node = node * 4 + 1;
for (int sibling = 0; sibling < 4; ++sibling)
quadtreeClear(channel, rect, node + sibling);
}
}
bool QGLMaskTextureCache::quadtreeFindAvailableLocation(const QSize &size, QRect *rect, int *channel)
{
int needed_block_size = qMax(1, qMax(size.width(), size.height()));
for (int i = 0; i < 4; ++i) {
int current_block_size = offscreenSize.width();
if (occupied_quadtree[i][0].largest_available_block >= needed_block_size) {
int node = 0;
while (current_block_size != occupied_quadtree[i][node].largest_available_block) {
Q_ASSERT(current_block_size > block_size);
Q_ASSERT(current_block_size > occupied_quadtree[i][node].largest_available_block);
node = node * 4 + 1;
current_block_size /= 2;
int sibling = 0;
while (occupied_quadtree[i][node + sibling].largest_available_block < needed_block_size)
++sibling;
Q_ASSERT(sibling < 4);
node += sibling;
}
*channel = i;
*rect = QRect(quadtreeLocation(node), size);
return true;
}
}
return false;
}
void QGLMaskTextureCache::quadtreeFindExistingLocation(const QSize &size, QRect *rect, int *channel)
{
// try to pick small masks to throw out, as large masks are more expensive to recompute
*channel = qrand() % 4;
for (int i = 0; i < 4; ++i)
if (occupied_quadtree[i][0].largest_used_block < occupied_quadtree[*channel][0].largest_used_block)
*channel = i;
int needed_block_size = qt_next_power_of_two(qMax(1, qMax(size.width(), size.height())));
int node = 0;
int current_block_size = offscreenSize.width();
while (current_block_size > block_size
&& current_block_size >= needed_block_size * 2
&& occupied_quadtree[*channel][node].key == 0)
{
node = node * 4 + 1;
int sibling = 0;
for (int i = 1; i < 4; ++i) {
if (occupied_quadtree[*channel][node + i].largest_used_block
<= occupied_quadtree[*channel][node + sibling].largest_used_block)
{
sibling = i;
}
}
node += sibling;
current_block_size /= 2;
}
*rect = QRect(quadtreeLocation(node), size);
}
void QGLMaskTextureCache::quadtreeAllocate(quint64 key, const QSize &size, QRect *rect, int *channel)
{
#ifndef DISABLE_MASK_CACHE
if (!quadtreeFindAvailableLocation(size, rect, channel)) {
quadtreeFindExistingLocation(size, rect, channel);
quadtreeClear(*channel, *rect);
}
quadtreeInsert(*channel, key, *rect);
#else
*channel = 0;
*rect = QRect(QPoint(), size);
#endif
}
class QGLTrapezoidMaskGenerator : public QGLMaskGenerator
{
public:
QGLTrapezoidMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram, qreal strokeWidth = -1.0);
QRect screenRect();
void drawMask(const QRect &rect);
private:
QRect screen_rect;
bool has_screen_rect;
QGLOffscreen *offscreen;
GLuint maskFragmentProgram;
virtual QVector<QGLTrapezoid> generateTrapezoids() = 0;
virtual QRect computeScreenRect() = 0;
};
class QGLPathMaskGenerator : public QGLTrapezoidMaskGenerator
{
public:
QGLPathMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram);
private:
QVector<QGLTrapezoid> generateTrapezoids();
QRect computeScreenRect();
QPolygonF poly;
};
class QGLLineMaskGenerator : public QGLTrapezoidMaskGenerator
{
public:
QGLLineMaskGenerator(const QPainterPath &path, const QTransform &matrix, qreal width, QGLOffscreen &offscreen, GLuint maskFragmentProgram);
private:
QVector<QGLTrapezoid> generateTrapezoids();
QRect computeScreenRect();
QPainterPath transformedPath;
};
class QGLRectMaskGenerator : public QGLTrapezoidMaskGenerator
{
public:
QGLRectMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram);
private:
QVector<QGLTrapezoid> generateTrapezoids();
QRect computeScreenRect();
QPainterPath transformedPath;
};
class QGLEllipseMaskGenerator : public QGLMaskGenerator
{
public:
QGLEllipseMaskGenerator(const QRectF &rect, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram, int *maskVariableLocations);
QRect screenRect();
void drawMask(const QRect &rect);
private:
QRect screen_rect;
QRectF ellipseRect;
QGLOffscreen *offscreen;
GLuint maskFragmentProgram;
int *maskVariableLocations;
float vertexArray[4 * 2];
};
QGLTrapezoidMaskGenerator::QGLTrapezoidMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offs, GLuint program, qreal stroke_width)
: QGLMaskGenerator(path, matrix, stroke_width)
, has_screen_rect(false)
, offscreen(&offs)
, maskFragmentProgram(program)
{
}
extern void qt_add_rect_to_array(const QRectF &r, q_vertexType *array);
extern void qt_add_texcoords_to_array(qreal x1, qreal y1, qreal x2, qreal y2, q_vertexType *array);
void QGLTrapezoidMaskGenerator::drawMask(const QRect &rect)
{
#ifdef QT_OPENGL_ES
Q_UNUSED(rect);
#else
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
QGLContext *ctx = offscreen->context();
offscreen->bind();
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_1D);
GLfloat vertexArray[4 * 2];
qt_add_rect_to_array(rect, vertexArray);
bool needs_scissor = rect != screen_rect;
if (needs_scissor) {
glEnable(GL_SCISSOR_TEST);
glScissor(rect.left(), offscreen->offscreenSize().height() - rect.bottom() - 1, rect.width(), rect.height());
}
QVector<QGLTrapezoid> trapezoids = generateTrapezoids();
// clear mask
glBlendFunc(GL_ZERO, GL_ZERO); // clear
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_VERTEX_ARRAY);
glBlendFunc(GL_ONE, GL_ONE); // add mask
glEnable(GL_FRAGMENT_PROGRAM_ARB);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, maskFragmentProgram);
QPoint delta = rect.topLeft() - screen_rect.topLeft();
glBegin(GL_QUADS);
for (int i = 0; i < trapezoids.size(); ++i)
drawTrapezoid(trapezoids[i].translated(delta), offscreen->offscreenSize().height(), ctx);
glEnd();
if (needs_scissor)
glDisable(GL_SCISSOR_TEST);
glDisable(GL_FRAGMENT_PROGRAM_ARB);
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
#endif
}
QRect QGLTrapezoidMaskGenerator::screenRect()
{
if (!has_screen_rect) {
screen_rect = computeScreenRect();
has_screen_rect = true;
}
screen_rect = screen_rect.intersected(QRect(QPoint(), offscreen->drawableSize()));
return screen_rect;
}
QGLPathMaskGenerator::QGLPathMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offs, GLuint program)
: QGLTrapezoidMaskGenerator(path, matrix, offs, program)
{
}
QRect QGLPathMaskGenerator::computeScreenRect()
{
poly = path().toFillPolygon(matrix());
return poly.boundingRect().toAlignedRect();
}
QVector<QGLTrapezoid> QGLPathMaskGenerator::generateTrapezoids()
{
QOpenGLImmediateModeTessellator tessellator;
tessellator.tessellate(poly.data(), poly.count(), path().fillRule() == Qt::WindingFill);
return tessellator.trapezoids;
}
QGLRectMaskGenerator::QGLRectMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offs, GLuint program)
: QGLTrapezoidMaskGenerator(path, matrix, offs, program)
{
}
QGLLineMaskGenerator::QGLLineMaskGenerator(const QPainterPath &path, const QTransform &matrix, qreal width, QGLOffscreen &offs, GLuint program)
: QGLTrapezoidMaskGenerator(path, matrix, offs, program, width)
{
}
QRect QGLRectMaskGenerator::computeScreenRect()
{
transformedPath = matrix().map(path());
return transformedPath.controlPointRect().adjusted(-1, -1, 1, 1).toAlignedRect();
}
QRect QGLLineMaskGenerator::computeScreenRect()
{
transformedPath = matrix().map(path());
return transformedPath.controlPointRect().adjusted(-1, -1, 1, 1).toAlignedRect();
}
QVector<QGLTrapezoid> QGLLineMaskGenerator::generateTrapezoids()
{
QOpenGLImmediateModeTessellator tessellator;
QPointF last;
for (int i = 0; i < transformedPath.elementCount(); ++i) {
QPainterPath::Element element = transformedPath.elementAt(i);
Q_ASSERT(!element.isCurveTo());
if (element.isLineTo())
tessellator.tessellateRect(last, element, strokeWidth());
last = element;
}
return tessellator.trapezoids;
}
QVector<QGLTrapezoid> QGLRectMaskGenerator::generateTrapezoids()
{
Q_ASSERT(transformedPath.elementCount() == 5);
QOpenGLImmediateModeTessellator tessellator;
if (matrix().type() <= QTransform::TxScale) {
QPointF a = transformedPath.elementAt(0);
QPointF b = transformedPath.elementAt(1);
QPointF c = transformedPath.elementAt(2);
QPointF d = transformedPath.elementAt(3);
QPointF first = (a + d) * 0.5;
QPointF last = (b + c) * 0.5;
QPointF delta = a - d;
// manhattan distance (no rotation)
qreal width = qAbs(delta.x()) + qAbs(delta.y());
Q_ASSERT(qFuzzyIsNull(delta.x()) || qFuzzyIsNull(delta.y()));
tessellator.tessellateRect(first, last, width);
} else {
QPointF points[5];
for (int i = 0; i < 5; ++i)
points[i] = transformedPath.elementAt(i);
tessellator.tessellateConvex(points, 5);
}
return tessellator.trapezoids;
}
static QPainterPath ellipseRectToPath(const QRectF &rect)
{
QPainterPath path;
path.addEllipse(rect);
return path;
}
QGLEllipseMaskGenerator::QGLEllipseMaskGenerator(const QRectF &rect, const QTransform &matrix, QGLOffscreen &offs, GLuint program, int *locations)
: QGLMaskGenerator(ellipseRectToPath(rect), matrix),
ellipseRect(rect),
offscreen(&offs),
maskFragmentProgram(program),
maskVariableLocations(locations)
{
}
QRect QGLEllipseMaskGenerator::screenRect()
{
QPointF center = ellipseRect.center();
QPointF points[] = {
QPointF(ellipseRect.left(), center.y()),
QPointF(ellipseRect.right(), center.y()),
QPointF(center.x(), ellipseRect.top()),
QPointF(center.x(), ellipseRect.bottom())
};
qreal min_screen_delta_len = QREAL_MAX;
for (int i = 0; i < 4; ++i) {
QPointF delta = points[i] - center;
// normalize
delta /= qSqrt(delta.x() * delta.x() + delta.y() * delta.y());
QPointF screen_delta(matrix().m11() * delta.x() + matrix().m21() * delta.y(),
matrix().m12() * delta.x() + matrix().m22() * delta.y());
min_screen_delta_len = qMin(min_screen_delta_len,
qreal(qSqrt(screen_delta.x() * screen_delta.x() + screen_delta.y() * screen_delta.y())));
}
const qreal padding = 2.0f;
qreal grow = padding / min_screen_delta_len;
QRectF boundingRect = ellipseRect.adjusted(-grow, -grow, grow, grow);
boundingRect = matrix().mapRect(boundingRect);
QPointF p(0.5, 0.5);
screen_rect = QRect((boundingRect.topLeft() - p).toPoint(),
(boundingRect.bottomRight() + p).toPoint());
return screen_rect;
}
void QGLEllipseMaskGenerator::drawMask(const QRect &rect)
{
#ifdef QT_OPENGL_ES
Q_UNUSED(rect);
#else
QGLContext *ctx = offscreen->context();
offscreen->bind();
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_1D);
// fragment program needs the inverse radii of the ellipse
glTexCoord2f(1.0f / (ellipseRect.width() * 0.5f),
1.0f / (ellipseRect.height() * 0.5f));
QTransform translate(1, 0, 0, 1, -ellipseRect.center().x(), -ellipseRect.center().y());
QTransform gl_to_qt(1, 0, 0, -1, 0, offscreen->drawableSize().height());
QTransform inv_matrix = gl_to_qt * matrix().inverted() * translate;
float m[3][4] = { { inv_matrix.m11(), inv_matrix.m12(), inv_matrix.m13() },
{ inv_matrix.m21(), inv_matrix.m22(), inv_matrix.m23() },
{ inv_matrix.m31(), inv_matrix.m32(), inv_matrix.m33() } };
QPoint offs(screen_rect.left() - rect.left(), (offscreen->drawableSize().height() - screen_rect.top())
- (offscreen->offscreenSize().height() - rect.top()));
// last component needs to be 1.0f to avoid Nvidia bug on linux
float ellipse_offset[4] = { offs.x(), offs.y(), 0.0f, 1.0f };
GLfloat vertexArray[4 * 2];
qt_add_rect_to_array(rect, vertexArray);
glBlendFunc(GL_ONE, GL_ZERO); // set mask
glEnable(GL_FRAGMENT_PROGRAM_ARB);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, maskFragmentProgram);
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_INV_MATRIX_M0], m[0]);
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_INV_MATRIX_M1], m[1]);
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_INV_MATRIX_M2], m[2]);
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_ELLIPSE_OFFSET], ellipse_offset);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_VERTEX_ARRAY);
glDisable(GL_FRAGMENT_PROGRAM_ARB);
#endif
}
void QOpenGLPaintEnginePrivate::drawOffscreenPath(const QPainterPath &path)
{
#ifdef Q_WS_QWS
Q_UNUSED(path);
#else
DEBUG_ONCE_STR("QOpenGLPaintEnginePrivate::drawOffscreenPath()");
disableClipping();
GLuint program = qt_gl_program_cache()->getProgram(device->context(),
FRAGMENT_PROGRAM_MASK_TRAPEZOID_AA, 0, true);
QGLPathMaskGenerator maskGenerator(path, matrix, offscreen, program);
addItem(qt_mask_texture_cache()->getMask(maskGenerator, this));
enableClipping();
#endif
}
void QOpenGLPaintEnginePrivate::drawFastRect(const QRectF &r)
{
Q_Q(QOpenGLPaintEngine);
DEBUG_ONCE_STR("QOpenGLPaintEngine::drawRects(): drawing fast rect");
q_vertexType vertexArray[10];
qt_add_rect_to_array(r, vertexArray);
if (has_pen)
QOpenGLCoordinateOffset::enableOffset(this);
if (has_brush) {
flushDrawQueue();
bool temp = high_quality_antialiasing;
high_quality_antialiasing = false;
q->updateCompositionMode(composition_mode);
setGradientOps(cbrush, r);
bool fast_style = current_style == Qt::LinearGradientPattern
|| current_style == Qt::SolidPattern;
if (fast_style && has_fast_composition_mode) {
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_VERTEX_ARRAY);
} else {
composite(r);
}
high_quality_antialiasing = temp;
q->updateCompositionMode(composition_mode);
}
if (has_pen) {
if (has_fast_pen && !high_quality_antialiasing) {
setGradientOps(cpen.brush(), r);
vertexArray[8] = vertexArray[0];
vertexArray[9] = vertexArray[1];
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_LINE_STRIP, 0, 5);
glDisableClientState(GL_VERTEX_ARRAY);
} else {
QPainterPath path;
path.setFillRule(Qt::WindingFill);
qreal left = r.left();
qreal right = r.right();
qreal top = r.top();
qreal bottom = r.bottom();
path.moveTo(left, top);
path.lineTo(right, top);
path.lineTo(right, bottom);
path.lineTo(left, bottom);
path.lineTo(left, top);
strokePath(path, false);
}
QOpenGLCoordinateOffset::disableOffset(this);
}
}
bool QOpenGLPaintEnginePrivate::isFastRect(const QRectF &rect)
{
if (matrix.type() < QTransform::TxRotate) {
QRectF r = matrix.mapRect(rect);
return r.topLeft().toPoint() == r.topLeft()
&& r.bottomRight().toPoint() == r.bottomRight();
}
return false;
}
void QOpenGLPaintEngine::drawRects(const QRect *rects, int rectCount)
{
struct RectF {
qreal x;
qreal y;
qreal w;
qreal h;
};
Q_ASSERT(sizeof(RectF) == sizeof(QRectF));
RectF fr[256];
while (rectCount) {
int i = 0;
while (i < rectCount && i < 256) {
fr[i].x = rects[i].x();
fr[i].y = rects[i].y();
fr[i].w = rects[i].width();
fr[i].h = rects[i].height();
++i;
}
drawRects((QRectF *)(void *)fr, i);
rects += i;
rectCount -= i;
}
}
void QOpenGLPaintEngine::drawRects(const QRectF *rects, int rectCount)
{
Q_D(QOpenGLPaintEngine);
if (d->use_emulation) {
QPaintEngineEx::drawRects(rects, rectCount);
return;
}
for (int i=0; i<rectCount; ++i) {
const QRectF &r = rects[i];
// optimization for rects which can be drawn aliased
if (!d->high_quality_antialiasing || d->isFastRect(r)) {
d->drawFastRect(r);
} else {
QPainterPath path;
path.addRect(r);
if (d->has_brush) {
d->disableClipping();
GLuint program = qt_gl_program_cache()->getProgram(d->device->context(),
FRAGMENT_PROGRAM_MASK_TRAPEZOID_AA, 0, true);
if (d->matrix.type() >= QTransform::TxProject) {
QGLPathMaskGenerator maskGenerator(path, d->matrix, d->offscreen, program);
d->addItem(qt_mask_texture_cache()->getMask(maskGenerator, d));
} else {
QGLRectMaskGenerator maskGenerator(path, d->matrix, d->offscreen, program);
d->addItem(qt_mask_texture_cache()->getMask(maskGenerator, d));
}
d->enableClipping();
}
if (d->has_pen) {
if (d->has_fast_pen)
d->strokeLines(path);
else
d->strokePath(path, false);
}
}
}
}
static void addQuadAsTriangle(q_vertexType *quad, q_vertexType *triangle)
{
triangle[0] = quad[0];
triangle[1] = quad[1];
triangle[2] = quad[2];
triangle[3] = quad[3];
triangle[4] = quad[4];
triangle[5] = quad[5];
triangle[6] = quad[4];
triangle[7] = quad[5];
triangle[8] = quad[6];
triangle[9] = quad[7];
triangle[10] = quad[0];
triangle[11] = quad[1];
}
void QOpenGLPaintEngine::drawPoints(const QPoint *points, int pointCount)
{
Q_ASSERT(sizeof(QT_PointF) == sizeof(QPointF));
QT_PointF fp[256];
while (pointCount) {
int i = 0;
while (i < pointCount && i < 256) {
fp[i].x = points[i].x();
fp[i].y = points[i].y();
++i;
}
drawPoints((QPointF *)(void *)fp, i);
points += i;
pointCount -= i;
}
}
void QOpenGLPaintEngine::drawPoints(const QPointF *points, int pointCount)
{
Q_D(QOpenGLPaintEngine);
if (d->use_emulation) {
QPaintEngineEx::drawPoints(points, pointCount);
return;
}
d->setGradientOps(d->cpen.brush(), QRectF());
if (!d->cpen.isCosmetic() || d->high_quality_antialiasing) {
Qt::PenCapStyle capStyle = d->cpen.capStyle();
if (capStyle == Qt::FlatCap)
d->cpen.setCapStyle(Qt::SquareCap);
QPaintEngine::drawPoints(points, pointCount);
d->cpen.setCapStyle(capStyle);
return;
}
d->flushDrawQueue();
if (d->has_fast_pen) {
QVarLengthArray<q_vertexType> vertexArray(6 * pointCount);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
int j = 0;
for (int i = 0; i < pointCount; ++i) {
QPointF mapped = d->matrix.map(points[i]);
qreal xf = qRound(mapped.x());
qreal yf = qRound(mapped.y());
q_vertexType x = f2vt(xf);
q_vertexType y = f2vt(yf);
vertexArray[j++] = x;
vertexArray[j++] = y - f2vt(0.5);
vertexArray[j++] = x + f2vt(1.5);
vertexArray[j++] = y + f2vt(1.0);
vertexArray[j++] = x;
vertexArray[j++] = y + f2vt(1.0);
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
glDrawArrays(GL_TRIANGLES, 0, pointCount*3);
glDisableClientState(GL_VERTEX_ARRAY);
glPopMatrix();
return;
}
const qreal *vertexArray = reinterpret_cast<const qreal*>(&points[0]);
if (sizeof(qreal) == sizeof(double)) {
Q_ASSERT(sizeof(QPointF) == 16);
glVertexPointer(2, GL_DOUBLE, 0, vertexArray);
}
else {
Q_ASSERT(sizeof(QPointF) == 8);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
}
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, pointCount);
glDisableClientState(GL_VERTEX_ARRAY);
}
void QOpenGLPaintEngine::drawLines(const QLine *lines, int lineCount)
{
struct PointF {
qreal x;
qreal y;
};
struct LineF {
PointF p1;
PointF p2;
};
Q_ASSERT(sizeof(PointF) == sizeof(QPointF));
Q_ASSERT(sizeof(LineF) == sizeof(QLineF));
LineF fl[256];
while (lineCount) {
int i = 0;
while (i < lineCount && i < 256) {
fl[i].p1.x = lines[i].x1();
fl[i].p1.y = lines[i].y1();
fl[i].p2.x = lines[i].x2();
fl[i].p2.y = lines[i].y2();
++i;
}
drawLines((QLineF *)(void *)fl, i);
lines += i;
lineCount -= i;
}
}
void QOpenGLPaintEngine::drawLines(const QLineF *lines, int lineCount)
{
Q_D(QOpenGLPaintEngine);
if (d->use_emulation) {
QPaintEngineEx::drawLines(lines, lineCount);
return;
}
if (d->has_pen) {
QOpenGLCoordinateOffset offset(d);
if (d->has_fast_pen && !d->high_quality_antialiasing) {
//### gradient resolving on lines isn't correct
d->setGradientOps(d->cpen.brush(), QRectF());
bool useRects = false;
// scale or 90 degree rotation?
if (d->matrix.type() <= QTransform::TxTranslate
|| (!d->cpen.isCosmetic()
&& (d->matrix.type() <= QTransform::TxScale
|| (d->matrix.type() == QTransform::TxRotate
&& d->matrix.m11() == 0 && d->matrix.m22() == 0)))) {
useRects = true;
for (int i = 0; i < lineCount; ++i) {
if (lines[i].p1().x() != lines[i].p2().x()
&& lines[i].p1().y() != lines[i].p2().y()) {
useRects = false;
break;
}
}
}
q_vertexType endCap = f2vt(d->cpen.capStyle() == Qt::FlatCap ? 0 : 0.5);
if (useRects) {
QVarLengthArray<q_vertexType> vertexArray(12 * lineCount);
q_vertexType quad[8];
for (int i = 0; i < lineCount; ++i) {
q_vertexType x1 = f2vt(lines[i].x1());
q_vertexType x2 = f2vt(lines[i].x2());
q_vertexType y1 = f2vt(lines[i].y1());
q_vertexType y2 = f2vt(lines[i].y2());
if (x1 == x2) {
if (y1 > y2)
qSwap(y1, y2);
quad[0] = x1 - f2vt(0.5);
quad[1] = y1 - endCap;
quad[2] = x1 + f2vt(0.5);
quad[3] = y1 - endCap;
quad[4] = x1 + f2vt(0.5);
quad[5] = y2 + endCap;
quad[6] = x1 - f2vt(0.5);
quad[7] = y2 + endCap;
} else {
if (x1 > x2)
qSwap(x1, x2);
quad[0] = x1 - endCap;
quad[1] = y1 + f2vt(0.5);
quad[2] = x1 - endCap;
quad[3] = y1 - f2vt(0.5);
quad[4] = x2 + endCap;
quad[5] = y1 - f2vt(0.5);
quad[6] = x2 + endCap;
quad[7] = y1 + f2vt(0.5);
}
addQuadAsTriangle(quad, &vertexArray[12*i]);
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
glDrawArrays(GL_TRIANGLES, 0, lineCount*6);
glDisableClientState(GL_VERTEX_ARRAY);
} else {
QVarLengthArray<q_vertexType> vertexArray(4 * lineCount);
for (int i = 0; i < lineCount; ++i) {
const QPointF a = lines[i].p1();
vertexArray[4*i] = f2vt(lines[i].x1());
vertexArray[4*i+1] = f2vt(lines[i].y1());
vertexArray[4*i+2] = f2vt(lines[i].x2());
vertexArray[4*i+3] = f2vt(lines[i].y2());
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
glDrawArrays(GL_LINES, 0, lineCount*2);
glVertexPointer(2, q_vertexTypeEnum, 4*sizeof(q_vertexType), vertexArray.constData() + 2);
glDrawArrays(GL_POINTS, 0, lineCount);
glDisableClientState(GL_VERTEX_ARRAY);
}
} else {
QPainterPath path;
path.setFillRule(Qt::WindingFill);
for (int i=0; i<lineCount; ++i) {
const QLineF &l = lines[i];
if (l.p1() == l.p2()) {
if (d->cpen.capStyle() != Qt::FlatCap) {
QPointF p = l.p1();
drawPoints(&p, 1);
}
continue;
}
path.moveTo(l.x1(), l.y1());
path.lineTo(l.x2(), l.y2());
}
if (d->has_fast_pen && d->high_quality_antialiasing)
d->strokeLines(path);
else
d->strokePath(path, false);
}
}
}
void QOpenGLPaintEngine::drawPolygon(const QPoint *points, int pointCount, PolygonDrawMode mode)
{
Q_ASSERT(sizeof(QT_PointF) == sizeof(QPointF));
QVarLengthArray<QT_PointF> p(pointCount);
for (int i=0; i<pointCount; ++i) {
p[i].x = points[i].x();
p[i].y = points[i].y();
}
drawPolygon((QPointF *)p.data(), pointCount, mode);
}
void QOpenGLPaintEngine::drawPolygon(const QPointF *points, int pointCount, PolygonDrawMode mode)
{
Q_D(QOpenGLPaintEngine);
if(pointCount < 2)
return;
if (d->use_emulation) {
QPaintEngineEx::drawPolygon(points, pointCount, mode);
return;
}
QRectF bounds;
if ((mode == ConvexMode && !d->high_quality_antialiasing && state()->brushNeedsResolving()) ||
((d->has_fast_pen && !d->high_quality_antialiasing) && state()->penNeedsResolving())) {
qreal minx = points[0].x(), miny = points[0].y(),
maxx = points[0].x(), maxy = points[0].y();
for (int i = 1; i < pointCount; ++i) {
const QPointF &pt = points[i];
if (minx > pt.x())
minx = pt.x();
if (miny > pt.y())
miny = pt.y();
if (maxx < pt.x())
maxx = pt.x();
if (maxy < pt.y())
maxy = pt.y();
}
bounds = QRectF(minx, maxx, maxx-minx, maxy-miny);
}
QOpenGLCoordinateOffset offset(d);
if (d->has_brush && mode != PolylineMode) {
if (mode == ConvexMode && !d->high_quality_antialiasing) {
//### resolving on polygon from points isn't correct
d->setGradientOps(d->cbrush, bounds);
const qreal *vertexArray = reinterpret_cast<const qreal*>(&points[0]);
if (sizeof(qreal) == sizeof(double)) {
Q_ASSERT(sizeof(QPointF) == 16);
glVertexPointer(2, GL_DOUBLE, 0, vertexArray);
}
else {
Q_ASSERT(sizeof(QPointF) == 8);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
}
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, pointCount);
glDisableClientState(GL_VERTEX_ARRAY);
} else {
QPainterPath path;
path.setFillRule(mode == WindingMode ? Qt::WindingFill : Qt::OddEvenFill);
path.moveTo(points[0]);
for (int i=1; i<pointCount; ++i)
path.lineTo(points[i]);
d->fillPath(path);
}
}
if (d->has_pen) {
if (d->has_fast_pen && !d->high_quality_antialiasing) {
d->setGradientOps(d->cpen.brush(), bounds);
QVarLengthArray<q_vertexType> vertexArray(pointCount*2 + 2);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
int i;
for (i=0; i<pointCount; ++i) {
vertexArray[i*2] = f2vt(points[i].x());
vertexArray[i*2+1] = f2vt(points[i].y());
}
glEnableClientState(GL_VERTEX_ARRAY);
if (mode != PolylineMode) {
vertexArray[i*2] = vertexArray[0];
vertexArray[i*2+1] = vertexArray[1];
glDrawArrays(GL_LINE_STRIP, 0, pointCount+1);
} else {
glDrawArrays(GL_LINE_STRIP, 0, pointCount);
glDrawArrays(GL_POINTS, pointCount-1, 1);
}
glDisableClientState(GL_VERTEX_ARRAY);
} else {
QPainterPath path(points[0]);
for (int i = 1; i < pointCount; ++i)
path.lineTo(points[i]);
if (mode != PolylineMode)
path.lineTo(points[0]);
if (d->has_fast_pen)
d->strokeLines(path);
else
d->strokePath(path, true);
}
}
}
void QOpenGLPaintEnginePrivate::strokeLines(const QPainterPath &path)
{
DEBUG_ONCE_STR("QOpenGLPaintEnginePrivate::strokeLines()");
qreal penWidth = cpen.widthF();
GLuint program = qt_gl_program_cache()->getProgram(device->context(),
FRAGMENT_PROGRAM_MASK_TRAPEZOID_AA, 0, true);
QGLLineMaskGenerator maskGenerator(path, matrix, penWidth == 0 ? 1.0 : penWidth,
offscreen, program);
disableClipping();
QBrush temp = cbrush;
QPointF origin = brush_origin;
cbrush = cpen.brush();
brush_origin = QPointF();
addItem(qt_mask_texture_cache()->getMask(maskGenerator, this));
cbrush = temp;
brush_origin = origin;
enableClipping();
}
extern bool qt_scaleForTransform(const QTransform &transform, qreal *scale); // qtransform.cpp
void QOpenGLPaintEnginePrivate::strokePath(const QPainterPath &path, bool use_cache)
{
QBrush old_brush = cbrush;
cbrush = cpen.brush();
qreal txscale = 1;
if (cpen.isCosmetic() || (qt_scaleForTransform(matrix, &txscale) && txscale != 1)) {
QTransform temp = matrix;
matrix = QTransform();
glPushMatrix();
if (has_antialiasing) {
glLoadIdentity();
} else {
float offs_matrix[] =
{ 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0.5, 0.5, 0, 1 };
glLoadMatrixf(offs_matrix);
}
QPen pen = cpen;
if (txscale != 1)
pen.setWidthF(pen.widthF() * txscale);
if (use_cache)
fillPath(qt_opengl_stroke_cache()->getStrokedPath(temp.map(path), pen));
else
fillPath(strokeForPath(temp.map(path), pen));
glPopMatrix();
matrix = temp;
} else if (use_cache) {
fillPath(qt_opengl_stroke_cache()->getStrokedPath(path, cpen));
} else {
fillPath(strokeForPath(path, cpen));
}
cbrush = old_brush;
}
void QOpenGLPaintEnginePrivate::strokePathFastPen(const QPainterPath &path, bool needsResolving)
{
#ifndef QT_OPENGL_ES
QRectF bounds;
if (needsResolving)
bounds = path.controlPointRect();
setGradientOps(cpen.brush(), bounds);
QBezier beziers[32];
for (int i=0; i<path.elementCount(); ++i) {
const QPainterPath::Element &e = path.elementAt(i);
switch (e.type) {
case QPainterPath::MoveToElement:
if (i != 0)
glEnd(); // GL_LINE_STRIP
glBegin(GL_LINE_STRIP);
glVertex2d(e.x, e.y);
break;
case QPainterPath::LineToElement:
glVertex2d(e.x, e.y);
break;
case QPainterPath::CurveToElement:
{
QPointF sp = path.elementAt(i-1);
QPointF cp2 = path.elementAt(i+1);
QPointF ep = path.elementAt(i+2);
i+=2;
qreal inverseScaleHalf = inverseScale / 2;
beziers[0] = QBezier::fromPoints(sp, e, cp2, ep);
QBezier *b = beziers;
while (b >= beziers) {
// check if we can pop the top bezier curve from the stack
qreal l = qAbs(b->x4 - b->x1) + qAbs(b->y4 - b->y1);
qreal d;
if (l > inverseScale) {
d = qAbs( (b->x4 - b->x1)*(b->y1 - b->y2)
- (b->y4 - b->y1)*(b->x1 - b->x2) )
+ qAbs( (b->x4 - b->x1)*(b->y1 - b->y3)
- (b->y4 - b->y1)*(b->x1 - b->x3) );
d /= l;
} else {
d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
}
if (d < inverseScaleHalf || b == beziers + 31) {
// good enough, we pop it off and add the endpoint
glVertex2d(b->x4, b->y4);
--b;
} else {
// split, second half of the polygon goes lower into the stack
b->split(b+1, b);
++b;
}
}
} // case CurveToElement
default:
break;
} // end of switch
}
glEnd(); // GL_LINE_STRIP
#else
// have to use vertex arrays on embedded
QRectF bounds;
if (needsResolving)
bounds = path.controlPointRect();
setGradientOps(cpen.brush(), bounds);
glEnableClientState(GL_VERTEX_ARRAY);
tess_points.reset();
QBezier beziers[32];
for (int i=0; i<path.elementCount(); ++i) {
const QPainterPath::Element &e = path.elementAt(i);
switch (e.type) {
case QPainterPath::MoveToElement:
if (i != 0) {
glVertexPointer(2, q_vertexTypeEnum, 0, tess_points.data());
glDrawArrays(GL_LINE_STRIP, 0, tess_points.size());
tess_points.reset();
}
tess_points.add(QPointF(e.x, e.y));
break;
case QPainterPath::LineToElement:
tess_points.add(QPointF(e.x, e.y));
break;
case QPainterPath::CurveToElement:
{
QPointF sp = path.elementAt(i-1);
QPointF cp2 = path.elementAt(i+1);
QPointF ep = path.elementAt(i+2);
i+=2;
qreal inverseScaleHalf = inverseScale / 2;
beziers[0] = QBezier::fromPoints(sp, e, cp2, ep);
QBezier *b = beziers;
while (b >= beziers) {
// check if we can pop the top bezier curve from the stack
qreal l = qAbs(b->x4 - b->x1) + qAbs(b->y4 - b->y1);
qreal d;
if (l > inverseScale) {
d = qAbs( (b->x4 - b->x1)*(b->y1 - b->y2)
- (b->y4 - b->y1)*(b->x1 - b->x2) )
+ qAbs( (b->x4 - b->x1)*(b->y1 - b->y3)
- (b->y4 - b->y1)*(b->x1 - b->x3) );
d /= l;
} else {
d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
}
if (d < inverseScaleHalf || b == beziers + 31) {
// good enough, we pop it off and add the endpoint
tess_points.add(QPointF(b->x4, b->y4));
--b;
} else {
// split, second half of the polygon goes lower into the stack
b->split(b+1, b);
++b;
}
}
} // case CurveToElement
default:
break;
} // end of switch
}
glVertexPointer(2, q_vertexTypeEnum, 0, tess_points.data());
glDrawArrays(GL_LINE_STRIP, 0, tess_points.size());
glDisableClientState(GL_VERTEX_ARRAY);
#endif
}
static bool pathClosed(const QPainterPath &path)
{
QPointF lastMoveTo = path.elementAt(0);
QPointF lastPoint = lastMoveTo;
for (int i = 1; i < path.elementCount(); ++i) {
const QPainterPath::Element &e = path.elementAt(i);
switch (e.type) {
case QPainterPath::MoveToElement:
if (lastMoveTo != lastPoint)
return false;
lastMoveTo = lastPoint = e;
break;
case QPainterPath::LineToElement:
lastPoint = e;
break;
case QPainterPath::CurveToElement:
lastPoint = path.elementAt(i + 2);
i+=2;
break;
default:
break;
}
}
return lastMoveTo == lastPoint;
}
void QOpenGLPaintEngine::drawPath(const QPainterPath &path)
{
Q_D(QOpenGLPaintEngine);
if (path.isEmpty())
return;
if (d->use_emulation) {
QPaintEngineEx::drawPath(path);
return;
}
QOpenGLCoordinateOffset offset(d);
if (d->has_brush) {
bool path_closed = pathClosed(path);
bool has_thick_pen =
path_closed
&& d->has_pen
&& d->cpen.style() == Qt::SolidLine
&& d->cpen.isSolid()
&& d->cpen.color().alpha() == 255
&& d->txop < QTransform::TxProject
&& d->cpen.widthF() >= 2 / qSqrt(qMin(d->matrix.m11() * d->matrix.m11()
+ d->matrix.m21() * d->matrix.m21(),
d->matrix.m12() * d->matrix.m12()
+ d->matrix.m22() * d->matrix.m22()));
if (has_thick_pen) {
DEBUG_ONCE qDebug() << "QOpenGLPaintEngine::drawPath(): Using thick pen optimization, style:" << d->cbrush.style();
d->flushDrawQueue();
bool temp = d->high_quality_antialiasing;
d->high_quality_antialiasing = false;
updateCompositionMode(d->composition_mode);
d->fillPath(path);
d->high_quality_antialiasing = temp;
updateCompositionMode(d->composition_mode);
} else {
d->fillPath(path);
}
}
if (d->has_pen) {
if (d->has_fast_pen && !d->high_quality_antialiasing)
d->strokePathFastPen(path, state()->penNeedsResolving());
else
d->strokePath(path, true);
}
}
void QOpenGLPaintEnginePrivate::drawImageAsPath(const QRectF &r, const QImage &img, const QRectF &sr)
{
QBrush old_brush = cbrush;
QPointF old_brush_origin = brush_origin;
qreal scaleX = r.width() / sr.width();
qreal scaleY = r.height() / sr.height();
QTransform brush_matrix = QTransform::fromTranslate(r.left(), r.top());
brush_matrix.scale(scaleX, scaleY);
brush_matrix.translate(-sr.left(), -sr.top());
cbrush = QBrush(img);
cbrush.setTransform(brush_matrix);
brush_origin = QPointF();
QPainterPath p;
p.addRect(r);
fillPath(p);
cbrush = old_brush;
brush_origin = old_brush_origin;
}
void QOpenGLPaintEnginePrivate::drawTiledImageAsPath(const QRectF &r, const QImage &img, qreal sx, qreal sy,
const QPointF &offset)
{
QBrush old_brush = cbrush;
QPointF old_brush_origin = brush_origin;
QTransform brush_matrix = QTransform::fromTranslate(r.left(), r.top());
brush_matrix.scale(sx, sy);
brush_matrix.translate(-offset.x(), -offset.y());
cbrush = QBrush(img);
cbrush.setTransform(brush_matrix);
brush_origin = QPointF();
QPainterPath p;
p.addRect(r);
fillPath(p);
cbrush = old_brush;
brush_origin = old_brush_origin;
}
static const QRectF scaleRect(const QRectF &r, qreal sx, qreal sy)
{
return QRectF(r.x() * sx, r.y() * sy, r.width() * sx, r.height() * sy);
}
template <typename T>
static const T qSubImage(const T &image, const QRectF &src, QRectF *srcNew)
{
const int sx1 = qMax(0, qFloor(src.left()));
const int sy1 = qMax(0, qFloor(src.top()));
const int sx2 = qMin(image.width(), qCeil(src.right()));
const int sy2 = qMin(image.height(), qCeil(src.bottom()));
const T sub = image.copy(sx1, sy1, sx2 - sx1, sy2 - sy1);
if (srcNew)
*srcNew = src.translated(-sx1, -sy1);
return sub;
}
void QOpenGLPaintEngine::drawPixmap(const QRectF &r, const QPixmap &pm, const QRectF &sr)
{
Q_D(QOpenGLPaintEngine);
if (pm.depth() == 1) {
QPixmap tpx(pm.size());
tpx.fill(Qt::transparent);
QPainter p(&tpx);
p.setPen(d->cpen);
p.drawPixmap(0, 0, pm);
p.end();
drawPixmap(r, tpx, sr);
return;
}
const int sz = d->max_texture_size;
if (pm.width() > sz || pm.height() > sz) {
QRectF subsr;
const QPixmap sub = qSubImage(pm, sr, &subsr);
if (sub.width() <= sz && sub.height() <= sz) {
drawPixmap(r, sub, subsr);
} else {
const QPixmap scaled = sub.scaled(sz, sz, Qt::KeepAspectRatio);
const qreal sx = scaled.width() / qreal(sub.width());
const qreal sy = scaled.height() / qreal(sub.height());
drawPixmap(r, scaled, scaleRect(subsr, sx, sy));
}
return;
}
if (d->composition_mode > QPainter::CompositionMode_Plus || (d->high_quality_antialiasing && !d->isFastRect(r)))
d->drawImageAsPath(r, pm.toImage(), sr);
else {
GLenum target = qt_gl_preferredTextureTarget();
d->flushDrawQueue();
QGLTexture *tex =
d->device->context()->d_func()->bindTexture(pm, target, GL_RGBA,
QGLContext::InternalBindOption);
drawTextureRect(pm.width(), pm.height(), r, sr, target, tex);
}
}
void QOpenGLPaintEngine::drawTiledPixmap(const QRectF &r, const QPixmap &pm, const QPointF &offset)
{
Q_D(QOpenGLPaintEngine);
if (pm.depth() == 1) {
QPixmap tpx(pm.size());
tpx.fill(Qt::transparent);
QPainter p(&tpx);
p.setPen(d->cpen);
p.drawPixmap(0, 0, pm);
p.end();
drawTiledPixmap(r, tpx, offset);
return;
}
QImage scaled;
const int sz = d->max_texture_size;
if (pm.width() > sz || pm.height() > sz) {
int rw = qCeil(r.width());
int rh = qCeil(r.height());
if (rw < pm.width() && rh < pm.height()) {
drawTiledPixmap(r, pm.copy(0, 0, rw, rh), offset);
return;
}
scaled = pm.toImage().scaled(sz, sz, Qt::KeepAspectRatio);
}
if (d->composition_mode > QPainter::CompositionMode_Plus || (d->high_quality_antialiasing && !d->isFastRect(r))) {
if (scaled.isNull())
d->drawTiledImageAsPath(r, pm.toImage(), 1, 1, offset);
else {
const qreal sx = pm.width() / qreal(scaled.width());
const qreal sy = pm.height() / qreal(scaled.height());
d->drawTiledImageAsPath(r, scaled, sx, sy, offset);
}
} else {
d->flushDrawQueue();
QGLTexture *tex;
if (scaled.isNull())
tex = d->device->context()->d_func()->bindTexture(pm, GL_TEXTURE_2D, GL_RGBA,
QGLContext::InternalBindOption);
else
tex = d->device->context()->d_func()->bindTexture(scaled, GL_TEXTURE_2D, GL_RGBA,
QGLContext::InternalBindOption);
updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, d->use_smooth_pixmap_transform);
#ifndef QT_OPENGL_ES
glPushAttrib(GL_CURRENT_BIT);
glDisable(GL_TEXTURE_GEN_S);
#endif
glColor4f(d->opacity, d->opacity, d->opacity, d->opacity);
glEnable(GL_TEXTURE_2D);
GLdouble tc_w = r.width()/pm.width();
GLdouble tc_h = r.height()/pm.height();
// Rotate the texture so that it is aligned correctly and the
// wrapping is done correctly
if (tex->options & QGLContext::InvertedYBindOption) {
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glRotatef(180.0, 0.0, 1.0, 0.0);
glRotatef(180.0, 0.0, 0.0, 1.0);
}
q_vertexType vertexArray[4*2];
q_vertexType texCoordArray[4*2];
double offset_x = offset.x() / pm.width();
double offset_y = offset.y() / pm.height();
qt_add_rect_to_array(r, vertexArray);
qt_add_texcoords_to_array(offset_x, offset_y,
tc_w + offset_x, tc_h + offset_y, texCoordArray);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glTexCoordPointer(2, q_vertexTypeEnum, 0, texCoordArray);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
if (tex->options & QGLContext::InvertedYBindOption)
glPopMatrix();
glDisable(GL_TEXTURE_2D);
#ifndef QT_OPENGL_ES
glPopAttrib();
#endif
}
}
void QOpenGLPaintEngine::drawImage(const QRectF &r, const QImage &image, const QRectF &sr,
Qt::ImageConversionFlags)
{
Q_D(QOpenGLPaintEngine);
const int sz = d->max_texture_size;
if (image.width() > sz || image.height() > sz) {
QRectF subsr;
const QImage sub = qSubImage(image, sr, &subsr);
if (sub.width() <= sz && sub.height() <= sz) {
drawImage(r, sub, subsr, 0);
} else {
const QImage scaled = sub.scaled(sz, sz, Qt::KeepAspectRatio);
const qreal sx = scaled.width() / qreal(sub.width());
const qreal sy = scaled.height() / qreal(sub.height());
drawImage(r, scaled, scaleRect(subsr, sx, sy), 0);
}
return;
}
if (d->composition_mode > QPainter::CompositionMode_Plus || (d->high_quality_antialiasing && !d->isFastRect(r)))
d->drawImageAsPath(r, image, sr);
else {
GLenum target = qt_gl_preferredTextureTarget();
d->flushDrawQueue();
QGLTexture *tex =
d->device->context()->d_func()->bindTexture(image, target, GL_RGBA,
QGLContext::InternalBindOption);
drawTextureRect(image.width(), image.height(), r, sr, target, tex);
}
}
void QOpenGLPaintEngine::drawTextureRect(int tx_width, int tx_height, const QRectF &r,
const QRectF &sr, GLenum target, QGLTexture *tex)
{
Q_D(QOpenGLPaintEngine);
#ifndef QT_OPENGL_ES
glPushAttrib(GL_CURRENT_BIT);
glDisable(GL_TEXTURE_GEN_S);
#endif
glColor4f(d->opacity, d->opacity, d->opacity, d->opacity);
glEnable(target);
updateTextureFilter(target, GL_CLAMP_TO_EDGE, d->use_smooth_pixmap_transform);
qreal x1, x2, y1, y2;
if (target == GL_TEXTURE_2D) {
x1 = sr.x() / tx_width;
x2 = x1 + sr.width() / tx_width;
if (tex->options & QGLContext::InvertedYBindOption) {
y1 = 1 - (sr.bottom() / tx_height);
y2 = 1 - (sr.y() / tx_height);
} else {
y1 = sr.bottom() / tx_height;
y2 = sr.y() / tx_height;
}
} else {
x1 = sr.x();
x2 = sr.right();
y1 = sr.bottom();
y2 = sr.y();
}
q_vertexType vertexArray[4*2];
q_vertexType texCoordArray[4*2];
qt_add_rect_to_array(r, vertexArray);
qt_add_texcoords_to_array(x1, y2, x2, y1, texCoordArray);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glTexCoordPointer(2, q_vertexTypeEnum, 0, texCoordArray);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisable(target);
#ifndef QT_OPENGL_ES
glPopAttrib();
#endif
}
#ifdef Q_WS_WIN
HDC
#else
Qt::HANDLE
#endif
QOpenGLPaintEngine::handle() const
{
return 0;
}
static const int x_margin = 1;
static const int y_margin = 0;
struct QGLGlyphCoord {
// stores the offset and size of a glyph texture
qreal x;
qreal y;
qreal width;
qreal height;
qreal log_width;
qreal log_height;
QFixed x_offset;
QFixed y_offset;
};
struct QGLFontTexture {
int x_offset; // glyph offset within the
int y_offset;
GLuint texture;
int width;
int height;
};
typedef QHash<glyph_t, QGLGlyphCoord*> QGLGlyphHash;
typedef QHash<QFontEngine*, QGLGlyphHash*> QGLFontGlyphHash;
typedef QHash<quint64, QGLFontTexture*> QGLFontTexHash;
typedef QHash<const QGLContext*, QGLFontGlyphHash*> QGLContextHash;
class QGLGlyphCache : public QObject
{
Q_OBJECT
public:
QGLGlyphCache() : QObject(0) { current_cache = 0; }
~QGLGlyphCache();
QGLGlyphCoord *lookup(QFontEngine *, glyph_t);
void cacheGlyphs(QGLContext *, const QTextItemInt &, const QVarLengthArray<glyph_t> &);
void cleanCache();
void allocTexture(int width, int height, GLuint texture);
public slots:
void cleanupContext(const QGLContext *);
void fontEngineDestroyed(QObject *);
void widgetDestroyed(QObject *);
protected:
QGLGlyphHash *current_cache;
QGLFontTexHash qt_font_textures;
QGLContextHash qt_context_cache;
};
QGLGlyphCache::~QGLGlyphCache()
{
// qDebug() << "cleaning out the QGLGlyphCache";
cleanCache();
}
void QGLGlyphCache::fontEngineDestroyed(QObject *o)
{
// qDebug() << "fontEngineDestroyed()";
QFontEngine *fe = static_cast<QFontEngine *>(o); // safe, since only the type is used
QList<const QGLContext *> keys = qt_context_cache.keys();
const QGLContext *ctx = 0;
for (int i=0; i < keys.size(); ++i) {
QGLFontGlyphHash *font_cache = qt_context_cache.value(keys.at(i));
if (font_cache->find(fe) != font_cache->end()) {
ctx = keys.at(i);
QGLGlyphHash *cache = font_cache->take(fe);
delete cache;
break;
}
}
quint64 font_key = (reinterpret_cast<quint64>(ctx) << 32) | reinterpret_cast<quint64>(fe);
QGLFontTexture *tex = qt_font_textures.take(font_key);
if (tex) {
#ifdef Q_WS_MAC
if (
# ifndef QT_MAC_USE_COCOA
aglGetCurrentContext() != 0
# else
qt_current_nsopengl_context() != 0
# endif
)
#endif
glDeleteTextures(1, &tex->texture);
delete tex;
}
}
void QGLGlyphCache::widgetDestroyed(QObject *)
{
// qDebug() << "widget destroyed";
cleanCache(); // ###
}
void QGLGlyphCache::cleanupContext(const QGLContext *ctx)
{
// qDebug() << "==> cleaning for: " << hex << ctx;
QGLFontGlyphHash *font_cache = qt_context_cache.take(ctx);
if (font_cache) {
QList<QFontEngine *> keys = font_cache->keys();
for (int i=0; i < keys.size(); ++i) {
QFontEngine *fe = keys.at(i);
delete font_cache->take(fe);
quint64 font_key = (reinterpret_cast<quint64>(ctx) << 32) | reinterpret_cast<quint64>(fe);
QGLFontTexture *font_tex = qt_font_textures.take(font_key);
if (font_tex) {
#ifdef Q_WS_MAC
if (
# ifndef QT_MAC_USE_COCOA
aglGetCurrentContext() == 0
# else
qt_current_nsopengl_context() != 0
# endif
)
#endif
glDeleteTextures(1, &font_tex->texture);
delete font_tex;
}
}
delete font_cache;
}
// qDebug() << "<=== done cleaning, num tex:" << qt_font_textures.size() << "num ctx:" << qt_context_cache.size();
}
void QGLGlyphCache::cleanCache()
{
QGLFontTexHash::const_iterator it = qt_font_textures.constBegin();
if (QGLContext::currentContext()) {
while (it != qt_font_textures.constEnd()) {
#if defined(Q_WS_MAC) && defined(QT_MAC_USE_COCOA)
if (qt_current_nsopengl_context() == 0)
break;
#endif
glDeleteTextures(1, &it.value()->texture);
++it;
}
}
qDeleteAll(qt_font_textures);
qt_font_textures.clear();
QList<const QGLContext *> keys = qt_context_cache.keys();
for (int i=0; i < keys.size(); ++i) {
QGLFontGlyphHash *font_cache = qt_context_cache.value(keys.at(i));
qDeleteAll(*font_cache);
font_cache->clear();
}
qDeleteAll(qt_context_cache);
qt_context_cache.clear();
}
void QGLGlyphCache::allocTexture(int width, int height, GLuint texture)
{
uchar *tex_data = (uchar *) malloc(width*height*2);
memset(tex_data, 0, width*height*2);
glBindTexture(GL_TEXTURE_2D, texture);
#ifndef QT_OPENGL_ES
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE8_ALPHA8,
width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, tex_data);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA,
width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, tex_data);
#endif
free(tex_data);
}
#if 0
// useful for debugging the glyph cache
static QImage getCurrentTexture(const QColor &color, QGLFontTexture *font_tex)
{
ushort *old_tex_data = (ushort *) malloc(font_tex->width*font_tex->height*2);
glGetTexImage(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, old_tex_data);
QImage im(font_tex->width, font_tex->height, QImage::Format_ARGB32);
for (int y=0; y<font_tex->height; ++y) {
for (int x=0; x<font_tex->width; ++x) {
im.setPixel(x, y, ((*(old_tex_data+x+y*font_tex->width)) << 24) | (0x00ffffff & color.rgb()));
}
}
delete old_tex_data;
return im;
}
#endif
void QGLGlyphCache::cacheGlyphs(QGLContext *context, const QTextItemInt &ti,
const QVarLengthArray<glyph_t> &glyphs)
{
QGLContextHash::const_iterator dev_it = qt_context_cache.constFind(context);
QGLFontGlyphHash *font_cache = 0;
const QGLContext *context_key = 0;
if (dev_it == qt_context_cache.constEnd()) {
// check for shared contexts
QList<const QGLContext *> contexts = qt_context_cache.keys();
for (int i=0; i<contexts.size(); ++i) {
const QGLContext *ctx = contexts.at(i);
if (ctx != context && QGLContext::areSharing(context, ctx)) {
context_key = ctx;
dev_it = qt_context_cache.constFind(context_key);
break;
}
}
}
if (dev_it == qt_context_cache.constEnd()) {
// no shared contexts either - create a new entry
font_cache = new QGLFontGlyphHash;
// qDebug() << "new context" << context << font_cache;
qt_context_cache.insert(context, font_cache);
if (context->isValid() && context->device()->devType() == QInternal::Widget) {
QWidget *widget = static_cast<QWidget *>(context->device());
connect(widget, SIGNAL(destroyed(QObject*)), SLOT(widgetDestroyed(QObject*)));
connect(QGLSignalProxy::instance(),
SIGNAL(aboutToDestroyContext(const QGLContext *)),
SLOT(cleanupContext(const QGLContext *)));
}
} else {
font_cache = dev_it.value();
}
Q_ASSERT(font_cache != 0);
QGLFontGlyphHash::const_iterator cache_it = font_cache->constFind(ti.fontEngine);
QGLGlyphHash *cache = 0;
if (cache_it == font_cache->constEnd()) {
cache = new QGLGlyphHash;
font_cache->insert(ti.fontEngine, cache);
connect(ti.fontEngine, SIGNAL(destroyed(QObject*)), SLOT(fontEngineDestroyed(QObject*)));
} else {
cache = cache_it.value();
}
current_cache = cache;
quint64 font_key = (reinterpret_cast<quint64>(context_key ? context_key : context) << 32)
| reinterpret_cast<quint64>(ti.fontEngine);
QGLFontTexHash::const_iterator it = qt_font_textures.constFind(font_key);
QGLFontTexture *font_tex;
if (it == qt_font_textures.constEnd()) {
GLuint font_texture;
glGenTextures(1, &font_texture);
GLint tex_height = qt_next_power_of_two(qRound(ti.ascent.toReal() + ti.descent.toReal())+2);
GLint tex_width = qt_next_power_of_two(tex_height*30); // ###
GLint max_tex_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_tex_size);
Q_ASSERT(max_tex_size > 0);
if (tex_width > max_tex_size)
tex_width = max_tex_size;
allocTexture(tex_width, tex_height, font_texture);
font_tex = new QGLFontTexture;
font_tex->texture = font_texture;
font_tex->x_offset = x_margin;
font_tex->y_offset = y_margin;
font_tex->width = tex_width;
font_tex->height = tex_height;
// qDebug() << "new font tex - width:" << tex_width << "height:"<< tex_height
// << hex << "tex id:" << font_tex->texture << "key:" << font_key << "num cached:" << qt_font_textures.size();
qt_font_textures.insert(font_key, font_tex);
} else {
font_tex = it.value();
glBindTexture(GL_TEXTURE_2D, font_tex->texture);
}
for (int i=0; i< glyphs.size(); ++i) {
QGLGlyphHash::const_iterator it = cache->constFind(glyphs[i]);
if (it == cache->constEnd()) {
// render new glyph and put it in the cache
glyph_metrics_t metrics = ti.fontEngine->boundingBox(glyphs[i]);
int glyph_width = qRound(metrics.width.toReal())+2;
int glyph_height = qRound(ti.ascent.toReal() + ti.descent.toReal())+2;
if (font_tex->x_offset + glyph_width + x_margin > font_tex->width) {
int strip_height = qt_next_power_of_two(qRound(ti.ascent.toReal() + ti.descent.toReal())+2);
font_tex->x_offset = x_margin;
font_tex->y_offset += strip_height;
if (font_tex->y_offset >= font_tex->height) {
// get hold of the old font texture
uchar *old_tex_data = (uchar *) malloc(font_tex->width*font_tex->height*2);
int old_tex_height = font_tex->height;
#ifndef QT_OPENGL_ES
glGetTexImage(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, old_tex_data);
#endif
// realloc a larger texture
glDeleteTextures(1, &font_tex->texture);
glGenTextures(1, &font_tex->texture);
font_tex->height = qt_next_power_of_two(font_tex->height + strip_height);
allocTexture(font_tex->width, font_tex->height, font_tex->texture);
// write back the old texture data
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, font_tex->width, old_tex_height,
GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, old_tex_data);
free(old_tex_data);
// update the texture coords and the y offset for the existing glyphs in
// the cache, because of the texture size change
QGLGlyphHash::iterator it = cache->begin();
while (it != cache->end()) {
it.value()->height = (it.value()->height * old_tex_height) / font_tex->height;
it.value()->y = (it.value()->y * old_tex_height) / font_tex->height;
++it;
}
}
}
QImage glyph_im(ti.fontEngine->alphaMapForGlyph(glyphs[i]));
glyph_im = glyph_im.convertToFormat(QImage::Format_Indexed8);
glyph_width = glyph_im.width();
Q_ASSERT(glyph_width >= 0);
// pad the glyph width to an even number
if (glyph_width%2 != 0)
++glyph_width;
QGLGlyphCoord *qgl_glyph = new QGLGlyphCoord;
qgl_glyph->x = qreal(font_tex->x_offset) / font_tex->width;
qgl_glyph->y = qreal(font_tex->y_offset) / font_tex->height;
qgl_glyph->width = qreal(glyph_width) / font_tex->width;
qgl_glyph->height = qreal(glyph_height) / font_tex->height;
qgl_glyph->log_width = qreal(glyph_width);
qgl_glyph->log_height = qgl_glyph->height * font_tex->height;
#ifdef Q_WS_MAC
qgl_glyph->x_offset = -metrics.x + 1;
qgl_glyph->y_offset = metrics.y - 2;
#else
qgl_glyph->x_offset = -metrics.x;
qgl_glyph->y_offset = metrics.y;
#endif
if (!glyph_im.isNull()) {
int idx = 0;
uchar *tex_data = (uchar *) malloc(glyph_width*glyph_im.height()*2);
memset(tex_data, 0, glyph_width*glyph_im.height()*2);
for (int y=0; y<glyph_im.height(); ++y) {
uchar *s = (uchar *) glyph_im.scanLine(y);
for (int x=0; x<glyph_im.width(); ++x) {
uchar alpha = qAlpha(glyph_im.color(*s));
tex_data[idx] = alpha;
tex_data[idx+1] = alpha;
++s;
idx += 2;
}
if (glyph_im.width()%2 != 0)
idx += 2;
}
glTexSubImage2D(GL_TEXTURE_2D, 0, font_tex->x_offset, font_tex->y_offset,
glyph_width, glyph_im.height(),
GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, tex_data);
free(tex_data);
}
if (font_tex->x_offset + glyph_width + x_margin > font_tex->width) {
font_tex->x_offset = x_margin;
font_tex->y_offset += glyph_height + y_margin;
} else {
font_tex->x_offset += glyph_width + x_margin;
}
cache->insert(glyphs[i], qgl_glyph);
}
}
}
QGLGlyphCoord *QGLGlyphCache::lookup(QFontEngine *, glyph_t g)
{
Q_ASSERT(current_cache != 0);
// ### careful here
QGLGlyphHash::const_iterator it = current_cache->constFind(g);
if (it == current_cache->constEnd())
return 0;
else
return it.value();
}
Q_GLOBAL_STATIC(QGLGlyphCache, qt_glyph_cache)
//
// assumption: the context that this is called for has to be the
// current context
//
void qgl_cleanup_glyph_cache(QGLContext *ctx)
{
qt_glyph_cache()->cleanupContext(ctx);
}
void QOpenGLPaintEngine::drawTextItem(const QPointF &p, const QTextItem &textItem)
{
Q_D(QOpenGLPaintEngine);
const QTextItemInt &ti = static_cast<const QTextItemInt &>(textItem);
// fall back to drawing a polygon if the scale factor is large, or
// we use a gradient pen
if ((d->matrix.det() > 1) || (d->pen_brush_style >= Qt::LinearGradientPattern
&& d->pen_brush_style <= Qt::ConicalGradientPattern)) {
QPaintEngine::drawTextItem(p, textItem);
return;
}
d->flushDrawQueue();
// add the glyphs used to the glyph texture cache
QVarLengthArray<QFixedPoint> positions;
QVarLengthArray<glyph_t> glyphs;
QTransform matrix = QTransform::fromTranslate(qRound(p.x()), qRound(p.y()));
ti.fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);
// make sure the glyphs we want to draw are in the cache
qt_glyph_cache()->cacheGlyphs(d->device->context(), ti, glyphs);
d->setGradientOps(Qt::SolidPattern, QRectF()); // turns off gradient ops
qt_glColor4ubv(d->pen_color);
glEnable(GL_TEXTURE_2D);
#ifdef Q_WS_QWS
// XXX: it is necessary to disable alpha writes on GLES/embedded because we don't want
// text rendering to update the alpha in the window surface.
// XXX: This may not be needed as this behavior does seem to be caused by driver bug
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_FALSE);
#endif
// do the actual drawing
q_vertexType vertexArray[4*2];
q_vertexType texCoordArray[4*2];
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glTexCoordPointer(2, q_vertexTypeEnum, 0, texCoordArray);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
bool antialias = !(ti.fontEngine->fontDef.styleStrategy & QFont::NoAntialias);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, antialias ? GL_LINEAR : GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, antialias ? GL_LINEAR : GL_NEAREST);
for (int i=0; i< glyphs.size(); ++i) {
QGLGlyphCoord *g = qt_glyph_cache()->lookup(ti.fontEngine, glyphs[i]);
// we don't cache glyphs with no width/height
if (!g)
continue;
qreal x1, x2, y1, y2;
x1 = g->x;
y1 = g->y;
x2 = x1 + g->width;
y2 = y1 + g->height;
QPointF logical_pos((positions[i].x - g->x_offset).toReal(),
(positions[i].y + g->y_offset).toReal());
qt_add_rect_to_array(QRectF(logical_pos, QSizeF(g->log_width, g->log_height)), vertexArray);
qt_add_texcoords_to_array(x1, y1, x2, y2, texCoordArray);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisable(GL_TEXTURE_2D);
#ifdef Q_WS_QWS
// XXX: This may not be needed as this behavior does seem to be caused by driver bug
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
#endif
}
void QOpenGLPaintEngine::drawEllipse(const QRectF &rect)
{
#ifndef Q_WS_QWS
Q_D(QOpenGLPaintEngine);
if (d->use_emulation) {
QPaintEngineEx::drawEllipse(rect);
return;
}
if (d->high_quality_antialiasing) {
if (d->has_brush) {
d->disableClipping();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
GLuint program = qt_gl_program_cache()->getProgram(d->device->context(),
FRAGMENT_PROGRAM_MASK_ELLIPSE_AA, 0, true);
QGLEllipseMaskGenerator maskGenerator(rect,
d->matrix,
d->offscreen,
program,
mask_variable_locations[FRAGMENT_PROGRAM_MASK_ELLIPSE_AA]);
d->addItem(qt_mask_texture_cache()->getMask(maskGenerator, d));
d->enableClipping();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
}
if (d->has_pen) {
QPainterPath path;
path.addEllipse(rect);
d->strokePath(path, false);
}
} else {
DEBUG_ONCE_STR("QOpenGLPaintEngine::drawEllipse(): falling back to drawPath()");
QPainterPath path;
path.addEllipse(rect);
drawPath(path);
}
#else
QPaintEngineEx::drawEllipse(rect);
#endif
}
void QOpenGLPaintEnginePrivate::updateFragmentProgramData(int locations[])
{
#ifdef Q_WS_QWS
Q_UNUSED(locations);
#else
QGL_FUNC_CONTEXT;
QSize sz = offscreen.offscreenSize();
float inv_mask_size_data[4] = { 1.0f / sz.width(), 1.0f / sz.height(), 0.0f, 0.0f };
sz = drawable_texture_size;
float inv_dst_size_data[4] = { 1.0f / sz.width(), 1.0f / sz.height(), 0.0f, 0.0f };
// default inv size 0.125f == 1.0f / 8.0f for pattern brushes
float inv_brush_texture_size_data[4] = { 0.125f, 0.125f };
// texture patterns have their own size
if (current_style == Qt::TexturePattern) {
QSize sz = cbrush.texture().size();
inv_brush_texture_size_data[0] = 1.0f / sz.width();
inv_brush_texture_size_data[1] = 1.0f / sz.height();
}
for (unsigned int i = 0; i < num_fragment_variables; ++i) {
int location = locations[i];
if (location < 0)
continue;
switch (i) {
case VAR_ANGLE:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, angle_data);
break;
case VAR_LINEAR:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, linear_data);
break;
case VAR_FMP:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, fmp_data);
break;
case VAR_FMP2_M_RADIUS2:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, fmp2_m_radius2_data);
break;
case VAR_INV_MASK_SIZE:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_mask_size_data);
break;
case VAR_INV_DST_SIZE:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_dst_size_data);
break;
case VAR_INV_MATRIX_M0:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_matrix_data[0]);
break;
case VAR_INV_MATRIX_M1:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_matrix_data[1]);
break;
case VAR_INV_MATRIX_M2:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_matrix_data[2]);
break;
case VAR_PORTERDUFF_AB:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, porterduff_ab_data);
break;
case VAR_PORTERDUFF_XYZ:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, porterduff_xyz_data);
break;
case VAR_INV_BRUSH_TEXTURE_SIZE:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_brush_texture_size_data);
break;
case VAR_MASK_OFFSET:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, mask_offset_data);
break;
case VAR_MASK_CHANNEL:
glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, mask_channel_data);
break;
case VAR_DST_TEXTURE:
case VAR_MASK_TEXTURE:
case VAR_PALETTE:
case VAR_BRUSH_TEXTURE:
// texture variables, not handled here
break;
default:
qDebug() << "QOpenGLPaintEnginePrivate: Unhandled fragment variable:" << i;
}
}
#endif
}
void QOpenGLPaintEnginePrivate::copyDrawable(const QRectF &rect)
{
#ifdef Q_WS_QWS
Q_UNUSED(rect);
#else
ensureDrawableTexture();
DEBUG_ONCE qDebug() << "Refreshing drawable_texture for rectangle" << rect;
QRectF screen_rect = rect.adjusted(-1, -1, 1, 1);
int left = qMax(0, static_cast<int>(screen_rect.left()));
int width = qMin(device->size().width() - left, static_cast<int>(screen_rect.width()) + 1);
int bottom = qMax(0, static_cast<int>(device->size().height() - screen_rect.bottom()));
int height = qMin(device->size().height() - bottom, static_cast<int>(screen_rect.height()) + 1);
glBindTexture(GL_TEXTURE_2D, drawable_texture);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, left, bottom, left, bottom, width, height);
#endif
}
void QOpenGLPaintEnginePrivate::composite(const QRectF &rect, const QPoint &maskOffset)
{
#ifdef Q_WS_QWS
Q_UNUSED(rect);
Q_UNUSED(maskOffset);
#else
q_vertexType vertexArray[8];
qt_add_rect_to_array(rect, vertexArray);
composite(GL_TRIANGLE_FAN, vertexArray, 4, maskOffset);
#endif
}
void QOpenGLPaintEnginePrivate::composite(GLuint primitive, const q_vertexType *vertexArray, int vertexCount, const QPoint &maskOffset)
{
#ifdef QT_OPENGL_ES
Q_UNUSED(primitive);
Q_UNUSED(vertexArray);
Q_UNUSED(vertexCount);
Q_UNUSED(maskOffset);
#else
Q_Q(QOpenGLPaintEngine);
QGL_FUNC_CONTEXT;
if (current_style == Qt::NoBrush)
return;
DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Using compositing program: fragment_brush ="
<< fragment_brush << ", fragment_composition_mode =" << fragment_composition_mode;
if (has_fast_composition_mode)
q->updateCompositionMode(composition_mode);
else {
qreal minX = 1e9, minY = 1e9, maxX = -1e9, maxY = -1e9;
for (int i = 0; i < vertexCount; ++i) {
qreal x = vt2f(vertexArray[2 * i]);
qreal y = vt2f(vertexArray[2 * i + 1]);
qreal tx, ty;
matrix.map(x, y, &tx, &ty);
minX = qMin(minX, tx);
minY = qMin(minY, ty);
maxX = qMax(maxX, tx);
maxY = qMax(maxY, ty);
}
QRectF r(minX, minY, maxX - minX, maxY - minY);
copyDrawable(r);
glBlendFunc(GL_ONE, GL_ZERO);
}
int *locations = painter_variable_locations[fragment_brush][fragment_composition_mode];
int texture_locations[] = { locations[VAR_DST_TEXTURE],
locations[VAR_MASK_TEXTURE],
locations[VAR_PALETTE] };
int brush_texture_location = locations[VAR_BRUSH_TEXTURE];
GLuint texture_targets[] = { GL_TEXTURE_2D,
GL_TEXTURE_2D,
GL_TEXTURE_1D };
GLuint textures[] = { drawable_texture,
offscreen.offscreenTexture(),
grad_palette };
const int num_textures = sizeof(textures) / sizeof(*textures);
Q_ASSERT(num_textures == sizeof(texture_locations) / sizeof(*texture_locations));
Q_ASSERT(num_textures == sizeof(texture_targets) / sizeof(*texture_targets));
for (int i = 0; i < num_textures; ++i)
if (texture_locations[i] >= 0) {
glActiveTexture(GL_TEXTURE0 + texture_locations[i]);
glBindTexture(texture_targets[i], textures[i]);
}
if (brush_texture_location >= 0) {
glActiveTexture(GL_TEXTURE0 + brush_texture_location);
if (current_style == Qt::TexturePattern)
device->context()->d_func()->bindTexture(cbrush.textureImage(), GL_TEXTURE_2D, GL_RGBA,
QGLContext::InternalBindOption);
else
device->context()->d_func()->bindTexture(qt_imageForBrush(current_style, false),
GL_TEXTURE_2D, GL_RGBA,
QGLContext::InternalBindOption);
updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, use_smooth_pixmap_transform);
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
glEnable(GL_FRAGMENT_PROGRAM_ARB);
GLuint program = qt_gl_program_cache()->getProgram(device->context(),
fragment_brush,
fragment_composition_mode, false);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, program);
mask_offset_data[0] = maskOffset.x();
mask_offset_data[1] = -maskOffset.y();
updateFragmentProgramData(locations);
glDrawArrays(primitive, 0, vertexCount);
glDisable(GL_FRAGMENT_PROGRAM_ARB);
glDisableClientState(GL_VERTEX_ARRAY);
for (int i = 0; i < num_textures; ++i)
if (texture_locations[i] >= 0) {
glActiveTexture(GL_TEXTURE0 + texture_locations[i]);
glBindTexture(texture_targets[i], 0);
}
if (brush_texture_location >= 0) {
glActiveTexture(GL_TEXTURE0 + brush_texture_location);
glBindTexture(GL_TEXTURE_2D, 0);
}
glActiveTexture(GL_TEXTURE0);
if (!has_fast_composition_mode)
q->updateCompositionMode(composition_mode);
#endif
}
void QOpenGLPaintEnginePrivate::cacheItemErased(int channel, const QRect &rect)
{
bool isInDrawQueue = false;
foreach (const QDrawQueueItem &item, drawQueue) {
if (item.location.channel == channel && item.location.rect == rect) {
isInDrawQueue = true;
break;
}
}
if (isInDrawQueue)
flushDrawQueue();
}
void QOpenGLPaintEnginePrivate::addItem(const QGLMaskTextureCache::CacheLocation &location)
{
drawQueue << QDrawQueueItem(opacity, cbrush, brush_origin, composition_mode, matrix, location);
}
void QOpenGLPaintEnginePrivate::drawItem(const QDrawQueueItem &item)
{
Q_Q(QOpenGLPaintEngine);
opacity = item.opacity;
brush_origin = item.brush_origin;
q->updateCompositionMode(item.composition_mode);
matrix = item.matrix;
cbrush = item.brush;
brush_style = item.brush.style();
mask_channel_data[0] = item.location.channel == 0;
mask_channel_data[1] = item.location.channel == 1;
mask_channel_data[2] = item.location.channel == 2;
mask_channel_data[3] = item.location.channel == 3;
setGradientOps(item.brush, item.location.screen_rect);
composite(item.location.screen_rect, item.location.rect.topLeft() - item.location.screen_rect.topLeft()
- QPoint(0, offscreen.offscreenSize().height() - device->size().height()));
}
void QOpenGLPaintEnginePrivate::flushDrawQueue()
{
#ifndef QT_OPENGL_ES
Q_Q(QOpenGLPaintEngine);
offscreen.release();
if (!drawQueue.isEmpty()) {
DEBUG_ONCE qDebug() << "QOpenGLPaintEngine::flushDrawQueue():" << drawQueue.size() << "items";
glPushMatrix();
glLoadIdentity();
qreal old_opacity = opacity;
QPointF old_brush_origin = brush_origin;
QPainter::CompositionMode old_composition_mode = composition_mode;
QTransform old_matrix = matrix;
QBrush old_brush = cbrush;
bool hqaa_old = high_quality_antialiasing;
high_quality_antialiasing = true;
foreach (const QDrawQueueItem &item, drawQueue)
drawItem(item);
opacity = old_opacity;
brush_origin = old_brush_origin;
q->updateCompositionMode(old_composition_mode);
matrix = old_matrix;
cbrush = old_brush;
brush_style = old_brush.style();
high_quality_antialiasing = hqaa_old;
setGLBrush(old_brush.color());
qt_glColor4ubv(brush_color);
drawQueue.clear();
glPopMatrix();
}
#endif
}
void QOpenGLPaintEngine::clipEnabledChanged()
{
Q_D(QOpenGLPaintEngine);
d->updateDepthClip();
}
void QOpenGLPaintEngine::penChanged()
{
updatePen(state()->pen);
}
void QOpenGLPaintEngine::brushChanged()
{
updateBrush(state()->brush, state()->brushOrigin);
}
void QOpenGLPaintEngine::brushOriginChanged()
{
updateBrush(state()->brush, state()->brushOrigin);
}
void QOpenGLPaintEngine::opacityChanged()
{
Q_D(QOpenGLPaintEngine);
QPainterState *s = state();
d->opacity = s->opacity;
updateBrush(s->brush, s->brushOrigin);
updatePen(s->pen);
}
void QOpenGLPaintEngine::compositionModeChanged()
{
updateCompositionMode(state()->composition_mode);
}
void QOpenGLPaintEngine::renderHintsChanged()
{
updateRenderHints(state()->renderHints);
}
void QOpenGLPaintEngine::transformChanged()
{
updateMatrix(state()->matrix);
}
static QPainterPath painterPathFromVectorPath(const QVectorPath &path)
{
const qreal *points = path.points();
const QPainterPath::ElementType *types = path.elements();
QPainterPath p;
if (types) {
int id = 0;
for (int i=0; i<path.elementCount(); ++i) {
switch(types[i]) {
case QPainterPath::MoveToElement:
p.moveTo(QPointF(points[id], points[id+1]));
id+=2;
break;
case QPainterPath::LineToElement:
p.lineTo(QPointF(points[id], points[id+1]));
id+=2;
break;
case QPainterPath::CurveToElement: {
QPointF p1(points[id], points[id+1]);
QPointF p2(points[id+2], points[id+3]);
QPointF p3(points[id+4], points[id+5]);
p.cubicTo(p1, p2, p3);
id+=6;
break;
}
case QPainterPath::CurveToDataElement:
;
break;
}
}
} else {
p.moveTo(QPointF(points[0], points[1]));
int id = 2;
for (int i=1; i<path.elementCount(); ++i) {
p.lineTo(QPointF(points[id], points[id+1]));
id+=2;
}
}
if (path.hints() & QVectorPath::WindingFill)
p.setFillRule(Qt::WindingFill);
return p;
}
void QOpenGLPaintEngine::fill(const QVectorPath &path, const QBrush &brush)
{
Q_D(QOpenGLPaintEngine);
if (brush.style() == Qt::NoBrush)
return;
if (!d->use_fragment_programs && needsEmulation(brush.style())) {
QPainter *p = painter();
QBrush oldBrush = p->brush();
p->setBrush(brush);
qt_draw_helper(p->d_ptr.data(), painterPathFromVectorPath(path), QPainterPrivate::FillDraw);
p->setBrush(oldBrush);
return;
}
QBrush old_brush = state()->brush;
updateBrush(brush, state()->brushOrigin);
const qreal *points = path.points();
const QPainterPath::ElementType *types = path.elements();
if (!types && path.shape() == QVectorPath::RectangleHint) {
QRectF r(points[0], points[1], points[4]-points[0], points[5]-points[1]);
QPen old_pen = state()->pen;
updatePen(Qt::NoPen);
drawRects(&r, 1);
updatePen(old_pen);
} else {
d->fillPath(painterPathFromVectorPath(path));
}
updateBrush(old_brush, state()->brushOrigin);
}
template <typename T> static inline bool isRect(const T *pts, int elementCount) {
return (elementCount == 5 // 5-point polygon, check for closed rect
&& pts[0] == pts[8] && pts[1] == pts[9] // last point == first point
&& pts[0] == pts[6] && pts[2] == pts[4] // x values equal
&& pts[1] == pts[3] && pts[5] == pts[7] // y values equal...
) ||
(elementCount == 4 // 4-point polygon, check for unclosed rect
&& pts[0] == pts[6] && pts[2] == pts[4] // x values equal
&& pts[1] == pts[3] && pts[5] == pts[7] // y values equal...
);
}
void QOpenGLPaintEngine::clip(const QVectorPath &path, Qt::ClipOperation op)
{
const qreal *points = path.points();
const QPainterPath::ElementType *types = path.elements();
if (!types && path.shape() == QVectorPath::RectangleHint) {
QRectF r(points[0], points[1], points[4]-points[0], points[5]-points[1]);
updateClipRegion(QRegion(r.toRect()), op);
return;
}
QPainterPath p;
if (types) {
int id = 0;
for (int i=0; i<path.elementCount(); ++i) {
switch(types[i]) {
case QPainterPath::MoveToElement:
p.moveTo(QPointF(points[id], points[id+1]));
id+=2;
break;
case QPainterPath::LineToElement:
p.lineTo(QPointF(points[id], points[id+1]));
id+=2;
break;
case QPainterPath::CurveToElement: {
QPointF p1(points[id], points[id+1]);
QPointF p2(points[id+2], points[id+3]);
QPointF p3(points[id+4], points[id+5]);
p.cubicTo(p1, p2, p3);
id+=6;
break;
}
case QPainterPath::CurveToDataElement:
;
break;
}
}
} else if (!path.isEmpty()) {
p.moveTo(QPointF(points[0], points[1]));
int id = 2;
for (int i=1; i<path.elementCount(); ++i) {
p.lineTo(QPointF(points[id], points[id+1]));
id+=2;
}
}
if (path.hints() & QVectorPath::WindingFill)
p.setFillRule(Qt::WindingFill);
updateClipRegion(QRegion(p.toFillPolygon().toPolygon(), p.fillRule()), op);
return;
}
void QOpenGLPaintEngine::setState(QPainterState *s)
{
Q_D(QOpenGLPaintEngine);
QOpenGLPaintEngineState *new_state = static_cast<QOpenGLPaintEngineState *>(s);
QOpenGLPaintEngineState *old_state = state();
QPaintEngineEx::setState(s);
// are we in a save() ?
if (s == d->last_created_state) {
d->last_created_state = 0;
return;
}
if (isActive()) {
if (old_state->depthClipId != new_state->depthClipId)
d->updateDepthClip();
penChanged();
brushChanged();
opacityChanged();
compositionModeChanged();
renderHintsChanged();
transformChanged();
}
}
QPainterState *QOpenGLPaintEngine::createState(QPainterState *orig) const
{
const Q_D(QOpenGLPaintEngine);
QOpenGLPaintEngineState *s;
if (!orig)
s = new QOpenGLPaintEngineState();
else
s = new QOpenGLPaintEngineState(*static_cast<QOpenGLPaintEngineState *>(orig));
d->last_created_state = s;
return s;
}
//
// QOpenGLPaintEngineState
//
QOpenGLPaintEngineState::QOpenGLPaintEngineState(QOpenGLPaintEngineState &other)
: QPainterState(other)
{
clipRegion = other.clipRegion;
hasClipping = other.hasClipping;
fastClip = other.fastClip;
depthClipId = other.depthClipId;
}
QOpenGLPaintEngineState::QOpenGLPaintEngineState()
{
hasClipping = false;
depthClipId = 0;
}
QOpenGLPaintEngineState::~QOpenGLPaintEngineState()
{
}
void QOpenGLPaintEnginePrivate::ensureDrawableTexture()
{
if (!dirty_drawable_texture)
return;
dirty_drawable_texture = false;
#ifndef QT_OPENGL_ES
glGenTextures(1, &drawable_texture);
glBindTexture(GL_TEXTURE_2D, drawable_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8,
drawable_texture_size.width(),
drawable_texture_size.height(), 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
#endif
}
QT_END_NAMESPACE
#include "qpaintengine_opengl.moc"