/*+ −
* jcsample.c+ −
*+ −
* Copyright (C) 1991-1996, Thomas G. Lane.+ −
* This file is part of the Independent JPEG Group's software.+ −
* For conditions of distribution and use, see the accompanying README file.+ −
*+ −
* This file contains downsampling routines.+ −
*+ −
* Downsampling input data is counted in "row groups". A row group+ −
* is defined to be max_v_samp_factor pixel rows of each component,+ −
* from which the downsampler produces v_samp_factor sample rows.+ −
* A single row group is processed in each call to the downsampler module.+ −
*+ −
* The downsampler is responsible for edge-expansion of its output data+ −
* to fill an integral number of DCT blocks horizontally. The source buffer+ −
* may be modified if it is helpful for this purpose (the source buffer is+ −
* allocated wide enough to correspond to the desired output width).+ −
* The caller (the prep controller) is responsible for vertical padding.+ −
*+ −
* The downsampler may request "context rows" by setting need_context_rows+ −
* during startup. In this case, the input arrays will contain at least+ −
* one row group's worth of pixels above and below the passed-in data;+ −
* the caller will create dummy rows at image top and bottom by replicating+ −
* the first or last real pixel row.+ −
*+ −
* An excellent reference for image resampling is+ −
* Digital Image Warping, George Wolberg, 1990.+ −
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.+ −
*+ −
* The downsampling algorithm used here is a simple average of the source+ −
* pixels covered by the output pixel. The hi-falutin sampling literature+ −
* refers to this as a "box filter". In general the characteristics of a box+ −
* filter are not very good, but for the specific cases we normally use (1:1+ −
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not+ −
* nearly so bad. If you intend to use other sampling ratios, you'd be well+ −
* advised to improve this code.+ −
*+ −
* A simple input-smoothing capability is provided. This is mainly intended+ −
* for cleaning up color-dithered GIF input files (if you find it inadequate,+ −
* we suggest using an external filtering program such as pnmconvol). When+ −
* enabled, each input pixel P is replaced by a weighted sum of itself and its+ −
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,+ −
* where SF = (smoothing_factor / 1024).+ −
* Currently, smoothing is only supported for 2h2v sampling factors.+ −
*/+ −
+ −
#define JPEG_INTERNALS+ −
#include "jinclude.h"+ −
#include "jpeglib.h"+ −
+ −
+ −
/* Pointer to routine to downsample a single component */+ −
typedef JMETHOD(void, downsample1_ptr,+ −
(j_compress_ptr cinfo, jpeg_component_info * compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data));+ −
+ −
/* Private subobject */+ −
+ −
typedef struct {+ −
struct jpeg_downsampler pub; /* public fields */+ −
+ −
/* Downsampling method pointers, one per component */+ −
downsample1_ptr methods[MAX_COMPONENTS];+ −
} my_downsampler;+ −
+ −
typedef my_downsampler * my_downsample_ptr;+ −
+ −
+ −
/*+ −
* Initialize for a downsampling pass.+ −
*/+ −
+ −
METHODDEF(void)+ −
start_pass_downsample (j_compress_ptr cinfo)+ −
{+ −
/* no work for now */+ −
}+ −
+ −
+ −
/*+ −
* Expand a component horizontally from width input_cols to width output_cols,+ −
* by duplicating the rightmost samples.+ −
*/+ −
+ −
LOCAL(void)+ −
expand_right_edge (JSAMPARRAY image_data, int num_rows,+ −
JDIMENSION input_cols, JDIMENSION output_cols)+ −
{+ −
register JSAMPROW ptr;+ −
register JSAMPLE pixval;+ −
register int count;+ −
int row;+ −
int numcols = (int) (output_cols - input_cols);+ −
+ −
if (numcols > 0) {+ −
for (row = 0; row < num_rows; row++) {+ −
ptr = image_data[row] + input_cols;+ −
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */+ −
for (count = numcols; count > 0; count--)+ −
*ptr++ = pixval;+ −
}+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Do downsampling for a whole row group (all components).+ −
*+ −
* In this version we simply downsample each component independently.+ −
*/+ −
+ −
METHODDEF(void)+ −
sep_downsample (j_compress_ptr cinfo,+ −
JSAMPIMAGE input_buf, JDIMENSION in_row_index,+ −
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)+ −
{+ −
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;+ −
int ci;+ −
jpeg_component_info * compptr;+ −
JSAMPARRAY in_ptr, out_ptr;+ −
+ −
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;+ −
ci++, compptr++) {+ −
in_ptr = input_buf[ci] + in_row_index;+ −
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);+ −
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Downsample pixel values of a single component.+ −
* One row group is processed per call.+ −
* This version handles arbitrary integral sampling ratios, without smoothing.+ −
* Note that this version is not actually used for customary sampling ratios.+ −
*/+ −
+ −
METHODDEF(void)+ −
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data)+ −
{+ −
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;+ −
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */+ −
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;+ −
JSAMPROW inptr, outptr;+ −
INT32 outvalue;+ −
+ −
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;+ −
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;+ −
numpix = h_expand * v_expand;+ −
numpix2 = numpix/2;+ −
+ −
/* Expand input data enough to let all the output samples be generated+ −
* by the standard loop. Special-casing padded output would be more+ −
* efficient.+ −
*/+ −
expand_right_edge(input_data, cinfo->max_v_samp_factor,+ −
cinfo->image_width, output_cols * h_expand);+ −
+ −
inrow = 0;+ −
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {+ −
outptr = output_data[outrow];+ −
for (outcol = 0, outcol_h = 0; outcol < output_cols;+ −
outcol++, outcol_h += h_expand) {+ −
outvalue = 0;+ −
for (v = 0; v < v_expand; v++) {+ −
inptr = input_data[inrow+v] + outcol_h;+ −
for (h = 0; h < h_expand; h++) {+ −
outvalue += (INT32) GETJSAMPLE(*inptr++);+ −
}+ −
}+ −
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);+ −
}+ −
inrow += v_expand;+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Downsample pixel values of a single component.+ −
* This version handles the special case of a full-size component,+ −
* without smoothing.+ −
*/+ −
+ −
METHODDEF(void)+ −
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data)+ −
{+ −
/* Copy the data */+ −
jcopy_sample_rows(input_data, 0, output_data, 0,+ −
cinfo->max_v_samp_factor, cinfo->image_width);+ −
/* Edge-expand */+ −
expand_right_edge(output_data, cinfo->max_v_samp_factor,+ −
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);+ −
}+ −
+ −
+ −
/*+ −
* Downsample pixel values of a single component.+ −
* This version handles the common case of 2:1 horizontal and 1:1 vertical,+ −
* without smoothing.+ −
*+ −
* A note about the "bias" calculations: when rounding fractional values to+ −
* integer, we do not want to always round 0.5 up to the next integer.+ −
* If we did that, we'd introduce a noticeable bias towards larger values.+ −
* Instead, this code is arranged so that 0.5 will be rounded up or down at+ −
* alternate pixel locations (a simple ordered dither pattern).+ −
*/+ −
+ −
METHODDEF(void)+ −
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data)+ −
{+ −
int outrow;+ −
JDIMENSION outcol;+ −
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;+ −
register JSAMPROW inptr, outptr;+ −
register int bias;+ −
+ −
/* Expand input data enough to let all the output samples be generated+ −
* by the standard loop. Special-casing padded output would be more+ −
* efficient.+ −
*/+ −
expand_right_edge(input_data, cinfo->max_v_samp_factor,+ −
cinfo->image_width, output_cols * 2);+ −
+ −
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {+ −
outptr = output_data[outrow];+ −
inptr = input_data[outrow];+ −
bias = 0; /* bias = 0,1,0,1,... for successive samples */+ −
for (outcol = 0; outcol < output_cols; outcol++) {+ −
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])+ −
+ bias) >> 1);+ −
bias ^= 1; /* 0=>1, 1=>0 */+ −
inptr += 2;+ −
}+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Downsample pixel values of a single component.+ −
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,+ −
* without smoothing.+ −
*/+ −
+ −
METHODDEF(void)+ −
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data)+ −
{+ −
int inrow, outrow;+ −
JDIMENSION outcol;+ −
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;+ −
register JSAMPROW inptr0, inptr1, outptr;+ −
register int bias;+ −
+ −
/* Expand input data enough to let all the output samples be generated+ −
* by the standard loop. Special-casing padded output would be more+ −
* efficient.+ −
*/+ −
expand_right_edge(input_data, cinfo->max_v_samp_factor,+ −
cinfo->image_width, output_cols * 2);+ −
+ −
inrow = 0;+ −
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {+ −
outptr = output_data[outrow];+ −
inptr0 = input_data[inrow];+ −
inptr1 = input_data[inrow+1];+ −
bias = 1; /* bias = 1,2,1,2,... for successive samples */+ −
for (outcol = 0; outcol < output_cols; outcol++) {+ −
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) ++ −
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])+ −
+ bias) >> 2);+ −
bias ^= 3; /* 1=>2, 2=>1 */+ −
inptr0 += 2; inptr1 += 2;+ −
}+ −
inrow += 2;+ −
}+ −
}+ −
+ −
+ −
#ifdef INPUT_SMOOTHING_SUPPORTED+ −
+ −
/*+ −
* Downsample pixel values of a single component.+ −
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,+ −
* with smoothing. One row of context is required.+ −
*/+ −
+ −
METHODDEF(void)+ −
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data)+ −
{+ −
int inrow, outrow;+ −
JDIMENSION colctr;+ −
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;+ −
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;+ −
INT32 membersum, neighsum, memberscale, neighscale;+ −
+ −
/* Expand input data enough to let all the output samples be generated+ −
* by the standard loop. Special-casing padded output would be more+ −
* efficient.+ −
*/+ −
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,+ −
cinfo->image_width, output_cols * 2);+ −
+ −
/* We don't bother to form the individual "smoothed" input pixel values;+ −
* we can directly compute the output which is the average of the four+ −
* smoothed values. Each of the four member pixels contributes a fraction+ −
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three+ −
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final+ −
* output. The four corner-adjacent neighbor pixels contribute a fraction+ −
* SF to just one smoothed pixel, or SF/4 to the final output; while the+ −
* eight edge-adjacent neighbors contribute SF to each of two smoothed+ −
* pixels, or SF/2 overall. In order to use integer arithmetic, these+ −
* factors are scaled by 2^16 = 65536.+ −
* Also recall that SF = smoothing_factor / 1024.+ −
*/+ −
+ −
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */+ −
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */+ −
+ −
inrow = 0;+ −
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {+ −
outptr = output_data[outrow];+ −
inptr0 = input_data[inrow];+ −
inptr1 = input_data[inrow+1];+ −
above_ptr = input_data[inrow-1];+ −
below_ptr = input_data[inrow+2];+ −
+ −
/* Special case for first column: pretend column -1 is same as column 0 */+ −
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) ++ −
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);+ −
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) ++ −
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) ++ −
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) ++ −
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);+ −
neighsum += neighsum;+ −
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) ++ −
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);+ −
membersum = membersum * memberscale + neighsum * neighscale;+ −
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);+ −
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;+ −
+ −
for (colctr = output_cols - 2; colctr > 0; colctr--) {+ −
/* sum of pixels directly mapped to this output element */+ −
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) ++ −
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);+ −
/* sum of edge-neighbor pixels */+ −
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) ++ −
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) ++ −
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) ++ −
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);+ −
/* The edge-neighbors count twice as much as corner-neighbors */+ −
neighsum += neighsum;+ −
/* Add in the corner-neighbors */+ −
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) ++ −
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);+ −
/* form final output scaled up by 2^16 */+ −
membersum = membersum * memberscale + neighsum * neighscale;+ −
/* round, descale and output it */+ −
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);+ −
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;+ −
}+ −
+ −
/* Special case for last column */+ −
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) ++ −
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);+ −
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) ++ −
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) ++ −
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) ++ −
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);+ −
neighsum += neighsum;+ −
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) ++ −
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);+ −
membersum = membersum * memberscale + neighsum * neighscale;+ −
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);+ −
+ −
inrow += 2;+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Downsample pixel values of a single component.+ −
* This version handles the special case of a full-size component,+ −
* with smoothing. One row of context is required.+ −
*/+ −
+ −
METHODDEF(void)+ −
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,+ −
JSAMPARRAY input_data, JSAMPARRAY output_data)+ −
{+ −
int outrow;+ −
JDIMENSION colctr;+ −
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;+ −
register JSAMPROW inptr, above_ptr, below_ptr, outptr;+ −
INT32 membersum, neighsum, memberscale, neighscale;+ −
int colsum, lastcolsum, nextcolsum;+ −
+ −
/* Expand input data enough to let all the output samples be generated+ −
* by the standard loop. Special-casing padded output would be more+ −
* efficient.+ −
*/+ −
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,+ −
cinfo->image_width, output_cols);+ −
+ −
/* Each of the eight neighbor pixels contributes a fraction SF to the+ −
* smoothed pixel, while the main pixel contributes (1-8*SF). In order+ −
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.+ −
* Also recall that SF = smoothing_factor / 1024.+ −
*/+ −
+ −
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */+ −
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */+ −
+ −
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {+ −
outptr = output_data[outrow];+ −
inptr = input_data[outrow];+ −
above_ptr = input_data[outrow-1];+ −
below_ptr = input_data[outrow+1];+ −
+ −
/* Special case for first column */+ −
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) ++ −
GETJSAMPLE(*inptr);+ −
membersum = GETJSAMPLE(*inptr++);+ −
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) ++ −
GETJSAMPLE(*inptr);+ −
neighsum = colsum + (colsum - membersum) + nextcolsum;+ −
membersum = membersum * memberscale + neighsum * neighscale;+ −
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);+ −
lastcolsum = colsum; colsum = nextcolsum;+ −
+ −
for (colctr = output_cols - 2; colctr > 0; colctr--) {+ −
membersum = GETJSAMPLE(*inptr++);+ −
above_ptr++; below_ptr++;+ −
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) ++ −
GETJSAMPLE(*inptr);+ −
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;+ −
membersum = membersum * memberscale + neighsum * neighscale;+ −
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);+ −
lastcolsum = colsum; colsum = nextcolsum;+ −
}+ −
+ −
/* Special case for last column */+ −
membersum = GETJSAMPLE(*inptr);+ −
neighsum = lastcolsum + (colsum - membersum) + colsum;+ −
membersum = membersum * memberscale + neighsum * neighscale;+ −
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);+ −
+ −
}+ −
}+ −
+ −
#endif /* INPUT_SMOOTHING_SUPPORTED */+ −
+ −
+ −
/*+ −
* Module initialization routine for downsampling.+ −
* Note that we must select a routine for each component.+ −
*/+ −
+ −
GLOBAL(void)+ −
jinit_downsampler (j_compress_ptr cinfo)+ −
{+ −
my_downsample_ptr downsample;+ −
int ci;+ −
jpeg_component_info * compptr;+ −
boolean smoothok = TRUE;+ −
+ −
downsample = (my_downsample_ptr)+ −
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,+ −
SIZEOF(my_downsampler));+ −
cinfo->downsample = (struct jpeg_downsampler *) downsample;+ −
downsample->pub.start_pass = start_pass_downsample;+ −
downsample->pub.downsample = sep_downsample;+ −
downsample->pub.need_context_rows = FALSE;+ −
+ −
if (cinfo->CCIR601_sampling)+ −
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);+ −
+ −
/* Verify we can handle the sampling factors, and set up method pointers */+ −
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;+ −
ci++, compptr++) {+ −
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&+ −
compptr->v_samp_factor == cinfo->max_v_samp_factor) {+ −
#ifdef INPUT_SMOOTHING_SUPPORTED+ −
if (cinfo->smoothing_factor) {+ −
downsample->methods[ci] = fullsize_smooth_downsample;+ −
downsample->pub.need_context_rows = TRUE;+ −
} else+ −
#endif+ −
downsample->methods[ci] = fullsize_downsample;+ −
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&+ −
compptr->v_samp_factor == cinfo->max_v_samp_factor) {+ −
smoothok = FALSE;+ −
downsample->methods[ci] = h2v1_downsample;+ −
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&+ −
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {+ −
#ifdef INPUT_SMOOTHING_SUPPORTED+ −
if (cinfo->smoothing_factor) {+ −
downsample->methods[ci] = h2v2_smooth_downsample;+ −
downsample->pub.need_context_rows = TRUE;+ −
} else+ −
#endif+ −
downsample->methods[ci] = h2v2_downsample;+ −
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&+ −
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {+ −
smoothok = FALSE;+ −
downsample->methods[ci] = int_downsample;+ −
} else+ −
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);+ −
}+ −
+ −
#ifdef INPUT_SMOOTHING_SUPPORTED+ −
if (cinfo->smoothing_factor && !smoothok)+ −
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);+ −
#endif+ −
}+ −